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1. Introduction: Classifying Grid Families

This article reviews our efforts to build science application Grids [Foster, 2003] using
Web Service Architecture [Booth, 2004] principles. We review several aspects of the
problem, including a) designing and integrating families of Grid Web Services; b) Grid
messaging substrates, and ¢) developing client (“requester agent”) managing
environments such as computing Web portals.

The merger of Grid and Web Service standards first introduced by the Open Grid Service
Architecture (OGSA) [Foster, 2002] opened up the possibility for creating and integrating
disparate Grid families that formerly used incompatible technologies. As we outline in
the following review, Web Services provide a unifying architecture for diverse Grid
family groups. We may begin to think of Grids as collections of services assembled for
specific tasks. These services include not only traditional Grid tasks such as accessing
remote high performance computing resources, but also information, collaboration, and
semantic services.

1.1. Basic Grid Family Groups

Expanding on earlier classifications of Fox and Walker [Fox, 2003], we identify the
following major Grid Web Service families:

Data Grids: these may range from High Energy Physics-style data grids [Allcock, 2002]
to more database-oriented Web Service systems for bioinformatics [Goble, 2003a; Goble,
2003b], multiscale chemsitry [Myers , 2004; Pancerella, 2004], and other scientific
digital libraries. The OGSA-DAI effort (www.ogsadai.org.uk), Storage Resource Broker
[Rajasekar, 2003], and Project Mobius [Hasting, 2004] are other examples from the Grid
community.

Execution Grids: these are traditional “remote operating system” grids that support
secure remote command execution, access to computing resources for scientific
computation, and remote file management. The Globus Toolkit (www.globus.org) is a
well-known example.

Desktop Grids: the SETI@home activity is probably the most well-known example of
this type of Grid, which seeks to harness idle computing power for pleasingly parallel



problems. More generally, desktop grids are sophisticated resource schedulers that
harness idle computing power from diverse resources. From the Grid community, the
Condor cycle scavenger scheduler is the best known example. Web Service style desktop
grids are underdeveloped, probably in part because of the underdevelopment of the
information services needed to manage them.

Information and Collaboration Grids: Virtual Organizations require information
services for managing their constituent services. Basic Information Grids may be
composed of straightforward information registries, such as UDDI. More sophisticated
information management capabilities are the provenance of Semantic Grids such as
MyGrid [Gobles, 2003a; Gobles, 2003b] and the Collaboratory for Multiscale Chemical
Science [Myers, 2004; Pancerella, 2004].

Sensor and Streaming Data Grids: while Data Grids are typically concerned with
managing archives of distributed data and in supporting data provenance and
reconstruction, sensor grids are responsible for supporting real time, time-stamped data
streams. Typically, raw sensor data must go through multiple stages of filtering, so these
may be coupled to Execution Grids.

1.2. Collective and Derived Groups

In addition to the above basic Grid styles, we may build more specialized Grid families,
which incorporate elements of the basic Grid styles. The following list is not intended to
be definitive, as the basic components may be combined in numerous ways, and the
number of science domain-specific grids is unlimited.

Audio/Video Grids: Grid Web Services are normally associated with remote procedure
calls and request/response semantics, but they may also be used to manage streaming
data, such as in Sensor Grids. A/V Grids are a variation of this theme, using Web
Services to manage collaborative sessions. The GlobalMMCS project
(www.globalmmcs.org), discussed in more detail in a companion article, is an example of
this. A/V Grids are thus a combination of collaboration and streaming grids.

Geographical Information System (GIS) Grids: these tend to be specific applications
of Data, Information, and Sensor Grids that manage geographic data and information.
They may in addition be combined with Execution Grid services for geo-processing
applications, such as the generation of earthquake hazard maps. Grid Web Service
versions of the Open Geospatial Consortium (www.opengeospatial.org) standards such as
the Web Feature Service, Web Coverage Service, Web Map Service, and Sensor Grid
Services are examples. Our efforts in this area are summarized by the information and
resources at www.crisisgrid.org and are described in [Aktas, 2004].

Visualization Grids: these represent a combination of data, collaboration, streaming, and
execution grids. Scientific visualization is a well-known high performance computing
problem itself and quite often is applied to massive data sets. Efficient data streaming,
demands of interactivity, and the usual requirement for supporting diverse, specialized
clients make this a rich area. One particularly interesting area for research is that these
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services push the boundaries of internet-speed messaging systems: millisecond latencies
are acceptable, but longer delays degrade usability.

1.3. Grid of Grids Examples

From all of these parts we may build comprehensive science application Grids. The
examples shown at the top of Figure 1 illustrate several possible Grid systems and Virtual
Organizations that we may draw from extensions to our work with SERVOGrid, but
these may be applied to other problem domains. Science Grids for earthquake
forecasting obviously can incorporate elements of all the Grid families that we have listed
but are most strongly tied to Execution and Data Grids that are associated with scientific
computing. The role of collaboration in these types of Grids has perhaps been
underdeveloped, with the exception of NEESGrid, but data and result sharing, discussion
forums, document sharing areas, and real time A/V support are all possible extensions.

On the other end of the spectrum, we have Emergency Preparedness and
Response/Critical Infrastructure Protection (EPR/CIP) Grid organizations. These Grid
organizations are not used by scientific research communities but instead by user groups
such as policy makers, emergency responders, and even the general public. Finally, we
may consider the value of “rapid response” Grids to specific, short term issues. Disasters
such as the 2004 tsunami tragedy in Southeast Asia require the quick deployment of new
Virtual Organizations consisting of diverse, pre-existing Grid family components: today
scientists may want the quickest possible access to data for simulation, but hopefully in
the future these Grids may be used to mitigate the loss of life and damage to property and
the environment.

Members of these different Grid Web Service families may be united into the collection
of Grid services that are needed to build application Grid systems. As we will discuss in
this article, this unification may be done at two different levels. First, the “core services”
substrate level must provide several different core services that constitute what we have
termed the Grid messaging substrate [Fox, 2005a; Fox, 2005b]. Our approach, reviewed
in the section “Internet-on-Internet” aims to provide a many-to-many messaging software
implementation capable of providing the low level routing of SOAP and other messages.
Grid service families of all sorts may utilize this messaging substrate layer.
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Figure 1: Science, Critical Infrastructure Protection (CIP) and Emergency
Preparedness and Response (EPR) Grids built as a Grid of Web Service
(WS) Grids

The second component of unification is described in the section “Context and
Information Environment,” or CIE. This layer is responsible for managing the
information services and user environments necessary for composing Virtual
Organizations out of Grids. In this article, we particularly highlight the role of portals in
CIEs. Grid computing portals represent an important role in Web Service Architectures:
they manage the lifecycles of requester agents, analogous to the Web Service hosting
environment’s management of service implementation instances. As we point out below,
however, this has not been fully exploited in current portal systems: portals may manage
Grid requester agents, but there is a missing family of Grid Web Services for building the
portals themselves. We conclude this section by noting the implication that portal
standardization efforts will lead to portals themselves acting as full-fledged service
provider agents in a Grid of Grid environment.

1.4. Web Service Grids and Service Oriented
Architectures

The common feature of the different styles of Grids listed in the previous sections is the
growing adoption of both Web Service standards and Web Service Architectures, and
more generally Service Oriented Architecture (SOA) principles. In this section we
review these subjects. We conclude primarily from this review that the Grid messaging
system plays a crucial role in providing the unification of Grid families.

Web Services are essentially built on top of two major specifications: WSDL
[Christensen, 2001] and SOAP [Gudgin, 2003]. WSDL describes the remote service’s
interface (its methods, their arguments, their return types), while SOAP is a messaging
format that encapsulates the communications (in XML) between the services.



Technically, the two are decoupled: you can build services described with WSDL that use
other messaging protocols besides SOAP.

One of the continuing sources of debate in scalable distributed systems is the proper
management of state. State may be either internal to a specific service instance or it may
result from the interaction with one or more clients. Distributed object systems allow for
“stateful” interactions. That is, the remote object provides methods for modifying
internal state data. SOA systems attempt to avoid this: clients may not directly
manipulate the state of the remote service. Instead, if required, state may be maintained a
conversation between the components. HTTP cookies are a familiar example of stateful
conversations.

Distributed object systems have tended to focus on remote method invocations (the
object-oriented equivalent of remote procedure calls). The remote object is intended to
be used as if it were a local object: developers program their applications using client
stubs that can be treated as local programming objects, but which must in reality make
remote calls to the “real” object, often blocking until the method returns. This approach
is suitable for tightly coupled environments like enterprise intranets, but it does not scale
well to the loosely coupled situation seen, for example, in most Grid applications that
need to run in several different, autonomous locations. SOAs instead focus on the
message itself, rather than its invocation. Since interactions are normally stateless,
message traffic between two components is assumed to be decoupled.

Most current approaches to Grid Web Services have adopted at least a partial SOA
approach. Grid systems by their nature are not deployed on intranets. They instead
involve collections of services offered many different service providers who have
temporarily aggregated themselves into a “virtual organization.” Message-based,
stateless grids meet these requirements for loose coupling.

Message-oriented, loosely coupled systems do require a certain level of tolerance for
latency. For Execution Grids, it is worth comparing internet messaging with classic MPI
approaches. Classic MPI communications in cluster environments with good networking
take place on the order of microseconds. In contrast, internet-based messaging between
services has a time scale of milliseconds, so communications are inherently 100-1000
times slower. We therefore may backwardly define “loosely coupled” as meaning any
system that does not need for its components to communicate at speeds less than a
millisecond. For specific examples from our SERVOGrid efforts, see [Parker, 2004]. To
summarize:

1. Couplings that involve autonomous application runs that take minutes to days to
complete are good candidates for the messaging approach.

2. Couplings requiring microsecond latencies, such as parallel adaptive mesh
refinement are not appropriate for the Grid Service approach. Instead, these
should use the more appropriate MPI approach and be deployed on specific
clusters.

3. In between these extremes, we have A/V collaboration and interactive
visualization services, which require high speed internet messaging performance



(i.e. milliseconds). These may be implemented with the messaging approach but
will push the boundaries of performance and Web Service messaging
infrastructure. Some efforts in efficient Web Service messaging are described in
[Fox, 2004b].
We thus see that message-oriented Grid systems allow for the integration of Grid systems
in a scalable fashion. In the next section, we review our efforts to build a messaging
substrate for Grid services.

2. Building Message-Based Services: Internet-on-
Internet

Grid and Web Services that adopt the SOA approach need a messaging infrastructure for
exchanging information. In particularly, the SOAs must enable the features that are part
of the SOAP 1.1/1.2 specifications, particularly intermediate message header processing.
They must also provide support for security, events and notification, reliable messaging,
message routing, etc.

2.1. NaradaBrokering for Grid Service Messaging

The Community Grids Lab has for several years been developing a core messaging
infrastructure, NaradaBrokering (NB), that can handle sophisticated, many-to-many
messaging over numerous transport protocols. Applications of NB have focused on
collaborative systems such as Anabas and GlobalMMCS. We have, however, been
adapting NB to implement and be compatible with Grid and Web Service specifications
[Fox, 2005a; Fox, 2005b; Fox, 2004a].

A detailed description of NB is out of scope for this document; references available from
http://www.naradabrokering.org provide full descriptions of the system; the reader should
refer particularly to [Pallickara, 2003] for a basic introduction. In brief summary, NB
acts as a topic-based, publish/subscribe system that enables communication between
distributed components running on different hosts. Publishers and subscribers are
autonomous, distributed computing components that have write and read access
(respectively) to postings on various topics. Any given entity may be both a publisher
and subscriber to a particular topic, and entities may have different roles in different
topics. Both publishers and subscribers connect to message brokers, which are
responsible for routing messages and maintaining topic lists. On top of this basic system,
we may build a number of more sophisticated features: for example, brokers may be
distributed, may change the protocols and ports used to transport messages, may
guarantee delivery, may enforce security, may ensure once-only delivery and persistent
storage of messages, and so on. In terms of SOAP 1.2 messaging, distributed brokers
may act as relay nodes and may process SOAP headers.

The following table summarizes the most important (and relevant) NB features.

Multiple transport Transport protocols supported include TCP, Parallel TCP
support streams, UDP, Multicast, SSL, HTTP and HTTPS.
In publish-subscribe Communications through authenticating proxies/firewalls &
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Paradigm with different [NATs. Network QoS based Routing
Protocols on each link

Subscription Formats  |Subscription can be Strings, Integers, XPath queries, Regular
Expressions, SQL and tag=value pairs.

Reliable delivery I'Robust and exactly-once delivery of messages in presence of
ailures

Producer Order and Total Order over a message type

Time Ordered delivery using Grid-wide NTP based

absolute time

Recovery from failures and disconnects.
Replay of events/messages at any time.

Ordered delivery

Recovery and Replay

Security |Message-level WS-Security compatible security

Message Payload Compression and Decompression of payloads

options Fragmentation a nd Coalescing of payloads

Messaging Related Java Message Service (JMS) 1.0.2b compliant

Compliance Support for routing P2P JXTA interactions.

Grid Application INaradaBrokering enhanced Grid-FTP. Bridge to the Globus
Support TKS3.

\Web Service reliability [Prototype implementation of WS-ReliableMessaging

Table 1: NaradaBrokering features.

One of the main goals of NB has been to virtualize communication connections, building
a buffer layer between applications and the lower level networking infrastructure
(TCP/IP, UDP, etc). This is motivated by two major concerns:

1. Collaborations and virtual organizations are often constrained or disabled by
firewalls, NATSs, and other networking features. Both Grid computing and
Audio/Video collaboration are prominent examples of technologies crippled by
current real networks.

2. The ideal protocol for a given collaboration may change over time, may be
different for different recipients participating in the same activity, and may be a
mixture of two or more “real” connections in the same “virtual” connection. For
example, a participant behind a firewall/NAT in an AV collaboration may be
unreachable by UDP, so we may need to tunnel the transmission through the
NAT. GridFTP proxied through NB [Fox, 2005a] is an example of dual
transmissions in the same virtual connection: control messages are sent back and
forth over one connection (which may be re-implemented as SOAP in a
hypothetical Web Services version), while transmissions of data go over a
separate data channel.

NB-style virtual connections have another potential long term application. For web
services requiring high (true millisecond) performance, SOAP over TCP/IP is notoriously
inefficient. By virtualizing connection through NB brokers, transmitting messages over
high speed UDP connections, and using the NB messaging fabric to provide in the



application layer typical TCP/IP features like reliability, SOAP messaging performance
may be increase by 2-3 orders of magnitude [Fox, 2004b].

2.2. Integration of NaradaBrokering with Grids and Web
Services

We have three potential integration strategies, summarized in Figure 2. First, there is the
proxy approach, in which NaradaBrokers masquerade as remote Grid/Web Services. The
brokers intercept the incoming messages and route them (unaltered) to the remote
service. In this approach, the messages partake in NB Quality of Service features as long
as they are within the boundaries between the end proxies. The connections between the
proxies and the external endpoints are not covered by NB. One may adopt this approach
when the remote web service is normally unreachable (due to firewalls) or when one
wishes to hide the actual service’s or client’s URL. It also allows legacy
implementations to be integrated with minimal alteration. We have adopted this
approach for GridFTP tunneling and have also tunneled ordinary SOAP messages this
way.

Second, we may follow the approach of directly integrating SOAP support into NB
(middle of Figure 2). Here the services are also brokers and send SOAP messages

directly over NB virtual connections. We may insert any number of brokers in between
the two services, which may act as SOAP relay nodes [Fox, 2004a].

NaradaBrokering Service Integration
Proxy Messaging w M

Handler Messaging

o

@
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Any Transport

Notification

9 Service

NB Transport ~ mmmmmm Standard SOAP Transport

Proxy

B |ternal to Service: SOAP Handlers/Extensions/Plug-ins Java (JAX-

RPC) .NET Indigo and special cases: PDA's gSOAP, Axis C++

Figure 2 Approaches to integrating Narada and Services.

Finally, NB may be used to send events/notifications between services. Relevant
specifications include WS-Notification and WS-Eventing. This is somewhat different
than the first two approaches, and will coexist with them. In the first two cases, we have



pull-style messages: we are invoking the service’s main interface and have an expected
behavior from the service. In the last case, a service that is part of a cooperating group of
services may need to notify its other partner services of various events (such as “I’m
alive” or “I’m going away” in the simplest cases.) It is up to the event recipient to decide
what to do with the message. This is an example of push messaging. Proxy messaging
and handler messaging are alternatives to each other. Notification can by used by
services in either case.

2.3. Reliable Messaging

Messaging in SOA-based grids often requires reliable messaging: the message originator
usually needs to know if the message was actually received by the designated endpoint.
Two competing specifications (WS-ReliableMessaging and WS-Reliability) provide
straightforward solutions to this problem through acknowledgement messages. In both
cases, the reliability Quality of Service capability is implemented as a SOAP header
element that goes along with the normal SOAP message body.

Interestingly, the reliability approaches closely resemble the TCP/IP mechanisms, but in
the application layer of the protocol stack. That is, reliability is an example of
duplicating (previously considered) core networking functions in the application layer.
Thus, we may use application layer reliability (implemented in SOAP messages sent over
NB) to send messages over higher-performance UDP, eliminating the redundant TCP/IP
features. We have implemented WS-ReliableMessaging and are in the process of
integrating it with NB SOAP support.

2.4. Fault Tolerance

Reliable messaging is somewhat misnamed, as it does not define what should happen if
messages actually fail to arrive; rather, it just is a mechanism for communicating failure
or success. We may improve the implementation by providing some additional
guarantees of delivery through fault tolerant messaging. Here, messages that partially or
completely fail to reach their endpoints may be resent. This requires features such as
persistent storage and once-only delivery. This feature is part of the core
NaradaBrokering system (see Table 1) and may be applied to Web Service messaging.

2.5. Building the Internet-on-Internet (10I)

In the previous section we have previewed an interesting and important development in
Web Services: they are beginning to mimic the capabilities of the lower level network
within their messages and messaging implementations. Reliability and fault tolerance are
two prominent examples.

We refer to this as the “Service-Internet-on-Bit-Internet,” or 101. 10l is essentially a
reimplementation of standard low-level networking capabilities at the higher application
level. Typical 101 capabilities include several items listed previously:
1. Support for multiple transport protocols
2. Support for many different message delivery protocols, such as reliable delivery,
once-only delivery, ordered delivery, and persistent delivery/delivery replay.
3. Application-level performance optimization through compression/decompression.



4. Fragmentation/coalescence of messages, which may be delivered over separate
routes, in parallel. One may use this to do higher performance file transfers and
to increase the reliability of large file transfers.
Security services, such as message encryption and authorization.
Time stamping services to assist with ordered delivery and replay.
Congestion control and dynamic best-route determination.
. Performance monitoring.

9. Ad-hoc network support
All of these are traditional “low-level” networking capabilities that can be re-
implemented in the NaradarBrokering messaging substrate layer, on top of traditional
networking. That is, we may provide the above enhancements to existing Web Service
implementations without requiring any modification to the existing services. We may to
further and use broker topologies to mimic network topologies, creating overlay
networks, “virtual private grids”, firewalls, and demilitarized zones [Fox, 2005a].
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3. Context and Information Environments (CIE)

In addition to the 101 capabilities, we may identify a number of other requirements
needed to manage Grid Web Service organizations. That is, if implemented correctly, the
101 fabric may be invisible to the applications that run in it. Although an application
developer may conceivably want to directly touch this layer, this would not be the usual
practice. Instead, they would specify the desired Quality of Service and let the 101 fabric
implement this.

There are a number of higher level services and capabilities that do not belong in the 101
layer. As a general rule, these are services that extend (rather than mimic) the lower level
networking features and are more specifically needed for Web service management.
Typical examples include service information and metadata management. We refer to
this collection of capabilities as the Context and Information Environment.

The basic problem is the following: which service or sequence of services actually
accomplishes my desired result? In our Grid of Grids approach, there are various service
collections that provide the basic capabilities. There are execution services for running
remote applications and orchestrating cooperating services, there are data grid services
that provide access to remote data, there are collaboration services, and so on. These
services are used to build “useful” grids and are maintained in an 10Ol fabric that is
responsible for the messaging infrastructure and the related qualities of service. The
relationship of the 101 to the CIE is shown in Figure 3.

In the Grid of Grids approach, the services must share higher level information about
themselves. This is commonly called metadata. We may extend this to the problem of
building Information Grids (and their derived group, Knowledge Grids) that build on the
more traditional Execution and Data Grids.

The problem in the Grid and Web Service world is that the metadata/information problem
for describing services is very confused.



e The WS-Interoperability (WS-I) consortium has essentially endorsed UDDI, but it
has a number of problems (rigid data models that don’t describe science Grids
very well, no mechanisms for dynamic service discovery, and no way to clean up
obsolete information, to name a few examples.)

e The Semantic Web has worked for a number of years on metadata descriptions
and more sophisticated knowledge management, but tends to get ignored by the
Web Service community, at least in the United States. Recent developments in
the UK e-Science program and elsewhere may eventually reverse this trend.

e The Grid community has two competing concepts (the WSRF specification suite
and WS-GAF) on managing metadata, particularly when it concerns dynamically
evolving resource state information.

e From OASIS we have the WS-DistributedManagement suite of specifications and
WS-MetadataExchange.

We thus view this as an important area for future development. Our focus here has been
to take a particular domain area (the GIS Grid) and attempt to address its specific needs
using general approaches, starting from extensions to UDDI that support leasing and
domain-specific extensions. This work is described in [Aktas, 2004].

Application Specific Grids Higher
Generally Useful Services and Grids Level
Workflow WSFL/BPEL Services
Service Management (“Context etc.”) Service
Service Discovery (UDDI) / Information t Context
Service Internet Transport - Protocol Service
Service Interfaces WSDL t Internet
Base Hosting Environment
Protocol HTTP FTP DNS ... 4
Presentation XDR ... Bit level
Session SSH ... Internet
Transport TCP UDP ...
Network IP ...
Data Link / Physical v

Layered Architecture for Web Services and Grids

Figure 3 Layered architecture for Web Services and Grids.

In our own experience, information services are closely tied to user environments and so
have been closely tied to computing portal systems. These types of information systems
are often bound directly with the portal container and portal services. As we discuss in
the section below, this decision has been workable but leads to design difficulties as
portal systems evolve.



3.1. Component-Based Grid Portals

Grid Computing Portal development through early 2002 is comprehensively covered in
[Hey, 2002]. However, major developments in portal systems, over and above advances
and transitions in Grid computing infrastructure, have occurred since the original
comprehensive survey of Currency and Computation. We may characterize the current
state of the field as being at the end of one important revolution (standardized, reusable
portlet components) and at the verge of another: service-based containers. It is the
purpose of this section to survey the first revolution and hopefully preview the
importance (but perhaps not inevitability) of the second.

The Grid Computing Environments (GCE) research group of the Global Grid Forum
represented an extensive cross section of Web and client developers for building client
environments for computational Grids. These group meetings resulted in papers
collected in [Hey, 2002]. Particularly important here is the survey and synthesis of Fox,
Gannon, and Thomas [Fox, 2002], which identified portal research classifications and
many commonalities between different projects. This formal classification reiterated the
more informal conclusions of the GCE community. The key problem was that there was
no technically elegant way of sharing portal capabilities between groups. Reinvention
was inevitable.

In many ways, the articles of [Hey, 2002] represent a formal closing to an era, as the first
step towards solving the interoperability and reusability problems was already at hand.
Several projects, notably the Alliance Portal, CHEF, GridPort, and GridSphere, adopted
portlet approaches to building their (Java-based) portal systems. These generic portal
efforts were complemented by application portal efforts, including NEESGrid, CMCS,
and SERVOGrid. For an overview of these early efforts to build component-based Grid
portals, see [Pierce, 2002] and [Gannon, 2004].

The impact of emerging portlet standards such as JSR 168 [Abdelnur, 2003] and WSRP
[Kropp, 2003] has had a sizable impact on the computational Grid portal community.
These standards allow portal developers to share and reuse standard components.

Portlets are very natural candidates for Web Service clients, and portlet containers can be
viewed as the counterpart to Web Service containers. Furthermore, portlet containers are
excellent at managing stateful clients. We summarize these two standards below.

e JSR168 defines a standard local portlet API in Java. JSR 168 compatible portlet
engines can load and run each other’s portlet code. Examples of JSR168-
compatible portlet containers include WebSphere, Jetspeed2, uPortal, and
GridSphere.

e \WSRP defines a standard remote portlet API in WSDL. That is, portlets run
separately and remotely from their container.

These two standards are compatible: JSR168 compatible portlets may act as proxies/web
service clients to the remote WSRP portlets. Both standards have shortcomings (some
possibly serious) and both have reference implementations that will need improvement,
but we expect portlet container developers and vendors to continue to support them
nonetheless.



3.2. Portlet Standard Shortcomings

Portlet standards such as JSR 168 represent workable but limited means of sharing
components between different (Java-based) portlet containers. Criticisms of this standard
are numerous, and summarized briefly below.
e |t does not support inter-portlet communication. There is no standard way for
portlets to share data or to send and receive messages with other portlets.
e |t does not define how portlets may access standard services used by their parent
container.
e More importantly, and crucially, it does not define patterns and mechanisms for
extending portlets to provide these services.
The first criticism has the most immediate consequences for Grid portlets: following
login, the portlets need a way to access in-memory proxy credentials, such as may be
obtained from a MyProxy server. The difficulty arises from the nature of the standard, in
which portlets can be distributed among several different (Java) servlet contexts. In the
Java Servlet specification, these contexts have separate classloaders and so do not
normally share data. Exceptions are possible: classes and their associated data may be
accessed through “common” and “shared” areas (literally, /common/lib and /shared/lib).

The problem with such approaches is that they break the portability and standardization
of the portlets. It is possible to build portable versions of these services, as has been done
by the Open Grid Computing Environments (OGCE) group, but the interface is not
standard and invariably will be reinvented by other groups. Alternatively, portlet
container providers may rely upon their richer but more proprietary service APIs to
provide the missing service. The key problem is not really missing data exchange
services or messaging services, but instead the missing extensibility to provide service
definition and instantiation capabilities within the portal (the third criticism, above). This
had led some projects (notably, Sakai) to move more heavily toward WSRP.

WSRP is no panacea. WSRP allows portlets to be decoupled from their containers and to
be written in other languages besides Java. But from the Grid perspective, it still has
shortcomings:

o ldentity-related services based on strong authentication are central to Grids, so
Web Service security methods must be adopted for establishing distributed
session identity.

e Problems in distributed session management must be addressed. External context
registries are needed to manage stateful interactions arising between multiple
WSRP tools and their remote containers.

e Group definitions and management are not standardized. This is particularly
important for Grid portals, since the groups and organizations defined within the
portal should correspond to the externally defined Virtual Organizations.

These problems will be eventually addressed by the community, but, as we argue in the
next session, extrapolating solutions from current portal environments will lead to
specialized solutions.



3.3. Portlet Containers as Service Consumers

As we have reviewed in the previous section, portlet reusability and interchangeability
are limited by the portlet container. Portlets that comply with standards such as JSR 168
must either have limited capabilities or else must make non-standard extensions. WSRP
portlets have a richer interface but must ultimately suffer from similar problems, as XML
data objects (such as group identity and roles) must be standardized.

Solutions to the problems raised in the previous section merit some thought. The group
access controls of Grid portlets and services will serve as a representative example.
Currently, portal containers typically provide their own internal group management
subsystems. This must often be mapped to external group services, such as services that
provide Virtual Organization definitions. The immediate problem is that this mapping
(which also may not be complete) must be done on a one-time basis for every portal
container and every VO group service, leading to the usual combinatorial problems.
WSRP complicates these matters, as portlet containers must also share their internal
group definitions with the remotely running portlets. The individual solutions to this
problem are not difficult, but no comprehensive solution emerges from these approaches.
Instead, by refactoring the portlet container to be lightweight and to use a simple, Web
Service-based interface for group management, we may avoid the combinatorial
explosion. Portals in this case will rely on distinct services that may be implemented
externally to the container and that may be easily shared with other services in the
distributed system.

Portlet containers themselves are thus an excellent candidate for standardization through
Web Services. To date, there have been to our knowledge no efforts to standardize
common container services as Web Services. Such services include the following:

Logging: As we have seen, the distributed nature of portlet applications means that their
logs will be scattered, making management of distributed sites difficult. Standard
logging services are needed to coalesce the logged information.

Authentication: login and authentication are hallmarks of computational portals.
Several portal systems provide pluggable, extensible authentication modules but the
actual interface is not standardized, requiring one-time solutions for each container if one
wants to integrate portal and Grid logins into a singles-sign on system.

User account management: Currently, a user identity description is part of the JSR 168
specification, but this must be mapped to the legacy container identity description.
Decoupled WSRP-style Grid portal containers will require this.

Group management: Typically, portal containers provide their own internal group
management system. There is a very obvious bridge to externally defined Virtual
Organizations, but currently VOs themselves are somewhat loosely defined. This is a
potentially valuable external service as external, federating group services such as
Shibboleth/SAML and WS-Federation become more closely associated with the Grid
community.



Authorization and Roles: Related to group and user management, these services define
the privileges and restrictions that may be associated with certain users and groups.
They are distinct as, for example, the authorizations associated with a fixed group may
change over time.

Layout and Display Management: All portal containers provide services for managing
user display. This is essentially manages the aggregation of personalized user content.
This service controls the portlets that show up on the user’s display after login. Display
services must provide support for different user agent devices.

Portlet Information Services: One of the more straightforward applications of service-
oriented portals is to publish the availability of “live” portlet instances of incorporation
into existing services.

Content Management: These services associate various layout frames with specific
pieces of portlet content. Content management must interact with layout/display and
authorization services.

Again, we note that these services are not new: all containers must provide them at some
level. The problem is that the implementations have stressed tight integration, making it
difficult to disentangle highly interdependent services. By adopting clean, service
oriented design principles, it is hoped that next-generation portlet containers will be much
lighter-weight. We note however that there is no inevitability in this evolution. Portal
development groups still focus heavily on container development, rather than service
component or portlet development.

3.4. Portlet Containers as Services

We conclude this section with an observation of the implications of Portlet Web Services.
The architecture of portlet containers has become relatively standardized, even if
individual specifications continue to evolve. We have generally espoused the view in our
discussions that portals serve as the container environment for managing client requester
agents: portal containers aggregate Web Service clients and content. However, container
decoupling standards such as WSRP provide an additional possibility for the containers
to act also as service providers: the aggregated content of the portal may be directly
accessed through traditional browsers by users, or it may be accessed through Web
Service clients. We anticipate this will pose potentially difficult problems in trust and
delegation for traditional Grid application portals built on Execution Grid service
families, making this a rich problem for further study.

4. Summary

In this article we have reviewed Grid Web Service families that may be used to build
composite Grid organizations, or “Grid of Grids.” As we have discussed, there are two
prominent areas for integrating Grid families: at the messaging substrate layer and at the
information and context management layer. For the former, we have reviewed the
NaradaBrokering framework and our efforts to use it to integrate the messaging systems



of different Grid services. For the latter, we have focused primarily on portal
environments for managing Web Service requester agents.

The key role of messaging in Grid systems is often overlooked. While standard activities
such as Web Services Resource Framework provide means for services to communicate
with each other about changes in the state of the resources they manage, they do not
consider the use of the messaging system for transferring directly the communications
between requester and provider agents, perhaps through numerous SOAP intermediaries
and relay nodes. The SOAP 1.2 specification makes several changes on the earlier model
to emphasize the messaging nature of Web Services, and we are attempting to exploit this
in our current research work.

Computing portals have undergone a great deal of standardization over the last several
years, but much work needs to be done. We may view the current standardization around
reusable portlet components as more clearly defining the requirements for future work.
Specifically, portlets have more clearly defined the portlet container. We view
standardizing the container’s service interfaces as the important next step for the Grid
portal community: future portal containers will be lightweight, with decoupled service
implementations.
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