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Abstract—MapReduce is increasingly considered as a useful 
parallel programming model for large-scale data processing.  It 
exploits parallelism among execution of primitive map and 
reduce operations.  Hadoop is an open source implementation of 
MapReduce that has been used in both academic research and 
industry production.  However, its implementation strategy that 
one map task processes one data block limits the degree of 
concurrency and degrades performance because of inability to 
fully utilize available resources.  In addition, its assumption that 
task execution time in each phase does not vary much does not 
always hold, which makes speculative execution useless.  In this 
paper, we present mechanisms to dynamically split and 
consolidate tasks to cope with load balancing and break through 
the concurrency limit resulting from fixed task granularity.  For 
single-job system, two algorithms are proposed for circumstances 
where prior knowledge is known and unknown.  For multi-job 
case, we propose a modified shortest-job-first strategy, which 
minimizes job turnaround time theoretically when combined with 
task splitting.  We compared the effectiveness of our approach to 
the default task scheduling strategy using both synthesized and 
trace-based workloads.  Simulation results show that our 
approach improves performance significantly.   

Keywords: MapReduce, Bag-of-Divisible-Tasks, Task 
Splitting, Load Balancing 

I.  INTRODUCTION 

MapReduce [1] has gained popularity as a programming 
model for large-scale data processing in both academia [2] 
and industry, because of scalability, fault tolerance and ease 
of use.  In contrast to the traditional parallel programming 
models, e.g. MPI and workflow, where end users take the 
responsibility of decomposing a job into multiple tasks, in 
the MapReduce model, the framework itself takes the 
burden of the job decomposition.  The MapReduce model is 
based on data parallelization [3] which focuses on 
parallelization of data rather than operations applied to data.  
In MapReduce model, input data is modeled as key-value 
pairs.  Two primitive operations (map and reduce) are 
provided.  Each map operation operates on a key-value pair 
and may produce optional intermediate key-value pairs.  
Different map operations are independent.  The reduce 
operation takes output of map operations as input and 
produces final results.   

On the implementation side, tasks are schedulable entities 
and map operations must be organized as tasks for execution.  
The model itself does not impose any constraint on how 
map operations are grouped into tasks.  Theoretically, map 
operations of a job can be grouped arbitrarily without 
affecting correctness.  However, it affects efficiency of 
execution.  To maximize performance, load unbalancing 

should be avoided and tradeoff between concurrency and 
management overhead must be considered.   

Hadoop provides an open source implementation of 
MapReduce.  In addition, a distributed file system - Hadoop 
File System (HDFS) is provided which derives from Google 
File System. HDFS chunks files into equally sized data 
blocks.  The default strategy of map operation organization 
in Hadoop is that each map task processes key-value pairs 
contained in one block.  The size of key-value pairs may 
vary so that the number of key-value pairs stored in 
different blocks may differ. This simple and intuitive 
implementation strategy has several drawbacks we are 
targeting to solve.  

Firstly, it limits the degree of concurrency that can be 
achieved.  The number of map tasks is fixed given an input 
data size, an input format and a block size.  This imposes a 
limit on how concurrent the processing can be, because even 
if the number of available resources is larger than that of 
map tasks, not all available resources can be utilized.   

Secondly, Hadoop assumes that map tasks of a job 
require the same amount of work.  This assumption may not 
hold for several reasons.  The nature of the map operation 
may result in computation time skew even if map tasks 
process the same amount of data.  In addition, each task may 
process data of different sizes if user-defined input format is 
used.  Moreover, map tasks may slow down because of 
process hanging, software bug, software mis-configuration, 
and system fluctuation.  In clusters, the underlying hardware 
may be heterogeneous and the time taken to run a map task 
may be drastically different depending on the capacity of the 
node the task is dispatched to.   

Cluster resource usage varies depending on workload 
characteristics.  Usually severs are neither completely idle 
nor fully loaded.  A study [4] done by Google shows that 
server utilization is between 10% and 50% most of the time 
based on profiling result of 5000 servers during a six-month 
period.  As a result, the scheduling algorithm should fully 
exploit parallelism to utilize available resources to reduce 
job execution time.  Also, task execution time skew is 
observed in real studies. In the study of parallel BLAST, 
one task takes more than 18 hours to complete while other 
tasks take 30 minutes to complete on average [5].  

The above two drawbacks prohibit Hadoop from making 
full use of available resources even if they are idle.  In this 
paper, we mitigate them by dynamically splitting map tasks 
according to resource availability.  Our goal is to minimize 
average job turnaround time which is defined as the time 
between job submission and job completion.  It is a metric 
that directly reflects how the user perceives the performance 



of a system, compared with throughput that measures the 
performance from the perspective of system owner.  
Analysis of collected data from real Hadoop clusters shows 
that most of Hadoop jobs are map-only [6].  So in our study, 
we only consider map-only jobs.  We come up with Bag-of-
Divisible-Tasks model and propose two new processing 
steps - task consolidation and task splitting which 
dynamically adjust the granularity of tasks.  Then task 
splitting algorithms are proposed for single-job scenario 
where prior knowledge is known and unknown.  After that, 
multi-job scheduling is investigated and algorithms are 
proposed integrating Shortest-Job-First strategy and task 
splitting. Then extensive simulation experiments are 
conducted and performance is compared. Finally we 
summarize and conclude our work.   

II. RELATED WORK 

Traditional task scheduling algorithms [7] (e.g. list 
scheduling and clustering scheduling) utilize task graphs 
which capture data flow and dependency among tasks to 
make scheduling decisions.  Each scheduling decision has 
both spatial and temporal aspect, which means it decides 
when to start a task and on which node to start it.  The task 
graph itself is not adjusted to improve performance.  Bag-
of-Tasks [8,9] simplifies task graph by assuming that tasks 
of each application are independent, which is motivated by 
prior efforts such as SETI@home [10] and parameter sweep 
applications [11].  Infrastructures (e.g. Condor [12] and 
BOINC [13]) haven been developed for both computing 
grids and more distributed and heterogeneous architectures 
(e.g. desktop grids).  Traditional task scheduling research 
takes the strategy that once tasks start running, they are not 
modified dynamically.  Our work is complementary in that 
during run time tasks can be split and consolidated as 
needed to improve performance.   

There has been substantial research on load balancing 
which tries to balance resource usage in clusters [14].  Pre-
emptive process migration supports dynamically migrating 
of processes from overloaded nodes to lightly-loaded nodes.  
It’s possible that the whole system is well balanced while 
some nodes are idle (e.g. when the number of task processes 
is less than that of nodes). In that case, traditional load 
balancing algorithms cannot utilize idle nodes while our 
solution can split running tasks and dispatch spawned tasks 
to idle nodes. 

Hadoop supports speculative execution to cope with the 
situations where some tasks in a job become laggard 
compared with other tasks.  The assumption of speculative 
execution is that the execution time of map tasks does not 
differ much, which makes it possible for Hadoop to predict 
map task execution time without any prior knowledge.  
When Hadoop detects that a task runs longer than expected, 
it starts a duplicate task to process the same data.  Whenever 
any task completes, its other duplicate tasks are killed.  This 
can improve fault tolerance and mitigate performance 
degradation.  However the performance gain is obtained at 
the expense of duplicate processing of some data and more 

resource usage compared with process migration. In 
addition speculative execution triggered by uneven map task 
execution caused by the nature of map operation does not 
benefit at all, because duplicate tasks cannot shorten the run 
time either.  Our work is complementary to task speculation 
in that task splitting and task duplication can be used 
together to deal with long running tasks resulting from 
either the nature of map operation or system failure. 

Divisible load theory [15] tries to solve the problem that 
how load received at one node (called originator node) can 
be distributed to other nodes in a system so that processing 
time is minimized.  By and large, load is assumed to be 
arbitrarily partitionable, which has root in early sensor 
network research.  Initially all input data is stored on 
originator node and during run time it is distributed to other 
nodes.  It assumes that computation time per unit of data is 
known and task execution time is linear with the amount of 
processed data.  Our work tries to minimize job turnaround 
time instead of job execution time.  In addition, our work 
enables load to be dynamically adjusted across nodes even if 
no prior knowledge is known. 

III. PRELIMINARY 

Resource Model In Hadoop, each slave/worker node 
hosts a fixed number of map slots, which determines 
maximum number of map tasks a node can run 
simultaneously.  If the number of map slots is too small, 
resources cannot be fully utilized.  If it is too big, severe 
resource use contention may happen and overhead is 
increased. For either case, performance is not optimal.  We 
assume the number of map slots per node is perfectly turned, 
while how to tune it is out of our scope.   

Task Model We propose Bag-of-Divisible-Tasks, 
derived from Bag-of-Tasks [8, 9], as our task model. We use 
Atomic Processing Unit (APU) to represent a segment of 
processing that cannot be parallelized.  Then we call a 
nonempty set of APU a divisible task such that it could be 
divided into sub-divisible-task(s) (or sub-task for short).  
Each job is modeled as a bag of independent divisible tasks.  
And from now on, we use divisible task and task 
interchangeably if no confusion under context.  APUs may 
be heterogeneous in that data size and processing time vary.   
Given a set of independent APUs derived from a problem 
domain, how to organize them into tasks has significant 
impact on performance.  The optimal solution depends on 
both characteristics of APUs and real-time system load.  If 
tasks are too coarse-grained and therefore too large, load 
unbalancing is likely to happen because of large variation of 
task execution time.  If tasks are too fine-grained and 
therefore too small, overhead and actual processing time get 
comparable and latency becomes significant.   

In MapReduce, each map operation is considered as an 
APU.  The limitation of default Hadoop implementation 
results from fixed granularity of map tasks driven by data 
blocks. Job turnaround time is affected by not only data size 
but also other factors, such as system fluctuation and 
hardware heterogeneity.  We propose task splitting and task 
consolidation to mitigate load unbalancing and fully utilize 



available resources.  Task splitting is a process that a task is 
split to spawn new tasks.  Meanwhile input data is also split 
accordingly so that each newly spawned task processes part 
of it.  After a task T is split, m new tasks	{ ଵܶ, ଶܶ, … , ௠ܶ} are 
spawned and T itself becomes task 	 ଴ܶwith smaller input. 
Following two equations hold where ܷܫ(ܶ) is unprocessed 
input data of a task T.  The processing that has been done by 
a task is not re-done after it is split.   

(ܶ)ܫܷ        = )ܫܷ	 ଴ܶ) 	∪ )ܫܷ	 ଵܶ) 	∪ )ܫܷ	 ଶܶ) ∪ ⋯∪ )ܫܷ	 ௠ܶ) (1) 
       ∀݅, ݆	0 ≤ ݅ < ݆ ≤ )ܫܷ		݉ ௜ܶ) ∩ ൫ܫܷ ௝ܶ൯ = 	∅ (2) 

Task consolidation is the inverse process, by which 
multiple tasks are merged into one task.  Formally, if a set of 
tasks { ଵܶ, ଶܶ, … , ௡ܶ}  are merged into a single task T, 
following equation holds. 

)ܫܷ              ଵܶ) 	∪ )ܫܷ	 ଶܶ) ∪ ⋯∪ )ܫܷ	 ௡ܶ) =  (3) (ܶ)ܫܷ	
Task consolidation and split can be used to adjust task 

organization to adapt system environment changes.  They 
make the scheduling more flexible and robust.  If tasks are 
split too aggressively, overhead of splitting and task 
management may outweigh benefit of higher concurrency.  
So being splittable does not mean task splitting is beneficial.  
Based on the fact that tasks usually run much longer than 
APU, we make a simplification that APU is arbitrarily small.  

A. Split Tasks Waiting in Queue 

In this section, we give examples about how to split and 
consolidate tasks that are waiting in queue.  Running tasks 
are considered in the next section.  Our task splitting process 
considers all map tasks in queue, which may be from 
different jobs.   

If there are no available map slots, no map task in the 
queue is split or consolidated.   

If the number of available map slots is smaller than that 
of map tasks in queue, one possible strategy is to consolidate 
map tasks so that all of them can be dispatched immediately.  
The data to be processed is the same no matter whether map 
tasks are consolidated or not.  Overall overhead of map task 
start-up and teardown is different because there are fewer 
tasks after consolidation. Another potential drawback 
brought up by consolidation is loss of data locality.  The 
more map tasks are consolidated, the smaller the possibility 
becomes that input blocks of all consolidated tasks are 
located on the same node.  As a result, the amount of data 
transferred from remote nodes increases.  So the optimal 
decision relies on the tradeoff between task overhead and 
data transfer cost.  Plot (b) in Fig. 1 shows an example.  
Three map tasks	 ଵܶ, ଶܶ and ଷܶ are waiting and two nodes are 
available.  So we can schedule two map tasks at most 
immediately.  If we consolidate two map tasks, all map tasks 
can be scheduled to run immediately. In the plot, map task ଶܶ 
and ଷܶ  are consolidated into map task ଶܶିଷ  which is 
dispatched to node where block ܤଶ  is stored.  Block ܤଷ  is 
remotely accessed by task	 ଶܶିଷ.   

If the number of available map slots is larger than that of 
map tasks in queue, map tasks can be split to spawn new 
map tasks to fill idle map slots.  Resultant benefits include 
better parallelism and load balancing.  As number of map 

tasks increases, overall task start-up and teardown overhead 
increases as well.  Another disadvantage is data locality may 
become worse.  If a map task can be dispatched to a node 
where its input block is stored, one of the spawned map tasks 
is guaranteed to be able to be dispatched to that node while 
others may or may not be dispatched to it depending on map 
slot availability.  Otherwise none of its spawned map tasks 
after split can be dispatched to the node if they are run 
immediately.  Plot (c) in Fig. 1 shows an example of task 
splitting.  Initially there are four available nodes and three 
map tasks	 ଵܶ, ଶܶ and	 ଷܶ.  Task ଷܶ is split to task ଷܶ.ଵ and task ଷܶ.ଶ and all tasks are scheduled.  Task ଷܶ.ଵ and ଷܶ.ଶ share the 
same input block ܤଷ  but process different portions.  
Compared with the situation that splitting is not applied, task ଷܶ.ଶ	needs to access ܤଷ remotely but all nodes are utilized.  
One way to mitigate the data locality problem is data 
replication.  When there are multiple copies of a block, the 
possibility is larger that data-local scheduling is achievable 
after task spit.  One extreme case is each block is replicated 
on all nodes so that data locality becomes less significant. 

 
Figure 1.  Task splitting and task consolidation. Arrows are scheduling 
decisions. Each node has one map slot and block ܤ௜ is input of task	 ௜ܶ. 
B. Split Running Tasks 

Besides tasks waiting in queue, running tasks can also be 
split dynamically to improve performance.  When tasks are 
scheduled and running, computation time skew of tasks may 
slow down the progress of the whole job.  Task splitting can 
be applied dynamically during task execution to offload 
some processing to other available map slots.  Plot (d) in Fig. 
1 shows an example.  At time	ݐଵ, four tasks are running.  At 
time	ݐଶ, task ସܶ completes and the slot originally occupied by 
task ସܶ becomes available while the other three tasks are still 
running.  Task ଷܶ is chosen to spawn a new task ଷܶ.ଶ which 
is scheduled to the available slot released by completed 
task	 ସܶ.  Again, all nodes are utilized but task ଷܶ.ଶ accesses 
its input data ܤଷ remotely.   

C. Summary 

The previous two algorithms are combined together to 
adjust all unfinished tasks (waiting tasks + running tasks), 
which achieves continuous optimization during whole 
lifetime of jobs.   

Task consolidation reduces the number of tasks to 
manage and schedule, which is highly beneficial if task 



management overhead is high and task start-up and teardown 
overhead is comparable to the actual execution time.  We 
assume task execution time is significantly longer than task 
start-up and teardown time.  If this does not hold, blocks can 
be enlarged to increase task granularity.     

Task splitting is beneficial when loss of data locality does 
not impose critical performance degradation.  When data are 
replicated on every node, the data access time is approximate 
no matter where a task is dispatched if data access contention 
(e.g. multiple tasks access different data on the same node) is 
not severe.  If data access contention is severe, the number of 
map slots on each node can be tuned appropriately to achieve 
the optimal tradeoff between concurrency and resource use 
contention, so that data access does not affect scheduling 
much.  This conclusion also holds when jobs are CPU-
intensive and the data access cost is negligible.  In other 
words, if the ratio of computation to data access is large, the 
computation factor is critical and other factors, such as disk 
I/O and network I/O, can be ignored.  We focus on CPU-
intensive jobs in the following discussions. 

IV. SINGLE-JOB TASK SCHEDULING 

First, we consider the task scheduling problem when only 
one job is running at most at any time.  In the next section, 
multi-job case is discussed. The following algorithm shows 
how task splitting is hooked into the task scheduling process.   

Algorithm skeleton 

while isRunning = true: 
  split_tasks(); 
  schedule_tasks(); 

In the beginning of each scheduling iteration, task 
splitting is applied if needed.  This step makes tradeoffs 
between concurrency and overhead.  Then an existing task 
scheduling strategy (e.g. Hadoop’s data locality based 
scheduling) is used to schedule tasks.  So task splitting can 
be seamlessly integrated with existing schedulers.  We focus 
on the task splitting process and present our proposed 
solutions when prior knowledge about workload is known 
and unknown.  We summarize issues shown below that need 
to be solved to address the problem.  

a) When to trigger task splitting 
b) Which tasks should be split and how many new tasks 

to spawn; and 
c) How to split 

A. Task Splitting without Prior Knowledge 

     When no prior knowledge is known about execution time, 
a strategy we term Aggressive Splitting (AS) is proposed. 

1) When to trigger task splitting:  The goal of task 
splitting is to shorten the average job turnaround time by 
utilizing as many nodes as possible.  Assume the scheduler 
is invoked at time ݐ	 , task splitting decision is made if 
following inequality is satisfied 

                         ܰ௠௜௤(ݐ) +	 ௥ܰ௨௡(ݐ) < ௔ܰ௠௦ (4) 
where	ܰ௠௜௤(ݐ), ௥ܰ௨௡(ݐ)  and ௔ܰ௠௦  are the number of map 
tasks in queue at time t, the number of running map tasks at 

time t and the total number of map slots respectively.  That 
means there are idle map slots even if all tasks in queue are 
scheduled to run immediately. In this case, the default 
scheduling strategy cannot use all idle slots. So the task 
splitting process should be initiated.  Otherwise, it does not 
make sense to split tasks because there are no idle slots 
where newly spawned tasks can run.  This will not make 
long-running tasks become stragglers because our task 
splitting process is invoked continuously and long-running 
tasks will become candidates of split target whenever there 
are idle slots.   

2) Which tasks should be split and how many new tasks 
to spawn:  We evenly allocate available map slots to 
unfinished tasks. Without prior knowledge, what we do is 
divide the number of idle map slots by the number of 
unfinished tasks to calculate how many new tasks to spawn 
for each task on average. Then tasks are split one by one 
until no map slots are idle. The algorithm skeleton is shown 
below.   

Algorithm skeleton 

UTS:set  unfinished tasks 
IMS:int  number of idle map slots 
MST:int  |ܷܵܶ|ڿ	/	ۀܵܯܫ 
for each task T in UTS: 
  if IMS ≤ 0: break 
  if IMS < MST: 
    NS  split(T, IMS) 
  else 
    NS  split(T, MST) 
  IMS  IMS - NS 

Function ݐ݈݅݌ݏ(ܶ, ܰ) splits task ܶ to spawn ܰ new tasks 
at most.  Depending on map slot availability, split policy and 
overhead, the actual number of spawned tasks may be 
smaller than 	ܰ . The actual number is returned from the 
function call so that following code can update the number of 
available map slots accordingly.  Implementation of split is 
described in next section.   

3) How to split:  Given a task and the maximum number 
of new tasks it may spawn, this section solves the problem 
how to split.  Firstly, the number of new tasks is adjusted so 
that it does not exceed the number of available map slots.  
Data block is logically split to equally sized sub-blocks. We 
consider the task processing one sub-block is not splittable.  
So it specifies the smallest granularity of spawned tasks.  
For task T, the total number of sub-blocks, the number of 
sub-blocks that have been processed or are being processed, 
and the number of new tasks to spawn are denoted by ܶܵ(ܶ), ܲܵ(ܶ) and	ܰܶ(ܶ) respectively. Since we don’t have 
prior knowledge about map execution time, we blindly 
spawn new tasks so that each one processes the same 
amount of data. 

	݇ݏܽݐ	ݎ݁݌	ݏ݇ܿ݋݈ܾ	ܾݑݏ                = 	 ்ௌ(்)	–	௉ௌ(்)ே்(்)	ା	ଵ        (5) 

The remaining work is evenly divided among the task 
being split and newly spawned tasks.  The principle is to 



make them all complete simultaneously if map operation 
execution time is heterogeneous theoretically.  To avoid 
inefficiency caused by spawning small tasks, a threshold is 
set to prevent small tasks being split.  Optimal threshold 
depends on workload and map operation characteristics.  It is 
our future work to make the threshold automatically tuned.    

4) Complexity:  The whole task list is scanned at most 
once, so time complexity is	ܱ(݊) with regard to the number 
of tasks.  

B. Task Splitting with Prior Knowledge 

Now we assume that prior knowledge about task 
execution time is known. By prior knowledge, we mean that 
Estimate Remaining Execution Time (ERET) is known or 
predictable. ERET indicates how long a task will run before 
completion approximately. We propose Aggressive Split with 
Prior Knowledge (ASPK) to optimize job turnaround time.   

1) When to trigger task splitting:  The same algorithm 
from last section can be reused here. 

2) Which tasks should be split and how many new tasks 
to spawn:  Ways to split tasks are not unique.  Number of 
task splits done during whole lifetime of a job should be as 
small as possible without degrading performance. Fig. 2 
demonstrates different ways to split tasks to achieve the 
same turnaround time.  Graph (a) shows a scenario where 
there are two running tasks - ଵܶ, ଶܶ , one idle slot and no 
waiting tasks.  ERET of ଵܶ and ଶܶ is 2ݐ and ݐ respectively.  
If overhead and data locality are negligible, we definitely 
should split tasks to fill the idle slot.  We can split task ଵܶ to 
spawn a new task and both will run for period ݐ  before 
completion, which is demonstrated in (b).  At time ݐ  all 
tasks complete.  Another way shown in (c) is to split task ଶܶ 
to spawn a new task and both will run for period	2/ݐ.  At 
time	2/ݐ, two slots become idle and task ଵܶ is split to spawn 
two new tasks each of which runs for	(2ݐ െ 3/(2/ݐ =   .2/ݐ
In both cases, the final job turnaround time is t.  However 
the number of spawned tasks is different.  In (b), one task is 
spawned while in (c) three tasks are spawned.  More task 
splits incur higher probability to degrade performance and 
destabilize system.  In the example, (b) is preferred to (c).     

 
Figure 2.  Different ways to split tasks (Processing time is the same). 

Dashed boxes represent newly spawned tasks. 

Tasks that complete last determine when a job finishes.  
For jobs with tasks that have highly varied execution time, 
the scenario should be avoided that few long tasks last much 
long after other short jobs complete.  When long running 
tasks exist, to split tasks with small ERET generates smaller 
tasks, which doesn’t affect job turnaround time.  So our 

heuristics is that tasks with large ERET should be split first 
so that they do not become “stragglers”. 

Firstly, tasks with small ERET are filtered because to 
split a task that will end very soon does not provide much 
benefit.  In addition, task filtering is an optimization step that 
reduces the number of map tasks considered by following 
steps for faster processing.  Secondly remaining tasks are 
sorted by ERET in descending order.  After that, tasks are 
clustered into {ܥଵ, ,ଶܥ … , {௠ܥ  according to ERET so that 
tasks with similar ERET belong to the same cluster.  Each 
cluster ܥ has several pieces of information including task list 
.ܥ) ܶܵ), the number of tasks (ܥ.  the sum of ERET ,(ݐ݊ݑ݋ܥ
.ܥ) .ܥ) and the average of ERET (ܶܧܴܧ  We go through  .(ܧܣ
task clusters one by one to evaluate whether task splitting is 
beneficial.  Initially, we only consider tasks in cluster	ܥଵ .  
Tasks in ܥଵ are split to fill all idle slots, and average task 
execution time ଵܶ is calculated.  If	 ଵܶ is larger than	ܥଶ.  it ,ܧܣ
doesn’t benefit to split tasks contained in following clusters 
and estimated execution time of newly spawned tasks is set 
to .ଶܥ	 ܧܣ .  If 	 ଵܶ  is significantly smaller than .ଶܥ	 ܧܣ , 
spawned tasks are small compared with tasks in	ܥଶ.  So we 
consider tasks from both ଵܥ	  and ଶܥ	  for split. Time ଶܶ  is 
calculated and compared with		ܥଷ.  ,If ଶܶ much smaller  .ܧܣ
we consider	ܥଵ,		ܥଶ and	ܥଷ.  This process is repeated until 	 ௜ܶ 
is larger than or comparable to	ܥ௜ାଵ.  or all clusters are ܧܣ
included. The algorithm skeleton is shown below. 

Algorithm skeleton 

IMS  number of idle map slots 
UTS  unfinished tasks 
FTS  filterTasks (UTS) 
STS  sortByERET (FTS) 
{C1,C2,…,Cm}  clusterTasks (STS) 
sumERET  0, count  IMS 
for cluster Ci, 1≤i≤m: 
  sumERET += Ci.ERET 
  count += Ci.Count 
  avgERET = sumERET / count 
  if i = m: break 
  if avgERET << Ci+1.AE: 
    continue 
  else 
 break 

Filtering Ideally, how tasks are filtered should depend on 
the ERET of unfinished tasks.  A pre-set threshold is not 
flexible enough to capture task characteristics.  Instead, we 
calculate the optimal remaining job execution time (ORJET) 
by assuming that all unfinished tasks are split to use all 
available slots.  Total ERET is gained by summing ERET of 
all unfinished tasks.  It is divided by the total number of map 
slots (including both occupied and idle slots) to get ORJET.  
ORJET measures optimally how long a job will run before 
completion.  Then ERET of each task is compared with 
ORJET.  If task ERET is significant smaller than ORJET, it 
is filtered out.  Towards the end of job execution, ORJET 
becomes increasingly small because running tasks are close 
to completion and more slots are released.  In this situation, 
task splitting is not beneficial because overhead of task 



splitting outweighs potential gain of higher concurrency.  So 
we filter out tasks that are close to completion without 
affecting overall performance.  Thus the filtering process is 
adaptive to workloads of different types.   

Clustering Task clustering algorithm is designed to 
group tasks with similar ERET and separate tasks with 
significantly different ERET.  Existing clustering algorithms, 
such as K-means, Expectation-Maximization and 
agglomerative hierarchical clustering, from the machine 
learning community can be used without modification.  
Considering that scheduling routine is called frequently and 
its performance is critical to the whole system, we favor 
simple linear algorithms.  Tasks being clustered have been 
ordered by ERET, which guarantees that tasks belonging to 
the same cluster are consecutive in the task list.  Our current 
algorithm requires that the task list is scanned once by 
moving a “cursor” from beginning to end.  A running list is 
maintained to contain tasks that are before the “cursor” and 
belong to current cluster.  If ERET of the task pointed by 
cursor is much smaller than the average ERET of the current 
cluster, then the current cluster is added to cluster set and a 
new cluster is created which initially only contained the task 
pointed by cursor.  This guarantees maximal ERET of tasks 
within a cluster is significantly smaller than average ERET 
of tasks within previous cluster.   

3) How to split:  The way to split tasks can be optimized 
if we also have prior knowledge about mean task execution 
time, network throughput, disk I/O throughput, etc.  For task 
T, disk I/O cost, network I/O cost, and computation cost are 
denoted by 	ܱܫܰ ,(ܶ)ܱܫܦ(ܶ) and݉݋ܥ(ܶ) respectively.  So 
total time is (ܶ)ܱܫܦ	 	+ (ܶ)ܱܫܰ	 	+ (ܶ)݉݋ܥ	 , if these 
operations don’t overlap.  Task being split is denoted by ௖ܶ௨௥ , and newly spawned tasks are { ௖ܶ௨௥ଵ , ௖ܶ௨௥ଶ , …, ௖ܶ௨௥ே }.  
Ideally, following equation should be satisfied to make tasks 
complete simultaneously after split. 

)ܱܫܦ         ௖ܶ௨௥ଵ ) + )ܱܫܰ	 ௖ܶ௨௥ଵ ) + )݉݋ܥ	 ௖ܶ௨௥ଵ )	=	∙∙∙∙∙	= )ܱܫܦ	 ௖ܶ௨௥ே ) + )ܱܫܰ	 ௖ܶ௨௥ே ) + )݉݋ܥ	 ௖ܶ௨௥ே )= )ܱܫܦ	 ௖ܶ௨௥	 ) + )ܱܫܰ	 ௖ܶ௨௥	 ) + )݉݋ܥ	 ௖ܶ௨௥	 ) 
Because we assume ܱܫܦ(ܶ) and ܱܰܫ(ܶ) are negligible 

compared to	݉݋ܥ(ܶ), the above equation is converted to ݉݋ܥ( ௖ܶ௨௥ଵ ) = )݉݋ܥ ௖ܶ௨௥ଶ ) =	∙∙∙	= )݉݋ܥ ௖ܶ௨௥୒ ) = C݉݋( ௖ܶ௨௥	 ) 
So unfinished work of task T is evenly distributed to T 

and newly spawned tasks after split.   
4) Complexity:  In ASPK, complexity of sorting is ܱ(݊ ݃݋݈ ݊)   and that of other operations is not greater 

than	ܱ(݊).  So overall complexity is	ܱ(݊ ݃݋݈ ݊). However, 
sorting can be further optimized considering that in each 
iteration, except the first one, tasks are mostly ordered.   

C. Fault Tolerance 

Our proposed algorithms do not handle fault tolerance 
directly.  Task splitting is not enough to cope with situations 
where some tasks stall or fail due to hardware failure, severe 
system fluctuation or hanging process. We integrate 
speculative execution to solve the problem.  Whenever the 

system detects failure, duplicate tasks are created 
automatically to replace failed tasks.  Now we have a 
complete solution which can speed single-job execution by 
splitting relatively long tasks and speculatively re-execute 
failed tasks. 

V. MULTI-JOB OPTIMIZATION 

We put multi-job scheduling into the context of classic 
queuing theory.  We adopted M/G/s model [16].  Jobs arrive 
according to a homogeneous Poisson process.  Job execution 
time is independent and may follow generic distributions.  
Also there is more than one server in the system.  One 
difference from the classic model is that a job may use 
multiple servers during its execution and the execution time 
depends on the number of used nodes.  We propose Greedy 
Task Splitting (GTS) which minimizes run time of each job 
by splitting tasks to occupy all map slots and making tasks of 
last round complete simultaneously.  Because each job uses 
all available nodes, following jobs cannot execute until 
current running job completes.  In other words, the queue 
time of some jobs is increased compared with non-GTS 
scheduling.  As a result, change of job turnaround time 
depends on both decrease of job execution time and possible 
increase of job queue time.  We will show that GTS gives 
optimal job turnaround time.   

A. Optimality of Greedy Task Splitting 

Fig. 3 shows two examples of execution arrangement of a 
job J.  In (a), job J starts at S(J) and completes at F(J).  It 
uses all resources during the execution.  In (b), the 
processing is grouped to four segments - 1, 2, 3 and 4.  Now 
we formulate the scheduling model. C denotes capacity of a 
certain type of resource in the system.  n denotes number of 
jobs to run.  Si (1 ≤ i ≤ n) denotes total resource requirement 
of job i.  Resource usage function ,ݐ)ݎ	 ݅)  represents the 
amount of resource consumed by job i at time t.  Constraints 
are: 

ݐ  ≥ 0 (6) 
,ݐ∀  ∑ ,ݐ)ݎ ݅)௡௜ୀଵ ≤  (7) ܥ
 ∀ 1 ≤ ݅ ≤ ݊∑ ,ݐ)ݎ ݅)ାஶ௧ୀ଴ ≥ ௜ܵ(ݎ݋ ׬ ,ݐ)ݎ ݅)dtାஶ௧ୀ଴ ≥ ௜ܵ) (8) 

and objective function is  
 min(∑ ,ݐ)ݎ}௧ݔܽ݉ ݅) ≠ 0௡௜ୀଵ }) (9) 

Inequality (7) means that at any moment, resource consumed 
by all jobs must not be more than capacity.  Inequality (8) 
means that the sum of resource consumption by any job 
across time is not less than requirement of the job.  The ideal 
case that actual resource consumption is equal to resource 
requirement, which means no overhead is incurred.  In the 
objective function, ݉ܽݔ௧{ݐ)ݎ, ݅) ≠ 0} is turnaround time for 
job i.  So our goal is to minimize overall job turnaround time.   

Firstly we will show that once a job starts running, it 
should complete as soon as possible by using all available 
resources.  Secondly we will convert this problem to n/1 (n 
jobs/1 machine) scheduling problem solved in [17].   

 Given a job J, its start time ܵ(ܬ)  and its completion 
time (ܬ)ܨ	 , Fig. 3 shows possible strategies of execution 
arrangements.  Execution arrangement of J affects 



completion time of other jobs.  One fact is start time of job J 
does not matter when	(ܬ)ܨ is fixed.  Intuitively, all parts of 
execution of Job J should be placed as close to (ܬ)ܨ  as 
possible.  In plot (b) execution of job J is interspersed along 
time axis.  Execution arrangement demonstrated in plot (b) 
can be converted to that demonstrated in plot (a) by 
interchanging interspersed execution segments of job J (e.g. 
marked by 1, 2 and 3 in the plot) and execution segments of 
other jobs falling into the continuous area S.  After the 
interchange, completion time of those affected jobs either 
does not change or becomes earlier because their changed 
execution segments starts earlier.  This interchange process 
can be iterated until each job utilizes all resources during its 
execution (see Fig. 3 for an example).  In each iteration, only 
one job is considered.  The whole process makes overall 
turnaround time monotonically decrease regardless of order 
of jobs picked during iterations.   

 
Figure 3.  Different ways to arrange execution of a job. 

 
Figure 4.  Multiple scheduled jobs (Each uses all resources for execution) 

However, different job execution orders may result in 
different overall turnaround time.  The next question is how 
to determine job execution order so that objective function is 
minimized.  Because at any moment only one job consumes 
all resources, we can view the whole system as a single big 
virtual node.  This problem becomes the n/1 problem (n jobs 
/ 1 machine) solved in [17].  Shortest-job-first strategy gives 
overall optimal turnaround time.  So jobs should be executed 
in ascending order of execution time. 

B. Multi-Job Scheduling 

Given a number of jobs to run, the algorithm skeleton of 
Shortest Job First Scheduling (SJFS) is shown below.  Serial 
Execution Time (SET) represents how long a job runs 
serially.  

Algorithm skeleton of SJFS 

order jobs by SET in ascending order 
schedule jobs in turn 

If we know serial execution time of all jobs that are to be 
run, we can apply SJFS directly.  However, in real systems, 
it is hard, if not impossible, to know all jobs to run ahead.  
Jobs are submitted dynamically by end users or batch scripts.  
To cope with the uncertainty, we use Non Overlapped 
Periodic Shortest Job First Scheduling (NOPSJFS) in which 
SJFS is run periodically.  Let I be interval that SJFS is called.  
So scheduling decision is made at time 0, ,ܫ ,ܫ2 …  Let	ܬ௧ be 
set of jobs that are submitted at or earlier than time t.  At 
time	݊ ∙ ௡∙ூܬ		SJFS is applied to the job set ,ܫ െ  ூ.  So∙(௡ିଵ)ܬ
jobs that are scheduled at time ݊ ∙ ܫ  only include those 
submitted between time (݊ െ 1) ∙ ݊	and ܫ ∙  Jobs submitted  .ܫ
prior than time (݊ െ 1) ∙  are not considered at all even if ܫ
some of them are still waiting in the queue.  This strategy 
makes each job scheduled just once and jobs scheduled 
during different period do not overlap.  But unexpected 
system fluctuation exists and prior knowledge of SET may 
be inaccurate.  So assumptions made when a job is scheduled 
may be rendered useless by the time it is dispatched to run.  
Overlapped Shortest Job First Scheduling (OSJFS) is 
proposed in which all jobs are considered that have been 
submitted but not completed yet.  To avoid starvation of long 
jobs, an aging factor is associated with each job which 
measures how long a job has been waiting in the queue.  
Priority is positively correlated to aging factor.  So the longer 
a job has waited, the higher its priority becomes.   

VI. EXPERIMENT 

We conduct experiments using the MapReduce simulator 
mrsim [18] which is built on top of an event-driven 
framework.  Table I shows the configuration of simulated 
system.  Data is placed randomly on nodes.  Each node hosts 
only 1 map slot.  We will assess effectiveness of our 
approaches.  So hardware configuration affects absolute job 
turnaround time, but it does not affect comparison between 
our strategies and default strategy.   

TABLE I.  CONFIGURATION OF TEST ENVIRONMENT 

Number of nodes 64 Disk I/O - read 40MB/s 
Processor frequency 500MHz Disk I/O - write 20MB/s 
Map slots per node 1 Network 1Gbps 

 
Two distributions are used to model execution time of 

map operations - Gaussian distribution and step functions 
abstracted from real workload trace.  Firstly, we set up tests 
to show that our approach improves performance in single 
job environment.   

A. Single-Job 

In this set of tests, we investigate the effect of variation 
of map task execution time on performance.  We design a 
micro-benchmark to measure performance improvement of 
task splitting.  Based on total number of map slots and that of 
map tasks, two cases are considered. 

When the number of map tasks is smaller than that of 
available map slots, the default strategy cannot utilize all 
resources.  In the first test, we compose a job whose input 
data has 32 blocks each of which is 64MB.  The cluster has 
64 nodes.  We assume that task execution time follows 



Gaussian distribution with negative values cut off.  Mean is 
fixed and variance is varied which is an indicator of variation 
of execution time of map tasks.  Baseline distribution is 
uniform distribution with mean	ߤ and coefficient of variance 
(CV) is zero by definition.  We let Gaussian distributions 
have the same mean and change variance to (݇ (1	ଶ(ߤ∙ ≤ ݇ ≤ 10).   So CV is between 1 and 10.  Job 
turnaround time is shown in plot (a) in Fig. 5.  One 
observation is that job turnaround time increases as CV 
increases. That results from cut-off of negative values 
sampled from tested distributions.  So the mean of sampled 
values is no longer ߤ and it increases slightly with CV.  Both 
AS and ASPK improves performance significantly and 
performance gain increases with CV.  AS incurs larger 
variation compared with ASPK.  When CV is small, the 
difference between AS and ASPK is not significant.  As CV 
becomes large, ASPK performs significantly better than AS. 
When CV is 10, ASPK improves AS by 50%.     

Now, we increase the number of map tasks of a job to 
200 to make it significantly larger than the number of map 
slots.  Test environment is the same as previous test.  Plot (b) 
in Fig. 5 shows results.  Distributions of task execution time 
are the same as in previous test.  Default scheduling has 
embedded support for load balancing. Whenever a map slot 
becomes available, it dispatches a waiting task to it.  Because 
execution time of map tasks is sampled from the same 
distribution, the sum of task execution time for different 
nodes follows the same distribution as well.  In other words, 
mixture of long and short tasks dispatched to nodes naturally 
makes the load balanced during early lifetime of the job.  In 
the early phase of job execution, all map slots are occupied 
so that task splitting does not benefit.  Towards the end of 
execution, all tasks are either running or completed.  Any 
released map slot cannot be utilized because there is no 
waiting task.  Then task splitting improves performance by 
rebalancing load. Considering task splitting is mostly applied 
near job completion, it may not benefit much. Test result 
shows that even in that situation, AS and ASPK improves 
performance by 50% at most.  The larger CV is, the more 
efficient ASPK is compared with AS.   

Besides synthesized workload, workload data collected in 
real clusters is also used.  Concretely, we use cluster data 
published by Google [19].  It is analyzed in [20] to extract 
characteristics of jobs and tasks.  One observation made in 
the paper is that task execution time for three types of jobs is 
bimodal.  Around 75% of map tasks are short, running for 
approximately 5 minutes.  Around 20% of map tasks are 
long, running for approximately 360 minutes.  Execution 
time of the remaining 5% the map tasks is between 5 minutes 
and 360 minutes.  This distribution is used to model task 
execution time in this test.  Slot completion time is termed to 
describe when the last task run in a map slot completes.  We 
measured both job turnaround time and the variation of slot 
completion time for all slots.  Fig. 6 shows the results.  AS 
and ASPK shorten job turnaround time by 20% - 30%.  
ASPK performs slightly better than AS by reducing job 
turnaround time by 5% - 10%.  Standard deviation of slot 
completion time is shown in plot (b).  For the default 
scheduling, the value is 8521 seconds which indicates that 

the last round of map task execution results in severe load 
unbalancing.  ASPK achieves the smallest standard deviation 
around 9 seconds, so that its histogram is almost invisible in 
the plot.  This result is surprisingly good considering that the 
job runs for tens of thousands of seconds.  For AS, standard 
deviation is around 570 seconds.  To figure out whether the 
best performance of ASPK is achieved by splitting much 
more tasks than AS, number of spawned tasks is measured.  
Plot (c) shows that ASPK even has smaller number of spawn 
tasks than AS.  So ASPK achieves shortest job turnaround 
time and smallest variation of slot completion time by 
spawning fewer tasks. This means when prior knowledge is 
known additional optimization done in ASPK is effective. 

 
Figure 5.  Single-Job test results (Gaussian distribution is used) 

 
Figure 6.  Single-Job test results (Real profiled distribution is used) 

Above tests demonstrate that task splitting strategy 
improves performance significantly and the degree of 
improvement is related to characteristics of map tasks.   

B. Multiple jobs 

As M/G/s model is adopted for multi-job scenario, inter-
arrival time of jobs follows exponential distribution. We 
generate a workload to have 100 jobs each of which is 
synthesized according to Google cluster data. We measure 
average job turnaround time with and without SJF policy 
applied.  If interarrival time is longer than job execution 
time, on average one job is running at most at any time.  
Single-Job scheduling can be used directly. So we set mean 
of interarrival time to be much shorter than average job 
execution time.   

In this test, all jobs have the same number of map tasks, 
which is equal to total number of map slots, so that each job 
can occupy all map slots.  Execution time of tasks belonging 
to a job is the same.  75% of jobs are short, 20% of jobs are 
long and 5% of jobs are medium.  100 jobs are generated.  
Task splitting in this test does not benefit much because all 
map tasks of a job complete almost simultaneously and load 
unbalancing occurs rarely.  Results are shown in Fig. 7.  
Non-SJF scheduling and SJF scheduling have comparable 
makespan.  SJF decreases the average job turnaround time 
by 63%. 



Then we tested the case where different jobs have the 
same serial execution time.  Obviously SJF strategy does not 
make sense because all jobs are equally long.  So we ignore 
SJF and evaluate task splitting strategies.  Task execution 
time of each job follow the same distribution extracted from 
Google cluster data.  100 jobs are generated and all slots are 
used at any time except near completion.  Fig. 8 shows that 
both job turnaround time and makespan are shortened by 5% 
- 10%.  One well-known fact is that if a system is fully 
loaded, it is harder to make optimization compared with the 
situation where a system is partially loaded.  Our test results 
show that even if the system is fully loaded and SJF is 
useless, task splitting still benefits.  Considering that study in 
Google shows CPU utilization ratio is between 20% and 
50% for their production clusters, task splitting will give 
more improvement in real clusters than in this test.   

 
Figure 7.  Multi-Job test results (task execution time is the same for a job) 

 
Figure 8.  Multi-Job test results (job execution time is the same) 

VII. CONCLUSIONS 

In this paper, we examined strategies for optimizing job 
turnaround time in MapReduce.  Firstly, we analyzed the 
MapReduce model and its Hadoop implementation, and 
found that the way map operations are organized into tasks in 
Hadoop has several drawbacks, such as limit of concurrency, 
task completion time skew and load unbalancing.  Then we 
proposed task splitting, which is a process to split unfinished 
tasks to fill idle map slots, to tackle those problems.  For 
single-job scheduling, Aggressive Scheduling (AS) and 
Aggressive Scheduling with Prior Knowledge (ASPK) were 
proposed for cases where prior knowledge is known and 
unknown respectively.  For multi-job scheduling, we proved 
that combination of Shortest-Job-First strategy and task 
splitting mechanism gives optimal average job turnaround 
time if tasks are arbitrarily splittable.  Overlapped Shortest-
Job-First Scheduling (OSJFS) was proposed which invokes 
basic short-job-first scheduling algorithm periodically and 
schedules all waiting jobs.  We also conducted extensive 

experiments to show that our proposed algorithms improve 
performance significantly compared with default strategy.  
One thing we may explore in the future is how task splitting 
and consolidation can benefit IO intensive applications.  
Tradeoffs between data access concurrency and data locality 
should be considered to achieve optimal performance. 
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