
 1 

Designing Grid Tag Libraries and Grid Beans  
Mehmet A. Nacar

1,2
,  Marlon E. Pierce

1
, Gordon Erlebacher

3
 and Geoffrey C. Fox

1,2
 

1
Community Grids Lab, Indiana University 
2
School of Informatics, Indiana University 

3
School of Computational Science, Florida State University 

{mnacar, marpierc, gcf}@indiana.edu 

erlebach@scs.fsu.edu 

Abstract: We present a detailed description of the implementation of a library of Grid tag libraries  and 

Grid beans for Grid Web portal development. Grid tags provide Java Server Faces (JSF) custom 

components for Grid services. They enable the definition of attributes to the Grid service parameters in a 

dynamic way embedded into JSF view pages. In addition, Grid beans provide client proxies to the Grid 

services. Grid tags and beans together provide a platform to develop Grid portlets easily. In addition to 

standard Grid job submission and remote file operation tags, we also provide management and 

monitoring capabilities for Grid tasks. This system can persistently store bean features and job 

parameters, which results in a permanent storage for archiving and reference.  

Keywords: Java Server Faces, Grid portals, portlets, tag libraries 

1. Introduction 

Grid Web portals are gateways to science 

applications and data simulations. For instance, 

TeraGrid [1] computing resources are accessed 

through gateway portals that provide higher 

level user interfaces to basic TeraGrid services. 

The Globus [2, 3] provides implementations for 

the core services, such as file transfers, remote 

job submission, and resource information 

retrieval. 

Most of the Grid services are accessible by using 

command-line tools or Web services clients. 

GCE Shell [4] supports Grid services by using a 

command-line tool. Grid portals provide user 

friendly Web interfaces. Both portals and 

command line environments are implemented 

using the Java CoG abstractions [5] that wrap 

Grid services to support an additional client-

programming layer on top of Grid services. 

Java-based portals may be built out of standard 

components, called portlets, which are 

standardized in the JSR 168 specification. Grid 

portlets are frontend clients of Grid services. 

Typical capabilities include client tools for 

interacting with the following services: 

• Credential generation and management 

• Job Submission 

• File transfer and operations 

• Monitoring and persistence 

• Resource management 

It is our observation that portlets work well for 

exchanging relatively complete applications 

between projects. There needs to be a way, 

however, to construct portlets themselves out of 

reusable components.  The capabilities listed 

above can be implemented as individual portlets, 

but typically we want to combine these common 

Grid capabilities into more specific portlets for a 

particular application.  For example, a portlet 

developed to submit a computational material 

science code needs to be composed out of job 

submission, file transfer, and job monitoring 

capabilities into a single portlet, rather than 

composed as a combination of existing job 

submission, file transfer, and job monitoring 

portlets.  Java Server Faces (JSF) [7] is a Web 

development framework that provides 

component model to build dynamic web pages, 

and forms the basis for our approach. JSF 

applications can be deployed as portlets by using 

the JSF portlet bridge [8], which provides JSR 

168 compatible libraries. The JSF component 

model can be customized to extend new tag 

libraries. We have used the JSF tag library 

framework to design Grid tags and beans to 

simplify Grid portlet development. 

In this paper, we discuss significant revisions 

and improvements to tag libraries based on the 

lessons we have learned in the previous work 

[9]. Our Grid tag libraries enable the design of 

Grid portlets out of basic Grid tasks.  We have 

changed the design of tag libraries, and we 



 2 

provide additional Grid tags and beans. Instead 

of using generic task tags, we have used specific 

tags such as myproxy, jobsubmit, fileoperation, 

and filetransfer, building off the work described 

in [5]. The new specification brings additional 

features for application developers. First, the 

new specification provides more attributes 

specific to Grid tags that are self-contained and 

can be customized easily. Second, composite 

tasks can contain an unlimited number of 

subtasks (limited to system resources), unlike 

the previous work, which was restricted to three 

multi-staged tasks. Both implementations are 

currently limited to “one deep” nested composite 

tasks, but the new approach will enable us to 

build recursively nested subtasks. The third 

advantage of Grid tags is that it gives liberty to 

developers to use their own Grid beans library or 

add more Grid beans to the existing ones.  

We summarize related works in the second 

section. The third section explains JSF Grid 

beans and tags. We introduce applications and 

conclude with future works. 

2. Related Work 

Grid portlets have been developed by a number 

of groups.  GridSphere’s Grid portlets [10] 

provide a set of capabilities that supports Grid 

services available by the Globus toolkit, 

including GRAM, Grid FTP, MDS, GRIS, 

MyProxy, Web Service Resource Framework 

(WSRF) for GT4 and Open Grid Services 

Architecture (OGSA). These portlets are built on 

JSP and use the Grid portlet services of 

GridSphere. GridSphere Grid portlets are strictly 

dependent on the GridSphere portal framework; 

as a result these portlets are not portable among 

portal containers. 

Reasonable Server Faces (RSF) [11] is another 

Web framework that works to separate the 

presentation and logic.  It enables HTML pages 

to be totally independent from the backing 

beans. It also supports simple beans in the 

request scope. The beans are outside of local 

JVM and are created in the Spring container 

[12]. Similar to JSF, RSF supports custom 

components. In this case, components do not 

present any view behavior, unlike JSF.  In other 

words, RSF components are non-visual. This is 

one advantage of RSF in terms of developing 

Grid tags. RSF tags are described in XML and 

do not directly tie to technology specifications 

like JSTL [13]. RSF tags must comply with 

rendering technologies like IKAT [14].   

OGCE portlets [15] are built on Velocity and 

provide access to common Grid services through 

the Java CoG abstraction layer [5]. OGCE also 

provides portlets for Condor and Storage 

Resource Broker services. These portlets are 

compliant with JSR 168 and portable among 

portal frameworks. For example, one can deploy 

OGCE portlets on either GridSphere or uPortal. 

Each portlet provides a single Grid capability.  

JSR 168 does not support inter-portlet 

communication in its specification; however, 

OGCE portlets has to share session data to 

access proxy credential.  

3. JSF Grid Tags and Grid Beans 

We aim to provide a set of Grid tags in JSF that 

can be used to build Grid portlets. Our tag 

libraries provide common Grid capabilities such 

as proxy credential management, job 

submission, file operation, and workflow by 

means of multi-staged tasks. Grid tags are 

associated with Grid beans to access Grid 

services. Grid bean methods are bound to tags 

with attributes.  These can then be used to 

simplify the building of new Grid portlets.   

3.1 Grid tags 

Grid services are interfaced by Java CoG 

abstractions. These programming interfaces have 

capabilities to generate proxy certificates, 

submit jobs, transfer files and make file 

operations. They also provide composite task 

submissions and their handling.  

JSF technology helps to build user interfaces 

based on an object-oriented component 

approach. JSF tags are built from Java classes 

that can be extended using JSF component 

model. New components derive from JSF base 

component classes. Each component should 

define its attributes, which can bind values, 

methods or actions. A full discussion explaining 

how to extend JSF components is beyond the 

scope of this paper.  We recommend [16] for a 

tutorial on this subject. 



 3 

The main goal is to make Grid portlet 

development easier by encapsulating standard 

Grid operations with JSF tags.  These tags can 

be assembled to create composite tasks. In 

traditional Web frameworks such as Velocity 

and JSP backing bean objects and HTML tags 

are mixed within the server pages. Instead JSF 

eliminates this intervention by proposing JSF 

tags that separate backing bean and server pages.  

3.2 Use case example 

Typically a Grid portlet must do several related 

tasks in response to a user-generated event.  

These may be thought of as simple workflows. 

These workflows can be considered the nodes of 

a Directed Acyclic Graph (DAG), which are 

Grid tags are designed to support.  The DAG, or 

composite task, is called ‘multitask’ in our 

approach. Multitasks only allow dependent task 

units and prevent parallel tasks. Figure 1 shows 

a multitask with sub-tasks and their 

dependencies. In this example, Task A makes a 

directory. Task B transfers an input file form a 

remote host to newly created directory, and Task 

C is responsible for submitting a job on the 

remote computer. When Task C completes, Task 

D transfers output file to another location. The 

following explains the scenario in detail through 

the use of Grid tags. 

This example demonstrates a composite Grid 

task with Grid tags. The JSF snippet below 

(Listing 1) shows how a portlet developer would 

create a custom Grid portlet. First, a myproxy 

tag generates a proxy credential form 

gf1.ucs.indiana.edu myproxy server. Second, 

using this credential, it makes a directory on the 

TeraGrid resource cobalt.ncsa.teragrid.org. 

Third, it transfers an input file called input_file 

from gf1.ucs.indiana.edu  to 

cobalt.ncsa.teragrid.org.   Forth, it then 

executes a script called execute. When the 

execution is completed outputs are written to the 

file named result. If an error occurs it is also 

written to the file named error. Finally, result 

file is transferred back to 
gf1.ucs.indiana.edu. 

 

 
Figure 1. A typical multistage Grid job involves 

four sub-tasks: moving an input file to a 

particular execution host, submitting the job, and 

moving the output to a storage host. 

The <%@taglib 

uri="http://www.ogce.org/gsf/task" 

prefix="o"%> tag is used at the top of the page 

to define the custom tags called with the “o” 

namespace. Application developers must define 

Grid operations in a Web form. The <o:submit> 

tag is a submitting button for the composite task 

that is bound to a JSF action method [16]. The 

<o:multitask> defines composite task and 

<o:dependency> defines their dependencies. The 

tasks <o:myproxy>, <o:fileoperation>, 

<o:filetransfer> and <o:jobsubmit> are unit 

tasks for this composition. The dependency tags 

indicate that taskA must complete successfully 

before taskB will run, taskB must complete 

successfully before taskC can be run and taskC 

must complete successfully before taskD could 

run.  Complete XML schema specifications of 

Grid tags can be found at [17]. Each Grid tag is 

associated with UI component and tag class that 

is explained in great detail in section 3.4. 

3.3 Grid Beans 

Grid tags and beans work together to perform 

Grid tasks. Grid tags provide the JSF 

components for Grid applications, while Grid 

beans provide the business logic of Grid 

applications. We have implemented Grid beans 

in a generic and standard way to support 

underlying Grid technologies. We have also 

attempted to design our tag libraries to support 

other Grid bean implementations. The Grid 
 

 

 



 4 

<%@taglib uri="http://java.sun.com/jsf/core" prefix="f"%> 

<%@taglib uri="http://java.sun.com/jsf/html" prefix="h"%> 

<%@taglib uri="http://www.ogce.org/gsf/task" prefix="o"%> 

<f:view> 

   <h:form id=”myform” > 

      ....... 

      ....... 

      <o:submit id=”test” action=”next_page” /> 

         <o:multitask id=”mytask” taskname=”test” persistent=”true” > 

            <o:myproxy id=”proxy” hostname=”gf1.ucs.indiana.edu” port=”7512”      

                       lifetime=”2” username=”manacar” password=”******” /> 

 

            <o:fileoperation id=”taskA” command=”mkdir”  

                            hostname=”cobalt.ncsa.teragrid.org”  

                            path=”/home/manacar/tmp/” /> 

 

            <o:filetransfer id=”taskB” 

from=”gridftp://gf1.ucs.indiana.edu:2811/home/manacar/input_file” 

to=”gridftp://cobalt.ncsa.teragrid.org:2811/home/manacar/tmp/input_file” /> 

 

            <o:jobsubmit id=”taskC” hostname=”cobalt.ncsa.teragrid.org” 

                         provider=”GT4” executable=”/bin/execute” 

                         stdin=”tmp/input_file” stdout=”tmp/result”  

                         stderr=”tmp/error” /> 

 

            <o:filetransfer id=”taskD” 

from=”gridftp://cobalt.ncsa.teragrid.org:2811/home/manacar/tmp/result” 

to=” gridftp://gf1.ucs.indiana.edu:2811/home/manacar/result” /> 

 

            <o:dependency id=”dep1” task=”taskB” dependsOn=”taskA” /> 

            <o:dependency id=”dep2” task=”taskC” dependsOn=”taskB” /> 

            <o:dependency id=”dep2” task=”taskD” dependsOn=”taskC” /> 

  

         </o:multitask> 

      </o:submit> 

 

   </h:form> 

</f:view> 

Listing 1: Grid tag libraries are used to build a sample Web form. 

beans are generic tasks that may be extended 

using other toolkits besides Globus. For 

example, the JobSubmitBean for job submission 

uses Globus resources in our implementation. 

Developers can create their own beans with 

other toolkits.  For example, Condor can be used 

for job submissions rather than Globus.  

However, this requires that Grid bean method 

names should be standardized and required bean 

methods has to be provided. For example, 

actions methods should  be called submit in all 

beans. Parameter names should also be 

consistent throughout the beans e.g., hostname, 

provider, username and executable etc.  

Our Grid beans are listed below.   

• MyproxyBean: This bean generates user 

proxies and stores the Grid credential in 

the session. 

• JobSubmitBean: Executes GRAM job 

submissions. 

• FileOperationBean: Performs common 

file and directory operations like rm, 

mkdir, put, get 

• FileTransferBean: Transfer files among 

GridFtp servers 

• MultitaskBean: Creates composite tasks 

and execute them. 

Note that these are independent of the JSF 

framework.  The Grid tag libraries shown in 

Listing 1 are built from these, as we describe in 

the next section. 

3.4 Design and management of Grid 
tags 

Grid tag libraries are built using JSF custom 

component development techniques. A standard 



 5 

JSF tag requires at least two classes to be 

implemented: the ComponentTag and 

IUComponent classes must be extended. Tag 

names and attributes have to be defined in a tld 

file and this file is added to web.xml. Component 

names and classes are defined in faces-

config.xml. A full explanation of JSF custom tag 

development is available from [16].  

Custom component classes extend the 

UIComponentBase class and are normally 

associated with HTML or other rendered 

widgets (input fields, buttons, etc.) in the user 

interface. We have implemented several custom 

UI components, including UISubmit and 

UIMultitask, as discussed here. Components can 

access a map (specifically, a java.util.Hashmap) 

of attributes and child components. If the 

component is visual like UISubmit (which we 

associate with the HTML <submit> button), it 

also implements encoding and decoding 

methods to process HTML markup. If the 

component is non-visual (i.e. does not need to be 

converted into HTML), it is associated with a 

null renderer. UIMultitask class is a non-visual 

component. In addition, the JSF ComponentTag 

class extension has to implement release(), 

setProperties(), getComponentType(), and 

getRendererType() methods. The setProperties() 

method binds attribute values and methods to the 

associated UIComponent.   

In JSF, the tags and attributes are used to render 

displays and communicate attribute values (see 

Listing 1).  We encapsulate the actual logic of 

the page (associated with user button clicks) in 

several beans that are called by the UISubmit’s 

action method.  Besides tag and component 

classes, there are core beans as following: 

• ResourceBean: A general bean to collect 

property values used in JSF form pages. 

By default it loads property values from 

a resources.properties file. 

• FactoryBean: Manages multiple Grid 

beans (super class of JobSubmitBean, 

FileOperationBean and 

FileTransferBean) and MultitaskBean 

instances for a single user 

• MonitorBean: Monitors and manages 

bean executions 

• TaskListener: Catches Grid bean 

execution stages and propagates events 

back to the monitoring bean. 

• ComponentBuilderBean (CBB): 

Retrieves Grid components from JSF 

pages (see Listing 1) and builds internal 

hierarchical directed graph of the grid 

actions to be taken 

ResourceBean, MonitorBean and 

ComponentBuilderBean are managed by JSF’s 

session handling mechanisms and are declared 

in the faces-config.xml file. CBB is not normally 

used directly by developers in their JSF pages. 

They instead interact with this object through 

Tag libraries. Application developers can 

directly use ResourceBean and MonitorBean to 

build up pages. 

 

 
Figure 2. Shows architecture of 

ComponentBuilderBean and its components  

Figure 2 shows the architecture of components. 

In this diagram, bean and listener tables are in 

the HttpSession and tables store bean and 

listener objects in a Hashmap. CBB handles user 

requests on the server side using Grid bean 

property values provided by ResourceBean. The 

actions are fired off by the Grid submit tag that 

is bound to the submit method of CBB. Its 

action listener catches the event and calls 

required methods to parse custom components. 

FactoryBean then constructs corresponding sub-

tasks. Next, CBB constructs a taskgraph using 

MultitaskBean. CBB adds child components 

which are Grid beans and their dependencies. It 

then submits the taskgraph and passes the 

control to the submit button’s action attribute. 

The JSF engine handles the value of the action 

attribute, while a navigation rule points to the 

destination page based on the attribute value. 



 6 

The above classes (particularly the Factory 

Bean) are designed to accommodate a common 

use case in Grid portlets that is not handled well 

by JSF: we need to construct many beans for 

encapsulating many submissions by a single user 

in a single session. JSF manages the sessions 

(lifecycle) of beans but these are statically 

configured in faces-config.xml, so we need an 

approach to create and manage lots of Grid 

beans. We must also address a disparity of time 

scales: JSF event processing may take 

milliseconds, while the corresponding backend 

action may take much longer. Our solutions are 

described in the following section.  

3.5 Design Principles 

We have used the strategy of returning 

immediate results to the user such as passing the 

control to the next page since Grid operations 

can take a long time to complete. Thus, a user 

submits the job in one page and is not required 

to wait until the job finishes. Instead, users are 

able to monitor their jobs in another page. To 

maintain this scenario, either we need to keep 

callbacks for each job or to store listeners for 

each job in the servlet HttpSession object. We 

have therefore used CBB that take care of each 

request in the session. Then we stored bean 

instances and their listeners into tables 

(Hashmap) among the session with taskname 

key. The taskname key is created by putting the 

user-defined taskname (collected from Web 

form input) and the timestamp together to 

provide a reasonable ID.  

Grid tags launch Grid operations. Keeping track 

of lifecycles and archiving are also important 

aspects of Grid portlets. Thus, we define a 

<o:handler/> tag in Listing 2 that provides 

capabilities allowing users to manage lifecycles 

manually such as canceling, suspending, and 

resuming the jobs. The <o:handler> tag is visual 

and it is rendered as HTML button. The session 

tables only persist until the servlet session 

expires or terminates. So we need to have 

mechanism to persistently preserve them in a 

permanent storage. The persistent attribute of 

the multitask tag switches archiving on and off 

(see Listing 1). A context server [9] provides 

archival facilities that store bean values and the 

status in a structured way. 

<f:view> 

  <h:form id="first" > 

    <h:dataTable 

value="#{tasklist.tasks}" 

var="task"> 

      <h:column> 

        <f:facet name="header"> 

          <h:outputText 

value="Handler" /> 

        </f:facet> 

        <o:handler id=”delete” 

action="#{monitor.cancel}" >          

         <f:param id="task" 

name="taskname" value="#{task}"/>        

        </o:handler>  

      </h:column> 

    </h:dataTable> 

  </h:form> 

</f:view> 

Listing 2. The handler tag is used with 

<h:dataTable> to create a table of tasks and 

enable cancellation actions. 

Figure 3 illustrates the user interaction with the 

Grid beans and tags is illustrated. When user hits 

a submit button, CBB takes control. CBB first 

constructs a multitask with the components 

defined by the Grid tags. CBB also submits  the 

multitask and manages its lifecycle with 

associated listeners. After the submission is 

completed, control is passed to MonitorBean 

shown on the right. MonitorBean interacts with 

the session to retrieve the information of 

submitted tasks. 

3.6 Monitoring and management of 
jobs 

Monitoring pages are responsible for keeping 

track of submitted tasks. Grid tasks usually take 

time to process. Consequently, managing the 

persistence of the tasks and archiving the results 

and input parameters are important for portal 

users. CBB provides a mechanism to store task 

handlers into persistent storage in the user’s 

workspace. Monitoring pages collect status 

information and task parameters from user’s 

workspace with a key named taskname. In 

general, CBB provides status information and 

updates archival storage accordingly. This has 

an important advantage that caches the 

monitoring information in the session. On the 

other hand, CBB stores URL handlers of 



 7 

 
Figure 3: Sequence diagram for Grid tags and beans including user interaction. 

submitted jobs which are provided by the 

Globus API. A URL handler is important for 

persistence. In case the user logs out or a session 

expires, the handler can always be accessible 

from archive and the user can retrieve status 

information with it. 

Monitoring pages check the status of submitted 

tasks.  We model task with Java Bean class 

called JobData.  Each submitted task has an 

associated JobData object.  The collection of 

JobData objects is stored in a java.util.List.  Job 

status information is displayed in HTML using 

the JSF HtmlDataTable component (which JSF 

converts to an HTML <table>). Properties stored 

in the JobData object include  taskname, input 

parameters, output and error file locations, start 

time, finish time and status.  

Portal users can manage the tasks that resume, 

cancel or resubmit jobs. The MonitorBean 

supports these capabilities for active (running) 

tasks. The MonitorBean allows users to manage 

their job archive: failed tasks may be deleted or 

renamed for resubmission. Successful task 

results and output files can be downloaded or 

transferred to permanent storages. 

3.7 Additional Topics: Collecting User 
Input Values and Handling Navigation 

Our Grid tags are primarily non-visual 

components in a JSF page that are associated 

with submit button actions.  However, many of 

the tag attributes (e.g., which host to use or input 

file to copy) must come from user input.  This is 

done using Web forms. Thus, Grid tags are 

embedded into a complete JSF page that 

contains a Web form that has visual input and 

output text elements. There are only two 

exceptions: the <o:submit> and <o:handler> tags 



 8 

are bound to a button that triggers series of 

actions behind the scenes. Since Grid tags are 

unable to get inputs from the page, we need a 

mediator to communicate these user-provided 

inputs to our Grid tags. 

ResourceBean provides a simple way to 

represent common property values across the 

application. We define common property values 

for Grid beans such as hostname, provider, 

username etc. Each of these values corresponds 

to Grid tag attributes. Thus, ResourceBean gets 

its value from the Web form dynamically and 

assign it to the Grid tag attribute. ResourceBean 

enables users to enter dynamic values in the 

form and submit their tasks with these values. 

JSF page navigation is somewhat complicated 

compared to JSP page navigation, as the JSF 

pages’ links and HTML form actions do not 

directly point to the next page to load.  Instead, 

JSF navigation rules for a particular web 

application are configured in the faces-

config.xml file. Similar to standard JSF, 

advanced navigation controls the page with 

constant values as well. The <o:submit> button 

provides action attribute (see Listing 1) that 

assign a constant value for the destination page. 

Action methods and action listener methods of 

the <o:submit> tag are hidden from the 

application developers to reduce the complexity. 

But the navigation is left to application 

developers. The advantage of this architecture is 

that users need not wait on the submit page until 

it is completed. Instead they are directed to the 

destination page immediately (i.e., 

asynchronously). 

4. Applications and Future Work 

The Grid tags and beans described here are used 

by several science portal applications. The 

Virtual Laboratory for Earth and Planetary 

Materials (VLab) portal is mainly focused on 

computational methods of material science. In 

this case, scientists launch PWSCF [18] 

simulations and get visual results. VLab job 

submission portlets enable material scientists to 

launch and monitor simulations through Grid 

portal. We have developed VLab portlets to use 

Grid tags and beans to facilitate issuing 

credentials, file operations, remote job 

executions and file transfers. 

Grid tags are also being developed for use in the 

Common Instrument Middleware Architecture 

(CIMA) crystallography portal [19].  CIMA 

provides access to X-Ray crystallography, 

instrument and sensor data.  Sample data 

includes CCD images of crystals as well as 

laboratory conditions such as temperature and 

humidity. The CCD images may also be post-

processed.  One of the post-processing 

applications used is SAINT [20], used to 

integrate CCD image frames, sort reflection 

lists, scale, filter, and merge reflections. In this 

case, crystallographers launch a SAINT 

application using multitasks to initiate an image 

analysis. This process results in image files that 

are being downloaded to a portal server and are 

made available for users.  

In this paper, we have described the design, 

implementation and usage of Grid tags and 

beans for developing Grid portlets.  This extends 

and  improves both the interface and 

implementation of our previous work. Using a 

fine-grained component architecture enables the 

construction of science application specific Grid 

portlets in terms of reusable Grid tags. 

Dynamically monitoring and tracking status 

changes of tasks is another important aspect of 

Grid portals. We are considering the use of Ajax 

[21] technology in the next release. In the 

current architecture, multitasks are currently 

limited to “one-deep” graphs and are not 

recursive. We will consider adding this 

capability. We also need to investigate 

supporting the second-generation of portlet API, 

JSR 286 [22].  

5. Acknowledgements 

This work is supported by the National Science 

Foundation’s Information Technology Research 

(NSF grant ITR-0428774, 0427264, 0426867 

VLab) and Middleware Initiative (NSF Grant 

SCI 0330613) programs.  

6. References 

[1] Charlie Catlett, "The Philosophy of TeraGrid: 

Building an Open, Extensible, Distributed 

TeraScale Facility," ccgrid, p. 8,  2nd 

IEEE/ACM International Symposium on Cluster 

Computing and the Grid (CCGRID'02),  2002. 



 9 

[2] Foster, I. and Kesselman, C. Globus: A Toolkit-

Based Grid Architecture. In Foster, I. and 

Kesselman, C. eds. The Grid: Blueprint for a 

New Computing Infrastructure, Morgan 

Kaufmann, 1999, 259-278. 

[3] Foster, I., Kesselman, C. and Tuecke, S. The 

Anatomy of the Grid: Enabling Scalable Virtual 

Organizations. International Journal of High 

Performance Computing  

[4] Mehmet A. Nacar, Marlon Pierce and Geoffrey 

C. Fox Developing a Secure Grid Computing 

Environment Shell Engine: Containers and 

Service Special issue on Grid computing in 

Journal of Neural Parallel and Scientific 

Computations (NPSC), Volume 12, pages 379-

390, 2004 

[5] Kaizar Amin, Gregor von Laszewski, Rashid Al 

Ali, Omer Rana, and David Walker, An 

Abstraction Model for a Grid Execution 

Framework,  Journal of Systems Architecture, 

Volume 52, Issue 2 , February 2006, Pages 73-

87, Parallel, Distributed and Network-based 

Processing. 

[6] Abdelnur, A., Chien, E., and Hepper, S., (eds.) 

(2003), Portlet Specification 1.0. Available from 

http://www.jcp.org/en/jsr/detail?id=168. 

[7] Craig McClanahan, Ed Burns, Roger Kitain. 

Java Server Faces Specification. Version 1.1. 

[8] Apache portal bridges Web site: 

http://portals.apache.org/bridges/ 

[9] Mehmet A. Nacar, Mehmet S. Aktas, Marlon 

Pierce, Zhenyu Lu and Gordon Erlebacher, Dan 

Kigelman, Evan F. Bollig, Cesar De Silva, 

Benny Sowell, and David A. Yuen VLab: 

Collaborative Grid Services and Portals to 

Support Computational Material Science Dec 30, 

2005 Special Issue on Grid Portals based on 

SC05 GCE'05 Workshop, Concurrency and 

Computation: Practice and Experience.  

[10] Michael Russell, Jason Novotny, Oliver 

Wehrens: The Grid Portlets Web Application: A 

Grid Portal Framework. Parallel Processing and 

Applied Mathematics (PPAM) 2005: 691-698. 

[11] Reasonable Server Faces Web site: 

http://www2.caret.cam.ac.uk/rsfwiki/Wiki.jsp?pa

ge=Main 

[12] Spring container Web site: 

http://www.springframework.org/ 

[13] Bayern S., JSTL in Action. Manning. 2002. 

[14] IKAT Web site: 

http://www2.caret.cam.ac.uk/rsfwiki/Wiki.jsp?pa

ge=IKAT 

[15] Jay Alameda, Marcus Christie, Geoffrey Fox, 

Joe Futrelle, Dennis Gannon, Mihael Hategan, 

Gregor von Laszewski, Mehmet A. Nacar, 

Marlon Pierce, Eric Roberts, Charles Severance, 

and Mary Thomas The Open Grid Computing 

Environments Collaboration: Portlets and 

Services for Science Gateways March 2006 

Concurrency and Computation: Practice and 

Experience Special Issue for Science Gateways 

GGF14 workshop 

[16] How to write your own JSF components. Web 

site: 

www.exadel.com/tutorial/jsf/HowToWriteYour

OwnJSFComponents.pdf 

[17] http://grids.ucs.indiana.edu/users/manacar/GridT

ags/GridTagsInterface/GridTagsXMLSchema.xs

d 

[18] S. Scandolo, P. Giannozzi, C. Cavazzoni, S. de 

Gironcoli, A. Pasquarello, and S. Baroni, First-

principles codes for Computational 

Crystallography in the Quantum-ESPRESSO 

package, Z. Kristallogr. 220, 574-579 (2005). 

[19] Hao Yin, Donald F. McMullen, Mehmet A. 

Nacar, Marlon Pierce, Kianosh Huffman, 

Geoffrey Fox and Yu Ma Providing Portlet-

Based Client Access to CIMA-Enabled 

Crystallographic Instruments, Sensors, and Data 

Technical Report April 21 2006 with short poster 

version for 7th IEEE/ACM International 

Conference on Grid Computing (GRID 2006). 

Barcelona, Spain. 

[20] SAINT Web site: http://xray.utmb.edu/saint.html 

[21] Michael Mahemoff. Ajax Design Patterns. 

O’Reilly. 2006 

[22] Stephen Hepper. Java Portlet Specification 

Version 2.0 Early Draft. July 2006. 

 

 

 


