The Gateway Computational Web Portal:
Developing Web Services for High Performance
Computing

Marlon Pierce!, Choonhan Youn?, and Geoffrey Fox®

! Community Grids Laboratory, Indiana University, Bloomington IN, 47405-7000,
USA,
pierceme@asc.hpc.mil,
WWW home page: http://www.gatewayportal.org
2 Department of Electrical Engineering and Computer Science,
Syracuse University, Syracuse NY 13244, USA
cyoun@indiana.edu,
3 Departments of Computer Science and Physics, School of Informatics, Community
Grids Laboratory, Indiana University, Bloomington, IN 47405-7000, USA
gcf@indiana.edu

Abstract. We describe the Gateway computational web portal, which
follows a traditional three-tiered approach to portal design. Gateway
provides a simplified, ubiquitously available user interface to high perfor-
mance computing and related resources. This approach, while successful
for straightforward applications, has limitations that make it difficult
to support loosely federated, interoperable web portal systems. We ex-
amine the emerging standards in the so-called web services approach to
business-to-business electronic commerce for possible solutions to these
shortcomings and outline topics of research in the emerging area of com-
putational grid web services.

1 Overview: Computational Grids and Web Services

As computational grid technologies such as Globus[1] make the transition from
research projects into mainstream, production-quality software, one of the key
challenges that will be faced by computing centers is simplifying the use of the
Grid for users, making contact with the large pool of scientists and engineers
who are using computational tools on PCs and who are unfamiliar with high
performance computing.

Grid computing environments|2, 3] seek to address this issue, typically through
the use of browser-based web portals. Most computational portals have adopted
a multi-tiered architecture, adapted from commercial web portals. The tier defi-
nitions vary from portal to portal, but in general fall into three main categories,
analogous to the three components of the model-view-control design pattern: a
front-end that is responsible for the generation, delivery, and display of the user
interface, a back end consisting of data, resources, and specific implementations
of services, and a middle tier that acts as a control layer, handling user requests

and brokering the interactions through a general layer to specific back end im-
plementations of services. Each of these layers can consist of several sub-layers.

Most computational portals implement a common set of services, including
job submission, file transfer, and job monitoring. Given the amount of overlap in
these projects, it is quite natural to propose that these portals should work to-
gether so that we can avoid duplicating the effort it takes to develop complicated
services and deploy them at specific sites. The challenge to interoperability is
that portals are built using different programming languages and technologies.
We believe the key to portal interoperability is the adoption of lightweight,
XML-based standards for remote resources, web service descriptions, and com-
munication protocols. These are by their nature independent of the programming
languages and software tools used by different groups to implement their clients
and services. We thus can build distributed object systems without relying on
the universal use of heavyweight solutions such as CORBAJ[4], although these
will certainly be included in the larger web services framework.

In this paper we describe our work in developing and deploying the Gateway
Computational Web Portal. We consider lessons learned about the limitations
of our current approach and examine how these limitations can be overcome by
adopting a web services approach. We describe specific requirements for high
performance computing web services and outline our future research work in
these areas.

2 The Design of the Gateway Computational Web Portal

Computational web portals are designed to provide high-level user interfaces to
high performance computing resources. These resources may be part of a com-
putational grid, or they may be stand-alone resources. As argued in [5], the real
value of computational portals is not just that they simplify access to grid ser-
vices for users but also that they provide a coarse-grained means of federating
grid and non-grid resources. Also, because they are web-based, portals provide
arguably the correct architecture for integrating the highly specialized grid tech-
nologies (suitable for development at national laboratories and universities) with
commercial software applications such as databases and collaborative technolo-
gies.

We have developed and are deploying a computational portal, Gateway [6, 7,
5], for the Aeronautical Systems Center and Army Research Laboratory Major
Shared Resource Centers, two high performance computing centers sponsored by
the US Department of Defense’s High Performance Computing Modernization
Program. The primary focus of this project is to assist PC-based researchers
in the use of the HPC resources available from the centers. In addition, as we
have described elsewhere [8], this approach also has potential applications in
education.

2.1 Gateway XML Descriptors

XML metadata descriptions serve as the interface to host machines, applications,
and available services, describing what codes and machines are available to the
user, how they are accessed and used, and what services can be used to interact
with them. We store this information in a static data record on the web server
and use it to both generate dynamic content for the user and to generate back
end requests. For example, a description of an application includes the number
of input files required to run it, so the same display code can be used to generate
input forms for different codes.

Application Description By application, we refer specifically to third party
scientific and engineering codes. All of these have common characteristics for
running on a command line, so in our application description we seek to capture
this information in an XML data record. For a particular application, we need
to capture at least the following to run it:

1. The number of input files the code takes.

2. The number of input parameters the code takes.
3. The number of output files the code generates.
4. The input/output style the code uses.

5. Available host machines (see below).

By input and output files, we refer specifically to data files. Parameters are
anything else that needs to be passed to the code on the command line, such as
the number of nodes to use in a parallel application. This is highly code specific.
I/0 style includes standard Unix redirects or C-style command line arguments.

An example of an XML description is given in [8]. We note here that we have
found it useful to adopt a shallow tree structure with general tag names. The
information in the XML tree consists of name/value pairs, and we use general
code for extracting this information from the data record. Thus, we do not make
the pretense that our description above is complete. We can extend the XML
description later with additional name/value pairs without having to rewrite any
code that handles the XML.

HPC Description We have developed a description mechanism for HPC
systems using the same viewpoint as our Application Description: we want a
data record that contains a minimal amount of information, but which can be
extended as needed, since we cannot anticipate all requirements of all codes and
hosts from the beginning. The software that handles this code must of course be
general in order to handle future description extensions.

Let us now examine the minimal contents of a Host Descriptor. This would
include the following:

1. The DNS name of the host.
2. The type of queuing system it uses.

3. The full path of the executable on the host.
4. The working or scratch directory on the host.
5. The full path to the queue submission executable.

Again, an example of this can be seen in [8]. Note we have adopted as a
convention that the Application Descriptor is the root of the tree, and the host
machines are sub-nodes.

Service Description As described in 2.2, Gateway provides a number of
generic services. These are implemented using WebFlow (Java- and CORBA-
based middleware). However, the services themselves should be independent of
the implementation. Thus all computational portals could potentially use the
same interface description for a particular set of services, and any particular
portal could radically redesign its middleware without changing the service in-
terface.

An example of one of Gateway’s Service Descriptors is given in [8]. For a
single implementation, this is somewhat redundant, since for WebFlow we must
translate this into IDL suitable for dynamic CORBA. Now that a standard for
service descriptions (the Web Services Description Language, or WSDL[10]) is
available from the larger web community, we will adopt this in future develop-
ment work.

2.2 Gateway Architecture

For Gateway, we identified the following as the core services that we must im-
plement in the portal:

1. Secure identification and authorization over an extended session;

2. Information services for accessing descriptions of available host computers,
applications, and users;

. Job submission and monitoring;

. File transfer;

. Remote file access and manipulation;

. Session archiving and editing.

U W

These services constitute what we term a system portal: it is not tied to
specific back end applications, instead implementing these services in a generic
fashion that is application neutral. Applications from specific computational
areas such as chemistry or structural mechanics can be added to the portal in a
well-defined fashion through the XML descriptors.

Gateway’s implementation of these services is schematically illustrated in
Figure 1. Clients, typically browsers but also custom applications for file brows-
ing, contact a web server over a secure HI'TP connection. Security details are
highly site-specific. The user interface is implemented using JavaServer Pages
(for display) combined with specially written Java components maintained by
the web server’s servlet engine. These latter represent a set of objects local to

the server. These components can handle specific server-side tasks but can also
act as proxies for our distributed object software, WebFlow. WebFlow compo-
nents can be distributed amongst different, geographically distributed comput-
ers. WebFlow components in turn act as proxies to back end resources, including
stand alone HPC resources plus also computing grids and batch visualization re-
sources. These back end resources are reached via remote shell operations. We
are in the process of developing specific components for Globus using the Java
CoG Kit[9]. Thus WebFlow provides a single entry point to distributed resources.
For a more comprehensive description Gateway, please see [7, 5].

Web Browser Web Browser
And And
Client Applications Client Applications
HTTP(S) HTTP(S)

Local WM

Distributed
Obiects Bus
WehFlow
Cid | |
Server

— Viz: VIK.
HPC+GRD Ml:tlab | Q@D HPC+LSF

Globus Grid

RSH,S5H

Fig. 1. The Gateway computational portal is implemented in a multi-tiered architec-

ture. SECIOP is a wire protocol for secure CORBA. RSH and SSH are secure remote
shell commands.

The services and general architectural approach described above are not
unique to Gateway. Most other portal projects implement their versions of these
services as well [2,3]. As we will describe below, these services thus should be
viewed as the atomic services of a computing grid web services system in the
next generation of portal systems

2.3 The Need for Interoperability

There are some limitations to the traditional portal approach. Primarily, it is
concerned with accessing heterogeneous back end resources through a particular

middle tier software implementation. Thus as designed now, most portal projects
are not interoperable as they are tied to their particular implementation of the
control layer. Yet interoperability is desirable both from the point of view of
good software design and the realities of deployment. Many different groups have
undertaken portal projects. Even within the DOD’s Modernization Program
there have been several such projects. Each portal tends to carve out a fiefdom
for itself and none of these portals should expect to become the single solution
for the entire program. Instead, it is in their interest to work together in order
to take advantage of each project’s particular strengths and avoid duplication of
effort.

To see how this is an advantage, consider the difficulties (technical and polit-
ical) of getting a portal installed at a particular site. Software must be installed
and tested, and particular features such as security must sometimes be devel-
oped from scratch and approved by the appropriate management groups. This
is a time consuming process that can become a significant portion of the total
time spent on the project. But recall that the general portal services such as
secure authentication and job submission are common to most portals. Thus,
once one portal has successfully been deployed at a given site, it is redundant
for other portals to do the same if they can instead make use of the security and
job submission capabilities of the portal already in place. This can be thought
of as a site-specific grid computing web service.

As a second example, consider the problem faced by portals of supporting
multiple queuing systems on HPCs. Gateway and other portals have developed
solutions for this. It is wasted effort for other projects to repeat this work.
Unfortunately, Gateway’s solution is pluggable only into portals with a Java-
based infrastructure. The solution is to make queue script generation into a
service that can be accessed through a standard protocol. A portal can then
access the web service, provide it with the necessary information, and retrieve
the generated script for its own use. This is an example of a function-specific
grid computing web service.

3 Towards a Grid Web Service Portal Architecture

Given the potential advantages of interoperability, the proper architecture must
now be determined. For this we can take our cue from the design goals of the
underlying Grid software[11]: portal groups need to agree to communication
protocols. Once this is done, they don’t need to make further agreements about
control code APIs and service implementations so long as the protocols are
supported. The web services model [12,13] has the backing of companies such
as IBM[14] and Microsoft[15] as the standard model for business-to-business
commerce. Let us now consider the aspects of this model for high performance
computing.

Distributed Object Model The point of view that we take is that all back end
resources should be considered as objects. These may be well-defined software

objects (such as CORBA objects) but may also be hardware, applications, user
descriptions, online documents, simulation results, and so forth. As described
below, these objects will be loosely coupled through protocols rather than par-
ticular APTs.

Resource and Service Descriptions The generalized view of resources as
objects requires that we describe the meta-data associated with the object and
provide a means of locating and using it. XML is appropriate for the first and we
can assign a Uniform Resource Identifier (URI) for the latter. We must likewise
provide an XML description of middle-tier services (see Section 2.2). WSDL is
an appropriate descriptor language. Note that this defines objects in a language
independent way, allowing them to be cast into the appropriate language later,
using for example Castor[17] to create Java objects. Likewise, this distributed
object system is protocol-independent. The object or service must specify how
it is accessed, and can provide multiple protocols.

Resource and Service Discovery Once we have described our object, it
must be placed in an XML repository that can be searched by clients. Clients
can thus find the resource they are looking for and how to access it. Commercial
web services tend to use UDDI[16], but other technologies such as LDAP servers
may also be used. Castor provides a particularly powerful way of converting
between Java components and XML documents and when combined with an
XML database, can serve as a powerful object repository specialized for Java
applications [8].

Service Binding Following the discovery phase, the client must bind to the
remote service. WSDL supports bindings to services using different mechanisms
(including SOAP and CORBA). Thereafter, interactions can be viewed as tra-
ditional client-server interactions.

There is nothing particularly new about this architecture. Client-server re-
mote procedure calls have been implemented in numerous ways, as has the service
repository. WebFlow, as just one example, implements a specialized naming ser-
vice for looking up servers and their service modules. The difference here is that
the repository is designed to offer a standard XML description of the services
using WSDL. The service description itself is independent of wire protocols and
Remote Procedure Call (RPC) mechanisms.

There still is the problem that the client must implement the appropriate
RPC stubs to access the server. Given the number of protocols and RPC mecha-
nisms available, there is an advantage in the various grid computing environment
projects coming to an agreement on a specific RPC protocol. Guided by the surge
of development in support of SOAP[18] for web services and its compatibility
with HTTP, we suggest this should be evaluated as the appropriate lingua franca
for interoperable portals. Legacy and alternative RPC mechanisms (such as used
by WebFlow) can be reached through bridges.

Simulation Data
Component Component
| | I |
: HPC : : Persistent :
1 . 1 1 Storage
1 Engme 1 1 1
1 1 1 1
1 1

v 1
<> \pr, oAl oo [FE ey Backend
Resources

1
I'WSDL Interfaces N‘

| from i

E =2 % =2 % ¥ Clint

Fig. 2. The extended multi-tiered architecture for web services will be used to support
interoperability between portals.

The architecture for this kind of web services system is illustrated in Fig-
ure 2. The basic point is that common interfaces can be used to link different
multi-tiered components together. In the shown instance we have two distinct
services (and HPC service and a database service) perhaps implemented by dif-
ferent groups. Clients can access these services by first contacting the service
description repository. Essentially, the local object sub-tier and the distributed
object sub-tier of the control layer in Figure 1 become decoupled. The local ob-
ject service proxy must consult the service repository and find a service to use.
It then binds to that service with the protocol and mechanism prescribed in the
service description.

The above constitutes the basis for web services. We now identify some im-
portant extensions that will need to be made.

Security for high performance computing services needs consideration. First,
the very fact that a particular web service is available from a certain site may be
sensitive information. Thus the service repository must have access and autho-
rization controls placed upon it in order to allow clients to only see services that
they are authorized to use. Furthermore, the services themselves must be se-
cure, as they typically cannot be used anonymously. Specific security extensions
required by the service description include

1. Authentication mechanisms for client and/or server.
2. Means of identification (certificate, public or private key, session ticket).

3. Requirements for privacy and data integrity.

Within a limited realm (a Globus Grid or interoperating Kerberos realms)
this can be greatly simplified through existing single sign-ons capabilities.

A second important consideration for HPC services is the relationship be-
tween job composition, workflow, and events. The simpler web services can be
thought of as atomic components that can be used to compose complicated ser-
vices. For example, a job can be scheduled and its output filtered and transfered
to a visualization service for analysis. This entire task can be considered to be a
single, composite job. Thus we need to define an XML dialect for handling the
above type of workflow, together with appropriate software tools for manipulat-
ing these workflow documents and executing their content. We specifically see
this as an agent that executes the workflow commands, contacting the service
repository at each stage and reacting appropriately to event messages from the
back end. Job composition is not new: WebFlow has this capability, for exam-
ple. The difference now is that we must define workflow in an implementation-
independent way (again in XML) so that different groups can provide different
pieces of the combined service.

Workflow for grids is a complicated undertaking because of the numerous
types of error conditions that can occur. These include failures to reach the
desired service provider at any particular stage of the workflow either because
of network problems or machine failure. Likewise, even if the resource is reached
and the service is executed, failure conditions exist within the application. For
example, the file may be corrupt and generate incorrect output, so there is no
need to attempt the next stage of the workflow procedure. We can thus see that
any workflow description language must be coupled with reasonably rich event
and error description language.

4 Acknowledgments

Development of the Gateway Computational Web Portal was funded by the
Department of Defense High Performance Computing Modernization Program
through Programming Environment and Training.

References

1. The Globus Project. http://www.globus.org

2. Grid Computing Environments. http://www.computingportals.org.

3. Grid Computing Environments Special Issue.
Concurrency and Computation: Practice and Experience.
Preprints available from http://aspen.ucs.indiana.edu/gce/index.html.

4. Common Object Request Broker Architecture. http://www.corba.org

5. Pierce, M., Fox, G., and Youn, C.: The Gateway computational web portal. Accepted
for publication in Concurrency and Computation: Practice and Experience.

6. Gateway Home Page. http://www.gatewayportal.org.

10

7. Fox, G., Haupt, T., Akarsu, E., Kalinichenko, A., Kim, K., Sheethalnath, P., Youn,
C.: The Gateway system: uniform web based access to remote resources. ACM Java
Grande Conference (1999).

8. Fox, G., Ko, S.-H., Pierce, M., Balsoy, O., Kim, J., Lee, S., Kim, K., Oh, S.; Rao,
X., Varank, M., Bulut, H., Gunduz, G., Qiu, X., Pallickara, S., Uyar, A., Youn, C.:
Grid Services for Earthquake Science. Accepted for publication in ACES Special
Issue of Concurrency and Computation: Practice and Experience.

9. von Laszewski, G., Foster, I., Gawor, J., Lane, P.: A java comodity grid kit. Con-
currency and Computation: Practice and Experience, 13 (2001) 645-662.

10. WSDL: Web Services Framework. http://www.w3c.org/ TR /wsdl.

11. Foster, 1., Kesselman, C., Tuecke, S.: The Anatomy of the Grid: Enabling Scalable
Virtual Organizations. Intl. J. Supercomputer Applications, 15 2001.

12. Saganich, A.: Java and Web Services.
http://www.onjava.com/pub/a/onjava/2001/08 /07 /webservices.html

13. Curbera, F.: Web Services Overview.
http://www.computingportals.org/GGF2/WebServicesOverview.ppt

14. IBM Web Services Zone. http://www.ibm.com/developerworks/webservices

15. Microsoft Developer Network. http: //msdn.microsoft.com

16. UDDI: Universal Descriptors and Discovery Framework. http://www.uddi.org.

17. The Castor Project. http://castor.exolab.org

18. Simple Object Access Protocol (SOAP) 1.1. http://www.w3c.org/TR/SOAP.

