Supporting High Performance Molecular Dynamics in
Virtualized Clusters using IOMMU, SR-IOV, and GPUDirect

Andrew J. Younge

School of Informatics & Computing
Indiana University
Bloomington, IN 47408

ajyounge@indiana.edu

Abstract

Cloud infrastructure-as-a-Service paradigms have recently shown
their utility for a vast array of computational problems, ranging
from advanced web service architecutres to high throughput com-
puting. However, many scientific computing applications have been
slow to adapt to virtualized cloud frameworks. This is due to perfor-
mance impacts of virtualization technologies, coupled with the lack
of advanced hardware support necessary for running many high
performance scientific appications at scale.

By using KVM virtual machines that leverage both Nvidia
GPUs and InfiniBand, we show that molecular dynamics simu-
lations with LAMMPs and HOOMD run at near-native speeds.
This experiment also illustrates how virtualized environments can
support the latest parallel computing paradigms, including both
MPI+CUDA and new GPUDirect RDMA functionality. Specific
findings show initial promise in scaling of such applications to
larger production deployments targeting large scale computational
workloads.

1. Introduction

At present we stand at the inevitable intersection between High
Performance Computing (HPC) and clouds. Various platform tools
such as Hadoop and MapReduce, among others, have already per-
colated into data intensive computing within HPC [17]. In addition,
there are efforts to support traditional HPC-centric scientific com-
puting applications in virtualized cloud infrastructure. There are
a multitude of reasons for supporting parallel computation in the
cloud[9], including features such as dynamic scalability, special-
ized operating environments, simple management interfaces, fault
tolerance, and enhanced quality of service, to name a few. The
growing importance of supporting advanced scientific computing
using virtualized infrastructure can be seen by a variety of new ef-
forts, including the NSF-funded Comet resource part of XSEDE at
San Diego Supercomputer Center [23].

Nevertheless, there exists a past notion that virtualization used
in today’s cloud infrastructure is inherently inefficient. Historically,

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions @acm.org.

CONF ’15, Month d—d, 20yy, City, ST, Country.

Copyright © 2015 ACM 978-1-nnnn-nnnn-n/yy/mm. .. $15.00.
http://dx.doi.org/10.1145/nnnnnnn.nnnnnnn

John Paul Walters

Information Sciences Institute
University of Southern California
Arlington, VA 22203

jwalters@isi.edu

Geoffrey C. Fox

School of Informatics & Computing
Indiana University
Bloomington, IN 47408

gcf@indiana.edu

cloud infrastructure has also done little to provide the necessary ad-
vanced hardware capabilities that have become almost mandatory
in supercomputers today, most notably advanced GPUs and high-
speed, low-latency interconnects. The result of these notions has
hindered the use of virtualized environments for parallel computa-
tion, where performance must be paramount.

A growing effort is currently underway that looks to systemat-
ically identify and reduce any overhead in virtualization technolo-
gies, so far with relative success [22, 33]. Thus, we see a constantly
diminishing overhead with virtualization, not only with traditional
cloud workloads [15] but also with HPC workloads. While virtu-
alization will almost always include some additional overhead in
relation to its dynamic features, the eventual goal for supporting
HPC in virtualized environments is to minimize what overhead ex-
ists whenever possible. To advance the placement of HPC appli-
cations on virtual machines, new efforts are emerging which focus
specifically on key hardware now commonplace in supercomput-
ers. By leveraging new virtualization tools such as IOMMU device
passthrough and SR-IOV, we can now support the such advanced
hardware as the latest Nvidia Tesla GPUs [32] as well as Infini-
Band fabric[18].

With the advances in hypervisor performance coupled with the
newfound availably of HPC hardware in virtual machines analo-
gous to the most powerful supercomputers used today, we see can
see the possibility of a high performance cloud infrastructure using
virtualization. While our previous efforts in this area have focused
on single-node advancements, it is now imperative to ensure real-
world applications can also operate in distributed environments as
found in today’s cluster and cloud infrastructures.

To start, we demonstrate running two molecular dynamics
simulations, LAMMPS and HOOMD, in a virtual infrastructure
complete with both Kepler GPUs and QDR InfiniBand. Both
LHOOMD and LAMMPS are used extensively in some of the
world’s fastest supercomputers and represent example simulations
that HPC supports today. We show that these applications are able
to run at near-native speeds within a completely virtualized envi-
ronment, demonstrating just small performance impacts that are
usually acceptable by many users. Furthermore, we illustrate the
ability of such a virtualized environment to support cutting edge
software tools such as RDMA GPUDirect, illustrating how cutting-
edge HPC technologies are also possible in a virtualized environ-
ment.

Following these efforts, we hope to ensure upstream infrastruc-
ture projects such as OpenStack [5, 25] are able to make effec-
tive and quick use of these features, allowing users to build private
cloud infrastructure to support high performance distributed com-
putational workloads.

2. Background and Related Work

Virtualization technologies and hypervisors have been seen widespread

deployment in support of a vast array of applications. This ranges
from public commercial Cloud deployments such as Amazon EC2
[6, 14], Microsoft Azure [16], and Google’s Cloud Platform [4]
to private deployments within colocation facilities, corporate data
centers, and even national scale cyberinfrastructure initiatives. All
these support look to support various use cases and applications
such as web servers, ACID and BASE databases, online object
storage, and even distributed systems, to name a few.

The use of virtualization and hypervisors specifically support
various HPC solutions has been studied with mixed results. In
[33], it is found that there is a great deal of variance between
hypervisors when running various distributed memory and MPI
applications, finding that KVM overall performed well across an
array of HPC benchmarks. Furthermore, some applications may
not may well into default virtualized environments, such as High
Performance Linpack [22]. Other studies have specifically looked
at interconnect performance in virtualization and found the best-
case scenario to be lacking [27] with up to 60% performance
penalties with conventional techniques.

Recently, various CPU architectures have added support for I/O
virtualization mechanisms in the CPU ISA through the use of an
I/O memory management unit (IOMMU). Often, this is referred
to as PCI Passthrough, as it enabled devices on the PCI-Express
bus to be passed directly to a specific virtual machine (VM). Spe-
cific hardware implementations include Intel’s VT-d [28], AMD’s
IOMMU [7] from x86_64 architectures, and even more recently
ARM System MMU [20]. All of these implementations effectively
look to aid in the usage of DMA-capable hardware to be used
within a specific virtual machine. Using these features, a wide ar-
ray of hardware can be utilized directly within VMs and enable fast
and efficient computation and I/O capabilities.

With PCI Passthrough, a PCI device is handed directly to a run-
ning (or booting) VM, thereby relinquishing control of the device
within the host entirely. This is different form typical VM usage
where hardware is emulated in the host and used in a guest VM,
such as with bridged ethernet adapters or emulated VGA devices.
Performing PCI Passthrough requires the host to seize the device
upon boot using a specialized driver to effectively block normal
driver initialization. In the instance of the KVM hypervisor, this
is done using the vfio and pci_stub drivers. Then, this driver relin-
quishes control to the VM, whereby normal device drivers initiate
the hardware and enable the device for use by the guest OS.

2.1 GPU Passthrough

Nvidia GPUs comprise the single most common accelerator in the
Nov 2014 Top 500 List [11] and represent an increasing shift to-
wards accelerators for HPC applications. Historically, GPU usage
in a virtualized environment has been difficult, especially for scien-
tific computation. Various front-end remote API implementations
have been developed to provide CUDA and OpenCL libraries in
VMs, which translate library calls to a back-end or remote GPU.
One common use case of this is rCUDA [12], which provides a
front-end CUDA API within a VM or any compute node, and then
sends the calls via Ethernet or InfiniBand to a seperate node with
1 or more GPUs. While this method works, it has the drawback
of relying on the interconnect itself and its available bandwidth
(which can be especially problematic on Ethernet). Furthermore,
this method consumes bandwidth, sometimes leaving little avail-
able bandwidth for inter-node communication, thereby construct-
ing a bottleneck for some MPI+CUDA applications.

Recently efforts have been seen to support such GPU acceler-
ators within VMs using IOMMU technologies, with implementa-
tions now available with KVM [32], Xen [34] and VMWare [31].

These efforts have shown that GPUs can achieve up to 99% of their
bare metal performance when passed to a virtual machine using
PCI Passthrough. VMWare specifically show how the such PCI
Passthrough solutions perform well and are likely to outperform
front-end Remote API solutions within a VM[32]. While these
works demonstrate PCI Passthrough performance across a range
of hypervisors and GPUs, they have been limited to investigating
single node performance.

2.2 SR-IOV and InfiniBand

With almost all parallel HPC applications, the interconnect fabric
which enables fast and efficient communication between proces-
sors becomes a central requirement to achieving good performance.
Specifically, a high bandwidth link is needed for distributed proces-
sors to share large amounts of data across the system. Furthermore,
low latency becomes equally important for ensuring quick deliver
small message communications and resolving large collective bar-
riers within many parallelized codes. One such interconnect, Infini-
Band, has become the most common implementation used within
the Top500 list. However previously InfiniBand was inaccessible to
virtualized environments.

Supporting I/O interconnects in VMs has been aided by Single
Root I/O Virtualization (SR-IOV), whereby multiple virtual PCI
functions are created in hardware to represent a single PCI device.
These virtual functions (VFs) can then be passed to a VM and used
as by the guest as if it had direct access to that PCI device. SR-IOV
allows for the virtualization and multiplexing to be done within
the hardware, effectively providing higher performance and greater
control than software solutions.

SR-IOV has been used in conjunction with Ethernet devices to
provide high performance 10Gb TCP/IP connectivity within VMs
[21], offering near-native bandwidth and advanced QoS features
not easily obtained through emulated Ethernet offerings. Currently
Amazon EC2 offers a high performance VM solution utilizing SR-
IOV enabled 10Gb Ethernet adapters. While SR-IOV enabled 10Gb
Ethernet solutions offers a big foward in performance, Ethernet still
does not offer the high bandwidth or low latency typically found
with InfiniBand solutions.

Recently SR-IOV support for InfiniBand has been added by
Mellanox in the ConnectX series adapters. Initial evaluation of SR-
IOV InfiniBand within KVM VMs has proven has found point-to-
point bandwidth to be near-native, but up to 30% latency overhead
for very small messages [18, 29]. However, even with the noted
overhead, this still signifies up to an order of magnitude differ-
ence in latency between InfiniBand and Ethernet with VMs. Fur-
thermore, advanced configuration of SR-IOV enabled InfiniBand
fabric is taking shape, with recent research showing up to a 30%
reduction in the latency overhead [24]. However, real application
performance has not yet been well understood until now.

2.3 GPUDirect

NVIDIA’s GPUDirect technology was introduced to reduce the
overhead of data movement across GPUs [1, 30]. GPUDirect sup-
ports both networking as well as peer-to-peer interfaces for sin-
gle node multi-GPU systems. The most recent implementation of
GPUDirect, version 3, adds support for RDMA over InfiniBand for
Kepler-class GPUs.

The networking component of GPUDirect relies on three key
technologies: CUDA 5 (and up), a CUDA-enabled MPI implemen-
tation, and a Kepler-class GPU (RDMA only). Both MVAPICH and
OpenMPI support GPUDirect. Support for RDMA over GPUDirect
is enabled by the MPI library, given supported hardware, and does
not depend on application-level changes to a user’s code.

In this paper, our GPUDirect work focuses on GPUDirect v3
for multi-node RDMA support. We demonstrate scaling for up to

4 nodes connected via QDR InfiniBand and show that GPUDirect
RDMA improves both scalability and overall performance by ap-
proximately 9% at no cost to the end user.

3. Benchmarks

We selected two molecular dynamics (MD) applications for eval-
uation in this study: LAMMPS and HOOMD [8, 26]. These MD
siulations are chosen to represent a subset of advance parallel com-
putation for a number of fundamental reasons:

e MD simulations provide a good practical representation of N-
Body simulations, which is one of the major computational
Dwarfs [10] in parallel and distributed computing.

e MD simulations are one of the most widely deployed applica-
tions on large scale supercomputers today.

e Many MD simulations have a hybrid MPI+CUDA program-
ming model, which has often become commonplace in HPC
as the use of accelerators increases.

As such, we look to LAMMPS and HOOMD to provide a real-
world example for running cutting-edge parallel programs on vir-
tualized infrastructure. While these applications by no means rep-
resent all parallel scientific computing efforts (as justified by the
13 Drafs defined in [10]), we hope these MD simulators offer a
more pragmatic viewpoint than traditional synthetic HPC bench-
marks such as High Performance Linpack.

LAMMPS The Large-scale Atomic/Molecular Parallel Simulator
is a well-understood highly parallel molecular dynamics simulator.
It supports both CPU and GPU-based workloads. Unlike many
simulators, both MD and otherwise, LAMMPS is heterogeneous.
It will use both GPUs and multicore CPUs concurrently. For this
study, this heterogeneous functionality introduces additional load
on the host, allowing LAMMPS to utilize all available cores on a
given system. Networking in LAMMPS is accomplished using a
typical MPI model. That is, data is copied from the GPU back to
the host and sent over the InfiniBand fabric. No RDMA is used for
these experiments.

HOOMD-blue The Highly Optimized Object-oriented Many-
particle Dyanmics — Blue Edition is a particle dynamics simualtor
capable of scaling into the thousands of GPUs. HOOMD supports
executing on both CPUs and GPUs. Unlike LAMMPS, HOOMD
is homogeneous and does not support mixing of GPUs and CPUs.
HOOMD supports GPUdirect using a CUDA-enabled MPI. In this
paper we focus on HOOMD'’s support for GPUdirect and show its
benefits for increasing cluster sizes.

4. Experimental Setup

Using two molecular dynamics tools, LAMMPS[26] and HOOMD (8],

we demonstrate a high performance system. That is, we combine
PCI passthrough for Nvidia Kepler-class GPUs with QDR Infini-
band SR-IOV and show that high performance molecular dynamics
simulations are achievable within a virtualized environment.

For the first time, we also demonstrate Nvidia GPUDirect tech-
nology within such a virtual environment. Thus, we look to not
only illustrate that virtual machines provide a flexible high perfor-
mance infrastructure for scaling scientific workloads including MD
simulations, but also that the latest HPC features and programming
environments are also available in this same model.

4.1 Node configuration

To support the use of Nvidia GPUs and InfiniBand within a VM,
specific and exact host configuration is needed. This node configu-
ration is illustrated in figure 1. While our implementation is specific

to the KVM hypervisor, this setup represents a design that can be
hypervisor agnostic.

IB Virtual
Functions

cPUS o VT-D/ IOMIV"I:
DIRAH (PCI Express

GPUO GPU1 GPU2

Figure 1. Node PCI Passthrough of GPUs and InfiniBand

IB Physical
Interface

Each node in the testbed uses CentOS 6.4 with a 3.13 upstream
Linux kernel for the host OS, along with the latest KVM hypervi-
sor, QEMU 2.1 and the vfio driver. Each Guest VM runs Centos
6.4 with a stock 2.6.32-358.23.2 kernel. A Kepler GPU is passed
through using PCI Passthrough and directly initiated within the VM
via the Nvidia 331.20 driver and CUDA release 5.5. While this spe-
cific implementation used only a single GPU, it is also possible to
include as many GPUs as one can fit within the PCI Express bus if
desired. As the GPU is used by the VM, an on-board VGA device
was used by the host and a standard Cirris VGA was emulated in
the guest OS.

With using SR-IOV, the OFED drivers version 2.1-1.0.0 are

used with Mellanox ConnectX-3 VPI adapter with firmware 2.31.5050.

The host driver initiates 4 VFs, one of which is passed through to
the VM where the default OFED mlnx_ib drivers are loaded.

4.2 Cluster Configuration

Our test environment is composed of 4 servers each with a sin-
gle Nvidia Kepler-class GPU. Two servers are equipped with K20
GPUs, while the other two servers are equipped with K40 GPUs,
demonstrating the potential for a more heterogeneous deployment.
Each server is composed of 2 Intel Xeon E5-2670 CPUs, 48GB
of DDR3 memory, and Mellanox ConnectX-3 QDR InfiniBand.
CPU sockets and memory are split evenly between the two NUMA
nodes on each system. All InfiniBand adapters use a single Mel-
lanox SwitchX QDR switch running an updated subnet manager
for [PoIB functionality.

For these experiments, both the GPUs and InfiniBand adapters
are attached to NUMA node 1 and both the guest VMs and the
base system utilized identical software stacks. Each guest was
allocated 20 GB of RAM and a full socket of 8 cores, and pinned to
NUMA node 1 to ensure optimal hardware usage. While all VMs
are capable of login via the InfiniBand IPoIB setup, a 1Gb Ethernet
network was used for all management and login tasks.

For a fair and effective comparison, we also use a native envi-
ronment without any virtualization. This native environment em-
ploys the same hardware configuration, and like the Guest OS runs
CentOS 6.4 with the stock 2.6.32-358.23.2 kernel.

5. Results

In this section, we discuss the performance of both the LAMMPS
and HOOMD molecular dynamics simulation tools when running

within a virtualized environment. Specifically, we scale each ap-
plication to 32 cores and 4 GPUs, both in a native bare-metal and
virtualized environments. Each application set was run 10 times,
with the results averaged accordingly.

5.1 LAAMPS

LAMMPS Lennard-Jones Performance

120

——VM32c/ag
VM ac/ag
—i—Base 32¢/4g
60 Base 4c/dg

Millions of atom-timesteps per second

2% ak £ 16k 3% 6ak 128k 256k sk 1024k 2048k

Figure 2. LAMMPS LJ Performance

Figure 2 shows one of the most common LAMMPS algorithms
used; the Lennard-Jones potential (LJ). This algorithm is deployed
in two main configurations - a 1:1 core to GPU mapping, and a
8:1 core to GPU mapping. With the LAMMPS GPU implemen-
tation, a delicate balance between GPUs and CPUs is required to
find the optimal ratio for fastest computation, however here we just
look at the two most obvious choices. With small problem sizes,
the 1:1 mapping outperforms the more complex core deployment,
as the problem does not require the additional complexity provided
with multi-core solution. As expected the multi-core configuration
quickly offers better performance for larger problem sizes, achiev-
ing roughly twice the performance with all 8 available cores. This
is largely due to the availability of all 8 cores to keep the GPU
running 100% with continual computation.

The important factor for this manuscript is the relative perfor-
mance of the virtualized environment. From the results, it is clear
the VM solution performs very well compared to the best-case na-
tive deployment. For the multi-core configuration across all prob-
lem sizes, the virtualized deployment averaged 98.5% efficiency
compared to native. The single core per GPU deployment reported
better-than native performance at 100% native. This is likely due to
caching effects, but further investigation is needed to fully identify
this occurrence.

Another common LAMMPs algorithm, the Rhodopsin protein
in solvated lipid bilayer benchmark (Rhodo), was also run with re-
sults given in Figure 3. As with the LJ runs, we see the multi-core to
GPU configuration resulting in higher computational performance
for the larger problem sizes compared to the single core per GPU
configuration, as expected.

Again, the overhead of the virtualized configuration remains
low across all configurations and problem sizes, with an aver-
age 96.4% efficiency compared to native. Interestingly enough,
we also see the performance gap decrease as the problem size in-
creases, with the 512k problem size in yielding 99.3% of native
performance. This finding leads us to extrapolate that a virtualized
MPI+CUDA implementation would scale to a larger computational
resource with similar success.

LAMMPS Rhodopsin Performance

: e

H ya

——VM32c/ag
VM ac/ag

——Base 32¢/4g

15 Base 4c/4g

Millions of atom-timesteps per second

3% 64k 128k 256k 512k

Figure 3. LAMMPS RHODO Performance

5.2 HOOMD

In Figure 4 we show the performance of a Lennard-Jones liquid
simulation with 256K particles running under HOOMD. HOOMD
includes support for CUDA-aware MPI implementations via GPUDi-
rect. The MVAPICH 2.0 GDR implementation enables a further op-
timization by supporting RDMA for GPUDirect. From Figure 4 we
can see that HOOMD simulations, both with and without GPUDi-
rect, perform very near-native. The GPUDirect results at 4 nodes
(32 cores) achieve 98.5% of the base system’s performance. The
non-GPUDirect results achieve 98.4% efficiency at 4 nodes. These
results indicate the virtualized HPC environment is able to support
such complex workloads. While the effective testbed size is rel-
atively small, it indicates that such workloads may scale equally
well to hundreds or thousands of nodes.

800
700
600
500
400
300 /

200

¢ =+=\M GPUDirect
+=VM No GPUDirect

—4—Base GPUDirect
4~Base No GPUDirect

Average Timesteps per second

100

0 1 2 3 4
N Nodes

Figure 4. HOOMD LJ Performance with 256k Simulation

6. Discussion

From the results, we see the potential for running HPC applications
in a virtualized environment using GPUs and InfiniBand intercon-
nect fabric. Across all LAAMPS runs with ranging core config-
urations, we found only a 1.9% overhead between the KVM vir-
tualized environment and native. For HOOMD, we found a simi-
lar 1.5% overhead, both with and without GPU Direct. These re-
sults go against conventional wisdom that HPC workloads do not

work in VMs. In fact ,we show two N-Body type simulations pro-
grammed in an MPI+CUDA implementation perform at roughly
near-native performance in tuned KVM virtual machines.

With HOOMD, we see how GPUDirect RDMA shows a clear
advantage over the non-GPUDirect implementation, achieving a
9% performance boost in both the native a virtualized experiments.
While GPU Direct’s performance impact has been well evaluated
previously [1], it is the author’s belief that this manuscript repre-
sents the first time GPUDirect has has been utilized in a virtualized
environment.

Another interesting finding of running LAMMPS and HOOMD
in a virtualized environment is as workload scales from a single
node to 32 cores, the overhead does not increase. These results
lend credence to the notion that this solution would also work
for a much larger deployment. Specifically, it would be possible
to expand such computational problems to a larger deployment in
FutureGrid [13], Chameleon Cloud [19], or even the planned NSF
Comet machine at SDSC, scheduled to provide up to 2 Petaflops
of computational power. Effectively, these results help support the
theory that a majority of HPC computations can be supported in
virtualized environment with minimal overhead.

7. A Cloud for High Performance Computing

With support for GPU passthrough, SR-IOV, and GPUDirect, we
have the building blocks for a high performance, heterogeneous
cloud. In addition, other common accelerators (e.g. Xeon Phi [3])
have similarly been demonstrated in virtualized environments. Our
vision is of a heterogeneous cloud, supporting both high speed
networking and accelerators for tightly coupled applications.

To this end we have developed a heterogenous cloud based on
OpenStack [5]. In our previous work, we have demonstrated the
ability to rapidly provision GPU, bare metal, and other heteroge-
neous resources within a single cloud [?]. Building on this effort
we have added support for GPU passthrough to OpenStack as well
as SR-IOV support for both ConnectX-2 and ConnectX-3 Infini-
band devices. Mellanox separately supports an OpenStack Infini-
Band networking plugin for OpenStack’s Neutron service [2], how-
ever the Mellanox plugin depends on the ConnectX-3 adapter. Our
institutional requirements depend on ConnecteX-2 SR-IOV sup-
port, requiring an independent implementation.

OpenStack supports services for networking (Neutron), com-
pute (Nova), identity (Keystone), storage (Cinder, Swift), and oth-
ers. Our work focuses entirely on the compute service.

Scheduling is implemented at two levels: the cloud-level and
the node-level. In our earlier work, we have developed a cloud-level
heterogeneous scheduler for OpenStack, allowing scheduling based
on architectures and resources [?]. In this model, the cloud-level
scheduler dispatches jobs to nodes based on resource requirements
(e.g. Kepler GPU) and node-level resource availability.

At the node, a second level of scheduling occurs to ensure that
resources are tracked and not overcommitted. Unlike traditional
cloud paradigms, devices passed into VMs cannot be overcommit-
ted. We treat devices, whether GPUs or InfiniBand virtual func-
tions, as schedulable resources. Thus, it is the responsibility of the
individual node to track resources committed and report availabil-
ity to the cloud-level scheduler. For reporting, we piggyback on
top of OpenStack’s exisiting reporting mechanism to provide a low
overhead solution.

8. Conclusion

With the advent of cloud infrastructure, the ability to run large-scale
parallel scientific applications has become possible but limited due
to both performance and hardware availability issues. In this work
we show that advanced HPC-oriented hardware such as the latest

Nvidia GPUs and InfiniBand fabric are now available within a vir-
tualized infrastructure. Our results find MPI + CUDA applications
such as molecular dynamics simulations run at near-native perfor-
mance compared to traditional non-virtualized HPC infrastructure,
with just an averaged 1.9% and 1.5% overhead for LAMMPs and
HOOMD, respectively. Moving forward, we show the utility of
GPUDirect RDMA for the first time in a cloud environment with
HOOMD. Eftectively, we look to pave the way for large-scale vir-
tualized cloud Infrastructure to support a wide array of advanced
scientific computation commonly found running on many super-
computers today. Efforts are also underway to leverage these tech-
nologies and provide them in an open source Infrastructure-as-a-
Service framework such as OpenStack.

References

[1] NVIDIA GPUDirect. https://developer.nvidia.com/gpudirect.

[Online; accessed Nov. 24, 2014].

[2] Mellanox Neutron Plugin. https://wiki.openstack.org/wiki/Mellanox-

[Online; accessed Nov. 24, 2014].
[3] Getting Xen working for Intel(R) Xeon Phi(tm) Coprocessor.

https://software.intel.com/en-us/articles/getting-xen-work

[Online; accessed Nov. 24, 2014].

[4] Google cloud platform, . https://cloud.google.com/, Last Access Nov.
2014.

[5] Openstack. cloud software, . http://openstack.org, Last Access Nov.
2014.

[6] E. Amazon. Amazon elastic compute cloud (amazon ec2). Amazon
Elastic Compute Cloud (Amazon EC2), 2010.

[71 AMD. AMD i/o virtualization technology (IOMMU) specification.
Technical report, AMD Corporation, 2009.

[8] J. Anderson, A. Keys, C. Phillips, T. Dac Nguyen, and S. Glotzer.
Hoomd-blue, general-purpose many-body dynamics on the gpu. In
APS Meeting Abstracts, volume 1, page 18008, 2010.

[9] M. Armbrust, A. Fox, R. Griffith, A. D. Joseph, R. Katz, A. Konwin-
ski, G. Lee, D. Patterson, A. Rabkin, I. Stoica, and M. Zaharia. A view
of cloud computing. Commun. ACM, 53(4):50-58, Apr. 2010. ISSN
0001-0782.

[10] K. Asanovic, R. Bodik, B. C. Catanzaro, J. J. Gebis, P. Husbands,
K. Keutzer, D. A. Patterson, W. L. Plishker, J. Shalf, S. W. Williams,
et al. The landscape of parallel computing research: A view from
berkeley. Technical report, Technical Report UCB/EECS-2006-183,
EECS Department, University of California, Berkeley, 2006.

[11] J. Dongarra, H. Meuer, and E. Strohmaier. Top 500 supercomputers.
website, November 2014.

[12] J. Duato, A. J. Pena, F. Silla, J. C. Fernandez, R. Mayo, and E. S.
Quintana-Orti. Enabling cuda acceleration within virtual machines
using rcuda. In High Performance Computing (HiPC), 2011 18th
International Conference on, pages 1-10. IEEE, 2011.

[13] G. Fox, G. von Laszewski, J. Diaz, K. Keahey, J. Fortes, R. Figueiredo,
S. Smallen, W. Smith, and A. Grimshaw. Futuregrida reconfigurable
testbed for cloud, hpc and grid computing. Contemporary High Per-
formance Computing: From Petascale toward Exascale, Computa-
tional Science. Chapman and Hall/CRC, 2013.

[14] S. Hazelhurst. Scientific computing using virtual high-performance
computing: a case study using the amazon elastic computing cloud.
In Proceedings of the 2008 annual research conference of the South
African Institute of Computer Scientists and Information Technologists
on IT research in developing countries: riding the wave of technology,
pages 94-103. ACM, 2008.

[15] N. Huber, M. von Quast, M. Hauck, and S. Kounev. Evaluating
and modeling virtualization performance overhead for cloud environ-
ments. In CLOSER, pages 563-573, 2011.

[16] R.Jennings. Cloud Computing with the Windows Azure Platform. John
Wiley & Sons, 2010.

[17] S. Jha, J. Qiu, A. Luckow, P. K. Mantha, and G. C. Fox. A tale of
two data-intensive paradigms: Applications, abstractions, and archi-
tectures. In Proceedings of the 3rd International Congress on Big
Data, 2014.

[18] J. Jose, M. Li, X. Lu, K. C. Kandalla, M. D. Arnold, and D. K.
Panda. Sr-iov support for virtualization on infiniband clusters: Early
experience. In Cluster, Cloud and Grid Computing (CCGrid), 2013
13th IEEE/ACM International Symposium on, pages 385-392. IEEE,
2013.

[19] K. Keahey, J. Mambretti, D. K. Panda, P. Rad, W. Smith, and
D. Stanzione. Nsf chameleon cloud. website, November 2014. URL
http://www.chameleoncloud.org/.

[20] A. Limited. Arm system memory management unit architecture spec-
ification. Technical report, ARM Limited, 2013.

[21] J. Liu. Evaluating standard-based self-virtualizing devices: A perfor-
mance study on 10 gbe nics with sr-iov support. In Parallel Distributed
Processing (IPDPS), 2010 IEEE International Symposium on, pages
1-12, April 2010. .

[22] P. Luszczek, E. Meek, S. Moore, D. Terpstra, V. M. Weaver, and
J. Dongarra. Evaluation of the hpc challenge benchmarks in virtual-
ized environments. In Proceedings of the 2011 International Confer-
ence on Parallel Processing - Volume 2, Euro-Par’11, pages 436445,
Berlin, Heidelberg, 2012. Springer-Verlag.

[23] R. L. Moore, C. Baru, D. Baxter, G. C. Fox, A. Majumdar, P. Pa-
padopoulos, W. Pfeiffer, R. S. Sinkovits, S. Strande, M. Tatineni, et al.
Gateways to discovery: Cyberinfrastructure for the long tail of science.
In Proceedings of the 2014 Annual Conference on Extreme Science
and Engineering Discovery Environment, page 39. ACM, 2014.

[24] M. Musleh, V. Pai, J. P. Walters, A. J. Younge, and S. P. Crago. Bridg-
ing the Virtualization Performance Gap for HPC using SR-IOV for
InfiniBand. In Proceedings of the 7th IEEE International Conference
on Cloud Computing (CLOUD 2014), Anchorage, AK, 2014. IEEE.

[25] K. Pepple. Deploying OpenStack. O’Reilly Media, Inc., 2011.

[26] S. Plimpton, P. Crozier, and A. Thompson. Lammps-large-scale atom-
ic/molecular massively parallel simulator. Sandia National Laborato-
ries, 2007.

[27] L. Ramakrishnan, R. S. Canon, K. Muriki, I. Sakrejda, and N. J.
Wright. Evaluating interconnect and virtualization performance
forhigh performance computing. SIGMETRICS Perform. Eval.
Rev., 40(2):55-60, Oct. 2012. ISSN 0163-5999. . URL
http://doi.acm.org/10.1145/2381056.2381071.

[28] M. Righini. Enabling intel virtualization technology features and
benefits. Technical report, Intel Corporation, 2010.

[29] T. P. P. D. L. Ruivo, G. B. Altayo, G. Garzoglio, S. Timm, H. Kim,
S.-Y. Noh, and I. Raicu. Exploring infiniband hardware virtualization
in opennebula towards efficient high-performance computing. In CC-
GRID, pages 943-948, 2014.

[30] G. Shainer, A. Ayoub, P. Lui, T. Liu, M. Kagan, C. R. Trott, G. Scant-
len, and P. S. Crozier. The development of mellanox/nvidia gpudirect
over infinibanda new model for gpu to gpu communications. Com-
puter Science-Research and Development, 26(3-4):267-273, 2011.

[31] L. Vu, H. Sivaraman, and R. Bidarkar. Gpu virtualization for
high performance general purpose computing on the esx hy-
pervisor. In Proceedings of the High Performance Computing
Symposium, HPC ’14, pages 2:1-2:8, San Diego, CA, USA,
2014. Society for Computer Simulation International. URL

http://dl.acm.org/citation.cfm?id=2663510.2663512.

[32] J. P. Walters, A. J. Younge, D.-I. Kang, K.-T. Yao, M. Kang, S. P.
Crago, and G. C. Fox. GPU-Passthrough Performance: A Comparison
of KVM, Xen, VMWare ESXi, and LXC for CUDA and OpenCL Ap-
plications. In Proceedings of the 7th IEEE International Conference
on Cloud Computing (CLOUD 2014), Anchorage, AK, 2014. IEEE.

[33] A.J. Younge, R. Henschel, J. T. Brown, G. von Laszewski, J. Qiu, and
G. C. Fox. Analysis of Virtualization Technologies for High Perfor-
mance Computing Environments. In Proceedings of the 4th Interna-
tional Conference on Cloud Computing (CLOUD 2011), Washington,
DC, 2011. IEEE.

[34] A. J. Younge, J. P. Walters, S. Crago, and G. C. Fox. Evaluating
GPU Passthrough in Xen for High Performance Cloud Computing. In
High-Performance Grid and Cloud Computing Workshop at the 28th
IEEE International Parallel and Distributed Processing Symposium,
Pheonix, AZ, 05/2014 2014. IEEE, IEEE.

