

A Distributed Framework for Collaborative Annotation of Streams

Tao Huang, Shrideep Pallickara, Geoffrey Fox
Department of Computer Science, Community Grids Lab

Indiana University, Bloomington, IN, 47404
{taohuang, spallick, gcf}@indiana.edu

ABSTRACT

Research groups and software companies have developed
a number of multimedia collaboration tools such as
Access Grid and Vannotea to archive collaborative
objects such as audiovisual communications and digital
annotations. Most of these tools are designed to process
multimedia data streams, and it is not easy for their users
to extend or modify them to support other types of data
streams such as those generated by earthquake sensors
and medical instruments. It is challenging to design and
develop a system that supports creating, sharing and
replaying annotations on user specified data streams. In
this paper, we make a survey of several popular
collaboration and annotation tools, and then present our
prototype of a distributed framework that supports
collaborative annotation on generic data streams. It
supports basic annotation operations on the stream data,
and it also provides a set of capturing and rendering
interfaces that simplify the procedure of adding support
for new types of data streams.

KEYWORDS: Collaborative Annotation, Multimedia,
Data Stream Interfaces, Distributed Framework

1. INTRODUCTION

Most existing collaboration systems [1-4] can be
categorized into two major classes: audiovisual based or
digital document based. It becomes difficult when people
are required to do collaborative work on new types of real
time streaming data. For example, a doctor at
Bloomington hospital may want to discuss with his co-
workers in Indianapolis about a patient’s condition. They
may use a videoconferencing tool to communicate
verbally or even do collaborative annotations on some X-
ray scanning images of the patient. Doctors in
Indianapolis nevertheless cannot see the real time
heartbeat readings or blood pressure on the monitor of the
medical instrument at Bloomington. Though we could

solve this problem through some remote display sharing
tools, it disables the mutual communication, which causes
obstacles to a timely diagnosis. It would be convenient if
the collaboration tool they are using can accept those
medical readings, transfer them to the remote site over the
internet and render them as requested.

This paper describes a novel prototype system developed
by the Community Grids Lab at Indiana University
Bloomington to solve above problem. It is implemented
based on two other projects of the same lab:
GlobalMMCS [2][5] and Naradabrokering [6]. We use the
media module of the GlobalMMCS project, which is
implemented on top of the Sun’s JMF [7] library, to
enable capturing and rendering of live multimedia streams
from web cameras and microphones. Encoded streaming
data are transmitted and disseminated through events
within the Naradabrokering network. In order to make it
simple to support new types of data streams, we analyze
generic behaviors of stream processing and define a set of
interfaces helping users implement their own capturing
sources and rendering players. The system is also
designed to have basic fault tolerance on system failures,
two recovery strategies are used to deal with local and
remote node malfunctions. Details will be explained in
later sections.

This paper is organized as follows. Section 2 is a brief
survey of popular existing annotation systems. Based on
the analysis of these systems, we summarize our
objectives of the collaboration framework in section 3. In
section 4, we describe the architecture and important
components of the prototype system. Annotation
management is explained in details in section 5. After
analyzing results of some preliminary experiments in
section 6, we conclude and present our future plans.

2. RELATED WORK

Distributed collaboration and annotation systems [8-12]
have been developed in the past decade all around the
world. These systems have been designed to service
different aspects of collaboration. H.323 systems such as

Polycom and Tandberg dominate the videoconferencing
market and they do provide reliable audiovisual
communications in the heterogeneous network. As a free
alternative, Access Grid [1] is very popular in the
academic community. Scientific discussions and lectures
are being held on this platform almost every day. Besides
videoconferencing, document sharing and annotation is
another major requirement of current collaborative
annotation systems. Tools such as Google Docs [3] and
Microsoft Office Live Workspace [4] are invented to
facilitate online document based work. Recently all these
tools tend to share their features. For instance, Access
Grid has some basic document sharing capabilities via its
web portal while Good Doc users can video chat with
each other through the new Gmail feature.

In this section, we make a brief survey of popular
distributed annotation and collaboration tools. By
analyzing them, we try to find out important features that
can be introduced to our prototype.

Microsoft research released its annotation system MRAS
[11] in 2000, the system was designed to help Microsoft
employees gain better training experience through asking
questions on pre-recorded lecture videos. The questions
are anchored on the multimedia content and answered by
the instructors asynchronously. Since the questions can be
synchronously replayed with the class content, students
that have similar questions at the same time spot will
benefit a lot from reading answers to the previous
question. Collaboration is achieved through discussions
on the questions and their answers. MRAS doesn’t
support live video feeds and students who are watching
the same video streams could not exchange their thoughts
in the real time.

IBM’s Mpeg-7 annotation tool – VideoAnnEx [12] was
also released in 2000. It can parse Mpeg video files and
segment them into small shot units. Each shot unit can be
annotated with a description from three default categories:
static scene, key object and event. All shot units are
stored into a XML file as well as their
descriptions/annotations following the Mpeg-7 standard.
Users can search among the descriptions and replay the
video shots alongside the description they are looking for.
VideoAnnEx is a stand-alone annotation program that
cannot accept live video feeds either, and it does not
support sharing and manipulating video streams among
distributed users. It can merely process Mpeg-1 and
Mpeg-2 video files and the descriptions are limited to
three pre-defined categories. It is difficult to extend the
system without modifying the underlying source.

A group of researchers from University of Queensland
invented Vannotea [13] to help facilitate collaborative
video indexing, annotation and discussion of video

contents in the distributed broadband environment. It
supports most features that VideoAnnEx has and provides
more flexibility on the metadata of video segments.
Vannotea users are able to save, browse, retrieve and
share both objective descriptions of the video files as well
as subjective annotations on them. The videos files are
still limited to Mpeg-2 format and users can only create
text descriptions.

eSports [14] developed by Community Grids Lab is
another attempt to enable collaborative annotation on
multimedia content over the distributed network,
especially the grid-computing network. It enriched the
annotation on multimedia contents from simple text to
more diverse forms such as graphic shapes, audio/video
clips. As its name indicates, eSports system aims to help
sport coaches train their trainees remotely through vocal
and graphic annotations on real time or archived video
streams. Coaches can take snapshots of sample gestures in
the video and comment on them to help students
understand their classes. Annotations and video streams
are archived using Naradabrokering storage service and
can be replayed synchronously based on their timestamp
property. Since the streams are stored as a series of
Naradabrokering events rather than large video files, users
can ask to replay any part of the stream without loading
all related events. Live chat is also implemented to
improve the real time communication in the system.

All systems described here provide video annotation
capabilities and support synchronous replaying of
annotations/descriptions alongside the video content.
MRAS and VideoAnnEx are stand-alone programs that
enable asynchronous communication and searching in
annotation, while Vannotea and eSports spent more
efforts in supporting annotation on real time video
streams in distributed environments. None of them has
considered the ability of supporting non-multimedia
streams, and it is difficult to add this new feature to them
without modifying their sources codes.

3. OBJECTIVES

From the survey and analysis in the previous section, we
can determine basic objectives of our collaboration
framework for stream annotation. It should be able to
support creating, archiving and replaying multiple forms
of annotations on either real time or prerecorded data
streams without knowing their characteristics. The system
should support both synchronous and asynchronous
communications on both annotations and content streams.
As a distributed system, a robust session management is
required to make the system tolerant to possible hardware
or network failures. Capabilities of recovering from
disastrous situations are also required. In addition the

system needs to support following features that help
expand its application fields:

• Support processing multimedia streams in
different formats/codecs.

• A generic data stream processing API, which can
help users extend the system with their own
stream capturing sources and rendering players.

• Support annotating, commenting and discussion
on live data streams. Users in the same session
should be able to watch each other’s annotation
in the real time instead of loading them from the
archiving repository.

• A simple interface that helps in saving, searching
and sharing annotation among distributed users
easily.

• The system should support various types of
clients from handheld devices to streaming
clients.

4. ARCHITECTURE

Figure 1 below depicts a typical scenario of using our
prototype. A stream annotator is feeding a live video
stream to the system and making notes on it. Client A and
B are live collaborators in the same session and they are
able to ask questions on the video stream while it is being
played. Another client using a handheld device is
watching the collaboration activities between the
annotator and client A and B. Session information,
annotations and stream data are transmitted and
exchanged using Naradabrokering events. All events are
automatically stored into the stream repository for later
replays. Different metadata are stored in each event’s
header, and information within them facilitates functions
such as stream synchronization and system recovery.

Figure 1. System Architecture

In the above picture, we can find three major components
of the system: Session Manager, Annotation Client and
Stream Archiver. Session Manager maintains all session
related information such as client joining or leaving. The
client is responsible for generating content streams as well
as receiving and replaying streams from other clients. It
also parses annotation events to reproduce actual
annotations on the content stream. Stream Archiver is
spawned by Session Manager to archive live streams in
the stream repository, either locally or remotely. It is also
responsible for retrieving archived streams as per the
client’s requests.

4.1. Session Management

Due to the pub/sub nature of the Naradabrokering
platform, we use heartbeats to manage the session
information in the system. Each component in the system
continuously publishes its own heartbeat event to public
channels. All clients will monitor heartbeat events in the
session channel and maintain their own copies of the
session status, i.e. list of active clients in current session.
Unresponsive clients will be removed from the list if
other clients cannot hear from them for more than three
seconds. Session Manager monitors the session channel as
well and periodically broadcasts its own client list as the
standard for participating clients to synchronize their lists
with. Session Manager will also monitor the service
channel to control active stream archivers and remove
unnecessary ones. A status report will be generated and
stored in the local file system and remote stream
repository after a customizable period of time.

As the core management component of a distributed
system, Session Manager should be available all the time
and be able to recover from disastrous situations such as
program crashes and power outages. We use two
strategies to maintain such durability: Local recovery and
Remote recovery.

Local recovery: Alongside the running Session Manager,
a daemon process (gray manager in Figure 1) keeps
collecting session information as other clients do. It starts
taking over the management responsibility when the
running manager freezes and stops publishing standard
heartbeat. It will kill the original manager process,
changes its own status by parsing the latest status report
on the file system and create another daemon process to
take over its previous job. Since clients will not check the
source of the standard heartbeat, they will not know the
manager has been replaced.

Remote recovery: We could not apply local recovery if
there were hardware problems or power outages on the
running manager machine. In such circumstances, all
clients will find a best machine among them by

exchanging and comparing their hardware information.
The most appropriate client will create the manager
process, adjust its status according to the remote status
report and start collecting information from both the
session and service channels.

4.2. Annotation Client

Figure 2 below shows three layers of our annotation
client: Transmission layer, Logic layer and Presentation
Layer from the bottom up. Each takes its own
responsibility of processing the streaming data.

Figure 2. Three Layers of the Annotation Client

The Transmission layer is responsible for creating and
managing actual data transmission handlers (called
DataTransmitter in the source). Each transmission handler
contains a pair of Naradabrokering event consumer and
publisher, and it subscribes itself to a particular topic
specified by the ID of the stream it operates on. In order
to minimize the cost of handler creation and termination,
a pool of handlers (around 5 handlers) are created during
the start up of the client. Similar to the Java thread pool,
transmitting handlers are assigned and recollected by a
handler manager.

The Logic layer works as an important mediating layer
between the Transmission layer and the Presentation
Layer. For stream capturing and rendering, a stream
sender or receiver will be created to connect a stream
source/renderer from the presentation layer with a
transmitting handler from the transmission layer and start
the processing. There is a stream manager in this layer to
manage all active senders and receivers. The Annotation
manager also sits within this layer to associate and

synchronize content data streams with the annotation
streams.
The Presentation layer is the upper-most layer and it
contains the graphic user interface, stream source and
renderer managers. Similar to the DataSource class in the
JMF library, a stream source is an object that can generate
real time data constantly when it is started. It can be
paused or stopped. Stream renderers are used to decode
received stream data and display the content on the screen.

Figure 3 below is the class diagram that shows the
interrelationships between the stream source/renderer
interfaces and the stream sender/receiver classes.

Figure 3. Class Diagram of Stream Processing
Interfaces

Since the stream source/sink interfaces in above picture
only define the generic behaviors of a real time data
stream, users can easily write their own stream sources
and renderers to extend the system. They just need to
implement those interface methods in their existing
source/rendering classes and compile them with the client
source. This will save a lot of effort as opposed to
understanding and modifying source codes of the entire
system. In our current release, we have implemented
several stream sources such as video/audio capturing
source, file capturing source and screen capturing source
and their corresponding renderers. With the help of the
GlobalMMCS media module, our system supports various
video/audio formats on different operation systems. We
list them in the table 1 below.

Table 1. Supported Multimedia Formats

OS Video Audio Screen Capture

Windows H.261, H.263,
DIVX, JPEG

ULAW, GSM,
DVI, G729

H.261, DIVX,
JPEG

Linux H.261, H.263,
JPEG

ULAW, GSM,
DVI N/A

Mac H.261, JPEG ULAW, GSM,
DVI N/A

4.3. User Interface

Figure 4 is a snapshot of our annotation client running on
Windows XP. We implement the client using SWT
library [15], an OS-independent widget toolkit from the
Eclipse project. The client comprises a tree based client
list and three composite panels. Each panel can be
maximized to show as much information as possible.

Figure 4. A Snapshot of The User Interface

The client list on the left displays all participating clients
in the same session. The user can open any data stream
(video steam in the snapshot) being sent by a client. Once
the receiver of this data stream is created and started
successfully, the renderer window will be displayed in the
stream renderer list on the right panel. Users can also
select to create a clone of the playing renderer to the
center panel by checking the checkbox underneath it. A
stream progress widget is also created on the progress
panel below once the clone starts playing. Unlike the
original renderer window on the right, the cloned renderer
can be positioned anywhere on the center panel and the
user is able to either rewind or fast forward the playing
content by dragging the progress indicator on its stream
progress widget.

Alongside the client list, there is an archive list that only
displays information of data streams stored by stream
archivers. Users can apply all available operations on
these archived streams as if they were normal live streams.
There is no difference between them and the live stream
since they are just duplicates of the stored live streams
from the event repository, loaded and published by stream
archivers. More details of archiving and replaying streams
will be explained in the next section.

There are two modes of rendering received data streams
in our client: live and buffered. The first mode is the
default one. Events of an incoming data stream are
temporarily stored in a small in-memory buffer to reduce
the influence of possible event losses in the transmission.
Sometimes, it would be useful if users could rewind the
playing content to the exact position that they want to
insert annotations at. This requires enabling the buffered
mode of rendering the stream. As depicted in the
following figure 5, decoded video frames are written into
a temporary file and can be retrieved from any time spot
based on the frame rate information inside the stream’s
video codec. When the user makes a rewind operation on
the current stream progress, a buffered stream source is
created at the correct playing time and started to read the
correct video frames from the buffer file for the stream
renderer to display. A reading clock controls the speed of
the buffered source and makes sure that it generates
frames at the right frame rate. Despite the disk access
overhead introduced here, this feature enables annotation
on live video streams while they are being watched.

Figure 5. A Running Example of the Stream Buffer

4.4. Stream Archiver

Stream Archiver is one of the most important components
in the system. It takes the responsibilities of archiving live
data streams and replaying them per the client’s requests.
In our current implementation, the archiver stores every
stream event into a remote database alongside the meta-
information such as time stamp and stream description in
the event’s header. When a request of replaying a
particular data stream is received, the corresponding
archiver will read all stream events based on time range
information within the request. Events will be published
to a specific replaying topic based on the request ID
known by the requesting client.

As explained in the previous section, Stream Archiver is
monitored and controlled by the Stream Manager. When a
sending stream is stopped, Stream Manager will terminate

Stream Progress Panel

Stream List
Panel

Center
Annotation
Panel

Client
List

its corresponding archiver unless there are some clients
requesting to replay this stream.

5. ANNOTATION MANAGEMENT

In Figure 4, you can see that there is a stream progress
panel on the bottom of the client. It allows users to control
the rendering of data streams on the center annotation
panel and create annotations on them. The stream
progress widget displays the length and playing progress
of the stream. When an annotation is created, information
of all the stream renderers on the annotation panel is
stored into a XML DOM object and each renderer starts
to update this object with its newest progress. Following
is an XML example generated from a simple annotation
DOM object.

Figure 6. Annotation Dom Object in plain XML

As seen in the above picture, there are no actual stream
events stored in this XML file. We only record
information that represents the layout of all active streams
in the annotation panel, for example, position of the
renderer on the center annotation panel, absolute start
time of the stream and its duration. All this information
will be used to reconstruct the annotation scenario later on.

When the annotation owner closes the annotation, an
XML copy of the annotation object will be saved
remotely in the annotation storage. A local copy is also
created as backup for fast accessing. When the user
decides to replay the annotation he creates, the client will
first check the local file system before asking the remote
repository. The Dom object will be parsed and created
from the XML file and all renderers will be regenerated as
well as their annotation.

6. PRELIMINARY EXPERIMENTS

Being at the early stage of the prototype development, we
are more interested in making the system stable and
capable of dealing with large number of data streams at
the same time. Therefore we did some preliminary stress
tests on the stream archiver by feeding a different number
of multimedia streams in different formats at the same
time. CPU usages of the running archiver process are
logged and displayed in the following Figure 7.

Figure 7. CPU Usages of A Stream Archiver Archiving

Different Multimedia Streams

The experiments were done on an Intel Pentium 4
machine with a 3.40GHz CPU and system memory of
1.75G. The results show us that the stream archiver works
pretty well on streams that are made up of events with
small payloads, such as audio streams and highly
compressed video stream in the figure. Less than 10%
CPU was used to process 20 simultaneous Video.H.263
streams. Since a large event payload requires more copy
instructions and system I/Os, it is not hard to explain why
CPU usages were so high when the stream archiver tried
to archive those Video.JPEG streams. We also notice that
the CPU usages of brokers in the Naradabrokering system
were also at a quite high level when they are transmitting
Video.JPEG streams.

Our system has a built-in whiteboard (see Figure 4) to
support free-hand drawing annotation as eSports does. It
is important that drawings such as lines, shapes and
inserted images are displayed timely on remote clients,
especially when users are working on real time data
streams. Delayed or disordered annotations will cause
problems to the real time communication. We tested our
system by sending large amounts of free-hand whiteboard
events in one second while system users are playing
different types of multimedia streams. We record the time

difference between each event’s creation time and
rendering time at remote clients. The Average of all
differences recorded in the same test is used as the final
result.

Figure 8. Time Delays of Freehand Whiteboard Events

Though ascending, time delays caused by the system are
still much lower than the required perception level of
delay (200-400ms for video streams) in a cooperation
system [16]. Distributed users will not have any problems
on whiteboard annotations in the system while they are
cooperating on supported real time data streams.

7. SUMMARY AND FUTURE WORKS

In this paper, we introduce a framework system that
supports collaborative annotation on generic data streams.
It supports sending, browsing, rendering and annotation
on real time data streams in distributed environments and
our experiment results show that it works properly for
compressed data streams under high stress circumstances.

This system expands its scope of application through
generalizing the procedure of data stream processing and
defining basic stream capturing and rendering interfaces.
Users are able to quickly extend the system by writing
their own stream sources/renders. Through implementing
those interface methods, we can support more types of
data streams other than mere multimedia ones in the
system, which makes it more capable of satisfying diverse
application requirements. The system also provides a
simple user interface to ease the manipulation of
streaming data and it also supports annotation on live data
streams via local stream buffers.

Our next step is to continue the development of this
prototype to improve its stability. More stream sources
and renders will be added to the system to support data
streams generated by non-multimedia sources such as

earthquake sensors, handheld devices and medical
instruments. A configuration detector will be added to the
system to simplify the recognition of new
“StreamSource” and “StreamSink”. We plan to
standardize our annotation metadata format into Mpeg-7
compatible version so that we can have more accurate
search functionality. After this, a Web 2.0 styled portal
and web client (based on Ajax or Adobe Flex) may also
be added to the system to facilitate customized annotation
search and viewing on different computing platforms.

REFERENCES

[1] Access Grid project. Available from

http://www.accessgrid.org

[2] GlobalMMCS project. Available from
http://www.globalmmcs.org

[3] Google Doc. Available from http://doc.google.com

[4] Microsoft Office Live Workspace. Available from
http:// http://workspace.officelive.com

[5] Wenjun Wu, Tao Huang, Geoffrey Fox, “Building
Scalable and High Efficient Java Multimedia
Collaboration,” Proceedings of IEEE 2006
International Symposium on Collaborative
Technologies and Systems CTS 2006 Las Vegas May
14-17 2006

[6] S. Pallickara and G. Fox, “NaradaBrokering: A
Middleware Framework and Architecture for
Enabling Durable Peer-to-Peer Grids,” Proceedings
of ACM/IFIP/USENIX International Middleware
Conference Middleware-2003. pp 41-61.

[7] Sun Java Media Framework API. Available from
http://java.sun.com/javase/technologies/desktop/medi
a/jmf

[8] Carrer, M., Ligresti, L., and Little, T. D, “A Tcl/Tk-
based video annotation engine,” Proceedings of the
5th Conference on Annual Tcl/Tk Workshop 1997 -
Volume 5, USENIX Association, Berkeley, CA, 30-
30.

[9] A. Savakis, P. Sniatala, and R. Rudnicki, “Real-time
Annotation using MPEG-7 Motion Activity
Descriptors,” MIXDES 2003, Lodz, Poland, June
2003.

[10] Wei Ren and Sameer Singh, “An Automated Video
Annotation System,” Pattern Recognition and Image
Analysis, ICAPR 2005, LNCS 3687, pp. 693 – 700,
2005.

[11] Bargeron, D., Gupta, A., Grudin, J., Sanocki, E., Li,

F, “Asynchronous Collaboration Around Multimedia
and its Application to On-Demand Training,”
Proceedings of the 34th Hawaii International
Conference on System Sciences (HICSS-34), January
3-6, 2001, Maui, Hawaii

[12] J. R. Smith and B. Lugeon, "A Visual Annotation
Tool for Multimedia Content Description," Proc.
SPIE Photonics East, Internet Multimedia
Management Systems, November 2000.

[13] R. Schroeter, J. Hunter, and D. Kosovic. “Vannotea -
A Collaborative Video Indexing, Annotation and
Discussion System for Broadband Networks,”
Knowledge Markup and Semantic Annotation
Workshop, K-CAP 2003. Sanibel, Florida.
October 2003.

[14] Gang Zhai, Geoffrey Fox, Marlon Pierce, Wenjun
Wu, Hasan Bulut, “eSports: Collaborative and
Synchronous Video Annotation System in Grid
Computing Environment,” Proceedings of IEEE
International Symposium on Multimedia (ISM2005),

Pages 95-103, IEEE Computer Society, December
12-14, 2005 Irvine, California, USA

[15] SWT: The Standard Widget Toolkit. Available from
http://www.eclipse.org/swt/

[16] Leping Huang, Mitsuharu Iijima, Kaoru Sezaki, “A
Survey on Human Perception of Delay in a
Cooperation System”, IEICE Communications
Society Conference 1999, B-11-12, Chiba, Japan,
Sep.1999

