
Analysis of Concurrency and Coordination Runtime CCR and DSS
for Parallel and Distributed Computing

Xiaohong Qiu, Geoffrey Fox, Alex Ho

(xqiu@anabas.com, Geoffrey.Fox@gmail.com, alexho@anabas.com)
Anabas, Inc.

Suite 106C, 501 N Morton, Bloomington IN 47404

Executive Summary

CCR has been developed by Microsoft and applied to several applications – especially
robotics. CCR has also been explored as a runtime supporting an interesting concurrent
programming model and has DSS – a lightweight service runtime – built on top of it. In
this note we discuss its application to high performance computing where the messaging
system MPI is the dominant paradigm as either the programming model or the runtime
for a higher level programming paradigm. We conclude that one can do MPI-style
programming within CCR with performance characteristics competitive with the best
MPI implementations (openMPI, MPICH). We identify the loosely synchronous
execution structure with independent threads executing for a few microseconds and
exchanging messages – a sequence of compute-communication phases – as typical of
hard technical computing problems. We design simple performance measurements of
loosely synchronous execution in CCR corresponding to use of MPI ping and broadcast
tests. We find latencies of around 5 microseconds and “cross-section bandwidths” of a
gigabit/second with CCR providing efficient thread execution. We compare two
machines in details – the one with two dual core Opterons shows lower latencies but also
lower message bandwidths than the PC with two dual core Xeons. Some results are given
for a newer machine with two quad core Xeons. We discuss relationship to classic MPI
messaging, dataflow, “active messages”, overlay networks and publish-subscribe
communication. The implementation of MPI in terms of CCR depends on one’s goals and
here we suggest it could be very interesting to generalize CCR to generate a multi-
paradigm runtime that’s fully supports MPI but also other messaging models that more
appropriate outside technical computing. We illustrate this with an initial evaluation of
the service environment DSS built on CCR; it supports around 50K two-way (request-
response) messages per second internal to the AMD machine. This is a factor of ten faster
than typical Axis-2 web service messaging.

1. Introduction

CCR is a runtime [CCR2] [CCR3] designed for robotics applications [Robotics] but also
investigated [CCR1] as a general programming paradigm. CCR supports efficient thread
management for handlers (continuations) spawned in response to messages being posted
to ports. The ports (queues) are managed by CCR which has several primitives
supporting the initiation of handlers when different message/port assignments are
recognized. Current primitives supported include:

1) FromHandler: Spawn threads without reading ports
2) Receive: Each handler reads one item from a single port

mailto:xqiu@anabas.com
mailto:Geoffrey.Fox@gmail.com
mailto:alexho@anabas.com

3) MultipleItemReceive: Each handler reads a prescribed number of items of a given
type from a given port. Note items in a port can be general structures but all must
have same type.

4) MultiplePortReceive: Each handler reads a one item of a given type from multiple
ports.

5) JoinedReceive: Each handler reads one item from each of two ports. The items
can be of different type.

6) Choice: Execute a choice of two or more port-handler pairings
7) Interleave: Consists of a set of arbiters (port -- handler pairs) of 3 types that are

Concurrent, Exclusive or Teardown (called at end for clean up). Concurrent
arbiters are run concurrently but exclusive handlers are not.

CCR builds these port processing primitives from simpler base capabilities but different
and more complicated primitives could presumably be added.

MPI – Message Passing Interface – dominates the runtime support of large scale parallel
applications for technical computing. It is a complicated specification with 128 separate
calls in the original specification [MPI] and double this number of interfaces in the more
recent MPI-2 including support of parallel external I/O [MPICH] [OpenMPI]. MPI like
CCR is built around the idea of concurrently executing threads (processes, programs) that
exchange information by messages. In the classic analysis [SPCP] [PCW] [PVMMPI]
[Source], parallel technical computing applications can be divided into four classes:

a) Synchronous problems where every process executes the same instruction at each
clock cycle. This is a special case of b) below and only relevant as a separate class
if one considers SIMD (Single Instruction Multiple Data) hardware architectures.

b) Loosely Synchronous problems where each process runs different instruction
streams but they synchronize with the other processes every now and then. Such
problems divide into stages where at the beginning and end of each stage the
processes exchange messages and this exchange provides the needed
synchronization that is scalable as it needs no global barriers. Load balancing
must be used to ensure that all processes compute for roughly (within say 5%) the
same time in each phase and MPI provides the messaging at the beginning and
end of each stage.

c) Embarrassingly parallel problems (now called euphemistically pleasing
parallel) have no significant inter-process communication

d) Functional parallelism leads to what were originally called metaproblems that
consist of multiple applications, each of which is of one of the classes a), b), c) as
seen in multidisciplinary applications such as linkage of structural, acoustic and
fluid-flow simulations in aerodynamics. These have a coarse grain parallelism.

Classes c) and d) today would typically be implemented as a workflow using services to
represent the individual components. Often the components are distributed and the
latency requirements are typically less stringent than for synchronous and loosely
synchronous problems. CCR in its robotics application using the DSS service runtime can
in fact directly support workflow but that is not the subject of this report. Rather we are
interested in seeing if CCR can support the loosely synchronous domain b) that

represents the class for which MPI is designed and where it gets its most stringent
performance tests. Figure 1(a) illustrates a very simple loosely synchronous scenario
showing threads posting and receiving messages through CCR ports.

As mentioned already, MPI has a rich set of defined methods that describe different
synchronicity options, various utilities and a set of so-called collectives. These include
the multi-cast (broadcast, gather-scatter) of messages with the calculation of associative
and commutative functions on the fly. However as our target is today’s multi-core
computers, the subtleties of the MPI collectives will not be relevant as one will not need

sophisticated implementations to get good performance on collectives for a few (4 in our
tests) cores. Thus we concentrate on the equivalent of MPI send-receive tests. Posting to
a port in CCR corresponds to a MPISEND and the matching MPIRECV is achieved from
arguments of handler invoked to process port.

Message

Thread0 Port0
MessageMessage Message

Thread0 Port0
MessageMessage Message

Thread0 Port0
MessageMessage

Message

Thread3 Port3
MessageMessage Message

Thread3 Port3
MessageMessage Message

Thread3 Port3
MessageMessage

Message

Thread2 Port2
MessageMessage Message

Thread2 Port2
MessageMessage Message

Thread2 Port2
MessageMessage

Message

Thread1 Port1
MessageMessage Message

Thread1 Port1
MessageMessage Message

Thread1 Port1
MessageMessage

One Stage

Fig. 1(a) Idealized loosely synchronous execution in CCR

2. Performance of CCR as an MPI Engine

Our first set of tests used
the CCR Interleave
paradigm combining
multiple stages of the type
illustrated in figure 1(a)
with a final collective
shown in figure 1(b). This
is characteristic of the
simple MPI routines where
for example
decompositions in one
dimension would lead the

message structure of figures 1(c) and 1(d) for periodic or fixed end-points respectively.
The patterns of figures 1(c) and 1(d) would lead to similar performance to the case of
figure 1(a) as discussed in section 2. Note figure 1(d) is not trivially supported by today’s
CCR as the ports need to be triggered by different number of messages. We will discuss
such issues later in section 4. We choose a basic calculation for each stage that is a

Message

Thread0 Port0
MessageMessage

Thread0 Message

Message

Thread3 Port3
MessageMessage

Thread3

EndPort

Message

Thread2 Port2
MessageMessage

Message

Thread2 Message

Message

Thread1 Port1
MessageMessage

Thread1 Message

Fig. 1(b) Idealized loosely synchronous endpoint (broadcast) in CCR

multiple of a simple series computation that takes approximately 1.4 microseconds when

run on its own on a single core. We choose this size as the hardest loosely synchronous
problems execute for around this time in each stage and require MPI latencies in the
microsecond range. Of course one can in most technical problems increase the average
compute time (or rather the compute-communication ratio) by increasing the grain size
assigned to each core but our choice seems appropriate.

Write
Exchanged
Messages

Port3

Port2

Thread0

Thread3

Thread2

Thread1Port1

Port0Thread0

Write
Exchanged
Messages

Port3

Thread2 Port2

Fig. 1(c) Exchanging Messages with 1D Torus Exchange
topology for loosely synchronous execution in CCR

Thread0

Read
Messages

Thread3

Thread2

Thread1Port1

Port0

Thread3

Thread1

Our initial experiments reported in
figures 2-AMD to 6-AMD were
performed on a Hewlett-Packard (HP)
xw9300 workstation with 4 gigabytes
of memory and two AMD Opteron
chips – each with two cores. Each
processor runs at 2.19 GHz speed.
Further results in figures 2-Intel to 6-
Intel were obtained from a Dell
Precision Workstation 670 with two
dual-Core Intel® Xeon™ Processor
running at 2.80GHz with 2x2MB L2
cache. The system had 8 gigabytes of
total memory. The Intel machine is

about 7% slower in computation than the AMD PC in our tests and we will discuss the
CCR performance for the two machines below. In a nutshell, the AMD shows better
thread performance while the Intel machine usually has better memory bandwidth for
message data exchange. We needed to disable the audio subsystem on the Dell PC as
well as a few windows services such as “Automatic Updates”. We also needed to reboot
the computer in between significant test runs to avoid downgraded performance due to
problems like memory leak. By cleaning up the computer, we maintained a consistent
testing environment thus obtained stable performance results between executions. Both
machines run Windows XP Professional (64 bit edition) version 2003 and our code is
written in C# with the CCR runtime (Ccr.Core.dll) downloaded from Microsoft Robotics
Studio [Robotics] using June 2006 release.

Thread0

Write
Exchanged
Messages

Port3

Thread2 Port2

Fig. 1(d) Exchanging Messages with 1D Exchange
topology for loosely synchronous execution in CCR

Thread0

Read
Messages

Thread3

Thread2

Thread1Port1

Port0

Thread3

Thread1

 In figure 2-AMD and 2-Intel, we plot the total execution time for a series of
computations. Each ran 4.107 repetitions of the basic 1.4 microsecond compute activity
(it is this long on AMD, it is 1.5 microsecond on Intel) on 4 cores. The repetitions are
achieved by either a simple loop of basic computation unit or by splitting into stages

separated by writing and
reading CCR ports. This
simple strategy ensures that
without threading overhead
the execution time will be
identical however one divides
computation by loops or CCR
stages; this way we can get
accurate estimates of the
overhead incurred by the port
messaging interface.

We first analyze the AMD
results where without
overhead the execution time
will be about 14 seconds and
is shown as a dashed line in
figure 2-AMD. The figure
takes these 4.107 repetitions
and plots their execution time

when divided into stages of the
type shown in figure 1(a). Each
measurement was an average
over at least 10 runs with a
given set of parameters. Figure
2 shows the results plotted up to
10 million stages while figure 3
shows the detail for up to one
million stages. Always we use
the term overhead to represent
the actual measured execution
time with subtraction of the
time that a single stage would
take to execute the same
computational load. Figure 2
marks as
“overhead=computation”, the
point where measured execution
time is twice that taken by a
single stage. For 10 million

stages the overhead on the AMD is large – almost 85 seconds; this corresponds to a set of
loosely synchronous stages lasting 9.9 microseconds which is mainly overhead as the

0

20

40

60

80

100

120

140

160

0 2 4 6 8 10 12

Stages (millions)

Fig. 2-Intel: Fixed amount of computation (4.107 units) divided
into 4 cores and from 1 to 107 stages on Dell Xeon Multicore. Each
stage separated by reading and writing CCR ports in Pipeline mode

Time Seconds

12.40 microseconds per stage
averaged from 1 to 10 million
stages

4-way Pipeline Pattern
4 Dispatcher Threads
Dell Xeon

Overhead =
Computation

Computation Component if no Overhead

0

20

40

60

80

100

120

0 2 4 6 8 10 12

Stages (millions)

Fig. 2-AMD: Fixed amount of computation (4.107 units) divided into
4 cores and from 1 to 107 stages on HP Opteron Multicore. Each
stage separated by reading and writing CCR ports in Pipeline mode

Time Seconds

8.04 microseconds per stage
averaged from 1 to 10 million
stages

Overhead =
Computation

Computation Component if no Overhead

4-way Pipeline Pattern
4 Dispatcher Threads
HP Opteron

“real” computation is just 1.4 microseconds per stage. The Intel results show 125 seconds
overhead in this extreme case.

 Looking at the case of one million stages, the overhead is much smaller – about 5
seconds (for AMD and 9 seconds for Intel); for the AMD, this corresponds to a set of
loosely synchronous stages lasting 19 microseconds where the overhead is about 5
microseconds and the “real” computation is 14 microseconds (a loop of ten basic
computation unit) per stage. Linear fits to the stage dependence leads to an overhead per
stage of 4.63 microseconds from figure 3-AMD while the behavior becomes clearly

nonlinear in the larger range of
stages in figure 2. This overhead
represents the CCR (and system)
time to set up threads and process
the ports. Our measurement says
this overhead is linear in the
number of invocations when the
spawned threads execute for
substantially more (14
microseconds) than the basic
overhead (4.63 microseconds)
but the overhead increases when
the thread execution time
decreases to a few microseconds.
Presumably CCR can be
optimized and so we don’t read
much into this observation at this
stage; it needs more
investigation. Turning to the Intel
results they are qualitatively
similar but with significantly
higher overhead. In figure 2-
Intel, the average has increased
from 8.04 for AMD to 12.66
microseconds with the execution
of 10 million stages taking 40%
longer than the AMD even
though the performance with 1
stage is only 7% longer.
Comparing figure 3-AMD and 3-
Intel, shows the discrepancy
between AMD and Intel CCR
performance to be exacerbated if
one restricts attention to just the
first one million stages.

10

12

14

16

18

20

10

12

14

16

18

20

00

4-way Pipeline Pattern
4 Dispatcher Threads
HP Opteron

Time Seconds

4.63 microseconds per stage
averaged from 1 to 1 million
stages

Stages (millions)

0 0.2 0.4 0.6 1.00.8

Fig. 3-AMD: Detail from Fig.2-AMD for 1 to 1 million stages
on HP Opteron Multicore

14

15

16

17

18

19

20

21

22

23

24 4-way Pipeline Pattern
4 Dispatcher threads
Dell Xeon

Time Seconds

9.25 microseconds per stage
averaged from 1 to 1 million
stages

Stages (millions)

0 0.2 0.4 0.6 1.00.8
Fig. 3-Intel : Detail from Fig.2-Intel for 1 to 1 million
stages on Dell Xeon multicore.

We also need to examine the assignment of threads to cores. We did not have access to
an Intel thread debugger for C# but the AMD thread debugger showed this to be efficient
for small number of stages with each thread running on a different core. It is not clear
what the interaction between port handler threads (the “real” computation) and the CCR

system processing shows on the timescale of microseconds. We investigated this a little
in a “scaling” test that compared the results above with a similar set of runs that used
fewer ports (and associated computations) than the 4 ports and threads in figures 2 and 3.
In particular we look in figures 4 and 5 at just two ports leaving the remaining two “free”
for other work if CCR and/or the system could make good use of them. These figures
analogously to figures 2 and 3, show up to 10 million and up to one million stages with
separate AMD and Intel measurements. These figures demonstrate that using just 2 cores
in CCR showed substantial reduction in overhead with a more nearly linear dependence
on the number of stages. The latency per stage for the AMD machine drops from 8.04 to

Fig. 4-AMD: Fixed amount of computation (2.107 units)
divided into 2 cores and from 1 to 107 stages on HP
Opteron Multicore. Each stage separated by reading
and writing CCR ports in Pipeline mode.

0

5

10

15

20

25

30

35

40

45

50

0 2 4 6 8 10

Time Seconds

Stages (millions)

3.17 microseconds per stage
averaged from 1 to 10 million
stages

2-way Pipeline Pattern
2 Dispatcher Threads
HP Opteron

0

10

20

30

40

50

60

0 2 4 6 8 10

Fig. 4-Intel: Fixed amount of computation (2.107 units)
divided into 2 cores and from 1 to 107 stages on Dell
Xeon Multi-core. Each stage separated by reading and
writing CCR ports in Pipeline mode.

Stages (millions)

4.20 microseconds per stage
averaged from 1 to 10 million
stages

Time Seconds

2-way Pipeline Pattern
2 Dispatcher Threads
Dell Xeon

13.5

14

14.5

15

15.5

16

16.5

17

Time Seconds

Stages (millions)

0 0.2 0.4 0.6 1.00.8

Fig. 5-AMD: Detail from Fig.4 for 0 to 1 million stages on HP
Opteron Multicore

14

15

16

17

18

19

2-way Pipeline Pattern
2 Dispatcher Threads
Dell Xeon

2-way Pipeline Pattern
2 Dispatcher Threads
HP Opteron

Time Seconds

2.63 microseconds per stage
averaged from 1 to 1 million
stages 3.39 microseconds per stage

averaged from 1 to 1 million
stages

Stages (millions)

0 0.2 0.4 0.6 1.00.8
Fig. 5-Intel: Detail from Fig.4-Intel for 0 to 1 million stages
on Dell Xeon Multi-core

3.17 microseconds averaged over 10 million stages and from 4.63 to 2.63 microseconds
when averaged from a single to one million stages. The Intel results shown in figure 4-
Intel show even bigger improvements; the latency per stage drops from 12.40 to 4.20
microseconds averaged over 10 million stages and from 9.25 to 3.39 microseconds when
averaged from a single to one million stages. We were surprised by this reduced latency,
as for say 2 computation threads (ports) and 2 CCR cores, the debugger suggests that all
the work (whether computation or overhead) is done on two threads and two cores are
essentially idle. This observation makes it difficult to understand why the overhead is

smaller in this case than when more computation threads are used as there appear to be
idle cores available for use without increasing overhead. As technology advances and the
number of cores per chip increases, it will be important to investigate how many CCR
threads would be best to use. As discussed later, the performance does depend on a
“technical” parameter in CCR – namely the number of threads to be created by the
dispatcher; the results in figures 2 to 5 specify 4 CCR dispatcher threads for the 4-way
and 2 CCR dispatcher threads for the 2-way case. As shown later in tables 1 and 2, the
latter choice gives better performance for 2-way computations than the CCR default
which we believe is 4 threads.

0

20

40

60

80

100

120

140

0 1 2 3 4 5

Stages (millions)

20.9 microseconds
per stage averaged
from 1 to 5 million stage

Time Seconds

Fig. 6-AMD: Fixed amount of computation (4.107 units)
divided into 4 cores and from 1 to 107 stages on HP Opteron
Multicore. Each stage separated by reading and writing CCR
ports in Exchange mode

4-way Exchange Pattern
2 Dispatcher Threads
HP Opteron

Fig. 6-Intel: Fixed amount of computation (4.107 units) divided
into 4 cores and from 1 to 107 stages on Dell Xeon multicore.
Each stage separated by reading and writing CCR ports in
Exchange mode

0

50

100

150

200

250

300

350

400

450

0 2 4 6 8 10

Stages (millions)

40.4 microseconds
per stage averaged
from 1 to 10 million stage

Time Seconds

4-way Exchange Pattern
4 Dispatcher Threads
Dell Xeon

The results so far have used the pipeline pattern of figure 1(a) which captures the key
loosely synchronous character of the MPI programming model but is not a very
interesting messaging pattern as the threads send messages to themselves. The patterns of
figure 1(c) and 1(d) are typical of MPI messaging used in data decomposition problems
as it is that required by local communications with a one dimensional topology. Figure 6
corresponds to the scenario of figures 2 and 3 but with the Exchange pattern replacing the
Pipeline. The stage overhead is substantially higher (20.9 and 40.4 microseconds for
AMD and Intel respectively) and illustrate again that the underperformance of the Intel
chip is increased by more complex operations. We tried to clarify this by looking at a
broader set of other configurations.

The results of the further study are given in tables 1 and 2 where we only look at 500,000
stages corresponding to a 28 (AMD) or 30 (INTEL) microsecond basic computation in

each stage. We also show in tables 1,2-INTEL8, recent results for a Dell PWS-690
Precision workstation with two 4-core Intel® Xeon™ processors; note that the per core
timing of the basic unit has increased from 30 microseconds per stage on Intel dual core
two processor Xeon to 34 microseconds. Remember the AMD machine has 28
microsecond stage performance. The 8-core Dell machine has a total of 8 gigabytes of
memory and runs the same Windows XP professional 84 bit edition. Each of the 8 cores
runs at a slower 1.86 Ghz compared to 2.8 Ghz of Dell 4 core machine which explains
decreased performance per core on the 8 core compared to 4 core Dell. We also used
updated CCR software for just the INTEL8 tables which use the December 2006 CCR
release.

Thread0

Port3

Thread2 Port2

Port1

Port0

Thread3

Thread1

Thread2 Port2

Thread0 Port0

Port3Thread3

Port1Thread1

Thread3 Port3

Thread2 Port2

Thread0 Port0

Thread1 Port1

(a) Pipeline (b) Shift

(d) Exchange

Thread0

Port3

Thread2 Port2

Port1

Port0

Thread3

Thread1

(c) Two Shifts

Fig. 7: Four Communication Patterns used in Tables 1 and 2. (a) and (b) use
CCR Receive while (c) and (d) use CCR Multiple Item Receive

This stage computation is reasonably large compared to the CCR overheads in simple
cases. We record the runtime in table 1 and the stage overhead in table 2. We repeat
scenarios shown in figures 2-6 but get slightly different overheads in comparable cases as
earlier overheads where averaged over many choices of stages and as the dependence is
nearly but not exactly linear, the table values which are the overheads for a fixed number
of stages do not and should not precisely reproduce the overheads recorded on figures.
These tables run through 4 message patterns shown in figure 7. This adds the Shift
pattern to the earlier Pipeline and Exchange. Note that Exchange is “just” Left Shift
combined with Right Shift and so naively one would expect it to have twice the overhead
of Shift. This may not be correct as for Exchange each port must wait for two threads to
finish and so synchronization differences could be important. Further the CCR software
module used by Exchange (MultipleItemReceive) is different from that (Receive) used by
Pipeline and Shift. We investigated this by the “Two Shift” case defined in Figure 7(c)

where each thread sends two messages to the same port. This should be identical to Shift
(as messages are essentially zero size here) and the much larger overheads for “Two
Shift” compared to Shift suggests that differences in the CCR software modules accounts
for some of the increased overhead of Exchange compared to Pipeline and Shift. We
assume it would be straightforward to improve the performance of Exchange.

We also note the reasonable performance on the 4-core AMD and Intel machines of
Pipeline and Shift for 8-way parallel computations with about double the overhead
compared to 4-way. Such a doubling is not implausible but we need to understand it
better. Reasonable support of 8-way computations is important as one wants to support
cases where the program uses more logical processors than the concurrent machine’s
number of physical cores.

As mentioned earlier the default thread setting for CCR is usually not optimal when one
runs fewer computations than cores. Having “spare” cores for 1 2 and 3 way parallelism
clearly decreases the overhead but one still gets more computation done by using 4 or 8
way parallelism. We note that for Exchange we sometimes got errors (non terminating
programs) which we are investigating further. MultipleItemReceive in CCR did not seem
to work for just one item and so we could not directly compare it with Receive. Actually
the semantics of MultipleItemReceive are not correct for Exchange as MPI requires not
just two messages in Exchange but rather two messages from particular sources. We
could use more precisely MultiplePortReceive but this is perhaps problematical in general
as it requires one port for each pair of threads – an architecture that doesn’t scale as it
needs N2 ports for N cores. We didn’t investigate further as it seems likely one should
develop specialized CCR primitives for CCR if one wishes to fully support MPI from
CCR.

Turning to the 8-core results in tables 1, 2-INTEL8, we find similar conclusions with
significantly lower overheads except for the double shift case. The overhead for 8-way
patterns on the 8-core machine is lower than that for 4-way patterns on the 4-core
machine. As the 8-core machine has slower cores, the overhead is even lower if
expressed as a percentage of computation time. We did find occasional errors as reported
in earlier tables but we reran jobs and quoted results from averaging correct runs. We
need to investigate if some of changes in results come from using updated CCR software
as the AMD and INTEL tables use the June 2006 release and INTEL8 that from
December 2006. Note the default to use 8 dispatcher threads again always performs more
poorly than matching dispatcher threads to simultaneous computations except of course
for the full 8-way case. It is curious that default overhead is typically higher on n<8 way
parallelism than on 8 way case. The extra cores slow down the system!

In summary, we see that CCR has latencies of a few microseconds that suggest it can be
effective for messaging needed in MPI style applications [Graham05] [PallasMPI]
[Panda06]. However the current software needs optimization in performance and
functionality as will be discussed in the final section.

Table 1-AMD: Run times in seconds for the four patterns illustrated in Figure 7

Number of Parallel Computations Average Run

Time (seconds) 1 2 3 4 8

match 14.38 15.20 15.81 16.50 32.44
Pipeline

default 15.81 16.35 16.19 16.27 32.44

match N/A 15.63 15.69 16.34 33.49
Shift

default N/A 16.56 16.10 16.25 32.31

match N/A 16.39 17.84 18.74 41.02 Two
Shifts default N/A 18.13 18.48 18.87 39.98

match N/A 19.48 21.88 23.16 Error
Exchange

default N/A 22.40 23.10 23.30 Error

Match implies dispatcher thread number set to number of parallel computations; default
implies thread number defaulted. Each run executed on 4 core Opteron-based PC and
used 500,000 stages

Table 2-AMD: Stage overheads in microseconds for the four patterns illustrated in Figure

7 and calculated from the 500,000 stage runtimes of Table1 -AMD

Number of Parallel Computations Stage Overhead
(microseconds) 1 2 3 4 8

match 0.77 2.4 3.6 5.0 8.9 Straight
Pipeline default 3.6 4.7 4.4 4.5 8.9

match N/A 3.3 3.4 4.7 11.0
Shift

default N/A 5.1 4.2 4.5 8.6

match N/A 4.8 7.7 9.5 26.0 Two
Shifts default N/A 8.3 9.0 9.7 24.0

match N/A 11.0 15.8 18.3 Error
Exchange

default N/A 16.8 18.2 18.6 Error

Match implies dispatcher thread number set to number of parallel computations; default
implies thread number defaulted. Each run executed on 4 core Opteron-based PC and
used 500,000 stages.

Table 1-INTEL: Run times in seconds for the four patterns illustrated in Figure 7

Number of Parallel Computations Average Run

Time (seconds) 1 2 3 4 8

match 15.7 16.5 16.9 19.4 42.7
Pipeline

default 18.3 19.6 18.4 19.4 38.2

match N/A 16.6 17.4 19.6 42.2
Shift

default N/A 19.8 19.3 19.6 35.3

match N/A 18.3 21.8 21.6 56.1 Two
Shifts default N/A 26.4 27.3 21.6 45.5

match N/A 28.9 31.2 35.4 Error
Exchange

default N/A 32.1 32.9 35.4 Error

Match implies dispatcher thread number set to number of parallel computations; default
implies thread number defaulted. Each run executed on 4 core Xeon-based Dell PC and
used 500,000 stages

Table 2-INTEL: Stage overheads in microseconds for the four patterns illustrated in
Figure 7 and calculated from the 500,000 stage runtimes of Table 1-INTEL

Number of Parallel Computations Stage Overhead

(microseconds) 1 2 3 4 8

match 1.7
(0.77)

3.3
(2.4)

4.0
(3.6)

9.1
(5.0)

25.9
(8.9) Straight

Pipeline default 6.9
(3.6)

9.5
(4.7)

7.0
(4.4)

9.1
(4.5)

16.9
(8.9)

match N/A 3.4
(3.3)

5.1
(3.4)

9.4
(4.7)

25.0
(11.0) Shift

default N/A 9.8
(5.1)

8.9
(4.2)

9.4
(4.5)

11.2
(8.6)

match N/A 6.8
(4.8)

13.8
(7.7)

13.4
(9.5)

52.7
(26.0) Two

Shifts default N/A 23.1
(8.3)

24.9
(9.0)

13.4
(9.7)

31.5
(24.0)

match N/A 28.0
(11.0)

32.7
(15.8)

41.0
(18.3) Error

Exchange
default N/A 34.6

(16.8)
36.1

(18.2)
41.0

(18.6) Error

Match implies dispatcher thread number set to number of parallel computations; default
implies thread number defaulted. Each run executed on 4 core Dell Xeon (with results
from 4 core Opteron-based PC in parentheses) and used 500,000 stages.

Table 1-INTEL8: Run times in seconds for the four patterns illustrated in Figure 7

Number of Parallel Computations Average Run

Time (seconds) 1 2 3 4 8

match 17.6 19.1 19.1 19.3 20.2
Pipeline

default 20.1 21.2 21.8 21.7 20.2

match N/A 19.1 19.2 19.5 20.6
Shift

default N/A 21.1 22.1 22.0 20.6

match N/A 20.7 20.4 21.2 28.4 Two
Shifts default N/A 27.1 32.2 30.6 28.4

match N/A 30.3 28.7 27.6 33.5
Exchange

default N/A 32.6 36.3 40.0 33.7

Match implies dispatcher thread number set to number of parallel computations; default
implies thread number defaulted. Each run executed on 8 core Xeon-based Dell PC and
used 500,000 stages

Table 2-INTEL8: Stage overheads in microseconds for the four patterns illustrated in
Figure 7 and calculated from the 500,000 stage runtimes of Table 1-INTEL8

Number of Parallel Computations Stage Overhead

(microseconds) 1 2 3 4 8

match 1.33
(1.7)

4.2
(3.3)

4.3
(4.0)

4.7
(9.1)

6.5
(25.9) Straight

Pipeline default 6.3
(6.9)

8.4
(9.5)

9.8
(7.0)

9.5
(9.1)

6.5
(16.9)

match N/A 4.3
(3.4)

4.5
(5.1)

5.1
(9.4)

7.2
(25.0) Shift

default N/A 8.3
(9.8)

10.2
(8.9)

10.0
(9.4)

7.2
(11.2)

match N/A 7.5
(6.8)

6.8
(13.8)

8.4
(13.4)

22.8
(52.7) Two

Shifts default N/A 20.3
(23.1)

30.4
(24.9)

27.3
(13.4)

23.0
(31.5)

match N/A 26.6
(28.0)

23.6
(32.7)

21.4
(41.0)

33.1
(error) Exchange

default N/A 31.3
(34.6)

38.7
(36.1)

46.0
(41.0)

33.5
(error)

Match implies dispatcher thread number set to number of parallel computations; default
implies thread number defaulted. Each run executed on 8 core Dell Xeon (with results
from 4 core Xeon-based PC in parentheses) and used 500,000 stages.

3. CCR MPI Bandwidth

0

50

100

150

200

250

300

350

400

0 2 4 6 8 10

Fig. 8-Intel: Scenario from Fig.2-Intel with run time
plotted versus number of stages with 1000 words of
double array copied in each stage from thread in stepped

locations in a large array on Dell Xeon Multicore

Time Seconds

Total Bandwidth
1.56 Gigabytes/Sec

4-way Pipeline Pattern
4 Dispatcher Threads
Dell Xeon

Stages (millions)

Fig. 8-AMD: Scenario from Fig.2-AMD with run time
plotted versus number of stages with 1000 words of
double array copied in each stage from thread to
stepped locations in a large array on HP Opteron
Multicore.

Time Seconds

Total Bandwidth
1.29 Gigabytes/Sec

Stages (millions)

0 4 6 1082

50

100

0

200

300

400 4-way Pipeline Pattern
4 Dispatcher Threads
HP Opteron

0

200

400

600

800

1000

1200

1400

1600

0 2 4 6 8 10

To measure MPI bandwidth, we simulated a typical MPI CALL such as subroutine
mpisend (buf, count, datatype, dest, tag, comm) by posting a structure made up of an
array of doubles of length N and a set of six integers (with one extra integer for CCR
control). These all used the full 4-way parallelism and the results are shown in figures 8
to 12. One passes a reference for the data buffer buf and we used three distinct models for
locations of final data termed respectively

a) Inside Thread: The buffer buf is copied using C# Copy To function to a new
array inside the thread whose size is identical to that of buf.

Fig. 9-AMD: Scenario from Fig.2-AMD for 5,000 stages with run
time plotted against size of double array copied in each stage
from thread to stepped locations in a large array on HP Opteron
Multicore.

Total Bandwidth 1.15 Gigabytes/Sec
up to one million double words and
1.19 Gigabytes/Sec up to
100,000 double words

Time Seconds

Array Size: Millions of Double Words
0

20

40

60

80

100

120

140

160

180

200

0 0.2 0.4 0.6 0.8 1

4-way Pipeline Pattern
4 Dispatcher Threads
Dell Xeon

4-way Pipeline Pattern
4 Dispatcher Threads
HP Opteron

Time Seconds

Total Bandwidth 1.0 Gigabytes/Sec
up to one million double words and
1.75 Gigabytes/Sec up to
100,000 double words

Array Size: Millions of Double Words

Fig. 9-Intel: Scenario from Fig.2-intel for 5,000 stages
with run time plotted against size of double array copied
in each stage from thread to stepped locations in a large
array on Dell Xeon Multicore

b) Outside Thread: The buffer buf is copied using C# Copy To function to a fixed
array (with distinct arrays for each core) outside the thread whose size is identical
to that of buf.

c) Stepped Array Outside Thread: The buffer buf is copied using element by
element Copy in C# to a fixed large array outside the thread whose size is two
million double floating words. Again each core has its own separate stepped
array.

Note all measurements in this section involved 4-way parallelism and the bandwidth is
summed over all four cores simultaneously copying message buffers.

In figure 8, we repeat the measurements of figure 2 but add the transfer of 1000 double
floating words (and the six integers) to each of the 4 ports at each stage. We see a nice
linear dependence on the number of stages and estimate a total (over the 4 cores)
bandwidth of about a 1.29 (AMD) and 1.56(Intel) Gigabytes/second corresponding to this
transfer. This used the stepped array model c) defined above with each successive 1000
words stored in the next available space in an array (separate for each core) of total length
of 20 million words. After 20,000 stages the array is full and one wraps back to the start.
An MPI program could in fact just use pointers to the shared memory and not copy data
between processes. However the explicit copying model used here is free of
dependencies and typical of a simple safe concurrent MPI program. Interpretation of
figure 8 is tricky as one is varying both amount of data and total stage overhead as you
increase the number of stages; the bandwidth is extracted by subtracting the data used to
make figures 2 and 8.

The bandwidth is better estimated from figures 9-12 which fix the number of stages and
hence fix the CCR staging overhead. We look at the run time as a function of size of
array stored in the port and summarize the results in table 3 (with separate AMD and Intel
versions). One finds bandwidths that vary from 0.75 to 2 Gigabytes per second with the
Intel machine claiming both upper and lower values although it typically shows better
bandwidth than the AMD machine. Note the best bandwidths are obtained when the
destination arrays are outside the thread and when of course the copied data is small
enough to stay in cache. We used 100,000 words in the summary tables 1 and 2 to
illustrate the “in cache” case and one or ten million for the “out of cache” case. Also the
bandwidth higher for the cases where the computing component is significant; i.e. when
it has a value of a few milliseconds rather than the lower limit of a few microseconds.
Figure 9 illustrates this with a stage computation of 2800 (AMD) to 3000 (Intel)
microseconds. For the case (c) of a stepped array, the Intel PC achieves a bandwidth of
1.75 gigabytes/second for 100,000 word messages which decreases to just 1
gigabyte/second for million word arrays. The AMD machine shows a roughly uniform
bandwidth of 1.17 gigabyte/second independent of array size. Note typical messages in
MPI would be smaller than 100,000 words and so MPI would benefit from the
performance increase for small messages.

Figure 10 contains 6 pictures covering the two machines and the three data location
models defined above; the averages for these figures are given in Table 3. This case

corresponds to a “small” (40 computation units per core per stage; taking 56 and 60
microseconds for AMD and Intel respectively) computation case. Now the stepped array
bandwidth for Intel is lower in fig 10(c) than in figure 9 and we only see high Intel
bandwidth in the case of figure 10(b); 100,000 words copied to an array outside the
thread with same size as message. Note over the measurements reported from AMD in
figure 10 the bandwidth varies from 0.89 to 1.16 gigabytes/second; the Intel numbers
vary from 0.76 to 1.89 gigabytes/second. Given the stable AMD results, figures 11 and
12 only examine the Intel machine and repeat figures 10(a) and 10(b) with a 100 times
longer computation (4000 units per core per stage). One always sees an improved
bandwidth with over a factor of two improvements in the case of copying to an array
inside the thread. For 100,000 words, the bandwidth goes from 0.83 gigabytes/second in
figure 10(a) to 1.74 gigabytes/second in figure 11.

0

20

40

60

80

100

120

0 0.2 0.4 0.6 0.8 1

Fig. 10a-Intel: Fixed amount of computation (4.105 units)
divided into 4 cores and 2,500 stages. Each stage separated by
reading and writing CCR ports in Pipeline mode. Run time
plotted against size of double array copied in each stage from
thread to same size array inside thread on Dell Xeon Multicore

Time Seconds

0

100

200

300

400

500

600

700

800

900

0 2 4 6 8 10

4-way Pipeline Pattern
4 Dispatcher Threads
HP Opteron

4-way Pipeline Pattern
4 Dispatcher Threads
Dell Xeon

Time Seconds

Total Bandwidth 0.99 Gigabytes/Sec
up to one million double words and
0.89 Gigabytes/Sec
up to 100,000 double words

Total Bandwidth 0.83 Gigabytes/Sec
up to one million double words and
0.76 Gigabytes/Sec
up to 100,000 double words

Array Size: Millions of Double Words Array Size: Millions of Double Words

Fig. 10a-AMD: Fixed amount of computation (4.105

units) divided into 4 cores and 2,500 stages. Each stage
separated by reading and writing CCR ports in Pipeline
mode. Run time plotted against size of double array
copied in each stage from thread to same size array
inside thread on HP Opteron Multicore

0

100

200

300

400

500

600

700

800

0 2 4 6 8 10

Fig. 10b-AMD: Fixed amount of computation (4.105

units) divided into 4 cores and 2,500 stages. Each
stage separated by reading and writing CCR ports in
Pipeline mode. Run time plotted against size of double
array copied in each stage from thread to same size
array outside thread on HP Opteron Multicore

Time Seconds

4-way Pipeline Pattern
4 Dispatcher Threads
HP Opteron

Total Bandwidth 1.11 Gigabytes/Sec
up to one million double words and
1.16 Gigabytes/Sec
up to 100,000 double words

0

10

20

30

40

50

60

70

80

90

100

0 200 400 600 800 1000

4-way Pipeline Pattern
4 Dispatcher Threads
Dell Xeon

Time Seconds

Total Bandwidth 0.89 Gigabytes/Sec
up to one million double words and
1.89 Gigabytes/Sec
up to 100,000 double words

Array Size: Millions of Double Words Array Size: Millions of Double Words

Fig. 10b-Intel: Fixed amount of computation (4.105 units) divided
into 4 cores and 2,500 stages. Each stage separated by reading
and writing CCR ports in Pipeline mode. Run time plotted
against size of double array copied in each stage from thread to
same size array outside thread on Dell Xeon Multicore

0

20

40

60

80

100

120

0 0.2 0.4 0.6 0.8 1

Fig. 11-Intel: Fixed amount of computation (4.107 units) divided
into 4 cores and 2,500 stages. Each stage separated by
reading and writing CCR ports in Pipeline mode. Run time
plotted against size of double array copied in each stage from
thread to same size array inside thread on Dell Xeon Multicore

Time Seconds

4-way Pipeline Pattern
4 Dispatcher Threads
Dell Xeon

Total Bandwidth 0.9 Gigabytes/Sec
up to one million double words and
1.74 Gigabytes/Sec
up to 100,000 double words

Array Size: Millions of Double Words
0

10

20

30

40

50

60

70

80

90

100

0 0.2 0.4 0.6 0.8 1

Fig. 12-Intel: Fixed amount of computation (4.107 units) divided
into 4 cores and 2,500 stages. Each stage separated by reading
and writing CCR ports in Pipeline mode. Run time plotted
against size of double array copied in each stage from thread to
same size array outside thread on Dell Xeon Multicore

Time Seconds

4-way Pipeline Pattern
4 Dispatcher Threads
Dell Xeon

Total Bandwidth 1.07 Gigabytes/Sec
up to one million double words and
2.0 Gigabytes/Sec
up to 100,000 double words

Array Size: Millions of Double Words

0

100

200

300

400

500

600

700

800

0 2 4 6 8 10

Fig. 10c-AMD: Fixed amount of computation (4.105

units) divided into 4 cores and 2,500 stages. Each
stage separated by reading and writing CCR ports in
Pipeline mode. Run time plotted against size of double
array copied in each stage from thread to stepped
locations in a large array on HP Opteron Multicore

Time Seconds

4-way Pipeline Pattern
4 Dispatcher Threads
HP Opteron

Total Bandwidth 1.14 Gigabytes/Sec
up to one million double words and
1.13 Gigabytes/Sec
up to 100,000 double words

Array Size: Millions of Double Words

Fig. 10c-Intel: Fixed amount of computation (4.105 units) divided
into 4 cores and 2,500 stages. Each stage separated by reading
and writing CCR ports in Pipeline mode. Run time plotted
against size of double array copied in each stage from thread to
stepped locations in a large array on Dell Xeon Multicore

0

10

20

30

40

50

60

70

80

90

100

0 0.2 0.4 0.6 0.8 1

Time Seconds

4-way Pipeline Pattern
4 Dispatcher Threads
Dell Xeon

Total Bandwidth 0.89 Gigabytes/Sec
up to one million double words and
1.16 Gigabytes/Sec
up to 100,000 double words

Array Size: Millions of Double Words

Table 3-AMD: Measured total bandwidths summed over all four cores for 3 different
array locations described in the text

Bandwidths in Gigabytes/second summed over 4 cores

Array Inside Thread Array Outside
Threads

Stepped Array
Outside Thread

Number of
stages

Small Large Small Large Small Large

Approx.
Compute
Time per
stage µs

250000 0.90 0.96 1.08 1.09 1.14 1.10 56.0

0.89 0.99 1.16 1.11 1.14 1.13
2500

Fig 10a Fig 10b
1.13 up to 107 words Fig 10c

56.0

1.19 1.15
5000

Fig 9
2800

1.15 1.13
200000

1.13 up to 107 words
70

Each stage executed a computational task after copying data arrays of size 105 (labeled
small), 106 (labeled large) or 107 double words. The last column is an approximate value
in microseconds of the compute time for each stage. Note that copying 100,000 double
precision words per core at a gigabyte/second bandwidth takes 3200 µs. The data to be
copied (message payload in CCR) is fixed and its creation time is outside timed process.

Table 3-Intel: Measured total bandwidths summed over all four cores for 3 different array

locations described in the text

Bandwidths in Gigabytes/second summed over 4 cores
Array Inside Thread Array Outside

Threads
Stepped Array
Outside Thread

Number of
stages

Small Large Small Large Small Large

Approx.
Compute
Time per
stage µs

250000 0.84 0.75 1.92 0.90 1.18 0.90 59.5

200000 1.21 0.91 74.4

1.75 1.0
5000

Fig 9
2970

0.83 0.76 1.89 0.89 1.16 0.89
2500

Fig 10a Fig 10b Fig 10c
59.5

1.74 0.9 2.0 1.07
2500

Fig 11 Fig 12
1.78 1.06 5950

The details are as described in Table 3-AMD

4. Initial Performance Results on DSS

Fig. 13(a): Timing of HP Opteron Multicore as a function
of number of two-way service messages processed
(November 2006 DSS Release)

0

50

100

150

200

250

300

350

1 10 100 1000 10000

A
ve

ra
ge

 ru
n

tim
e

(m
ic

ro
se

co
nd

s)

Fig. 13(a): Timing of HP Opteron Multicore as a function
of number of two-way service messages processed
(November 2006 DSS Release)

0

50

100

150

200

250

300

350

1 10 100 1000 10000

A
ve

ra
ge

 ru
n

tim
e

(m
ic

ro
se

co
nd

s)

The Robotics release [Robotics] includes a lightweight service environment DSS for
which we performed an initial evaluation on the AMD Opteron two processor two core
machine. This analysis used the current November 2006 CCR/DSS software; note the
CCR analysis discussed earlier used the June 2006 software release. In figure 13, we time
groups of request-response two way messages running on (different) cores of the HP
Opteron 4-core system. For a group of 200 messages we histogram the timings of 30
separate measurements. For low message counts DSS initialization bumps up the run
time and for large groups of messages it increases – perhaps due to overheads like
Garbage Collection. For message groups from about 50-1000 messages, we find average
times of 40-50 microseconds or throughputs of 20,000 to 25,000 two-way messages per
second.

0

10

20

30

40

50

60

70

0 500 1000 1500 2000 2500 3000 3500

Messages per Second

R
ou

nd
 T

rip
 T

im
e

(m
s)

(

Grid Farm Sun Fire - 6 Cores Sun Fire - 8 Cores HP xw9300 Dell Intel Xeon

2 Chips
2 Core/chip

“Gridfarm”
2 “old”
Intel Chips
1 Core/chip

1 Sun Chip
8 Core/chip

1 Sun Chip
6 Core/chip

Xeon

Opteron

Fig. 14: Timing of small two-way messages on Apache Axis 2 Web Service container for
external access. A variety of machines are shown with marked Opteron and Xeon
identical to those used in CCR and DSS Analysis

This result of internal service to internal service can be compared with the recent Apache

to

ice

Axis 2 release where the performance of several multi-core computers is investigated.
The same Opteron machine used in CCR/DSS analysis supports about 3,000 messages
per second throughput. Figure 13 and 14 are not fair comparisons. Figure 13 is internal
one machine so each service end-point has effectively just two cores. Figure 14 is
external clients interacting on a LAN so there is network overhead but now the serv
can access the full 4 cores. We will complete fairer comparisons later and also examine
the important one-way messaging case.

(d) Rendezvous with Active Messages

Thread2Port0

Thread0

Port1

Thread1

Thread3

Port0

(c) Rendezvous

Thread0 RecvSend

Thread1 Recv

Thread0

(b) Queued

Send

Thread1Queue

Thread0 Thread2

Thread3Port1

Port0

Thread1

(a) Spawned

(e) Publish-Subscribe Messaging
Thread1

Thread0

Thread1

Thread2

Thread3

(f) Overlay Network

Fig. 15: Structure of 6 messaging models

Thread2Thread0 Topic0
= Port0

Thread3

Publish
Subscribe
Deliver

5. Conclusions and Futures

his preliminary study suggests that CCR is an interesting infrastructure for parallel

 figure 15, we compare six programming models with 15(a) showing CCR’s natural

Table 4: Classes of Parallel or Concurrent Messaging Systems

T
computing. We addressed this by showing it can support the basic loosely synchronous
structure of most highly parallel technical computing problems. We may be off the mark
but we see the problem is not “just” producing another MPI but more interestingly of
designing message-based runtimes that support a variety of programming model that
includes those used in technical computing but also those that might support concurrent
programming for the broad range of applications that will use multicore architectures.

In
implementation of MPI style runtime. Note this model where threads are initiated to
process messages is different from the conventional MPI model where persistent threads
communicate with messages via rendezvous as seen in figure 15(c) or 15(d). In figure
15(c) we represent a common high performance MPI implementation where messages are
transmitted between running processes and no extra threads are used. In figure 15(d), we
insert a handler for each message as is used in active messages; this strategy is also
common where for efficiency one uses the network hardware to handle external MPI
messages – of course the processor on a network card can be considered as an extra core
available to support message processing. We believe the model of figure 15(a) can be
used for current MPI programs but some programming changes will be needed; one may
be able to automate this change. The model of fig. 15(a) would be best supported by
optimizing relevant CCR core modules and extending those currently available so that for
example cases like figure 1(d) with differing number of messages in each port can be
handled. This is interesting research but out of scope in this study. One must also look at
the implementation of MPI and distributed programming involving both internal and
external processes with conventional external messages arriving from MPICH and
openMPI.

Messaging Model Software Typical Applications

Spawned
(fig. 15(a))

Streamed dataflow;
SOA

CCA , CCR, DSS
Apache Synapse,
Grid Workflow

Dataflow as in AVS, Image
Processing; Grids; Web Services

Spawned
(fig. 15(a)) Tree Search CCR Optimization; Computer Chess

Queued
(fig. 15(b))

Discrete Event
simulations openRTI, CERTI Ordered Transactions;

“war game” style simulations

Rendezvous
(figs. 15(c, d))

Message Parallelism
MPI

openMPI
MPICH2

Loosely Synchronous
applications including
engineering & science; rendering

Publish-Subscribe
(fig. 15(e)) Enterprise Service Bus NaradaBrokering

Mule, JMS
Content Delivery;
Message Oriented Middleware

Overlay Networks
(fig. 15(f)) Peer-to-Peer Jabber, JXTA,

Pastry Skype; Instant Messengers

As an alternative to adapting MPI to the implementation style of fig. 15(a), one could

EFERENCES
tnam Singh and Georgio Chrysanthakopoulos, “An Asynchronous

ted

instead produce a messaging system that supported multiple paradigms and allowed their
integration in complex applications. Table 4 summaries some paradigms and typical
applications. Other interesting messaging models are shown in the other parts of figure
15. Figure 15(b) shows a variant of the Rendezvous (figures 15(c, d)) where messages are
queued in the destination process (thread). Figure 15(e) illustrates that classic publish-
subscribe messaging models can also be supported by the ports underlying CCR’s model.
Figure 15(f) shows another well known distributed messaging model; an overlay network
as used in P2P systems. We expect to return this general messaging analysis later in our
work after we have looked in more detail at the service infrastructure DSS built on top of
CCR. Here we will also comment on Grid applications of CCR and multicore systems.

R

1. [CCR1] Sa
Messaging Library for C#”, Synchronization and Concurrency in Object-Orien
Languages (SCOOL) at OOPSLA October 2005 Workshop, San Diego, CA.
http://urresearch.rochester.edu/handle/1802/2105 ()

2. [CCR2] “Concurrency Runtime: An Asynchronous Messaging Library for C#

rrencyRuntime
2.0” George Chrysanthakopoulos Channel9 Wiki Microsoft
http://channel9.msdn.com/wiki/default.aspx/Channel9.Concu

on

issues/06/09/ConcurrentAffairs/default.aspx

3. [CCR3] “Concurrent Affairs: Concurrent Affairs: Concurrency and Coordinati
Runtime”, Jeffrey Richter Microsoft
http://msdn.microsoft.com/msdnmag/

005

4. [Graham05] Richard L. Graham and Timothy S. Woodall and Jeffrey M. Squyres
“Open MPI: A Flexible High Performance MPI”, Proceedings, 6th Annual
International Conference on Parallel Processing and Applied Mathematics, 2
http://www.open-mpi.org/papers/ppam-2005

5. [MPI] Message passing Interface MPI Forum http://www.mpi-
forum.org/index.html

6. [MPICH] MPICH2 implementation of the Message-Passing Interface (MPI)
http://www-unix.mcs.anl.gov/mpi/mpich/

7. [OpenMPI] High Performance MPI Message Passing Library http://www.open-

.K. Panda “How will we develop and program emerging robust, low-
mpi.org/

8. [Panda06] D
power, adaptive multicore computing systems?” The Twelfth International
Conference on Parallel and Distributed Systems ICPADS ‘06 July 2006
Minneapolis http://www.icpads.umn.edu/powerpoint-slides/Panda-
panel.pdf#search=%22mpi%20multicore%20performance%22

9. [PallasMPI] Thomas Bemmerl “Pallas MPI Benchmarks Results”
http://www.lfbs.rwth-aachen.de/content/index.php?ctl_pos=392

10. [Robotics] Microsoft Robotics Studio is a Windows-based environment that
re. provides easy creation of robotics applications across a wide variety of hardwa

It includes end-to-end Robotics Development Platform, lightweight service-
oriented runtime, and a scalable and extensible platform. For details, see
http://msdn.microsoft.com/robotics/.

http://urresearch.rochester.edu/handle/1802/2105
http://channel9.msdn.com/wiki/default.aspx/Channel9.ConcurrencyRuntime
http://channel9.msdn.com/wiki/default.aspx/Channel9.ConcurrencyRuntime
http://msdn.microsoft.com/msdnmag/issues/06/09/ConcurrentAffairs/default.aspx
http://msdn.microsoft.com/msdnmag/issues/06/09/ConcurrentAffairs/default.aspx
http://www.open-mpi.org/papers/ppam-2005
http://www.open-mpi.org/papers/ppam-2005
http://www.mpi-forum.org/index.html
http://www.mpi-forum.org/index.html
http://www-unix.mcs.anl.gov/mpi/mpich/
http://www-unix.mcs.anl.gov/mpi/mpich/
http://www.icpads.umn.edu/powerpoint-slides/Panda-panel.pdf#search=%22mpi%20multicore%20performance%22
http://www.icpads.umn.edu/powerpoint-slides/Panda-panel.pdf#search=%22mpi%20multicore%20performance%22
http://www.lfbs.rwth-aachen.de/content/index.php?ctl_pos=392
http://www.lfbs.rwth-aachen.de/content/index.php?ctl_pos=392
http://msdn.microsoft.com/robotics/

11. [PCW] Fox, G. C., Messina, P., Williams, R., “Parallel Computing Works!”,
Morgan Kaufmann, San Mateo Ca, 1994.

12. [PVMMPI] Geoffrey Fox Messaging Systems: Parallel Computing the Internet
and the Grid EuroPVM/MPI 2003 Invited Talk September 30 2003
http://grids.ucs.indiana.edu/ptliupages/publications/gridmp_fox.pdf

13. [Source] “The Sourcebook of Parallel Computing” edited by Jack Dongarra, Ian
Foster, Geoffrey Fox, William Gropp, Ken Kennedy, Linda Torczon, and Andy
White, Morgan Kaufmann, November 2002.

14. [SPCP] G. Fox, M. Johnson, G. Lyzenga, S. Otto, J. Salmon, D. Walker Solving
Problems in Concurrent Processors-Volume 1, Prentice Hall, March 1988.

http://grids.ucs.indiana.edu/ptliupages/publications/gridmp_fox.pdf

