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In the past four years cloud computing has emerged as an alternative platform for high performance 
computing.  Unfortunately, there is still confusion about the cloud model and its advantages and disadvantages 
over tradition supercomputing based problem solving methods. In this note we characterize the ways in which 
cloud computing can be used productively in scientific and technical applications.   As we shall see there is a 
large set of application that can run on a cloud and a supercomputer equally well.  There are also applications 
that are better suited to the cloud and there are applications where a cloud is a very poor replacement for a 
supercomputer.  Our goal is to illustrate where cloud computing can complement the capabilities of a 
contemporary massively parallel supercomputer.   

Defining the Cloud. 
It would not be a huge exaggeration to say that the number of different definitions of cloud computing greatly 
exceeds the number of actual physical realizations of the key concepts.    Consequently, if we wish to provide a 
characterization of what works “in the cloud”, we need a grounding definitions and we shall start with one that 
most accurately describes the commercial public clouds from Microsoft, Amazon and Google.    These public 
clouds consist of one or more large data centers with the following architectural characteristics 

1. The data center is composed of containers of racks of basic servers.   The total number of servers in one 
data center is between 10,000 and a million.   Each server has 8 or more cpu cores and a 64GB of 
shared memory and one or more terabyte local disk drives.  GPUs or other accelerators are not 
common. 

2. There is a network that allows messages to be routed between any two servers, but the bisection 
bandwidth of the network is very low and the network protocols implement the full TCP/IP stack at a 
sufficient enough level so that every server can be a full Internet host.  This is an important point of 
distinction between a cloud data center and a supercomputer.   Data center networks optimize traffic 
between users on the Internet and the servers in the cloud.   This is very different from supercomputer 
networks which are optimized to minimize interprocessor latency and maximize bisection bandwidth.  
Application data communications on a supercomputer generally take place over specialized physical 
and data link layers of the network and interoperation with the Internet is usually very limited. 

3. Each server in the data center is host to one or more virtual machines and the cloud runs a “fabric 
controller” which schedules and manages large sets of VMs across the servers.  This fabric controller is 
the operating system for the data center. Using a VM as the basic unit of scheduling means that an 
application running on the data center consists of one or more complete VM instances that implement 
a web service.   This means that each VM instance can contain its own specific software library versions 
and internal application such as databases and web servers.   This greatly simplifies the required data 



center software stack, but it also means that the basic unit of scheduling involves the deployment of 
one or more entire operating systems.  This activity is much slower than installing and starting an 
application on a running OS.   Most large scale cloud services are intended to run 24x7, so this long 
start-up time is negligible.   Also the fabric controller is designed to manage and deal with faults.   
When a VM fails the fabric controller can automatically restart it on another server.   On the downside, 
running a “batch” application on a large number of servers can be very inefficient because of the long 
time it may take to deploy all the needed VMs.   

4. Data in a data center is stored and distributed over many spinning disks in the cloud servers.  This is a 
very different model than found in a large supercomputer, where data is stored in network attached 
storage.  Local disks on the servers of supercomputers are not frequently used for data storage. 

Cloud Offerings  as Public and Private, Commercial and Academic 
As stated above, there are more types of clouds than is described by this public data center model.  For 
example, to address a technical computing market, Amazon has introduced a specialized HPC cloud that uses a 
network with full bisection bandwidth and supports GPGPUs.   “Private clouds” are small dedicated data 
centers that have various combinations of the properties  1 through 4 above.   FutureGrid is the NSF research 
testbed for cloud technologies and it operates a grid of cloud deployments running on modest sized server 
clusters.  

The major commercial clouds are those from Amazon, Google (App Engine), and Microsoft (Azure). These are 
constructed as a basic scalable infrastructure with higher level capabilities -- commonly termed Platform as a 
Service PaaS. For technical computing, important platform components include tables, queues, database, 
monitoring, roles (Azure), and the cloud characteristic of elasticity (automatic scaling).  MapReduce, which is 
described in detail below, is another major platform service offered by these clouds.  Currently the different 
clouds have different platforms although the Azure and Amazon platforms have many similarities. The Google 
Platform is targeted at scalable web applications and not as broadly used in technical computing community as 
Amazon or Azure, but it has been used by selected researchers on some very impressive projects. 

Commercial clouds also offer IaaS Infrastructure as a Service with compute and object storage features and 
Amazon EC2 and S3 being the early entry in this field. There are four major open source (academic) cloud 
environments Eucalyptus, Nimbus, OpenStack and OpenNebula (Europe) which focus at the IaaS level with 
interfaces similar to Amazon. These can be used to build "private clouds" but the interesting platform features 
of commercial clouds are not fully available. Open source Hadoop and Twister offer MapReduce features 
similar to those on commercial cloud platforms and there are open source possibilities for platform features 
like queues (RabbitMQ, ActiveMQ) and distributed data management system (Apache Cassandra). However, 
there is no complete packaging of PaaS features available today for academic or private clouds. Thus 
interoperability between private and commercial clouds is currently only at IaaS level where it is possible to 
reconfigure images between the different virtualization choices and there is an active cloud standards activity. 
The major commercial virtualization products such as VMware and Hyper-V are also important for private 
clouds but also does not have built-in PaaS capabilities. 

We expect more academic interest in PaaS as the value of platform capabilities become clearer from the 
ongoing application work such as that described in this paper for Azure. 



Parallel Programming Models 
Scientific Applications that are run on massively parallel supercomputers follow strict programming models that 
are designed to deliver optimal performance and scalability.   Typically these programs are designed using a 
loosely synchronous or bulk synchronous model and the Message Passing Interface (MPI) communication 
library.   In this model, each processor does a little computing and then stops to exchange data with other 
processors in a very carefully orchestrated manner and then the cycle repeats.  Because the machine has been 
designed to execute MPI very efficiently, the relative time spent in communicating data can be made small 
compared to the time doing actual computation.   If the complexity of the communication pattern does not 
grow as you increase the problem size, then this computation scales very well to large numbers of processors.  

The typical cloud data center does not have a low latency high bandwidth network needed to run 
communication intensive MPI programs.   However, there is a subclass of traditional parallel programs called 
MapReduce computations that do well on clouds architectures. MapReduce computations have two parts.  In 
the first part you “map” a computation to each member of an input data set.   Each of these computations has 
an output.  In the second part you reduce the outputs to a single output.  For example,  finding the minimum of 
some function across a large set of inputs.  First apply the function to each input in parallel and then compare 
the results to pick the smallest.  Two variants of MapReduce are important.  In one case there is no real reduce 
step.  Instead you just apply the operation to each input in parallel.   This is often called an “embarrassingly 
parallel” computation.  At the other extreme there are computations that use MapReduce inside an iterative 
loop.   A large number of linear algebra computations fit this pattern.   Cluster and other machine learning 
computations also take this form.   Figure 1 below illustrates these different forms of computation.   Cloud 
computing works well for any of these MapReduce variations.   In fact a small industry has been built around 
doing analysis (typically called data analytics) on large data collections using MapReduce on cloud platforms.   

Note that the synchronization costs of clouds lie in between those of grids and supercomputers (HPC clusters) 
and applications suitable for clouds include all computational tasks appropriate for grids and HPC applications 
without stringent synchronization. Synchronization in clouds includes both effects of commodity networks but 
also overheads due to shared systems and virtualized (software) system. The latter is illustrated from Azure 
application reported by Thilina Gunarathne, Xiaoming Gao and Judy Qiu from Indiana University using 
Twister4Azure an early iterative MapReduce environment. The Multidimensional Scaling application is 
dominated by two linear algebra steps denoted by alternating blue and red task groups in figure 2. As in many 
classical parallel applications, each step consists of many tasks that should execute for essentially identical 
times as they are executing identical number of elemental matrix operations. The graph shows a job with 
striking fluctuations in execution time for individual tasks, which currently limits scale at which good efficient 
parallel speed up can be obtained. All tasks must wait until the slowest straggler finishes. 

    



Figure 1: Forms of Parallelism and their application on Clouds and Supercomputers 

 

Figure 2: Execution times of individual tasks on Azure for an Iterative MapReduce implementation of 
Multidimensional Scaling 
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Classes of Cloud Applications  
Limiting the applications of the cloud to classical scientific computation would miss the main reason that the 
cloud exists.   Large scale data center are the backbone of many ubiquitous cloud services we use every day.  
Internet search, mobile maps, email, photo sharing, messaging, social networks are all dependent upon large 
data center clouds.  These applications all depend upon the massive scale and bandwidth to the Internet that 
the cloud provides.   Note clouds are executing jobs at scales much larger than those on supercomputers but 
that scale does not come from tightly coupled MPI. Rather scale can come from two aspects: Scale (or 
parallelism) from a multitude of users and scale from execution of an intrinsically parallel application within a 
single job (invoked by a single user).  

Clouds naturally exploit parallelism from multiple users or usages.  The Internet of things will drive many 
applications of the cloud.  It is projected that there will soon be 50 billion devices on the Internet.  Most will be 
small sensors that send streams of information into the cloud where it will be processed and integrated with 
other streams and turned into knowledge that will help our lives in a million small and big ways.  It is not 
unreasonable for us to believe that we will each have our own cloud-based personal agent that monitors all of 
the data about our life and anticipates our needs 24x7.   The cloud will become increasing important as a 
controller of and resource provider for the Internet of Things. As well as today’s use for smart phone and 
gaming console support, “smart homes” and “ubiquitous cities” build on this vision and we could expect a 
growth in cloud supported/controlled robotics. 

Beyond the Internet of things, we have the commodity applications such as social networking, internet search 
and e-commerce. Finally we mention the “long tail of science”  [1, 2] as an expected important usage mode of 
clouds. In some areas like particle physics and astronomy, i.e. “big science”, there are just a few major 
instruments generating now petascale data driving discovery in a coordinated fashion. In other areas such as 
genomics and environmental science, there are many “individual” researchers with distributed collection and 
analysis of data whose total data and processing needs can match the size of big science. Clouds can provide 
scaling use for this important aspect of science. 

Large scale Clouds also support parallelism within a single job with an obvious example of Internet search which 
has both “usage parallelism” listed above but also parallelism within each search as the summary of the web is 
stored on multiple disks on multiple computers and searched independently for each query. MapReduce was 
introduced to support successfully this type of parallelism. The examples given later will illustrate various forms 
of parallelism discussed above and summarized in figure 1. Today probably the Map only” or Pleasingly Parallel 
mode is most common where a single job invokes multiple independent components. This is very similar to the 
parallelism from multiple users and indeed we will see examples where the different “map tasks” from a “single 
application” are generated outside the cloud which sees these tasks as separate usages. As well as Internet 
search, the second parallel category MapReduce is important in the Information Retrieval field with a good 
example being the well-known Latent Dirichlet Allocation algorithm for topic or “hidden/latent” feature 
determination. Basic data analysis can often be formulated as a simple MapReduce problem where 
independent event selection and processing (the maps) is followed by a reduction forming global statistics such 
as histograms. The final class of parallel applications explored so far is Iterative MapReduce implemented on 
Azure as Daytona from Microsoft or Twister4Azure from Indiana University. Here Page Rank is a well-known 
component of Internet search technology that corresponds to finding eigenvector of largest eigenvalue for the 



sparse matrix of internet links. This algorithm illustrates those that fit well Iterative MapReduce and other 
algorithms with parallel linear algebra at their core have been explored on Azure. 

Multiple usages or splitting the Internet summary over MapReduce nodes are all forms of a generalized data 
parallelism. However clouds also support well the functional parallelism seen where a given application breaks 
into multiple components which typically supported by workflow technology [3-6]. Workflow is an old idea and 
was developed extensively as part of Grid research. We will see from examples below that its use can be taken 
over directly by clouds without conceptual change. In fact the importance of Software as a Service for 
commercial clouds illustrates that another concept Services developed for science by the grid community is a 
successful key feature of cloud applications. Workflow as the technology to orchestrate or control clouds will 
continue to be a critical building block for cloud applications. 

Important access models for clouds include portals, which are often termed Science Gateways and these can be 
used similarly to grids. Another interesting access choice seen in some cases is that of the queue either 
implemented using conventional publish-subscribe technology (such as JMS) or the built in queues of the Azure 
and Amazon platforms. Applications can use the advanced platform features of clouds (queues, tables, blobs, 
SQL as a service for Azure) to build advanced capabilities more easily than on traditional (HPC) environments. 
Of course the pervasive “on demand” nature of cloud computing emphasizes the critical importance of task 
scheduling where either the built-in cloud facilities are used or alternatively there is some exploration of 
technologies like Condor developed for grids and clusters. 

The nature of the use of data [7] is another interesting aspect of cloud applications that currently is still in its 
infancy but is expected to become important as for example future large data repositories will need cloud 
computing facilities. A key challenge as the data deluge grows is how we avoid unnecessary data transport and 
if possible bring the computing to the data [8-12]. We need to understand the tradeoffs between traditional 
wide area systems like Lustre, Object stores which the heart of Amazon, Azure and OpenStack storage today 
and the “data-parallel” file systems popularized by HDFS, the Hadoop File System. We expect this to be a 
growing focus of future cloud applications. 

The Process of Building a Cloud Application 
Most attempts to directly port a conventional HPC application to a cloud platform fail1.    It is not unlike early 
attempts to move “vectorized” HPC application to massively parallel non-shared memory message passing 
clusters.  The challenge is to think differently and rewrite the application to support the new computational and 
programming models.   In the case of clouds the following practices lead to success 

1.  Build the application as a service.   Because you are deploying one or more full virtual machines and 
because clouds are designed to host web services, you want your application to support multiple users or, at 
least, a sequence of multiple executions.   If you are not using the application, scale down the number of 
servers and scale up with demand.  Attempting to deploy 100 VMs to run a program that executes for 10 
minutes is a waste of resources because the deployment may take more than 10 minutes.  To minimize start up 
time one needs to have services running continuously ready to process the incoming demand. 

                                                            
1 The exception to this is the Amazon HPC Cloud which seems to perform very well. 



2.  Build on existing cloud deployments.   The cloud is ideal for large map reduce computations so use an 
existing map reduce deployment such as Hadoop or a similar service.  

3. Use PaaS if possible.  For platform-as-a-service clouds like Azure use the tools that are provided such as 
queues, web and worker roles and blob, table and SQL storage.   

4. Design for failure.   Applications that are services that run forever will experience failures.   The cloud has 
mechanisms that automatically recover lost resources, but the application needs to be designed to be fault 
tolerant. In particular, environments like MapReduce (Hadoop, Daytona, Twister4Azure) will automatically 
recover many explicit failures and adopt scheduling strategies that recover performance "failures" from for 
example delayed tasks. One expects an increasing number of such Platform features to be offered by clouds 
and users will still need to program in  a fashion that allows task failures but be rewarded by environments that 
transparently cope with these failures. 

5.  Use as a Service where possible. Capabilities such as SQLaaS (database as a service or a database appliance) 
provide a friendlier approach than the traditional non-cloud approach exemplified by installing MySQL on the 
local disk. We anticipate many prepackaged aaS capabilities such as Workflow as a Service for eScience will be 
developed and simplify the development of sophisticated applications. 

6. Moving Data is a challenge.   The general rule is that one should move computation to the data, but if the 
only computational resource available is a the cloud, you are stuck if the data is not also there. Moving a 
petabyte from a laboratory to the cloud over the Internet will take time.   The idea situation is when you can 
gradually stream the data to the cloud over time as it is being created.  But if it exists in one place the best 
method of moving it is to physically ship the disk drives to the data center.   This service is available from some 
cloud providers.       

 The Economics of Clouds 
Comparing the cost of computing in the cloud to the cost of purchasing a cluster is somewhat challenging 
because of two factors.  First, for most researchers, the Total Cost of Ownership (TCO) of a cluster they 
purchase is often not visible to them.  Space and power are buried in the University’s expense overall 
infrastructure bills.  The systems administration for small clusters is often done by students, so it appears to be 
free of cost.  For large, university managed supercomputer centers the situation is different and the costs are 
known but not widely published. However, there have been some TCO studies. Paterson, et. al. [13] report that 
the 3-year total cost of ownership for a cluster of servers for research varies between 8 and 15 times the 
purchase price of the hardware.    In a study by IMEX Research, the 3 year TCO of a 512 node HPC cluster 
averages about $7 million dollars.   This is based on a 2005 configurations with 1U dual core servers with 2 GB 
memory [14], so it is by no means current technology.    However If we compare this to the cost of 1024 cores 
on Windows Azure running 24x7 for 3 years the total is $2.6M (with “committed use” discounts). For Linux on 
Amazon EC2 the cost is $2.3M.  These costs do not include persistent storage or network bandwidth.   
100TBytes of triply replicated on-line cloud storage for 3 years is an additional $400K.  Network bandwidth and 
data transactions add additional costs    

Based on these number one may conclude a modest advantage to computing in the cloud, but that would miss 
a critical point.  The advantage of the cloud for researchers is the ability to use, and pay for it, on demand.  If a 



researcher has a need for 1000 cores for a week, the cost is $21K.   If the researcher needs only need a few 
cores between periods of heavy use the cost is a small increment.   In this case there is a clear advantage to 
cloud computing over purchasing a cluster that is not fully utilized.   

Case Studies from the Microsoft Cloud Computing Engagement Program 
In the following paragraphs we describe a number of case studies from the Microsoft Cloud Computing 
Engagement Program which awarded time on Azure to 83 research teams.   The examples here are abstracted 
from reports from the top 30 groups (based on resources consumed to date).   These illustrate the models 
described above with services, workflow, parallelism from multiple users or repetitive internal tasks, and use of 
MapReduce. They also demonstrate the use of the cloud as a web-enabled “science gateway” where the 
application is built as a service that can be executed by remote users.  Many of the projects in our “top 30” use 
variations on the MapReduce theme. We have selected this collection of 12 projects because they demonstrate 
the variety and creativity of research community using the Azure cloud. 

1. University of Newcastle 
Paul Watson and Jacek Cala of The University of Newcastle use an Azure based system to execute millions 
of workflows, each of which is a test of a target molecule for possible use as an anti-cancer drug. The 
scientists use a method known as Quantitative Structure-Activity Relationships (QSAR) to mine 
experimental data for patterns that relate the chemical structure of a drug to its kinase activity  

The architecture of the solution is presented in Figure 3. 

 

Figure 3. Architecture of the drug discovery system based on e-Science Central and Azure. 

Workflows are modeled and stored within the e-Science Central main server which is the central 
coordination point for all workflow engines. The server dispatches work to a single JMS queue from which 
it is fetched by the engines. For every input data set the system issues a single top-level workflow 
invocation, which then results in a number of sub-workflow invocations. Altogether a single input dataset 
generates from 50 to 120 workflow invocations. The basic unit of work in their system — a workflow 
invocation — contains a number of tasks. After an engine accepts an invocation from the queue, it executes 
all included tasks. A task can be as simple as downloading data from blob storage or transposing a data 
matrix, or as complex as building a QSAR model with neural networks, which can consume over 1 CPU hour. 
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The Newcastle e-Science Central system also illustrates a two important characteristic of many cloud based 
scientific systems.  This allows the tasks to be spread over 300 cores, with greater than 90% efficiency.  The 
user input is through a web service that can allow multiple users to invoke the same instantiation of the 
service at the same time.  This interactive model is far different from the traditional batch approach used in 
supercomputing facilities. 

2. Georgia State University 
This basic programming model which builds the system as a web service that takes user input from the web 
or rich client to a server in the cloud and then allows a pool of worker servers take work that is queued by 
the web server is natural for the cloud.  The Crayons project lead by Sushil K. Prasad of Georgia State 
University uses a similar approach to doing vector overlay computations for geographic information 
systems.   As shown in Figure 4, the system takes GML files and partitions them into the appropriate sub-
domain tasks which are enqueued for worker servers to process.  Data is stored in the cloud data storage 
and pulled to the workers as needed.   

 

Figure 4. Crayons GIS vector overlay processing architecture.  

The Crayons project has a fixed workflow in which the tasks are distributed over a pool of workers.  Crayons 
is the first distributed GIS system over cloud capable of end-to-end spatial overlay analysis.  It scales well 
for sufficiently large data sets, achieving end-to-end speedup of over 40-fold employing 100 Azure 
processors.   



3. The Microsoft Research - University of Trento Centre for Computational and Systems 
Biology 

 Angela Sanger, Michele Di Cosmo and Corrado Priami at COSBI have been investigating the behavior of 
p53, one of the most important transcription factors in the genome. They have developed a model that 
includes all known reactions between p53 and DNA, and are fitting this complex model using experimental 
data obtained in different conditions and using different mutants of p53.  COSBI has developed BetaSIM, a  
simulator, driven by BlenX - a stochastic, process algebra based programming language for modeling and 
simulating biological systems as well as other complex dynamic systems which they have ported to the 
cloud.   AzureBetaSIM is a data-flow driven parallelization on Windows Azure of the BetaSIM simulator.    
The aim of AzureBetaSIM is to provide researchers with the ability to quickly run (despite the length of the 
job queue) a large number of concurrent simulations and, in return, quickly gather research data. More 
importantly, this approach enables the execution of complex flows based on the aggregation of a large 
number of identical or slightly different models that, because of the stochastic nature of BetaSIM, will 
produce different outputs. In AzureBetaSIM, the user can alter the flow dynamically based on the previous 
outputs and ask the researcher remotely to continue, stop or alter manually the model before a new step 
by providing a “sparkle” python script to control the high-level flow of execution as in Figure 5. All jobs in 
this use case are scripted, and the scripts can be provided by the user or generated automatically by 
another script.   

 

Figure 5.  Scripted dataflow execution in COSBI’s AzureBetaSIM. 

 

4. The University of North Carolina at Charlotte 
Zhengchang Su, Srinivas Arkela and Youjie Zhou, from the Department of Bioinformatics & Genomics and 
Computer Science at The University of North Carolina at Charlotte are using a similar mapreduce style 
workflow to annotate regulatory sequences in sequenced bacterial genomes using comparative genomics-
based algorithms.  Regulatory sequences specify when, how much, and where the genes should be 
expressed in the cell through their interactions with proteins called transcription factors (TFs).  They have 
built the system using the basic Web Role – Worker Role programming model native to Azure. Web roles 
are used as interfaces between the system and the users. After jobs are submitted by the users, web roles 
build job messages and send them through Azure's queues. Worker roles automatically pull messages from 
the queues and perform real tasks.   The have also implemented this same system on top of Hadoop.    

 

 



 

 

5. Pacific Ecoinformatics and Computational Ecology Lab (Berkeley, CA) and the Santa Fe 
Institute 

Jennifer Dunne, Sanghyuk Yoon and Neo 
Martinez from the Pacific Ecoinformatics 
and Computational Ecology Lab (Berkeley, 
CA) and the Santa Fe Institute are looking 
at the grand challenge in the science of 
ecology of explaining and predicting the 
behavior of complex ecosystems 
comprised of many interacting species. 
The long-term scientific goal is the 
development of theory that accurately 
predicts the response of different species 
and whole ecosystems to physical, 
biological and chemical changes.  The team 
has developed a tool called Network3D 
which is used to simulate the complex 
non-linear systems that characterize these 
problems. They have ported Network3D to 

Azure.  The Network3D engine uses Windows Workflow Foundation to implement long-running processes 
as workflows. Given requests which contain a number of manipulations, each manipulation is delivered to a 
worker instance to execute. The result of each manipulation is saved to SQL Azure. A web role provides the 
user with an interface where the user can initiate, monitor and manage their manipulations as wells as web 
services for other sites and visualization clients. Once the request is submitted through the web role 
interface, the manipulation workflow starts the task and a manipulation is assigned to an available worker 
to process. The Network3D visualization client communicates through web services and visualizes the 
ecological network and population dynamics results. 

6. University of Washington Baker Lab 
A classic example of embarrassingly parallel computation in science 
is the Seti@home.   This is based on volunteer computing where 
thousands of people make their pc available for an external agent to 
download tasks to it when it is not being heavily used.   A standard 
framework for these applications is BOINC from Berkeley.   In David 
Baker’s lab at the University of Washington, they have built a 
protein folding application (Rosetta@home) based on BOINC.   The 
problem with traditional volunteer computing is that volunteers are 
not very reliable.  On the other hand, the cloud can be considered a 
very large pool of capability that can easily be turned into a “high 



thoughput” BOINC service.   To demonstrate this we used 2000 Azure cores to run a substantial folding 
challenge provided by Dr. Nikolas Sgourakis, a postdoc in the lab.  Specifically the challenge was to 
elucidate the structure of a molecular machine called the needle complex, which is involved in the transfer 
between cells of dangerous bacteria, such as salmonella, e-coli, and others.  One of the main advantages of 
using Azure is that they did't have to handle support of the system, a very common problem with 
Rosetta@home.  Of course on a real volunteer system the price is free.   Consequently one has a choice.   
You can get the job done quickly, or you can get it for free.    

7. University of Nottingham 
A novel use of the cloud for science was provided by Dominic Price at the University of Nottingham as part 
the Horizon Digital Britain project to Horizon research focuses on the role of “always on, always with you” 
ubiquitous computing technology.  Their use of Azure was to build support for crowd-sourcing.   Specifically 
they are building a “marketplace” for crowd-sourcing activities. This takes the form of a toolkit that 
provides an infrastructure in which crowd-sourcing modules that support a particular activity can be 
developed and then different crowd-sourcing workflows constructed by combining different modules. 
These modules can then be shared with other users to facilitate their crowd-sourcing activities. This 
enables non-programmers to reuse existing modules in creating new crowd-sourcing applications. At the 
heart of the toolkit is the crowd-sourcing factory which is an application running in the cloud, providing the 
front-end interface for crowd-sourcing administrators (the user group which requests crowd-sourcing 
activities) and developers (the user group which develops crowd-sourcing modules).  This allows the 
administrators and developers to log in and create crowd-sourcing modules and create an activity from 
selected modules. Once the workflow has been defined, the factory generates a crowd-sourcing instance, a 
separate application that is sandboxed from the factory and all other crowd-sourcing instances. This 
instance contains all of the necessary functionality for recruiting and managing crowd-sourcing participants 
as well as some storage for storing the results of the activity to be retrieved by the administrator once the 
activity ends.   

8. Old Dominion University 
Harris Wu, Kurt Maly and Mohammad Zubair of Old Dominion University are developing a web-based 
system (FACET) that allows users to collaboratively organize multimedia collections into an evolving faceted 
classification. The FACET system includes a wiki-like interface that allows users manually classify documents 
into their personal document hierarchies as well as the global faceted classification schema, and backend 
algorithms that automatically classify documents. Evaluating FACET with millions of documents and 
thousands of users allows them to answer research questions specific to large-scale deployment of social 
systems that harness and cultivate collective intelligence. For example, how to merge thousands of users’ 
individual document hierarchies into a global schema? How to build a knowledge map of thousands of 
experts in different domains?  

Users of the FACET system are served by multiple Web Role instances. Browsing and classification are 
supported by queries to SQL Azure. Evaluation has shown that a single Web Role instance of medium size (2 
core processors, 3.5GB RAM ) can support ~200 concurrent users.  The backend classification algorithms 
run on Worker Role instances. One of the most computing intensive backend procedures is to compute the 
similarities (both textual and structural) among user-created categories. By dividing the work into 2 extra-



large instances, the pair-wise similarity computation of over 10,000 user categories can be computed with 
24 hours.  

The FACET system is a research prototype built on Joomla, a popular open-source content management 
system, and originally on the LAMP stack: Linux, Apache, MySQL and PHP. To deploy the FACET system on 
Azure, we had to move the metadata repository and session management from MySQL to SQL Azure. To 
continue to benefit from evolving features in the Joomla community, however, we chose to keep MySQL to 
support Joomla’s core non-data intensive features. 

9. Virginia Tech 
Kwa-Sur Tam of Virginia Tech have been developing a “Forecast-as-a-Service (FaaS) Framework for 
Renewable Energy Sources” such as wind and solar.   To generate wind power forecasts at specific 
locations, additional data such as orography, land surface condition, wind turbine characteristics, etc., need 
to be obtained from multiple sources.  In 
addition to the diversity of the types of data 
and the sources of data, there are different 
forecasting models that have been 
developed using different approaches.  A 
goal of the project is to support on-demand 
delivery of forecasts of different types and at 
different levels of detail for different prices. 
The FaaS framework consists of the Forecast 
Generation Framework (FGF), the Internal 
Data Retrieval Framework (IDRF), the 
External Data Collection Framework (EDCF) 
and the FaaS controller.  The FGF, IDRF and 
EDCF all adopt service-oriented architecture 
(SOA) and the activities of these three 
frameworks are orchestrated by the FaaS controller. Since Windows Azure and the associated .NET 
technologies support the implementation of service- oriented architecture and its design principles, this 
project can focus on achieving its goals rather than dealing with the underlying support infrastructure. 

10. The University South Carolina and the University of Virginia 
Jon Goodall at the University of South Carolina and Marty Humphrey at the University of Virginia are 
creating  a cloud-enabled hydrologic model and data processing workflows to examine the Savannah River 
Basin in the Southeastern United States. Understanding hydrologic systems at the scale of large watersheds 
is critically important to society when faced with extreme events, such as floods and droughts, or with 
concern about water quality. This project will advance hydrologic science and our ability to manage water 
resources.  Today, models that are used for engineering analysis of hydrologic systems are insufficient for 
addressing current water resource challenges such as the impact of land use change and climate change on 
water resources. The challenge being faced extends beyond modeling and includes the entire workflow 
from data collection to decision making.  The project is being built in three stages.  First they will create a 
cloud-enabled hydrologic model. Second, they  will improve the process of hydrologic model 



parameterization by creating cloud-based data processing workflows. Third, in Windows Azure, they will 
apply the model and data processing tool to a large watershed.    

They plan to use Windows Azure for data preparation, model calibration, and large-scale model execution. 
To date, they have focused on model calibration, whose goal is to search the space of potential model 
parameters for the best match against observed data. In their system the user uploads her model and then 
specifies the set of parameters and range of values for each parameter, effectively defining the search 
space. Their architecture is based on cloudbursting, which uses the Microsoft HPC support extensively. 
When a user submits a job, the first resources sought are the Microsoft HPC Cluster  at the University of 
Virginia. When there is too much work in the queue, they “burst” onto Windows Azure. This architecture 
has shown to be very flexible, and they are able to spin up new compute nodes in Windows Azure (and shut 
them down) whenever they desire. Within Windows Azure, they use Blob storage to prepare the nodes – 
i.e., when they boot, they automatically load our generic watershed modeling code. They use the Windows 
Azure Virtual Private Network (VPN ) support to make the Windows Azure nodes appear to be local to their 
enterprise – they have found that this has greatly simplified the use of the cloud.   

11. The University of Washington 
Bill Howe, Garret Cole, Alicia Key, Nodira Khoussainova and Leilani Battle of the University of Washington 
have developed “SQLShare: Database-as-a-Service for Long Tail Science”.   This project addresses a growing 
problem in science involving the ability of researchers to save, share and query the data results from 
scientific research.  Spreadsheets and ASCII files remain the most popular tools for data management, 
especially in the long tail.  But as data volumes continue to explode, cut-and-paste manipulation of 
spreadsheets cannot scale, and the relatively cumbersome development cycle of scripts and workflows for 
ad hoc, iterative data manipulation becomes the bottleneck to scientific discovery and a fundamental 
barrier to those without programming experience.  SQLShare (http://sqlshare.escience.washington.edu) is 
cloud-based relational data sharing and analysis platform that allows users to upload their data and 
immediately query it using SQL — no schema 
design, no reformatting, no DBAs. These queries 
can be named, associated with metadata, saved 
as views, and shared with collaborators.   

The SQLShare platform is implemented as an 
Azure Web Role that issues queries against a SQL 
Azure back end. The Azure Web Role implements 
a REST API and manages communication with the 
database, enforcing SQLShare semantics when 
they differ from conventional databases. In 
particular, the Web Role manages fault-tolerant and incremental upload of large datasets, analyzes the 
uploaded data to infer types and recommend example queries, manages authentication with external 
authentication services, operates on the system catalog, parses and formats data for interoperability with 
external systems, provides asynchronous semantics for all operations that may operate on large datasets, 
and handles all REST requests. Windows Azure was essential to the success of the project by empowering a 



single developer to build, deploy, and manage a production-quality web service.  This work was supported 
in part by the Gordon and Betty Moore Foundation. 

      12. Kyoto University 
Daisuke Kawahara and Sadao Kurohashi of Kyoto University have been developing a search engine 
infrastructure, TSUBAKI, which is based on deep Natural Language Processing. While most of conventional 
search engines register only words to their indices, TSUBAKI provides a framework that indexes synonym 
relations, hypernym-hyponym relations, dependency/case/ellipsis relations and so forth. These indices 
enable TSUBAKI to capture the semantic matching between a given query and documents more precisely 
and flexibly.   Case/ellipsis relations have not been indexed in a large scale because the speed of these 
analyses is not fast enough due to the necessity of referring to a large database of predicate-argument 
patterns (case frames).   To apply case/ellipsis analysis to millions of Web pages of TSUBAKI in a practical 
time, it is necessary to use 10,000 CPU cores.   Because of limits on the Azure fabric controller, it was 
necessary to divide this into 29 hosted services of 350 CPUs each.   This was the largest experiment of any 
of the research engagement projects. 
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