
1

Robust Scalable Visualized Clustering in Metric and non-Metric Spaces

Geoffrey Fox
School of Informatics and Computing

Indiana University
Bloomington IN 47408, USA

gcf@.indiana.edu
Abstract

We describe an approach to data analytics on large systems using a suite of robust parallel algorithms
running on both clouds and HPC systems. We apply this to cases where the data is defined in a vector
space and when only pairwise distances between points are defined. We introduce improvements to
known algorithms for functionality, features and performance. Visualization is valuable for steering
complex analytics and we discuss it for both the non-metric case and for clustering high dimension vector
spaces. We exploit deterministic annealing which is heuristic but has clear general principles that can give
reasonably fast robust algorithms. We apply methods to several life sciences applications.

1 Introduction
The importance of big data is well understood but so far there is no core library of “big algorithms”

that tackle some of the new issues that arise. These include of course parallelism which should be scalable
i.e. run at good efficiency as problem and machine are scaled up. Further one can expect that larger
datasets will increase need for robust algorithms that for example when applied to the many optimization
problems in big data do not easily get trapped in local minima. Section 2 describes deterministic
annealing as a generally applicable principle that makes many algorithms more robust and builds in the
important multi-scale concept. In section 3, we focus on clustering with an emphasis on some of the
advanced features that are typically not provided in the openly available software such as R [3]. We
discuss some challenging parallelization issues for cases with heterogeneous geometries.

Further we note that the majority of datasets are in high dimension and so not easily visualizable to
inspect the quality of an analysis. Thus we suggest that it is good practice to follow a data mining
algorithm with some form of visualization. We suggest that the well-studied area of dimension reduction
deserves more systematic use and show how one can map high dimension metric and non-metric spaces
into 3 dimensions for this purpose. This process is also time consuming and itself an optimization
problem (find the best 3D representation of a set of points) and so needs the same considerations of
parallelization. This is briefly described in section 4.

2 Deterministic Annealing
Deterministic annealing[4] is motivated by the same key concept as the more familiar simulated

annealing, which is well understood from physics. We are considering optimization problems and want to
follow nature’s approach that finds true minima of energy functions rather than local minima with
dislocations of some sort. At high temperatures systems equilibrate easily as there is no roughness in the
energy (objective) function. If one lowers the temperature on an equilibrated system, then it is a short safe
path between minima at current temperature and that a higher temperature. Thus systems which are
equilibrated iteratively at gradually lowered temperature, tend to avoid local minima. The Monte Carlo
approach of simulated annealing is often too slow, so we perform integrals analytically using a variety of
approximations within the well-known mean field approximation in statistical physics. In the basic case
we have a Hamiltonian H(χ) which is to be minimized with respect to variables χ and we introduce the
Gibbs distribution at Temperature T.
 P(χ) = exp(- H(χ)/T) / ∫ dχ exp(- H(χ)/T) (1)
 or P(χ) = exp(- H(χ)/T + F/T) (2)

and minimize the Free Energy F combining Objective Function and Entropy,
 F = < H - T S(P) > = ∫ dχ [P(χ)H + T P(χ) lnP(χ)] (3)

as a function of χ, which are (a subset of) parameters to be minimized. The temperature is lowered
slowly – say by a factor 0.95 to 0.9995 at each iteration. For some cases such as metric space clustering
and Mixture Models, one can do integrals of equations (1) and (2) analytically but usually that will be

2

impossible. So we introduce a new Hamiltonian H0(ε, χ) which by choice of ε can be made similar to real
Hamiltonian H(χ) but have a simpler dependence on χ such that the integrals are tractable analytically.
Then we use the approximate Gibbs distribution

P0(χ) = exp(- H0(ε, χ) /T + F0/T) (4)
and calculate

F(P0) = < H - T S0(P0) >|0 = < H – H0> |0 + F0(P0) (5)
where <…>|0 denotes averaging with Gibbs P0(χ) i.e. ∫ dχ P0(χ). ε is fixed in these integrals

Note that the true Free Energy satisfies the Gibb’s inequality

 F(P) ≤ F(P0) (6)
which is also related to Kullback-Leibler divergence. This leads to an expectation maximization EM

method with annealed variables given by the E step:

χ = <χ> |0 = ∫ dχ χ P0(χ) (7)

Note there are three types of variables ε, χ, ϕ in the general case . The first variable set ε are used to

approximate the real Hamiltonian H(χ, ϕ) by H0(ε, χ, ϕ); the second variable set χ are subject to
annealing while one can follow the determination of χ by finding yet other parameters ϕ (the third set)
optimized by traditional methods – the M step. Usually the functions have a simple dependence on ϕ
allowing a trivial optimization given the values of the other two sets. Note one iterates over temperature
decreasing it, but also iterate at fixed temperature until the EM step converges. The formulation above
shows deterministic annealing to be generally applicable and gives a method first described by Hofmann
and Buhmann for applying it to a general problem [5].

Challenges in using deterministic annealing include formulating the Hamiltonians H(χ, ϕ) and H0(ε, χ,
ϕ) and especially choosing the approximating parameters ε. The algebra involved in minimizing (5) can
be quite difficult especially for the second derivatives needed in the splitting analysis described below.
The resultant software complexity is at least an order of magnitude greater than simpler methods such as
K means which reinforces the suggestion that one should build libraries that once and for all embody
these more sophisticated algorithms.

3 Metric Space Clustering

3.1 Basic Central or Metric Space Clustering
Consider a clustering problem with N points labeled by x and K clusters labeled by k. In this example,

the annealed variables χ are Mx(k), which is the probability that point i belongs to cluster k with
constraint.

∑k=1
K Mx(k) = 1 for each x. (8)

In either central clustering (where points are in a metric space so there are identified centers Y(k)) or
pairwise clustering

H0 = ∑x=1
N ∑k=1

K Mi(k) εx(k) (9)
which is linear in Mi(k) allowing integrals in equations (5) and (7) to be done analytically.

The metric space central clustering has

εx(k) = (X(x)- Y(k))2 (10)
where points have position X(x) and cluster centers are Y(k), so:

HCentral = H0 = ∑x=1
N ∑k=1

K Mx(k) (X(x)- Y(k))2 (11)

and one easily proves [4, 6] that the expectation E step gives:
<Mx(k)> = exp(-εx(k)/T) / ∑k=1

K exp(-εx(k)/T) (12)
and the cluster centers Y(k) are easily determined in M step.

Y(k) = ∑x=1
N < Mx(k)> X(x) / ∑x=1

N < Mx(k)> (13)

3

Figure 2: Stable and Unstable behavior
of Free Energy w.r.t. perturbing centers

We don’t discuss the non-metric case here in detail except to note that equation (9) takes the same
form but rather than analytic formula (10), the εi(k) are determined so that H0 in (9) approximates

HNon-Metric = 0.5 ∑x=1

N ∑y=1
N d(x, y) ∑k=1

K Mx(k) My(k) / C(k) (14)
where d(x, y) is the distance between points x and y. Non-metric problems are typically specified by this
pairwise distance rather than the Euclidean form of distance and scalar products.

Here C(k) = ∑x=1

N Mx(k) as number of points in k’th cluster (15)
and ∑k=1

K C(k) = N the total number of points (16)

3.2 Fuzzy Clustering and K-means
Looking at equation (12), we see that each point x belongs to all clusters k with a probability

proportional to exp(- (X(x)- Y(k))2 /T) which is largest for the center Y(k) that is nearest the point
position X(x). At very high temperatures, the exponent is near zero and all centers have roughly equal
probability – exactly equal at infinite temperature. At large temperatures, all centers coincide with a
position

 Y(k) = ∑x=1
N X(x) / N (17)

As we anneal and the temperature decreases, the points gradually commit to a center and in the zero
temperature limit, one finds a K-means solution with each point associated 100% with the nearest center;
the characteristic of the K-means solution. This is an example of “fuzzy clustering” [7] which is a related
technique to avoid the “early committal” of greedy solution methods that iterate hard constraints.

The idea behind annealing shown in figure 1,
is that there are no false minima at high (infinite)
temperature as objective function is totally
smooth; thus we have properly minimized the free
energy there. As we lower the temperature we
start at minimum solution at higher temperature
and as long as we cool slowly, we are near the
minima at lower temperature and not likely to get
trapped; thus annealing – as seen in the physical
forge – is robust as long as temperature lowered
slow enough (we will discuss criteria for this
below). The rough dependence of objective
function on center positions can lead to false
minima at finite temperature with no annealing as
shown by temperatures T2 and T3 of the figure.

We are approximating this process in deterministic annealing. This approximation involves replacing
integrals by evaluations of functions by their mean value. This is motivated (justified) by the sharp peak
in the integrands of equations (5) and (7).

3.3 Multiscale (Hierarchical) and Continuous Clustering
In many problems, decreasing temperature is a classic

multiscale step with finer resolution being used as temperature T
decreases. Note from equations (9) and (10) that we have factors
like (X(x)- Y(k))2 / T and √T acts as a distance scale. In clustering
there is just one cluster at infinite temperature (the starting point)
at the mean position over all points. We already noted this above
with the universal formula of equation (17) with all centers at the
centroid. A critical feature of deterministic annealing is that
unlike K-means, one need not feed in the “required” number of
clusters. Rather one can start with just one cluster and decrease
temperature from the highest value. The system becomes unstable

and additional clusters “pop” out in what is a phase transition in the physics interpretation of the system
[8]. This is illustrated in figure 2, showing that if one has two identical centers Y(kA) = Y(kB), at a phase

Figure 1: The annealing mechanism for tracking true
minima illustrated with 3 temperatures and two false
minima at finite temperature

4

transition, the system is unstable to the combination Y(kA) - Y(kB). There are two rather different ways
these phase transitions can be found. In the first one inserts multiple potential centers at each site and at
every temperature, test stability by perturbing half in one direction and half in the opposite direction.

In the second method which my software uses, one calculates the second derivative of the free energy
(the first derivative is of course zero) and tests for negative eigenvalues. This method can be quite time
consuming but has advantage that it also gives a direction in which to perturb the centers. It also gives one
an understanding of nature of instability. If one calculates the second derivative for the metric space
clustering and transforms to the local eigendirections Y(kA) - Y(kB). and Y(kA) + Y(kB), then one find that
instability corresponds to a negative eigenvalue of D by D matrix Γ given in equation (18) below where
D is dimension of metric space and i and j run over vector components.

Γij(k) = δij ∑x=1

N < Mx(k)> - ∑x=1
N (Yi(k)) - Xi(x)) (Yj(k)) – Xj(x)) < Mx(k)> / T (18)

where one looks independently at stability of each center k. The calculation of eigendirections is

straightforward and reliable as (18) is difference of a diagonal and positive definite symmetric matrix. If
one uses the power method, one need not explicitly
calculate second derivative matrix but rather scalar
products V.(Y(k) – X(x)). Note as temperature T
decreases, the second term in (18) gets larger in
magnitude and the possibility of an overall negative
eigenvalue increases. At very small T, all centers
show negative eigenvalues and this can help design
the annealing schedule. One aims for interesting/all
centers to appear in region where (18) still
discriminates between centers. In that region, the
“very elliptical” centers with unusually large |Y(k)) -
X(x)| will split first and the “spherical” ones later (at
lower temperature). One lowers temperature at a rate
that gives enough iterations to allow all clusters to
appear in this appropriate temperature regime before
(18) has negative eigenvalues for all centers. As
another minor benefit of explicit form of (18), note
that one can estimate “infinite temperature”
analytically by using simple bounds to find an
“infinite” T∞ for which value (18) is guaranteed to

have positive eigenvalues. It is does not matter if T∞ is an over estimate as one only has one cluster at this
stage and the computation goes very fast. We use power method except for small dimension D (an
important special case) where we use analytic methods. Figure 3 illustrates a clustering which started with
a single cluster at high temperature and finished with approximately 25,000; each new cluster being
generated from a split as described above. There is structure around T=20 for reasons described in section
3.4.

There is an important technical issue that I call continuous clustering which is needed to make the
above scheme work well. This was first described by Rose [4] but it is not broadly recognized and for
example the important and brilliant work by Buhmann and colleagues [5, 9, 10] does not use it. Equation
(12) does not directly allow a simple splitting as discussed above as if K>1, ∑k=1

K exp(-εx(k)/T) is
significantly changed if one replaces one cluster by two; i.e. the splitting affects the < Mx(k)> for all k.
One addresses this by introducing p(k) which is relative number of centers at site with position Y(k). (12)
is then replaced by

 <Mx(k)> = p(k) exp(-εx(k)/T) / ∑k=1
K p(k) exp(-εx(k)/T) (19)

with ∑k=1
K p(k) = 1 (20)

The probability p(k) is like Y(k), one of the parameters that are determined by analytic optimization in
the M step of the free energy optimization after the <Mi(k)> are determined by annealing. One can easily
show that

 p(k) = <C(k)>/N = ∑x=1
N <Mx(k)>/N (21)

Figure 3: Cluster Count versus Temperature for a
D=2 LC-MS peak example[1] with 241605 points

5

i.e. every center is weighted in sum ∑k=1
K p(k) exp(-εx(k)/T) by an amount proportional to their size

or equivalently that every point is equally represented in this sum – an elegant principle. Now one can
implement cluster splitting at a phase transition very simply. A split cluster starts with (perturbed)
positions Y(kA) and Y(kB) near original (split in direction of negative eigenvalue) and with both p(k) and
<C(k)> exactly half that of original cluster as expected for splitting in two. Note (21) ensures this is
consistent.

3.4 Trimmed Clusters with a Sponge
 There are several refinements that are needed in extensions of the above formalism. One example [1, 11]
involves adding a “sponge cluster” defined by

HCentral = H0 = ∑x=1
N [∑k=1

K Mx(k) ((X(x)- Y(k))/σ(k))2 + Mx(sponge)c2] (22)

Here we have taken a case when there is prescribed error σ(k) for each cluster as would happen if cluster
spread due to an estimable measurement error. Then let’s use k=0 for the “sponge” term introduced
above.
< Mx(0)> = p(0) exp(- c2/T) / (∑k=1

K p(k) exp(- (X(x) - Y(k))2/(σ(k)2 T)) + p(0)exp(- c2/T)) (23)
As T decreases we see that < Mx(0)> tends to one and < Mx(k)> to zero if k ≠ 0 if

(X(x) - Y(k))2 / σ(k)2 > c2 for all k (24)
i.e. the k = 0 sponge picks up all points that have squared distance greater than σ(k)2 c2 and
correspondingly all points inside “real” clusters are within this radius. The sponge seen later in figure
5(b), picks up all “stray” points not near enough to a cluster center and all clusters are cut off and the
centers are calculated from equation (13) as trimmed means. This approach gives a set of well-defined
compact clusters with a “dust” of stray points picked up by the sponge. In our implementation we only
added sponge below the high temperatures and then annealed the constant c starting at high values and
letting it reach target value at a temperature where clustering was determined apart from final refinement.
This addition of the sponge is seen in figure 3 by the drop in cluster counts near T=20.

4 Parallel Clustering

4.1 Parallel Data Decomposition
The basic approach to parallelism for

clustering is straightforward and well
understood. One “just” decomposes the points x
across the parallel processes so each of the P
processes contains N/P points. This simple idea
underlies most of the popular MapReduce
applications to data analytics. The centers Y(k)
are stored in all processes for this simple case.
We see then that the above formulae are either
independently parallel – such as E step of
equation (12) calculating Mx(k), or global
reductions as in the M step of equations (13)
and (15) calculating Y(k) and C(k). Note that
the parallel power method used to find
eigenvectors/values in Section 3.3, is also
dominated by global reductions (AllReduce in
an MPI language). One feature of such parallel

data analytics are insensitivity to decomposition – what points are in what processor doesn’t matter; rather
one just needs equal numbers in each processor for load balancing. Correspondingly one does not see the
nearest neighbor communication pattern seen in parallel partial differential equation solvers; rather one
just needs the global reduction (add vectors across all processors) and broadcast operations. This simple
but important observation motivates the successful use of Iterative MapReduce for this problem class [12-

Figure 4: Parallel Efficiency of clustering of 200K
points in 74 dimensions on an 8 node 16 core cluster

6

15]. Figure 4 illustrates the performance of a clustering (into 138 clusters) of a sample of 200K 74
dimensional vectors coming from a pathology informatics application described by Saltz at the CCDSC
2012 workshop [16]. The code is written in C# and run on a Windows HPC environment on eight 16 core
nodes with a gigabit Ethernet connection. One finds for this fixed problem size example, a reasonable
speedup with a parallel efficiency that decreases naturally as parallelism increases but can be 80% for 128
way parallel case. MPI is of course always used between nodes and on the node either threading (with
Microsoft TPL library) or MPI. This paper is not aimed at an authoritative performance study but as in
earlier results [17, 18], one finds better performance with MPI rather than threading in the node (note best
128 way parallel performance has 2 threads inside each of 8 MPI processes on each of 8 nodes). Further
Windows has a strange [17, 19] degradation of performance for large memory small core runs (note
highest efficiency is 16 way parallel case with 16 MPI processes, each with one thread).

4.2 Speed up by use of the Triangle Inequality
There are various ways of speeding up clustering algorithms and especially Kmeans, with the idea of

Elkans [20] being important for cases where the points are in high dimension D. This uses the triangle
inequality to reduce the number of distance calculations (which take time that is O(D)) needed. This has
applied successfully by Qiu in her Twister Kmeans application and uses inequalities such as:

d(x, k-new) ≥ d(x, k-old) – d(k-new, k-old) (25)
d(x, k1-new) ≥ d(k1-new, k2-new) - d(x, k2-new) (26)

Here d is metric distance, x is any point and k-old and k-new label positions of center k at previous and
current iteration. k1-new and k2-new label current positions of two centers k1 and k2. Thus for example
d(x, k-new) = √(X(x)-Y(k)new)2. In Kmeans we know at one iteration, the nearest center to each point and
at next iteration, need to update this. Use of an updated array of lower bounds on d(x, k-old) allows one
to rule out many centers as candidates for the best center at next iteration by using (25) or (26) in a
calculation that is order O(K) and not O(KD) as in basic method. This approach can be extended to
deterministic annealing by modifying equation (12) by multiplying numerator and denominator by d(x,
knearest-x)/T where knearest-x is the Kmeans center that is nearest to point x. Then we need only include those
centers k in sum in denominator that satisfy:

εx(k) = d2(x, k) ≤ d2(x, knearest-x) + Cutvalue . T (27)
Where exp(- Cutvalue) is small. We use Cutvalue = 20 (28)

Note for large temperature T, the constraint (27) (and its estimate using lower bounds) is very weak but at
low temperatures where there are the largest number of centers it can be quite strong. For example in the
74 dimensional example given in figs 4 and 5(b), equations (27) and (28) remove 85% of distance
computations averaged over entire run.

4.3 Parallelism over Centers
The idea of the previous subsection fundamentally changes the problem structure as now each center is
associated with its own set of clusters – those near it in sense of equations (27) and (28). Correspondingly
each center is only associated with the points near it and the basic parallel model of global reductions still
works but may not be most efficient. One needs a decomposition of points that respects the geometric
structure and “nearest neighbor communication. Further in this case one can introduce parallelism over
centers as those far apart are totally independent. I implemented this for a D=2 problem with 241605
points [1] where as seen in figure 5(left) a simple one dimensional decomposition was efficient. This was
implemented with center parallelism and nearest neighbor communication and was a factor of 3 faster
than original algorithm which just used the ideas of subsections 4.1 and 4.2. This was a useful gain but
not clearly “worth it” as resultant code and approach was much less elegant and general. Note this center
parallel approach has similar features to particle in the cell or mesh codes; namely one has two geometric
structures – centers and points for clustering – which do not have completely compatible decompositions.
The decomposition into equal number of points (near each other) in each node does not have equal
number of centers in each node.

7

5 Visualization and Dimension Reduction

Clearly clustering needs both to be performed and a
measure of quality and confidence developed. One can
calculate cluster centers (even in non-metric case), cluster
sizes and inter-cluster distances. However visualizing the
result is a powerful approach and this needs a special
approach unless D=2 or 3 when direct display is possible.
Otherwise one needs to map system into 3 dimensions for
easy visualization. We have developed a suite of powerful
parallel codes to perform this [21] where the well-known
multidimensional scaling is very powerful
HMDS = Σx<y=1

N weight(x,y) (δ(x, y) – d3D(x, y))2 (29)

Here x and y separately run over all points in the system,

δ(x, y) is distance between x and y in original space while
d3D(x, y) is distance between them after mapping to 3
dimensions. One needs to minimize (29) for optimal
choices of mapped positions X3D(x). Sample results are
shown in figures 5 and 6. Note non-metric examples can
preserve their structure well after mapping (figure 6) while
figure 5(right) shows that when there is no dramatic
intrinsic structure, clustering ends up similar to break up of
region into geometrically compact sub regions.

6 Remarks
Although I have described the metric space case, exactly the same issues are present in non-metric

case [17, 21] with significantly more complex algebra for formulae like equation (18). There are still
many important issues to be explored especially following up discussion in sections 4.2 and 4.3. For the
O(N2) non-metric methods, we are pursuing much faster hierarchical approaches [2, 22].

7 Acknowledgements
Our work is partially supported by Microsoft and by the NSF under the FutureGrid Grant No.
0910812. I would like to thank Judy Qiu for discussions on material in section 4.2 and D. Mani, and
Saumyadipta Pyne for access to data in [7] and to Joel Saltz and Tahsin Kurc for test 74 dimension
pathology data.

Figure 5: Cluster visualizations. (Left) Small portion of 241605 point 2D clustering showing a few “sponge
points” (orange) and cluster centers (triangles). (Right) 200,000 74D points with 138 clusters and centers as
colored spheres of size proportional to # points in cluster.

Figure 6: Non-metric deterministic
annealing clustering and visualization of
the “divergent” metagenomics sample with
15761 sequences and 23 clusters [2]

8

8 References
1. Rudolf Fruhwirth, D. Mani, and Saumyadipta Pyne, Clustering with position-specific constraints on variance: Applying

redescending M-estimators to label-free LC-MS data analysis. BMC Bioinformatics, 2011. 12(1): p. 358.
2. Yang Ruan, Saliya Ekanayake, Mina Rho, Haixu Tang, Seung-Hee Bae, Judy Qiu, and Geoffrey Fox, DACIDR:

Deterministic Annealed Clustering with Interpolative Dimension Reduction using Large Collection of 16S rRNA
Sequences, in ACM Conference on Bioinformatics, Computational Biology and Biomedicine (ACM BCB). October 7-
10, 2012. Orlando, Florida. http://grids.ucs.indiana.edu/ptliupages/publications/DACIDR_camera_ready_v0.3.pdf.

3. R open source statistical library. [accessed 2012 December 8]; Available from: http://www.r-project.org/.
4. Ken Rose, Deterministic Annealing for Clustering, Compression, Classification, Regression, and Related Optimization

Problems. Proceedings of the IEEE, 1998. 86: p. 2210--2239.
5. Hofmann, T. and J.M. Buhmann, Pairwise Data Clustering by Deterministic Annealing. IEEE Transactions on Pattern

Analysis and Machine Intelligence, 1997. 19(1): p. 1-14.
6. Ken Rose, Eitan Gurewitz, and Geoffrey Fox, A deterministic annealing approach to clustering. Pattern Recogn. Lett.,

1990. 11: p. 589--594.
7. Makoto Yasuda, Deterministic Annealing Approach to Fuzzy C-Means Clustering Based on Entropy Maximization.

Advances in Fuzzy Systems, 2011. 2011: p. 9. DOI:10.1155/2011/960635. http://dx.doi.org/10.1155/2011/960635
8. Kenneth Rose, Eitan Gurewitz, and Geoffrey C Fox, Statistical mechanics and phase transitions in clustering. Phys.

Rev. Lett., Aug, 1990. 65: p. 945--948.
9. Hansjorg Klock and Joachim M. Buhmann, Data visualization by multidimensional scaling: a deterministic annealing

approach. Pattern Recognition, April, 2000. 33(4): p. 651-669. DOI:http://dx.doi.org/10.1016/S0031-3203(99)00078-3
10. Hansjörg Klock and Joachim M. Buhmann, Multidimensional scaling by deterministic annealing, Chapter in ENERGY

MINIMIZATION METHODS IN COMPUTER VISION AND PATTERN RECOGNITION. 1997, Springer Lectures
Notes in Computer Science. p. 245-260.

11. Rudolf Fruhwirth and Wolfgang Waltenberger, Redescending M-estimators and Deterministic Annealing, with
Applications to Robust Regression and Tail Index Estimation. AUSTRIAN JOURNAL OF STATISTICS, 2008. 3 & 4:
p. 301–317.

12. Bingjing Zhang, Yang Ruan, Tak-Lon Wu, Judy Qiu, Adam Hughes, and Geoffrey Fox, Applying Twister to Scientific
Applications, in CloudCom 2010. November 30-December 3, 2010. IUPUI Conference Center Indianapolis.

13. J.Ekanayake, H.Li, B.Zhang, T.Gunarathne, S.Bae, J.Qiu, and G.Fox, Twister: A Runtime for iterative MapReduce, in
Proceedings of the First International Workshop on MapReduce and its Applications of ACM HPDC 2010 conference
June 20-25, 2010. 2010, ACM. Chicago, Illinois.

14. Thilina Gunarathne, Tak-Lon Wu, Judy Qiu, and Geoffrey Fox, MapReduce in the Clouds for Science, in CloudCom
2010. November 30-December 3, 2010. IUPUI Conference Center Indianapolis.

15. Thilina Gunarathne, Bingjing Zhang, Tak-Lon Wu, and Judy Qiu, Scalable Parallel Computing on Clouds Using
Twister4Azure Iterative MapReduce Future Generation Computer Systems 2012. To be published.

16. Clusters, Clouds, and Data for Scientific Computing Workshop CCDSC 2012. [accessed 2012 December 10];
September 11th – 14th, 2012; Châteauform’, La Maison des Contes, 427 Chemin de Chanzé, France Available from:

17. Geoffrey Fox, Seung-Hee Bae, Jaliya Ekanayake, Xiaohong Qiu, and H. Yuan, Parallel Data Mining from Multicore to
Cloudy Grids. book chapter of High Speed and Large Scale Scientific Computing. 2009: IOS Press, Amsterdam.

18. Judy Qiu and Seung-Hee Bae, Performance of Windows Multicore Systems on Threading and MPI Concurrency and
Computation: Practice and Experience, 2011. Special Issue for FGMMS Frontiers of GPU, Multi- and Many-Core
Systems 2010(To be published).

19. Geoffrey Fox, Xiaohong Qiu, Scott Beason, Jong Youl Choi, Mina Rho, Haixu Tang, Neil Devadasan, and Gilbert Liu,
Biomedical Case Studies in Data Intensive Computing, in The 1st International Conference on Cloud Computing
(CloudCom 2009). December 1-4, 2009, Springer Verlag LNCS: Vol. 5931. Beijing Jiaotong University, China.

20. Charles Elkan, Using the triangle inequality to accelerate k-means, in TWENTIETH INTERNATIONAL
CONFERENCE ON MACHINE LEARNING, Tom Fawcett and Nina Mishra, Editors. August 21-24, 2003. Washington
DC. pages. 147-153.

21. Geoffrey C. Fox, Deterministic annealing and robust scalable data mining for the data deluge, in Proceedings of the
2nd international workshop on Petascale data analytics: challenges and opportunities. 2011, ACM. Seattle,
Washington, USA. pages. 39-40. DOI: 10.1145/2110205.2110214.

22. Judy Qiu, Jaliya Ekanayake, Thilina Gunarathne, Jong Youl Choi, Seung-Hee Bae, Yang Ruan, Saliya Ekanayake,
Stephen Wu, Scott Beason, Geoffrey Fox, Mina Rho, and Haixu Tang, Data Intensive Computing for Bioinformatics,
Chapter in Data Intensive Distributed Computing, Tevik Kosar, Editor. 2011, IGI Publishers.

http://grids.ucs.indiana.edu/ptliupages/publications/DACIDR_camera_ready_v0.3.pdf
http://www.r-project.org/
http://dx.doi.org/10.1155/2011/960635
http://dx.doi.org/10.1016/S0031-3203(99)00078-3

	1 Introduction
	2 Deterministic Annealing
	3 Metric Space Clustering
	3.1 Basic Central or Metric Space Clustering
	3.2 Fuzzy Clustering and K-means
	3.3 Multiscale (Hierarchical) and Continuous Clustering
	3.4 Trimmed Clusters with a Sponge

	4 Parallel Clustering
	4.1 Parallel Data Decomposition
	4.2 Speed up by use of the Triangle Inequality
	4.3 Parallelism over Centers

	5 Visualization and Dimension Reduction
	6 Remarks
	7 Acknowledgements
	8 References

