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|, Finite Mixture Model (FMM)
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Machine Learning Problem

Observations Hidden Components

» Learning from observed data
» Inferring a data generating process
» Essential structure, abstract, summary, ...
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Finite Mixture Model (FMM)

» Component Model

— A mixture of simple

distributions (components)

— Hidden or latent
1\ components

: — Serve as abstract or
I summary of data

TN » Generative Model

: i — Simulate observed random

N \ Sample

1 I
————I—/ ' ~—\J

. St o ' » Convenient and flexible

» Model fitting is hard
— Too many parameters
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Two Finite Mixture Models

K
Pxi|Q,m) =Y mP(xilwy)  PXilQ W) =) bixP(xi|wy)

K k—1 K k—1
> = > ik =
k=1 k=1
» Traditional model » Factor model
» Component = Cluster » Component = Generator

» Clustering, Gaussian » PLSA
Mixture (GM), GTM, ...
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Model Fitting

» Bayes’ Theorem

P(X(0,)P(6;) 7
P(0;|X) = <
() L
— ©,: Parameters s @Qﬁ
— X : Observations G
. . Observations Hidden Components
— P(6,) : Prior P(X]6:) P(6;)
- P(X'1 6, : Likelihood . >
P(0;|X)

» Maximum Likelihood Estimator (MLE)
— Used to find the most plausible 6, given X
— Maximize likelihood or log-likelihood
=>» Optimization problem
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Expectation-Maximization (EM) Algorithm

» Problems in MLE
— Observation X is often not complete
— Latent (hidden) variable Z exists
— Hard to explore whole parameter space

» EM algorithm
— Random initialization 6°ld
— E-step : Expectation P(Z | X, 6°9)
— M-step : Maximize (log-)likelihood
— Repeat E-,M-step until converge.
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Motivation

» Local optimum problem

— Easily trap in the local
optimum

— Sensitive to initial conditions
or parameters
— High-variance solution
— SA, GA, ...
» Overfitting problem
— Poor generalization quality

— Directly related with
predicting power

— Early stopping, cross
validation, ...
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global maximum

local maximum

local minimum

global minimum

| | | |

(Maxima and Minima, Wikipedia)

Underfitting

~

Overfitting

vl

Validation Error

Training Error

>
(Overfitting, Wikipedia)
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Contributions

» Solve FMM with DA
— Avoid local optimum problem

— Avoid overfitting problem

» Present DA applications
— GTM with DA (DA-GTM)
— PLSA with DA (DA-PLSA)

» Experimental results

— Data visualization
— Text mining
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Il. Model Fitting with Deterministic Annealing (DA)
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Deterministic Annealing (DA)

» Optimization
— Gradually lowering numeric
temperature
— No stochastic process

» Local optimum avoidance

— Tracing the global solution by
changing level of smoothness

— Smoothed - bumpy

» Principle of Maximum Entropy
— A solution with maximum entropy

— Minimize the free energy F of log-
likelihood

— Eventually, we will have
maximized log-likelihood
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Finite Mixture Model with EM

E-step <

v

M-step

v

Update Log-Likelihood

v

Converged

No
Yes
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Finite Mixture Model with DA

?

Set Temp High \|>-
v
> Update Temperature
| =
’ ™
E-step <
v
M-step
v
Update Free Energy
v
Converged
No
N | Yes ~
o ﬁ
W R oo 1
R |
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« Annealing (High = Low)
» High temperature
- Soft (or fuzzy) association
- Smooth cost function
* Low temperature
- Hard association
- Bumpy cost function
- Revealing full complexity

* Minimize free energy

 Freeenergy F =
f(Temp, Entropy of Log-
Likelihood)
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Free Energy for Finite Mixture Model

» Free Energy

F—=D_TS - D : expected cost <d >
N - S : Shannon entropy
__7 Z InZ, - T : computational temperature
— - Z_ : partition function K

Ly = Zexp (_;{nk>

k=1
» General form for Finite Mixture Model

N K
Feum = =T ) log > {c(n, k) p(an|ye)} ™
n=1 k=1

— Cost function: d,,, = — logp($n\yk)
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Ill. Generative Topographic Mapping with
Deterministic Annealing (DA-GTM)
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Dimension Reduction

PubChem Data
(166 dimensions)

—

. 1: Adenocarcinoma (166)
2: Ataxia (140)

. 3: Carcinoma (130)

- 4: Hepatitis (1189)

i AR MY i ]
5. Hypertension (162) Bo oy A ot
. Sl ¥

6: Infection (8762)
7: Leukemia (3632)
. 8: Lymphoma {1 Brt

"
. 9: MuscularAtropl@t@ P o7 :

10: Obesity (473)

i l
11: Sarcoma (101) - A -.."
-12 Schlzophrenla(?&ﬁ -" ~ 5

L

n LA_-5~- s
-

ol ia ”

» Simplification, feature selection/extraction,

visualization, etc.

» Preserve the original data’s information as much
as possible in lower dimension
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Generative Topographic Mapping

@ K latent points
(Components)

Latent Space (L dimension) Data Space (D dimension) ‘ N data points

» An algorithm for dimension reduction
— Find an optimal K latent variables in a latent space
— f is a non-linear mappings
— Strict Gaussian mixture model
— EM model fitting

» DA optimization can improve the fitting process
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Advantages of GTM

» Computational complexity is O(KN), where
— N is the number of data points
— Kis the number of latent variables or clusters. K << N

» Efficient, compared with MDS which is O(N?)
» Produce more separable map (right) than PCA (left)

Oil flow data

-. 1000 points

-. 12 Dimensions
-. 3 Clusters

I I |
-2 -1 0 1 2 -1.0 -0.5 0.0 0.5 1.0
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Free Energy for GTM

N K
Frum = =T ) log > {c(n, k) p(an|ye)}™
n=1 k=1

» GTM Model Setting

— Strict Gaussian assumption

p(nlye) = N (@n|p, o)
— Constant mixing weight

1
c(n, k) = %
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GTM with Deterministic Annealing

(Traditional method) (New algorithm)

Optimization Maximize log-likelihood L Minimize free energy F
N | K 1 K
In< — p(Tr|Y —T In ( > (x %
e | L0 73] () e
Function _

WhenT=1, L =-F.

= \ery sensitive to ..
y = |ess sensitive to poor parameters
parameters

* Trapped in local optima " Avoid local optimum
: Fasf:r P = Require more computational time

Pros & Cons

I.II PERVASIVE TECHNOLOGY _
INSTITUTE 20 Jong Youl Choi (Jan 12, 2012)
IIIIIIIIIIIIIIIII




Cooling Schedules

_Lnear | Exponential | Adaptive

Temperature

||||||||||||||||||

Iterations

» Traditional method : static cooling schedule

» Adaptive cooling, a dynamic cooling schedule
— Able to adjust the problem on the fly
— Move to a temperature at which F may change

Jong Youl Choi (Jan 12, 2012)
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Phase Transition

» Discrete behavior of DA
— In some temperatures, the free energy is stable

— At a specific temperature, start to explode, which is
known as critical temperature T,

» Critical temperature T,
— Free energy F is drastically changing at T,

— Second derivative test : Hessian matrix loose its
positive definiteness at T,

—det(H)=0at T,, where

0*F 0*F
- Tr Hkk/ — Tr
aykﬁyk 8yk8yk/

H= : : Hi
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—2000 -

—4000 -

Log-Likelihood value

-6000 -

-8000 -

DA-GTM with Adaptive Cooling

Everage Log-Likelihood
of EM-GTM

Type
= | jkelihood

| | | |
2000 4000 6000 8000
lteration

Progress of log-likelihood

INSTITUTE
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® Type

== Temp
Starting Temperature

6_

(6]
|

N

1st Critical Temperature

Temperature
S
I

w
|

| | | |
2000 4000 6000 8000
lteration

Adaptive changes in cooling schedule

Oil flow data (1000 points with 12 Dimensions)
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DA-GTM Result

15- Type
EM
. Adaptive
N Exp-A (@=0.95)
B Exp-B (a=0.99)
T NA 5.0 7.0 9.0

Oil flow data (1000 points with 12 Dimensions)

Log-Likelihood

Start Temperature (15t T, = 4.64)
PERVASIVE TECHNOLOGY
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Conclusion

» GTM with Deterministic Annealing (DA-GTM)
— Overcome short-comes of traditional EM method
— Avoid local optimum
— Robust against poor initial parameters

» Phase-transitions in DA-GTM
— Use Hessian matrix for detection
— Eigenvalue computation

» Adaptive cooling schedule

— New convergence approach
— Dynamically determine next convergence point
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V. Probabilistic Latent Semantic Analysis with
Deterministic Annealing (DA-PLSA)
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Corpus Analysis

» Polysems
%v& %v\ %VK — A word with multiple
meanings
— E.g., ‘thread’
» Synonyms

=

‘ﬂ — Different words that
have similar
/\ /\ meaning, a topic
Wc Wd 1 ’
— E.g., ‘car’ and

‘automotive’

=

Corpus

Document AWord
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Probabilistic Latent Semantic Analysis (PLSA)

» Topic model
— Assume latent K topics generating words
— Each document is a mixture of K topics

» FMM Type-2
— The original proposal used EM for model fitting

P

\

Doc 1 Doc 2 Doc N
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An Example of DA-PLSA

(AP: 2,246 documents & 10,473 words)

Topic 1 Topic 2 Topic 3 Topic 4 Topic 5
percent stock soviet bush percent
million market gorbachev dukakis computer
year index party percent aids
sales million i i year
billion percent president jackson new
new stocks union campaign drug
company trading gorbachevs poll virus
last shares government president futures
corp new new new people
share exchange news israel two

Top 10 list of the best words of the AP news dataset for 30 topics.
Processed by DA-PLSA and shown only 5 topics among 30 topics
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Overfitting Problem

Training

Queried
Documents

Model

» Predictive power
— Maintain good performance on unseen data
— A generalized model is preferable
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Free Energy for PLSA

N K
Frum = =T ) log > {c(n, k) p(an|ye)}™
n=1 k=1

» PLSA Model Setting
— Use Multinomial distribution

p(xn|yr) = Multi(x,,|0k)

— Flexible mixing weight

C(”a k) — wnk
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Overfitting Avoidance in DA

» DA can control smoothness
— Smoothed solution at high temperature
— Getting specific as annealing
— Early stopping to get a smoothed (general) model

» Stop condition
— Use a V-fold cross validation method

— Measure total perplexity, sum of log-likelihood of both
training set and testing set

Total PL’TPlf?Xit}/ — a- LPLSA(Xtrainingr O,¥) +b- ’CPLSA(Xtestingr 0,Y)

» Tempered-EM, proposed by Hofmann (the
original author of PLSA), but annealing is done
In a reversed way
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Annealing in DA-PLSA

Changes of Log-Likelihood

7004 ) Training Set Improved fitting
I S I S quality with training
Mix C set during annealing
-800 - ‘
-900 -
3 Mix B
E%)—1000— ______________
Early-stop temperatures
depending on schemes:
A (a=0.0, b=1.0)
B (a=0.5, b=0.5)
C (a=0.9, b=0.1) -
D (a=1.0, b=0.0) Testing Set Over-fitting at
S Temp=1
A:iB :C D
1(|)0 5|0 1|0 é 1I

Temperature

Annealing progresses from high temp to low temp
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Predicting Power in DA-PLSA

Log of word probabilities of AP data (100 topics for 10,473 words)

(o) (0]

High Word
1000 1000 Probability
2000} 2000
3000 3000
e 4000 —-15 ¢ 4000 s
) )
© O
£ 5000 £ 5000
O O
S S
é 6000 é 6000
7000 7000
8000 —%0 8000 -30
9000 . 9000 .
Low Word
10000 10000 Probability
Early stop Over-fitting
(Temp = 49.98) (Temp = 1.0)
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AP data with DA-PLSA

(AP: 2,246 documents & 10,473 words)

DA-Train
-700 Method
I~ DA-Train 500 EM-Train
=+ DA-Test
_700 - .-.-. EM-Train i N
|7+ EM-Test - ~
-1000 - g
—— ~
Do
-740 e
E
ALY
AN
-1500 - \‘\\\
n U AN
- NN
é -760 § e
@ =)
| | N\
=2 @-2000 - \\
3 _780- & o
=X
Method \ O\
. q
== DA-Train N\
/ B! o ! \
5 S \
-800 - 4 E -2500- | S DA-Test e
/ h 1 \
/ oAl = EM-Train £\
§ 4 5
W —~ EM-Test '\ DA-Test
ram| N\
\
-820 - %W\
-3000 - T
B e e EM-Test %
py——— e i
| | | | | | | | ]
1 5 10 50 100 500 1 5 10 50 100 500
Latent space dimensions

Latent space dimensions
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NIPS data with DA-PLSA

| TestSetOnly

Method
DA-Train
DA-Test

| EM-Train

2000~ EM-Test

£ -2500 -

Log-likelihood

-3000 -

e — | ! ! - 1 —_— - —+

T = T T T T

I | I I
1 5 10 50 100 500
Latent space dimensions
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(NIPS: 1,500 doc & 12,419 words)

—-2000 -

-4000 -

-6000 -

Log-likelihood

-8000 -

Method
DA-Train
DA-Test

EM-Train
| EM-Test

[} [}

I | I I
1 5 10 50 100 500
Latent space dimensions

-10000 -
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DA-PLSA with DA-GTM

m 73 (99)

m 424 (194)
m 435 (174)
| m 445 (146)
5 492 (130)
DA-PLSA
|
DA-GTM
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AP Data Top Topic Words

» In the previous picture, we found among 500

topics:
Topic 331 Topic 435 Topic 424 Topic 492 Topic 445 Topic 406
lately lately mandate mandate mandate plunging
oferrell oferrell kuwaits kuwaits lately referred
mandate ACK cardboard cardboard ACK informal
ACK fcc commuter commuter cardboard Anticommu.
fcc mandate ACK lately fcc origin
cardboard cardboard fcc ACK commuter details
commuter exam lately exam oferrell relieve
exam commuter exam fcc exam psychologist
kuwaits fabrics fabrics oferrell kuwaits lately
fabrics corroon oferrell fabrics fabrics thatcher

ACK : acknowledges

Anticommu. : anticommunist
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EM vs. DA-{GTM, PLSA}

EM DA
Optimization Maximize log-likelihood L Minimize free energy F
N | K N | i K
GTM . -~ . T
NTESWEIRIES it { (%) et}
n=1 k=1 n=1 k=1
g |
K Y& 1
g5 mon | Lind {vniMultiCanlye)) ~T Z In Z {WnMulti(a|yy)} 7
n=1 k=1 n— 1
Note: When T=1, L =-F.
I This implies EM can be treated as a special case in DA
= Very sensitive = Less sensitive to an initial condition
Pros & Cons || ® Trapped in local optima * Find global optimum
= Faster = Require more computational time
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Finite Mixture Model (FMM)

|.  Model Fitting with Deterministic Annealing (DA)

lll. Generative Topographic Mapping with
Deterministic Annealing (DA-GTM)

IV. Probabilistic Latent Semantic Analysis with
Deterministic Annealing (DA-PLSA)

V. Conclusion And Future Work
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Conclusion

» Finite Mixture Model (FMM) problems
— FMM-1 and FMM-2
— Maximize log-likelihood for model fitting (MLE)
— Traditional solutions use EM

» Solve FMMs with DA

— Avoid local optimum problem
— Find generalized (smoothed) solution

» Enhance and develop two data mining
algorithms
— DA-GTM
— DA-PLSA
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Future Work

» Determine number of components

— Help to choose the right number of clusters, topics,
the number of lower dimension, ...

— Bayesian model selection, minimum description
length (MDL), Bayesian information criteria (BIC), ...

— Need to develop in a DA framework

» Quality study for DA-PLSA

— Comparison with LDA
— Precision and recall measurements

» Performance study for data-intensive analysis
— MPI, MapReduce, PGAS, ...
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Thank you!!

Question?

Email me at jychoi@cs.indiana.edu
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