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Executive Summary 
 
CCR has been developed by Microsoft and applied to several applications – especially 
robotics. CCR has also been explored as a runtime supporting an interesting concurrent 
programming model and has DSS – a lightweight service runtime – built on top of it. In 
this note we discuss its application to high performance computing where the messaging 
system MPI is the dominant paradigm as either the programming model or the runtime 
for a higher level programming paradigm. We conclude that one can do MPI-style 
programming within CCR with performance characteristics competitive with the best 
MPI implementations (openMPI, MPICH). We identify the loosely synchronous 
execution structure with independent threads executing for a few microseconds and 
exchanging messages – a sequence of compute-communication phases – as typical of 
hard technical computing problems. We design simple performance measurements of 
loosely synchronous execution in CCR corresponding to use of MPI ping and broadcast 
tests. We find latencies of around 5 microseconds and “cross-section bandwidths” of a 
gigabit/second with CCR providing efficient thread execution. We compare two 
machines in details – the one with two dual core Opterons shows lower latencies but also 
lower message bandwidths than the PC with two dual core Xeons. Some results are given 
for a newer machine with two quad core Xeons. We discuss relationship to classic MPI 
messaging, dataflow, “active messages”, overlay networks and publish-subscribe 
communication. The implementation of MPI in terms of CCR depends on one’s goals and 
here we suggest it could be very interesting to generalize CCR to generate a multi-
paradigm runtime that’s fully supports MPI but also other messaging models that more 
appropriate outside technical computing. We illustrate this with an initial evaluation of 
the service environment DSS built on CCR; it supports around 50K two-way (request-
response) messages per second internal to the AMD machine. This is a factor of ten faster 
than typical Axis-2 web service messaging. 
 
1. Introduction 
 
CCR is a runtime [CCR2] [CCR3] designed for robotics applications [Robotics] but also 
investigated [CCR1] as a general programming paradigm. CCR supports efficient thread 
management for handlers (continuations) spawned in response to messages being posted 
to ports. The ports (queues) are managed by CCR which has several primitives 
supporting the initiation of handlers when different message/port assignments are 
recognized. Current primitives supported include: 

1) FromHandler: Spawn threads without reading ports 
2) Receive: Each handler reads one item from a single port 
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3) MultipleItemReceive: Each handler reads a prescribed number of items of a given 
type from a given port. Note items in a port can be general structures but all must 
have same type. 

4) MultiplePortReceive: Each handler reads a one item of a given type from multiple 
ports. 

5) JoinedReceive: Each handler reads one item from each of two ports. The items 
can be of different type. 

6) Choice: Execute a choice of two or more port-handler pairings 
7) Interleave: Consists of a set of arbiters (port -- handler pairs) of 3 types that are 

Concurrent, Exclusive or Teardown (called at end for clean up). Concurrent 
arbiters are run concurrently but exclusive handlers are not. 

 
CCR builds these port processing primitives from simpler base capabilities but different 
and more complicated primitives could presumably be added. 
 
MPI – Message Passing Interface – dominates the runtime support of large scale parallel 
applications for technical computing. It is a complicated specification with 128 separate 
calls in the original specification [MPI] and double this number of interfaces in the more 
recent MPI-2 including support of parallel external I/O [MPICH] [OpenMPI]. MPI like 
CCR is built around the idea of concurrently executing threads (processes, programs) that 
exchange information by messages. In the classic analysis [SPCP] [PCW] [PVMMPI] 
[Source], parallel technical computing applications can be divided into four classes: 

a) Synchronous problems where every process executes the same instruction at each 
clock cycle. This is a special case of b) below and only relevant as a separate class 
if one considers SIMD (Single Instruction Multiple Data) hardware architectures. 

b) Loosely Synchronous problems where each process runs different instruction 
streams but they synchronize with the other processes every now and then. Such 
problems divide into stages where at the beginning and end of each stage the 
processes exchange messages and this exchange provides the needed 
synchronization that is scalable as it needs no global barriers. Load balancing 
must be used to ensure that all processes compute for roughly (within say 5%) the 
same time in each phase and MPI provides the messaging at the beginning and 
end of each stage.  

c) Embarrassingly parallel problems (now called euphemistically pleasing 
parallel) have no significant inter-process communication 

d) Functional parallelism leads to what were originally called metaproblems that 
consist of multiple applications, each of which is of one of the classes a), b), c) as 
seen in multidisciplinary applications such as linkage of structural, acoustic and 
fluid-flow simulations in aerodynamics. These have a coarse grain parallelism. 

 
Classes c) and d) today would typically be implemented as a workflow using services to 
represent the individual components. Often the components are distributed and the 
latency requirements are typically less stringent than for synchronous and loosely 
synchronous problems. CCR in its robotics application using the DSS service runtime can 
in fact directly support workflow but that is not the subject of this report. Rather we are 
interested in seeing if CCR can support the loosely synchronous domain b) that 



represents the class for which MPI is designed and where it gets its most stringent 
performance tests. Figure 1(a) illustrates a very simple loosely synchronous scenario 
showing threads posting and receiving messages through CCR ports.  
 
As mentioned already, MPI has a rich set of defined methods that describe different 
synchronicity options, various utilities and a set of so-called collectives. These include 
the multi-cast (broadcast, gather-scatter) of messages with the calculation of associative 
and commutative functions on the fly. However as our target is today’s multi-core 
computers, the subtleties of the MPI collectives will not be relevant as one will not need 

sophisticated implementations to get good performance on collectives for a few (4 in our 
tests) cores. Thus we concentrate on the equivalent of MPI send-receive tests. Posting to 
a port in CCR corresponds to a MPISEND and the matching MPIRECV is achieved from 
arguments of handler invoked to process port. 
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Fig. 1(a) Idealized loosely synchronous execution in CCR

 
2. Performance of CCR as an MPI Engine 

 
Our first set of tests used 
the CCR Interleave 
paradigm combining 
multiple stages of the type 
illustrated in figure 1(a) 
with a final collective 
shown in figure 1(b). This 
is characteristic of the 
simple MPI routines where 
for example 
decompositions in one 
dimension would lead the 

message structure of figures 1(c) and 1(d) for periodic or fixed end-points respectively. 
The patterns of figures 1(c) and 1(d) would lead to similar performance to the case of 
figure 1(a) as discussed in section 2. Note figure 1(d) is not trivially supported by today’s 
CCR as the ports need to be triggered by different number of messages. We will discuss 
such issues later in section 4. We choose a basic calculation for each stage that is a 
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multiple of a simple series computation that takes approximately 1.4 microseconds when 

run on its own on a single core. We choose this size as the hardest loosely synchronous 
problems execute for around this time in each stage and require MPI latencies in the 
microsecond range. Of course one can in most technical problems increase the average 
compute time (or rather the compute-communication ratio) by increasing the grain size 
assigned to each core but our choice seems appropriate.  
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Fig. 1(c) Exchanging Messages with 1D Torus Exchange
topology for  loosely synchronous execution in CCR
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Our initial experiments reported in 
figures 2-AMD to 6-AMD were 
performed on a Hewlett-Packard (HP) 
xw9300 workstation with 4 gigabytes 
of memory and two AMD Opteron 
chips – each with two cores. Each 
processor runs at 2.19 GHz speed. 
Further results in figures 2-Intel to 6-
Intel were obtained from a Dell 
Precision Workstation 670 with two 
dual-Core Intel® Xeon™ Processor 
running at 2.80GHz with 2x2MB L2 
cache. The system had 8 gigabytes of 
total memory. The Intel machine is 

about 7% slower in computation than the AMD PC in our tests and we will discuss the 
CCR performance for the two machines below. In a nutshell, the AMD shows better 
thread performance while the Intel machine usually has better memory bandwidth for 
message data exchange.  We needed to disable the audio subsystem on the Dell PC as 
well as a few windows services such as “Automatic Updates”. We also needed to reboot 
the computer in between significant test runs to avoid downgraded performance due to 
problems like memory leak. By cleaning up the computer, we maintained a consistent 
testing environment thus obtained stable performance results between executions. Both 
machines run Windows XP Professional (64 bit edition) version 2003 and our code is 
written in C# with the CCR runtime (Ccr.Core.dll) downloaded from Microsoft Robotics 
Studio [Robotics] using June 2006 release.  
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 In figure 2-AMD and 2-Intel, we plot the total execution time for a series of 
computations. Each ran 4.107 repetitions of the basic 1.4 microsecond compute activity 
(it is this long on AMD, it is 1.5 microsecond on Intel) on 4 cores. The repetitions are 
achieved by either a simple loop of basic computation unit or by splitting into stages 

separated by writing and 
reading CCR ports. This 
simple strategy ensures that 
without threading overhead 
the execution time will be 
identical however one divides 
computation by loops or CCR 
stages; this way we can get 
accurate estimates of the 
overhead incurred by the port 
messaging interface.  
 
We first analyze the AMD 
results where without 
overhead the execution time 
will be about 14 seconds and 
is shown as a dashed line in 
figure 2-AMD. The figure 
takes these 4.107 repetitions 
and plots their execution time 

when divided into stages of the 
type shown in figure 1(a). Each 
measurement was an average 
over at least 10 runs with a 
given set of parameters. Figure 
2 shows the results plotted up to 
10 million stages while figure 3 
shows the detail for up to one 
million stages. Always we use 
the term overhead to represent 
the actual measured execution 
time with subtraction of the 
time that a single stage would 
take to execute the same 
computational load. Figure 2 
marks as 
“overhead=computation”, the 
point where measured execution 
time is twice that taken by a 
single stage. For 10 million 

stages the overhead on the AMD is large – almost 85 seconds; this corresponds to a set of 
loosely synchronous stages lasting 9.9 microseconds which is mainly overhead as the 
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“real” computation is just 1.4 microseconds per stage. The Intel results show 125 seconds 
overhead in this extreme case. 
 
 Looking at the case of one million stages, the overhead is much smaller – about 5 
seconds (for AMD and 9 seconds for Intel); for the AMD, this corresponds to a set of 
loosely synchronous stages lasting 19 microseconds where the overhead is about 5 
microseconds and the “real” computation is 14 microseconds (a loop of ten basic 
computation unit) per stage. Linear fits to the stage dependence leads to an overhead per 
stage of 4.63 microseconds from figure 3-AMD while the behavior becomes clearly 

nonlinear in the larger range of 
stages in figure 2. This overhead 
represents the CCR (and system) 
time to set up threads and process 
the ports. Our measurement says 
this overhead is linear in the 
number of invocations when the 
spawned threads execute for 
substantially more (14 
microseconds) than the basic 
overhead (4.63 microseconds) 
but the overhead increases when 
the thread execution time 
decreases to a few microseconds. 
Presumably CCR can be 
optimized and so we don’t read 
much into this observation at this 
stage; it needs more 
investigation. Turning to the Intel 
results they are qualitatively 
similar but with significantly 
higher overhead. In figure 2-
Intel, the average has increased 
from 8.04 for AMD to 12.66 
microseconds with the execution 
of 10 million stages taking 40% 
longer than the AMD even 
though the performance with 1 
stage is only 7% longer. 
Comparing figure 3-AMD and 3-
Intel, shows the discrepancy 
between AMD and Intel CCR 
performance to be exacerbated if 
one restricts attention to just the 
first one million stages.  
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We also need to examine the assignment of threads to cores.  We did not have access to 
an Intel thread debugger for C# but the AMD thread debugger showed this to be efficient 
for small number of stages with each thread running on a different core. It is not clear 
what the interaction between port handler threads (the “real” computation) and the CCR 

system processing shows on the timescale of microseconds. We investigated this a little 
in a “scaling” test that compared the results above with a similar set of runs that used 
fewer ports (and associated computations) than the 4 ports and threads in figures 2 and 3. 
In particular we look in figures 4 and 5 at just two ports leaving the remaining two “free” 
for other work if CCR and/or the system could make good use of them. These figures 
analogously to figures 2 and 3, show up to 10 million and up to one million stages with 
separate AMD and Intel measurements. These figures demonstrate that using just 2 cores 
in CCR showed substantial reduction in overhead with a more nearly linear dependence 
on the number of stages. The latency per stage for the AMD machine drops from 8.04 to 

Fig. 4-AMD: Fixed amount of computation (2.107 units) 
divided into 2 cores and from 1 to 107 stages on HP 
Opteron Multicore. Each stage separated by reading 
and writing CCR ports in Pipeline mode.
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3.17 microseconds averaged over 10 million stages and from 4.63 to 2.63 microseconds 
when averaged from a single to one million stages. The Intel results   shown in figure 4-
Intel show even bigger improvements; the latency per stage drops from 12.40 to 4.20 
microseconds averaged over 10 million stages and from 9.25 to 3.39 microseconds when 
averaged from a single to one million stages. We were surprised by this reduced latency, 
as for say 2 computation threads (ports) and 2 CCR cores, the debugger suggests that all 
the work (whether computation or overhead) is done on two threads and two cores are 
essentially idle. This observation makes it difficult to understand why the overhead is 

smaller in this case than when more computation threads are used as there appear to be 
idle cores available for use without increasing overhead. As technology advances and the 
number of cores per chip increases, it will be important to investigate how many CCR 
threads would be best to use. As discussed later, the performance does depend on a 
“technical” parameter in CCR – namely the number of threads to be created by the 
dispatcher; the results in figures 2 to 5 specify 4 CCR dispatcher threads for the 4-way 
and 2 CCR dispatcher threads for the 2-way case. As shown later in tables 1 and 2, the 
latter choice gives better performance for 2-way computations than the CCR default 
which we believe is 4 threads.  
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The results so far have used the pipeline pattern of figure 1(a) which captures the key 
loosely synchronous character of the MPI programming model but is not a very 
interesting messaging pattern as the threads send messages to themselves. The patterns of 
figure 1(c) and 1(d) are typical of MPI messaging used in data decomposition problems 
as it is that required by local communications with a one dimensional topology. Figure 6 
corresponds to the scenario of figures 2 and 3 but with the Exchange pattern replacing the 
Pipeline. The stage overhead is substantially higher (20.9 and 40.4 microseconds for 
AMD and Intel respectively) and illustrate again that the underperformance of the Intel 
chip is increased by more complex operations. We tried to clarify this by looking at a 
broader set of other configurations. 
 
The results of the further study are given in tables 1 and 2 where we only look at 500,000 
stages corresponding to a 28 (AMD) or 30 (INTEL) microsecond basic computation in 



each stage. We also show in tables 1,2-INTEL8, recent results for a Dell PWS-690 
Precision workstation with two 4-core Intel® Xeon™  processors; note that the per core 
timing of the basic unit has increased from 30 microseconds per stage on Intel dual core 
two processor Xeon to 34 microseconds. Remember the AMD machine has 28 
microsecond stage performance. The 8-core Dell machine has a total of 8 gigabytes of 
memory and runs the same Windows XP professional 84 bit edition. Each of the 8 cores 
runs at a slower 1.86 Ghz compared to 2.8 Ghz of Dell 4 core machine which explains 
decreased performance per core on the 8 core compared to 4 core Dell. We also used 
updated CCR software for just the INTEL8 tables which use the December 2006 CCR 
release. 
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This stage computation is reasonably large compared to the CCR overheads in simple 
cases. We record the runtime in table 1 and the stage overhead in table 2. We repeat 
scenarios shown in figures 2-6 but get slightly different overheads in comparable cases as 
earlier overheads where averaged over many choices of stages and as the dependence is 
nearly but not exactly linear, the table values which are the overheads for a fixed number 
of stages do not and should not precisely reproduce the overheads recorded on figures. 
These tables run through 4 message patterns shown in figure 7. This adds the Shift 
pattern to the earlier Pipeline and Exchange. Note that Exchange is “just” Left Shift 
combined with Right Shift and so naively one would expect it to have twice the overhead 
of Shift. This may not be correct as for Exchange each port must wait for two threads to 
finish and so synchronization differences could be important. Further the CCR software 
module used by Exchange (MultipleItemReceive) is different from that (Receive) used by 
Pipeline and Shift. We investigated this by the “Two Shift” case defined in Figure 7(c) 



where each thread sends two messages to the same port. This should be identical to Shift 
(as messages are essentially zero size here) and the much larger overheads for “Two 
Shift” compared to Shift suggests that differences in the CCR software modules accounts 
for some of the increased overhead of Exchange compared to Pipeline and Shift. We 
assume it would be straightforward to improve the performance of Exchange. 
 
We also note the reasonable performance on the 4-core AMD and Intel machines of 
Pipeline and Shift for 8-way parallel computations with about double the overhead 
compared to 4-way. Such a doubling is not implausible but we need to understand it 
better. Reasonable support of 8-way computations is important as one wants to support 
cases where the program uses more logical processors than the concurrent machine’s 
number of physical cores.  
 
As mentioned earlier the default thread setting for CCR is usually not optimal when one 
runs fewer computations than cores. Having “spare” cores for 1 2 and 3 way parallelism 
clearly decreases the overhead but one still gets more computation done by using 4 or 8 
way parallelism. We note that for Exchange we sometimes got errors (non terminating 
programs) which we are investigating further. MultipleItemReceive in CCR did not seem 
to work for just one item and so we could not directly compare it with Receive. Actually 
the semantics of MultipleItemReceive are not correct for Exchange as MPI requires not 
just two messages in Exchange but rather two messages from particular sources. We 
could use more precisely MultiplePortReceive but this is perhaps problematical in general 
as it requires one port for each pair of threads – an architecture that doesn’t scale as it 
needs N2 ports for N cores. We didn’t investigate further as it seems likely one should 
develop specialized CCR primitives for CCR if one wishes to fully support MPI from 
CCR. 
 
Turning to the 8-core results in tables 1, 2-INTEL8, we find similar conclusions with 
significantly lower overheads except for the double shift case. The overhead for 8-way 
patterns on the 8-core machine is lower than that for 4-way patterns on the 4-core 
machine. As the 8-core machine has slower cores, the overhead is even lower if 
expressed as a percentage of computation time. We did find occasional errors as reported 
in earlier tables but we reran jobs and quoted results from averaging correct runs. We 
need to investigate if some of changes in results come from using updated CCR software 
as the AMD and INTEL tables use the June 2006 release and INTEL8 that from 
December 2006. Note the default to use 8 dispatcher threads again always performs more 
poorly than matching dispatcher threads to simultaneous computations except of course 
for the full 8-way case. It is curious that default overhead is typically higher on n<8 way 
parallelism than on 8 way case. The extra cores slow down the system! 
 
In summary, we see that CCR has latencies of a few microseconds that suggest it can be 
effective for messaging needed in MPI style applications [Graham05] [PallasMPI] 
[Panda06]. However the current software needs optimization in performance and 
functionality as will be discussed in the final section.  



 
Table 1-AMD: Run times in seconds for the four patterns illustrated in Figure 7 

 
Number of Parallel Computations Average Run 

Time (seconds) 1 2 3 4 8 

match 14.38 15.20 15.81 16.50 32.44 
Pipeline 

default 15.81 16.35 16.19 16.27 32.44 

match N/A 15.63 15.69 16.34 33.49 
Shift 

default N/A 16.56 16.10 16.25 32.31 

match N/A 16.39 17.84 18.74 41.02 Two  
Shifts default N/A 18.13 18.48 18.87 39.98 

match N/A 19.48 21.88 23.16 Error 
Exchange 

default N/A 22.40 23.10 23.30 Error 

Match implies dispatcher thread number set to number of parallel computations; default 
implies thread number defaulted. Each run executed on 4 core Opteron-based PC and 
used 500,000 stages 
 
 
Table 2-AMD: Stage overheads in microseconds for the four patterns illustrated in Figure 

7 and calculated from the 500,000 stage runtimes of Table1 -AMD 
 

Number of Parallel Computations Stage Overhead 
(microseconds) 1 2 3 4 8 

match 0.77 2.4 3.6 5.0 8.9 Straight 
Pipeline default 3.6 4.7 4.4 4.5 8.9 

match N/A 3.3 3.4 4.7 11.0 
Shift 

default N/A 5.1 4.2 4.5 8.6 

match N/A 4.8 7.7 9.5 26.0 Two  
Shifts default N/A 8.3 9.0 9.7 24.0 

match N/A 11.0 15.8 18.3 Error 
Exchange 

default N/A 16.8 18.2 18.6 Error 

Match implies dispatcher thread number set to number of parallel computations; default 
implies thread number defaulted. Each run executed on 4 core Opteron-based PC and 
used 500,000 stages.



 
Table 1-INTEL: Run times in seconds for the four patterns illustrated in Figure 7 

 
Number of Parallel Computations Average Run 

Time (seconds) 1 2 3 4 8 

match 15.7 16.5 16.9 19.4 42.7 
Pipeline 

default 18.3 19.6 18.4 19.4 38.2 

match N/A 16.6 17.4 19.6 42.2 
Shift 

default N/A 19.8 19.3 19.6 35.3 

match N/A 18.3 21.8 21.6 56.1 Two  
Shifts default N/A 26.4 27.3 21.6 45.5 

match N/A 28.9 31.2 35.4 Error 
Exchange 

default N/A 32.1 32.9 35.4 Error 

Match implies dispatcher thread number set to number of parallel computations; default 
implies thread number defaulted. Each run executed on 4 core Xeon-based Dell PC and 
used 500,000 stages 
 
 

Table 2-INTEL: Stage overheads in microseconds for the four patterns illustrated in 
Figure 7 and calculated from the 500,000 stage runtimes of Table 1-INTEL 

 
Number of Parallel Computations Stage Overhead 

(microseconds) 1 2 3 4 8 

match 1.7 
(0.77) 

3.3 
(2.4) 

4.0 
(3.6) 

9.1 
(5.0) 

25.9 
(8.9) Straight 

Pipeline default 6.9 
(3.6) 

9.5 
(4.7) 

7.0 
(4.4) 

9.1 
(4.5) 

16.9 
(8.9) 

match N/A 3.4 
(3.3) 

5.1 
(3.4) 

9.4 
(4.7) 

25.0 
(11.0) Shift 

default N/A 9.8 
(5.1) 

8.9 
(4.2) 

9.4 
(4.5) 

11.2 
(8.6) 

match N/A 6.8 
(4.8) 

13.8 
(7.7) 

13.4 
(9.5) 

52.7 
(26.0) Two  

Shifts default N/A 23.1 
(8.3) 

24.9 
(9.0) 

13.4 
(9.7) 

31.5 
(24.0) 

match N/A 28.0 
(11.0) 

32.7 
(15.8) 

41.0 
(18.3) Error 

Exchange 
default N/A 34.6 

(16.8) 
36.1 

(18.2) 
41.0 

(18.6) Error 

Match implies dispatcher thread number set to number of parallel computations; default 
implies thread number defaulted. Each run executed on 4 core Dell Xeon (with results 
from 4 core Opteron-based PC in parentheses) and used 500,000 stages. 
 



 
Table 1-INTEL8: Run times in seconds for the four patterns illustrated in Figure 7 

 
Number of Parallel Computations Average Run 

Time (seconds) 1 2 3 4 8 

match 17.6 19.1 19.1 19.3 20.2 
Pipeline 

default 20.1 21.2 21.8 21.7 20.2 

match N/A 19.1 19.2 19.5 20.6 
Shift 

default N/A 21.1 22.1 22.0 20.6 

match N/A 20.7 20.4 21.2 28.4 Two  
Shifts default N/A 27.1 32.2 30.6 28.4 

match N/A 30.3 28.7 27.6 33.5 
Exchange 

default N/A 32.6 36.3 40.0 33.7 

Match implies dispatcher thread number set to number of parallel computations; default 
implies thread number defaulted. Each run executed on 8 core Xeon-based Dell PC and 
used 500,000 stages 
 
 

Table 2-INTEL8: Stage overheads in microseconds for the four patterns illustrated in 
Figure 7 and calculated from the 500,000 stage runtimes of Table 1-INTEL8 

 
Number of Parallel Computations Stage Overhead 

(microseconds) 1 2 3 4 8 

match 1.33 
(1.7) 

4.2 
(3.3) 

4.3 
(4.0) 

4.7 
(9.1) 

6.5 
(25.9) Straight 

Pipeline default 6.3 
(6.9) 

8.4 
(9.5) 

9.8 
(7.0) 

9.5 
(9.1) 

6.5 
(16.9) 

match N/A 4.3 
(3.4) 

4.5 
(5.1) 

5.1 
(9.4) 

7.2 
(25.0) Shift 

default N/A 8.3 
(9.8) 

10.2 
(8.9) 

10.0 
(9.4) 

7.2 
(11.2) 

match N/A 7.5 
(6.8) 

6.8 
(13.8) 

8.4 
(13.4) 

22.8 
(52.7) Two  

Shifts default N/A 20.3 
(23.1) 

30.4 
(24.9) 

27.3 
(13.4) 

23.0 
(31.5) 

match N/A 26.6 
(28.0) 

23.6 
(32.7) 

21.4 
(41.0) 

33.1 
(error) Exchange 

default N/A 31.3 
(34.6) 

38.7 
(36.1) 

46.0 
(41.0) 

33.5 
(error) 

Match implies dispatcher thread number set to number of parallel computations; default 
implies thread number defaulted. Each run executed on 8 core Dell Xeon (with results 
from 4 core Xeon-based PC in parentheses) and used 500,000 stages. 



 
3. CCR MPI Bandwidth 
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Fig. 8-Intel: Scenario from Fig.2-Intel with run time 
plotted versus number of stages with 1000 words of 
double array copied in each stage from thread in stepped 

  

locations in a large array on Dell Xeon Multicore
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Fig. 8-AMD: Scenario from Fig.2-AMD with run time 
plotted versus number of stages with 1000 words of 
double array copied in each stage from thread to 
stepped locations in a large array on HP Opteron 
Multicore.
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To measure MPI bandwidth, we simulated a typical MPI CALL such as subroutine 
mpisend (buf, count, datatype, dest, tag, comm) by posting a structure made up of an 
array of doubles of length N and a set of six integers (with one extra integer for CCR 
control). These all used the full 4-way parallelism and the results are shown in figures 8 
to 12. One passes a reference for the data buffer buf and we used three distinct models for 
locations of final data termed respectively 

a) Inside Thread: The buffer buf is copied using C# Copy To function to a new 
array inside the thread whose size is identical to that of buf.  

Fig. 9-AMD: Scenario from Fig.2-AMD for 5,000 stages with run 
time plotted against size of double array copied in each stage 
from thread to stepped locations in a large array on HP Opteron 
Multicore.

Total Bandwidth 1.15 Gigabytes/Sec 
up to one million double words and 
1.19 Gigabytes/Sec up to 
100,000 double words 
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Fig. 9-Intel: Scenario from Fig.2-intel for 5,000 stages 
with run time plotted against size of double array copied 
in each stage from thread to stepped locations in a large 
array on Dell Xeon Multicore



b) Outside Thread: The buffer buf is copied using C# Copy To function to a fixed 
array (with distinct arrays for each core) outside the thread whose size is identical 
to that of buf.  

c) Stepped Array Outside Thread: The buffer buf is copied using element by 
element Copy in C# to a fixed large array outside the thread whose size is two 
million double floating words. Again each core has its own separate stepped 
array. 

 
Note all measurements in this section involved 4-way parallelism and the bandwidth is 
summed over all four cores simultaneously copying message buffers. 
 
In figure 8, we repeat the measurements of figure 2 but add the transfer of 1000 double 
floating words (and the six integers) to each of the 4 ports at each stage. We see a nice 
linear dependence on the number of stages and estimate a total (over the 4 cores) 
bandwidth of about a 1.29 (AMD) and 1.56(Intel) Gigabytes/second corresponding to this 
transfer. This used the stepped array model c) defined above with each successive 1000 
words stored in the next available space in an array (separate for each core) of total length 
of 20 million words. After 20,000 stages the array is full and one wraps back to the start. 
An MPI program could in fact just use pointers to the shared memory and not copy data 
between processes. However the explicit copying model used here is free of 
dependencies and typical of a simple safe concurrent MPI program. Interpretation of 
figure 8 is tricky as one is varying both amount of data and total stage overhead as you 
increase the number of stages; the bandwidth is extracted by subtracting the data used to 
make figures 2 and 8.  
 
The bandwidth is better estimated from figures 9-12 which fix the number of stages and 
hence fix the CCR staging overhead. We look at the run time as a function of size of 
array stored in the port and summarize the results in table 3 (with separate AMD and Intel 
versions). One finds bandwidths that vary from 0.75 to 2 Gigabytes per second with the 
Intel machine claiming both upper and lower values although it typically shows better 
bandwidth than the AMD machine. Note the best bandwidths are obtained when the 
destination arrays are outside the thread and when of course the copied data is small 
enough to stay in cache. We used 100,000 words in the summary tables 1 and 2 to 
illustrate the “in cache” case and one or ten million for the “out of cache” case. Also the 
bandwidth higher for the cases where the computing component is significant; i.e. when 
it has a value of a few milliseconds rather than the lower limit of a few microseconds. 
Figure 9 illustrates this with a stage computation of 2800 (AMD) to 3000 (Intel) 
microseconds. For the case (c) of a stepped array, the Intel PC achieves a bandwidth of 
1.75 gigabytes/second for 100,000 word messages which decreases to just 1 
gigabyte/second for million word arrays. The AMD machine shows a roughly uniform 
bandwidth of 1.17 gigabyte/second independent of array size. Note typical messages in 
MPI would be smaller than 100,000 words and so MPI would benefit from the 
performance increase for small messages. 
 
Figure 10 contains 6 pictures covering the two machines and the three data location 
models defined above; the averages for these figures are given in Table 3. This case 



corresponds to a “small” (40 computation units per core per stage; taking 56 and 60 
microseconds for AMD and Intel respectively) computation case. Now the stepped array 
bandwidth for Intel is lower in fig 10(c) than in figure 9 and we only see high Intel 
bandwidth in the case of figure 10(b); 100,000 words copied to an array outside the 
thread with same size as message. Note over the measurements reported from AMD in 
figure 10 the bandwidth varies from 0.89 to 1.16 gigabytes/second; the Intel numbers 
vary from 0.76 to 1.89 gigabytes/second. Given the stable AMD results, figures 11 and 
12 only examine the Intel machine and repeat figures 10(a) and 10(b) with a 100 times 
longer computation (4000 units per core per stage). One always sees an improved 
bandwidth with over a factor of two improvements in the case of copying to an array 
inside the thread. For 100,000 words, the bandwidth goes from 0.83 gigabytes/second in 
figure 10(a) to 1.74 gigabytes/second in figure 11.   
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Fig. 10a-Intel: Fixed amount of computation (4.105 units) 
divided into 4 cores and 2,500 stages. Each stage separated by 
reading and writing CCR ports in Pipeline mode. Run time 
plotted against size of double array copied in each stage from 
thread to same size array inside thread on Dell Xeon Multicore
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Fig. 10a-AMD: Fixed amount of computation (4.105

units) divided into 4 cores and 2,500 stages. Each stage 
separated by reading and writing CCR ports in Pipeline 
mode. Run time plotted against size of double array 
copied in each stage from thread to same size array 
inside thread on HP Opteron Multicore
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Fig. 10b-AMD: Fixed amount of computation (4.105

units) divided into 4 cores and 2,500 stages. Each 
stage separated by reading and writing CCR ports in 
Pipeline mode. Run time plotted against size of double 
array copied in each stage from thread to same size 
array outside thread on HP Opteron Multicore
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Total Bandwidth 1.11 Gigabytes/Sec 
up to one million double words and 
1.16 Gigabytes/Sec 
up to 100,000 double words 
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Fig. 10b-Intel: Fixed amount of computation (4.105 units) divided 
into 4 cores and 2,500 stages. Each stage separated by reading 
and writing CCR ports in Pipeline mode. Run time plotted 
against size of double array copied in each stage from thread to
same size array outside thread on Dell Xeon Multicore
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Fig. 11-Intel: Fixed amount of computation (4.107 units) divided 
into 4 cores and 2,500 stages. Each stage separated by 
reading and writing CCR ports in Pipeline mode. Run time 
plotted against size of double array copied in each stage from 
thread to same size array inside thread on Dell Xeon Multicore
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Fig. 12-Intel: Fixed amount of computation (4.107 units) divided 
into 4 cores and 2,500 stages. Each stage separated by reading 
and writing CCR ports in Pipeline mode. Run time plotted 
against size of double array copied in each stage from thread to
same size array outside thread on Dell Xeon Multicore
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Fig. 10c-AMD: Fixed amount of computation (4.105

units) divided into 4 cores and 2,500 stages. Each 
stage separated by reading and writing CCR ports in 
Pipeline mode. Run time plotted against size of double 
array copied in each stage from thread to stepped 
locations in a large array on HP Opteron Multicore
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Fig. 10c-Intel: Fixed amount of computation (4.105 units) divided 
into 4 cores and 2,500 stages. Each stage separated by reading 
and writing CCR ports in Pipeline mode. Run time plotted 
against size of double array copied in each stage from thread to
stepped locations in a large array on Dell Xeon Multicore
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Table 3-AMD: Measured total bandwidths summed over all four cores for 3 different 
array locations described in the text 

 
Bandwidths in Gigabytes/second summed over 4 cores 

Array Inside Thread Array Outside 
Threads 

Stepped Array 
Outside Thread 

Number of 
stages 

Small Large Small Large Small Large 

Approx. 
Compute 
Time per 
stage µs 

250000 0.90 0.96 1.08 1.09 1.14 1.10 56.0 

0.89 0.99 1.16 1.11 1.14 1.13 
2500 

Fig 10a Fig 10b 
1.13 up to 107 words Fig 10c 

56.0 

1.19 1.15 
5000 

    

Fig 9 
2800 

1.15 1.13 
200000 

    

1.13 up to 107 words 
70 

Each stage executed a computational task after copying data arrays of size 105 (labeled 
small), 106 (labeled large) or 107 double words. The last column is an approximate value 
in microseconds of the compute time for each stage. Note that copying 100,000 double 
precision words per core at a gigabyte/second bandwidth takes 3200 µs. The data to be 
copied (message payload in CCR) is fixed and its creation time is outside timed process. 
 
 
Table 3-Intel: Measured total bandwidths summed over all four cores for 3 different array 

locations described in the text 
 

Bandwidths in Gigabytes/second summed over 4 cores 
Array Inside Thread Array Outside 

Threads 
Stepped Array 
Outside Thread 

Number of 
stages 

Small Large Small Large Small Large 

Approx. 
Compute 
Time per 
stage µs 

250000 0.84 0.75 1.92 0.90 1.18 0.90 59.5 

200000     1.21 0.91 74.4 

1.75 1.0 
5000     

Fig 9 
2970 

0.83 0.76 1.89 0.89 1.16 0.89 
2500 

Fig 10a Fig 10b Fig 10c 
59.5 

1.74 0.9 2.0 1.07 
2500 

Fig 11 Fig 12 
1.78 1.06 5950 

The details are as described in Table 3-AMD 
 
 
 



4. Initial Performance Results on DSS 

 

Fig. 13(a): Timing of HP Opteron Multicore as a function 
of number of two-way service messages processed 
(November 2006 DSS Release)
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Fig. 13(a): Timing of HP Opteron Multicore as a function 
of number of two-way service messages processed 
(November 2006 DSS Release)
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The Robotics release [Robotics] includes a lightweight service environment DSS for 
which we performed an initial evaluation on the AMD Opteron two processor two core 
machine. This analysis used the current November 2006 CCR/DSS software; note the 
CCR analysis discussed earlier used the June 2006 software release. In figure 13, we time 
groups of request-response two way messages running on (different) cores of the HP 
Opteron 4-core system. For a group of 200 messages we histogram the timings of 30 
separate measurements. For low message counts DSS initialization bumps up the run 
time and for large groups of messages it increases – perhaps due to overheads like 
Garbage Collection. For message groups from about 50-1000 messages, we find average 
times of 40-50 microseconds or throughputs of 20,000 to 25,000 two-way messages per 
second.  
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Fig. 14: Timing of small two-way messages on Apache Axis 2 Web Service container for 
external access. A variety of machines are shown with marked Opteron and Xeon 
identical to those used in CCR and DSS Analysis



This result of internal service to internal service can be compared with the recent Apache 

to 

ice 

Axis 2 release where the performance of several multi-core computers is investigated. 
The same Opteron machine used in CCR/DSS analysis supports about 3,000 messages 
per second throughput. Figure 13 and 14 are not fair comparisons. Figure 13 is internal 
one machine so each service end-point has effectively just two cores. Figure 14 is 
external clients interacting on a LAN so there is network overhead but now the serv
can access the full 4 cores. We will complete fairer comparisons later and also examine 
the important one-way messaging case. 
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5. Conclusions and Futures 

his preliminary study suggests that CCR is an interesting infrastructure for parallel 

 figure 15, we compare six programming models with 15(a) showing CCR’s natural 

Table 4: Classes of Parallel or Concurrent Messaging Systems 

 
T
computing. We addressed this by showing it can support the basic loosely synchronous 
structure of most highly parallel technical computing problems. We may be off the mark 
but we see the problem is not “just” producing another MPI but more interestingly of 
designing message-based runtimes that support a variety of programming model that 
includes those used in technical computing but also those that might support concurrent 
programming for the broad range of applications that will use multicore architectures.  
 
In
implementation of MPI style runtime. Note this model where threads are initiated to 
process messages is different from the conventional MPI model where persistent threads 
communicate with messages via rendezvous as seen in figure 15(c) or 15(d). In figure 
15(c) we represent a common high performance MPI implementation where messages are 
transmitted between running processes and no extra threads are used. In figure 15(d), we 
insert a handler for each message as is used in active messages; this strategy is also 
common where for efficiency one uses the network hardware to handle external MPI 
messages – of course the processor on a network card can be considered as an extra core 
available to support message processing. We believe the model of figure 15(a) can be 
used for current MPI programs but some programming changes will be needed; one may 
be able to automate this change. The model of fig. 15(a) would be best supported by 
optimizing relevant CCR core modules and extending those currently available so that for 
example cases like figure 1(d) with differing number of messages in each port can be 
handled. This is interesting research but out of scope in this study. One must also look at 
the implementation of MPI and distributed programming involving both internal and 
external processes with conventional external messages arriving from MPICH and 
openMPI.  

 

Messaging Model Software Typical Applications 

Spawned  
(fig. 15(a)) 

Streamed dataflow; 
SOA 

CCA  , CCR, DSS
Apache Synapse, 
Grid Workflow 

Dataflow as in AVS, Image 
Processing; Grids; Web Services 

Spawned 
(fig. 15(a)) Tree Search CCR Optimization; Computer Chess 

Queued 
(fig. 15(b)) 

Discrete Event 
simulations openRTI, CERTI Ordered Transactions;  

“war game” style simulations 

Rendezvous  
(figs. 15(c, d)) 

Message Parallelism 
MPI 

openMPI 
MPICH2 

Loosely Synchronous 
applications including 
engineering & science; rendering 

Publish-Subscribe  
(fig. 15(e)) Enterprise Service Bus NaradaBrokering 

Mule, JMS 
Content Delivery;  
Message Oriented Middleware 

Overlay Networks 
(fig. 15(f)) Peer-to-Peer Jabber, JXTA, 

Pastry Skype; Instant Messengers 

 



As an alternative to adapting MPI to the implementation style of fig. 15(a), one could 
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