
Automatic Task Re-organization in MapReduce

Zhenhua Guo1, Marlon Pierce2, Geoffrey Fox3, Mo Zhou4
School of Informatics and Computing, Indiana University, Bloomington, IN, 47405 U.S.

{1zhguo, 2mpierce, 3gcf, 4mozhou}@cs.indiana.edu

Abstract—MapReduce is increasingly considered as a useful
parallel programming model for large-scale data processing. It
exploits parallelism among execution of primitive map and
reduce operations. Hadoop is an open source implementation of
MapReduce that has been used in both academic research and
industry production. However, its implementation strategy that
one map task processes one data block limits the degree of
concurrency and degrades performance because of inability to
fully utilize available resources. In addition, its assumption that
task execution time in each phase does not vary much does not
always hold, which makes speculative execution useless. In this
paper, we present mechanisms to dynamically split and
consolidate tasks to cope with load balancing and break through
the concurrency limit resulting from fixed task granularity. For
single-job system, two algorithms are proposed for circumstances
where prior knowledge is known and unknown. For multi-job
case, we propose a modified shortest-job-first strategy, which
minimizes job turnaround time theoretically when combined with
task splitting. We compared the effectiveness of our approach to
the default task scheduling strategy using both synthesized and
trace-based workloads. Simulation results show that our
approach improves performance significantly.

Keywords: MapReduce, Bag-of-Divisible-Tasks, Task
Splitting, Load Balancing

I. INTRODUCTION

MapReduce [1] has gained popularity as a programming
model for large-scale data processing in both academia [2]
and industry, because of scalability, fault tolerance and ease
of use. In contrast to the traditional parallel programming
models, e.g. MPI and workflow, where end users take the
responsibility of decomposing a job into multiple tasks, in
the MapReduce model, the framework itself takes the
burden of the job decomposition. The MapReduce model is
based on data parallelization [3] which focuses on
parallelization of data rather than operations applied to data.
In MapReduce model, input data is modeled as key-value
pairs. Two primitive operations (map and reduce) are
provided. Each map operation operates on a key-value pair
and may produce optional intermediate key-value pairs.
Different map operations are independent. The reduce
operation takes output of map operations as input and
produces final results.

On the implementation side, tasks are schedulable entities
and map operations must be organized as tasks for execution.
The model itself does not impose any constraint on how
map operations are grouped into tasks. Theoretically, map
operations of a job can be grouped arbitrarily without
affecting correctness. However, it affects efficiency of
execution. To maximize performance, load unbalancing

should be avoided and tradeoff between concurrency and
management overhead must be considered.

Hadoop provides an open source implementation of
MapReduce. In addition, a distributed file system - Hadoop
File System (HDFS) is provided which derives from Google
File System. HDFS chunks files into equally sized data
blocks. The default strategy of map operation organization
in Hadoop is that each map task processes key-value pairs
contained in one block. The size of key-value pairs may
vary so that the number of key-value pairs stored in
different blocks may differ. This simple and intuitive
implementation strategy has several drawbacks we are
targeting to solve.

Firstly, it limits the degree of concurrency that can be
achieved. The number of map tasks is fixed given an input
data size, an input format and a block size. This imposes a
limit on how concurrent the processing can be, because even
if the number of available resources is larger than that of
map tasks, not all available resources can be utilized.

Secondly, Hadoop assumes that map tasks of a job
require the same amount of work. This assumption may not
hold for several reasons. The nature of the map operation
may result in computation time skew even if map tasks
process the same amount of data. In addition, each task may
process data of different sizes if user-defined input format is
used. Moreover, map tasks may slow down because of
process hanging, software bug, software mis-configuration,
and system fluctuation. In clusters, the underlying hardware
may be heterogeneous and the time taken to run a map task
may be drastically different depending on the capacity of the
node the task is dispatched to.

Cluster resource usage varies depending on workload
characteristics. Usually severs are neither completely idle
nor fully loaded. A study [4] done by Google shows that
server utilization is between 10% and 50% most of the time
based on profiling result of 5000 servers during a six-month
period. As a result, the scheduling algorithm should fully
exploit parallelism to utilize available resources to reduce
job execution time. Also, task execution time skew is
observed in real studies. In the study of parallel BLAST,
one task takes more than 18 hours to complete while other
tasks take 30 minutes to complete on average [5].

The above two drawbacks prohibit Hadoop from making
full use of available resources even if they are idle. In this
paper, we mitigate them by dynamically splitting map tasks
according to resource availability. Our goal is to minimize
average job turnaround time which is defined as the time
between job submission and job completion. It is a metric
that directly reflects how the user perceives the performance

of a system, compared with throughput that measures the
performance from the perspective of system owner.
Analysis of collected data from real Hadoop clusters shows
that most of Hadoop jobs are map-only [6]. So in our study,
we only consider map-only jobs. We come up with Bag-of-
Divisible-Tasks model and propose two new processing
steps - task consolidation and task splitting which
dynamically adjust the granularity of tasks. Then task
splitting algorithms are proposed for single-job scenario
where prior knowledge is known and unknown. After that,
multi-job scheduling is investigated and algorithms are
proposed integrating Shortest-Job-First strategy and task
splitting. Then extensive simulation experiments are
conducted and performance is compared. Finally we
summarize and conclude our work.

II. RELATED WORK

Traditional task scheduling algorithms [7] (e.g. list
scheduling and clustering scheduling) utilize task graphs
which capture data flow and dependency among tasks to
make scheduling decisions. Each scheduling decision has
both spatial and temporal aspect, which means it decides
when to start a task and on which node to start it. The task
graph itself is not adjusted to improve performance. Bag-
of-Tasks [8,9] simplifies task graph by assuming that tasks
of each application are independent, which is motivated by
prior efforts such as SETI@home [10] and parameter sweep
applications [11]. Infrastructures (e.g. Condor [12] and
BOINC [13]) haven been developed for both computing
grids and more distributed and heterogeneous architectures
(e.g. desktop grids). Traditional task scheduling research
takes the strategy that once tasks start running, they are not
modified dynamically. Our work is complementary in that
during run time tasks can be split and consolidated as
needed to improve performance.

There has been substantial research on load balancing
which tries to balance resource usage in clusters [14]. Pre-
emptive process migration supports dynamically migrating
of processes from overloaded nodes to lightly-loaded nodes.
It’s possible that the whole system is well balanced while
some nodes are idle (e.g. when the number of task processes
is less than that of nodes). In that case, traditional load
balancing algorithms cannot utilize idle nodes while our
solution can split running tasks and dispatch spawned tasks
to idle nodes.

Hadoop supports speculative execution to cope with the
situations where some tasks in a job become laggard
compared with other tasks. The assumption of speculative
execution is that the execution time of map tasks does not
differ much, which makes it possible for Hadoop to predict
map task execution time without any prior knowledge.
When Hadoop detects that a task runs longer than expected,
it starts a duplicate task to process the same data. Whenever
any task completes, its other duplicate tasks are killed. This
can improve fault tolerance and mitigate performance
degradation. However the performance gain is obtained at
the expense of duplicate processing of some data and more

resource usage compared with process migration. In
addition speculative execution triggered by uneven map task
execution caused by the nature of map operation does not
benefit at all, because duplicate tasks cannot shorten the run
time either. Our work is complementary to task speculation
in that task splitting and task duplication can be used
together to deal with long running tasks resulting from
either the nature of map operation or system failure.

Divisible load theory [15] tries to solve the problem that
how load received at one node (called originator node) can
be distributed to other nodes in a system so that processing
time is minimized. By and large, load is assumed to be
arbitrarily partitionable, which has root in early sensor
network research. Initially all input data is stored on
originator node and during run time it is distributed to other
nodes. It assumes that computation time per unit of data is
known and task execution time is linear with the amount of
processed data. Our work tries to minimize job turnaround
time instead of job execution time. In addition, our work
enables load to be dynamically adjusted across nodes even if
no prior knowledge is known.

III. PRELIMINARY

Resource Model In Hadoop, each slave/worker node
hosts a fixed number of map slots, which determines
maximum number of map tasks a node can run
simultaneously. If the number of map slots is too small,
resources cannot be fully utilized. If it is too big, severe
resource use contention may happen and overhead is
increased. For either case, performance is not optimal. We
assume the number of map slots per node is perfectly turned,
while how to tune it is out of our scope.

Task Model We propose Bag-of-Divisible-Tasks,
derived from Bag-of-Tasks [8, 9], as our task model. We use
Atomic Processing Unit (APU) to represent a segment of
processing that cannot be parallelized. Then we call a
nonempty set of APU a divisible task such that it could be
divided into sub-divisible-task(s) (or sub-task for short).
Each job is modeled as a bag of independent divisible tasks.
And from now on, we use divisible task and task
interchangeably if no confusion under context. APUs may
be heterogeneous in that data size and processing time vary.
Given a set of independent APUs derived from a problem
domain, how to organize them into tasks has significant
impact on performance. The optimal solution depends on
both characteristics of APUs and real-time system load. If
tasks are too coarse-grained and therefore too large, load
unbalancing is likely to happen because of large variation of
task execution time. If tasks are too fine-grained and
therefore too small, overhead and actual processing time get
comparable and latency becomes significant.

In MapReduce, each map operation is considered as an
APU. The limitation of default Hadoop implementation
results from fixed granularity of map tasks driven by data
blocks. Job turnaround time is affected by not only data size
but also other factors, such as system fluctuation and
hardware heterogeneity. We propose task splitting and task
consolidation to mitigate load unbalancing and fully utilize

available resources. Task splitting is a process that a task is
split to spawn new tasks. Meanwhile input data is also split
accordingly so that each newly spawned task processes part
of it. After a task T is split, m new tasks	{ ଵܶ, ଶܶ, … , ௠ܶ} are
spawned and T itself becomes task 	 ଴ܶwith smaller input.
Following two equations hold where ܷܫ(ܶ) is unprocessed
input data of a task T. The processing that has been done by
a task is not re-done after it is split.

(ܶ)ܫܷ =)ܫܷ	 ଴ܶ) 	∪)ܫܷ	 ଵܶ) 	∪)ܫܷ	 ଶܶ) ∪ ⋯∪)ܫܷ	 ௠ܶ) (1)
 ∀݅, ݆	0 ≤ ݅ < ݆ ≤)ܫܷ		݉ ௜ܶ) ∩ ൫ܫܷ ௝ܶ൯ = 	∅ (2)

Task consolidation is the inverse process, by which
multiple tasks are merged into one task. Formally, if a set of
tasks { ଵܶ, ଶܶ, … , ௡ܶ} are merged into a single task T,
following equation holds.

)ܫܷ ଵܶ) 	∪)ܫܷ	 ଶܶ) ∪ ⋯∪)ܫܷ	 ௡ܶ) = (3) (ܶ)ܫܷ	
Task consolidation and split can be used to adjust task

organization to adapt system environment changes. They
make the scheduling more flexible and robust. If tasks are
split too aggressively, overhead of splitting and task
management may outweigh benefit of higher concurrency.
So being splittable does not mean task splitting is beneficial.
Based on the fact that tasks usually run much longer than
APU, we make a simplification that APU is arbitrarily small.

A. Split Tasks Waiting in Queue

In this section, we give examples about how to split and
consolidate tasks that are waiting in queue. Running tasks
are considered in the next section. Our task splitting process
considers all map tasks in queue, which may be from
different jobs.

If there are no available map slots, no map task in the
queue is split or consolidated.

If the number of available map slots is smaller than that
of map tasks in queue, one possible strategy is to consolidate
map tasks so that all of them can be dispatched immediately.
The data to be processed is the same no matter whether map
tasks are consolidated or not. Overall overhead of map task
start-up and teardown is different because there are fewer
tasks after consolidation. Another potential drawback
brought up by consolidation is loss of data locality. The
more map tasks are consolidated, the smaller the possibility
becomes that input blocks of all consolidated tasks are
located on the same node. As a result, the amount of data
transferred from remote nodes increases. So the optimal
decision relies on the tradeoff between task overhead and
data transfer cost. Plot (b) in Fig. 1 shows an example.
Three map tasks	 ଵܶ, ଶܶ and ଷܶ are waiting and two nodes are
available. So we can schedule two map tasks at most
immediately. If we consolidate two map tasks, all map tasks
can be scheduled to run immediately. In the plot, map task ଶܶ
and ଷܶ are consolidated into map task ଶܶିଷ which is
dispatched to node where block ܤଶ is stored. Block ܤଷ is
remotely accessed by task	 ଶܶିଷ.

If the number of available map slots is larger than that of
map tasks in queue, map tasks can be split to spawn new
map tasks to fill idle map slots. Resultant benefits include
better parallelism and load balancing. As number of map

tasks increases, overall task start-up and teardown overhead
increases as well. Another disadvantage is data locality may
become worse. If a map task can be dispatched to a node
where its input block is stored, one of the spawned map tasks
is guaranteed to be able to be dispatched to that node while
others may or may not be dispatched to it depending on map
slot availability. Otherwise none of its spawned map tasks
after split can be dispatched to the node if they are run
immediately. Plot (c) in Fig. 1 shows an example of task
splitting. Initially there are four available nodes and three
map tasks	 ଵܶ, ଶܶ and	 ଷܶ. Task ଷܶ is split to task ଷܶ.ଵ and task ଷܶ.ଶ and all tasks are scheduled. Task ଷܶ.ଵ and ଷܶ.ଶ share the
same input block ܤଷ but process different portions.
Compared with the situation that splitting is not applied, task ଷܶ.ଶ	needs to access ܤଷ remotely but all nodes are utilized.
One way to mitigate the data locality problem is data
replication. When there are multiple copies of a block, the
possibility is larger that data-local scheduling is achievable
after task spit. One extreme case is each block is replicated
on all nodes so that data locality becomes less significant.

Figure 1. Task splitting and task consolidation. Arrows are scheduling
decisions. Each node has one map slot and block ܤ௜ is input of task	 ௜ܶ.
B. Split Running Tasks

Besides tasks waiting in queue, running tasks can also be
split dynamically to improve performance. When tasks are
scheduled and running, computation time skew of tasks may
slow down the progress of the whole job. Task splitting can
be applied dynamically during task execution to offload
some processing to other available map slots. Plot (d) in Fig.
1 shows an example. At time	ݐଵ, four tasks are running. At
time	ݐଶ, task ସܶ completes and the slot originally occupied by
task ସܶ becomes available while the other three tasks are still
running. Task ଷܶ is chosen to spawn a new task ଷܶ.ଶ which
is scheduled to the available slot released by completed
task	 ସܶ. Again, all nodes are utilized but task ଷܶ.ଶ accesses
its input data ܤଷ remotely.

C. Summary

The previous two algorithms are combined together to
adjust all unfinished tasks (waiting tasks + running tasks),
which achieves continuous optimization during whole
lifetime of jobs.

Task consolidation reduces the number of tasks to
manage and schedule, which is highly beneficial if task

management overhead is high and task start-up and teardown
overhead is comparable to the actual execution time. We
assume task execution time is significantly longer than task
start-up and teardown time. If this does not hold, blocks can
be enlarged to increase task granularity.

Task splitting is beneficial when loss of data locality does
not impose critical performance degradation. When data are
replicated on every node, the data access time is approximate
no matter where a task is dispatched if data access contention
(e.g. multiple tasks access different data on the same node) is
not severe. If data access contention is severe, the number of
map slots on each node can be tuned appropriately to achieve
the optimal tradeoff between concurrency and resource use
contention, so that data access does not affect scheduling
much. This conclusion also holds when jobs are CPU-
intensive and the data access cost is negligible. In other
words, if the ratio of computation to data access is large, the
computation factor is critical and other factors, such as disk
I/O and network I/O, can be ignored. We focus on CPU-
intensive jobs in the following discussions.

IV. SINGLE-JOB TASK SCHEDULING

First, we consider the task scheduling problem when only
one job is running at most at any time. In the next section,
multi-job case is discussed. The following algorithm shows
how task splitting is hooked into the task scheduling process.

Algorithm skeleton

while isRunning = true:
 split_tasks();
 schedule_tasks();

In the beginning of each scheduling iteration, task
splitting is applied if needed. This step makes tradeoffs
between concurrency and overhead. Then an existing task
scheduling strategy (e.g. Hadoop’s data locality based
scheduling) is used to schedule tasks. So task splitting can
be seamlessly integrated with existing schedulers. We focus
on the task splitting process and present our proposed
solutions when prior knowledge about workload is known
and unknown. We summarize issues shown below that need
to be solved to address the problem.

a) When to trigger task splitting
b) Which tasks should be split and how many new tasks

to spawn; and
c) How to split

A. Task Splitting without Prior Knowledge

 When no prior knowledge is known about execution time,
a strategy we term Aggressive Splitting (AS) is proposed.

1) When to trigger task splitting: The goal of task
splitting is to shorten the average job turnaround time by
utilizing as many nodes as possible. Assume the scheduler
is invoked at time ݐ	 , task splitting decision is made if
following inequality is satisfied

 ܰ௠௜௤(ݐ) +	 ௥ܰ௨௡(ݐ) < ௔ܰ௠௦ (4)
where	ܰ௠௜௤(ݐ), ௥ܰ௨௡(ݐ) and ௔ܰ௠௦ are the number of map
tasks in queue at time t, the number of running map tasks at

time t and the total number of map slots respectively. That
means there are idle map slots even if all tasks in queue are
scheduled to run immediately. In this case, the default
scheduling strategy cannot use all idle slots. So the task
splitting process should be initiated. Otherwise, it does not
make sense to split tasks because there are no idle slots
where newly spawned tasks can run. This will not make
long-running tasks become stragglers because our task
splitting process is invoked continuously and long-running
tasks will become candidates of split target whenever there
are idle slots.

2) Which tasks should be split and how many new tasks
to spawn: We evenly allocate available map slots to
unfinished tasks. Without prior knowledge, what we do is
divide the number of idle map slots by the number of
unfinished tasks to calculate how many new tasks to spawn
for each task on average. Then tasks are split one by one
until no map slots are idle. The algorithm skeleton is shown
below.

Algorithm skeleton

UTS:set  unfinished tasks
IMS:int  number of idle map slots
MST:int  |ܷܵܶ|ڿ	/	ۀܵܯܫ
for each task T in UTS:
 if IMS ≤ 0: break
 if IMS < MST:
 NS  split(T, IMS)
 else
 NS  split(T, MST)
 IMS  IMS - NS

Function ݐ݈݅݌ݏ(ܶ, ܰ) splits task ܶ to spawn ܰ new tasks
at most. Depending on map slot availability, split policy and
overhead, the actual number of spawned tasks may be
smaller than 	ܰ . The actual number is returned from the
function call so that following code can update the number of
available map slots accordingly. Implementation of split is
described in next section.

3) How to split: Given a task and the maximum number
of new tasks it may spawn, this section solves the problem
how to split. Firstly, the number of new tasks is adjusted so
that it does not exceed the number of available map slots.
Data block is logically split to equally sized sub-blocks. We
consider the task processing one sub-block is not splittable.
So it specifies the smallest granularity of spawned tasks.
For task T, the total number of sub-blocks, the number of
sub-blocks that have been processed or are being processed,
and the number of new tasks to spawn are denoted by ܶܵ(ܶ), ܲܵ(ܶ) and	ܰܶ(ܶ) respectively. Since we don’t have
prior knowledge about map execution time, we blindly
spawn new tasks so that each one processes the same
amount of data.

	݇ݏܽݐ	ݎ݁݌	ݏ݇ܿ݋݈ܾ	ܾݑݏ = 	 ்ௌ(்)	–	௉ௌ(்)ே்(்)	ା	ଵ (5)

The remaining work is evenly divided among the task
being split and newly spawned tasks. The principle is to

make them all complete simultaneously if map operation
execution time is heterogeneous theoretically. To avoid
inefficiency caused by spawning small tasks, a threshold is
set to prevent small tasks being split. Optimal threshold
depends on workload and map operation characteristics. It is
our future work to make the threshold automatically tuned.

4) Complexity: The whole task list is scanned at most
once, so time complexity is	ܱ(݊) with regard to the number
of tasks.

B. Task Splitting with Prior Knowledge

Now we assume that prior knowledge about task
execution time is known. By prior knowledge, we mean that
Estimate Remaining Execution Time (ERET) is known or
predictable. ERET indicates how long a task will run before
completion approximately. We propose Aggressive Split with
Prior Knowledge (ASPK) to optimize job turnaround time.

1) When to trigger task splitting: The same algorithm
from last section can be reused here.

2) Which tasks should be split and how many new tasks
to spawn: Ways to split tasks are not unique. Number of
task splits done during whole lifetime of a job should be as
small as possible without degrading performance. Fig. 2
demonstrates different ways to split tasks to achieve the
same turnaround time. Graph (a) shows a scenario where
there are two running tasks - ଵܶ, ଶܶ , one idle slot and no
waiting tasks. ERET of ଵܶ and ଶܶ is 2ݐ and ݐ respectively.
If overhead and data locality are negligible, we definitely
should split tasks to fill the idle slot. We can split task ଵܶ to
spawn a new task and both will run for period ݐ before
completion, which is demonstrated in (b). At time ݐ all
tasks complete. Another way shown in (c) is to split task ଶܶ
to spawn a new task and both will run for period	2/ݐ. At
time	2/ݐ, two slots become idle and task ଵܶ is split to spawn
two new tasks each of which runs for	(2ݐ െ 3/(2/ݐ = .2/ݐ
In both cases, the final job turnaround time is t. However
the number of spawned tasks is different. In (b), one task is
spawned while in (c) three tasks are spawned. More task
splits incur higher probability to degrade performance and
destabilize system. In the example, (b) is preferred to (c).

Figure 2. Different ways to split tasks (Processing time is the same).

Dashed boxes represent newly spawned tasks.

Tasks that complete last determine when a job finishes.
For jobs with tasks that have highly varied execution time,
the scenario should be avoided that few long tasks last much
long after other short jobs complete. When long running
tasks exist, to split tasks with small ERET generates smaller
tasks, which doesn’t affect job turnaround time. So our

heuristics is that tasks with large ERET should be split first
so that they do not become “stragglers”.

Firstly, tasks with small ERET are filtered because to
split a task that will end very soon does not provide much
benefit. In addition, task filtering is an optimization step that
reduces the number of map tasks considered by following
steps for faster processing. Secondly remaining tasks are
sorted by ERET in descending order. After that, tasks are
clustered into {ܥଵ, ,ଶܥ … , {௠ܥ according to ERET so that
tasks with similar ERET belong to the same cluster. Each
cluster ܥ has several pieces of information including task list
.ܥ) ܶܵ), the number of tasks (ܥ. the sum of ERET ,(ݐ݊ݑ݋ܥ
.ܥ) .ܥ) and the average of ERET (ܶܧܴܧ We go through .(ܧܣ
task clusters one by one to evaluate whether task splitting is
beneficial. Initially, we only consider tasks in cluster	ܥଵ .
Tasks in ܥଵ are split to fill all idle slots, and average task
execution time ଵܶ is calculated. If	 ଵܶ is larger than	ܥଶ. it ,ܧܣ
doesn’t benefit to split tasks contained in following clusters
and estimated execution time of newly spawned tasks is set
to .ଶܥ	 ܧܣ . If 	 ଵܶ is significantly smaller than .ଶܥ	 ܧܣ ,
spawned tasks are small compared with tasks in	ܥଶ. So we
consider tasks from both ଵܥ	 and ଶܥ	 for split. Time ଶܶ is
calculated and compared with		ܥଷ. ,If ଶܶ much smaller .ܧܣ
we consider	ܥଵ,		ܥଶ and	ܥଷ. This process is repeated until 	 ௜ܶ
is larger than or comparable to	ܥ௜ାଵ. or all clusters are ܧܣ
included. The algorithm skeleton is shown below.

Algorithm skeleton

IMS  number of idle map slots
UTS  unfinished tasks
FTS  filterTasks (UTS)
STS  sortByERET (FTS)
{C1,C2,…,Cm}  clusterTasks (STS)
sumERET  0, count  IMS
for cluster Ci, 1≤i≤m:
 sumERET += Ci.ERET
 count += Ci.Count
 avgERET = sumERET / count
 if i = m: break
 if avgERET << Ci+1.AE:
 continue
 else
 break

Filtering Ideally, how tasks are filtered should depend on
the ERET of unfinished tasks. A pre-set threshold is not
flexible enough to capture task characteristics. Instead, we
calculate the optimal remaining job execution time (ORJET)
by assuming that all unfinished tasks are split to use all
available slots. Total ERET is gained by summing ERET of
all unfinished tasks. It is divided by the total number of map
slots (including both occupied and idle slots) to get ORJET.
ORJET measures optimally how long a job will run before
completion. Then ERET of each task is compared with
ORJET. If task ERET is significant smaller than ORJET, it
is filtered out. Towards the end of job execution, ORJET
becomes increasingly small because running tasks are close
to completion and more slots are released. In this situation,
task splitting is not beneficial because overhead of task

splitting outweighs potential gain of higher concurrency. So
we filter out tasks that are close to completion without
affecting overall performance. Thus the filtering process is
adaptive to workloads of different types.

Clustering Task clustering algorithm is designed to
group tasks with similar ERET and separate tasks with
significantly different ERET. Existing clustering algorithms,
such as K-means, Expectation-Maximization and
agglomerative hierarchical clustering, from the machine
learning community can be used without modification.
Considering that scheduling routine is called frequently and
its performance is critical to the whole system, we favor
simple linear algorithms. Tasks being clustered have been
ordered by ERET, which guarantees that tasks belonging to
the same cluster are consecutive in the task list. Our current
algorithm requires that the task list is scanned once by
moving a “cursor” from beginning to end. A running list is
maintained to contain tasks that are before the “cursor” and
belong to current cluster. If ERET of the task pointed by
cursor is much smaller than the average ERET of the current
cluster, then the current cluster is added to cluster set and a
new cluster is created which initially only contained the task
pointed by cursor. This guarantees maximal ERET of tasks
within a cluster is significantly smaller than average ERET
of tasks within previous cluster.

3) How to split: The way to split tasks can be optimized
if we also have prior knowledge about mean task execution
time, network throughput, disk I/O throughput, etc. For task
T, disk I/O cost, network I/O cost, and computation cost are
denoted by 	ܱܫܰ ,(ܶ)ܱܫܦ(ܶ) and݉݋ܥ(ܶ) respectively. So
total time is (ܶ)ܱܫܦ	 	+ (ܶ)ܱܫܰ	 	+ (ܶ)݉݋ܥ	 , if these
operations don’t overlap. Task being split is denoted by ௖ܶ௨௥ , and newly spawned tasks are { ௖ܶ௨௥ଵ , ௖ܶ௨௥ଶ , …, ௖ܶ௨௥ே }.
Ideally, following equation should be satisfied to make tasks
complete simultaneously after split.

)ܱܫܦ ௖ܶ௨௥ଵ) +)ܱܫܰ	 ௖ܶ௨௥ଵ) +)݉݋ܥ	 ௖ܶ௨௥ଵ)	=	∙∙∙∙∙	=)ܱܫܦ	 ௖ܶ௨௥ே) +)ܱܫܰ	 ௖ܶ௨௥ே) +)݉݋ܥ	 ௖ܶ௨௥ே)=)ܱܫܦ	 ௖ܶ௨௥) +)ܱܫܰ	 ௖ܶ௨௥) +)݉݋ܥ	 ௖ܶ௨௥)
Because we assume ܱܫܦ(ܶ) and ܱܰܫ(ܶ) are negligible

compared to	݉݋ܥ(ܶ), the above equation is converted to ݉݋ܥ(௖ܶ௨௥ଵ) =)݉݋ܥ ௖ܶ௨௥ଶ) =	∙∙∙	=)݉݋ܥ ௖ܶ௨௥୒) = C݉݋(௖ܶ௨௥)
So unfinished work of task T is evenly distributed to T

and newly spawned tasks after split.
4) Complexity: In ASPK, complexity of sorting is ܱ(݊ ݃݋݈ ݊) and that of other operations is not greater

than	ܱ(݊). So overall complexity is	ܱ(݊ ݃݋݈ ݊). However,
sorting can be further optimized considering that in each
iteration, except the first one, tasks are mostly ordered.

C. Fault Tolerance

Our proposed algorithms do not handle fault tolerance
directly. Task splitting is not enough to cope with situations
where some tasks stall or fail due to hardware failure, severe
system fluctuation or hanging process. We integrate
speculative execution to solve the problem. Whenever the

system detects failure, duplicate tasks are created
automatically to replace failed tasks. Now we have a
complete solution which can speed single-job execution by
splitting relatively long tasks and speculatively re-execute
failed tasks.

V. MULTI-JOB OPTIMIZATION

We put multi-job scheduling into the context of classic
queuing theory. We adopted M/G/s model [16]. Jobs arrive
according to a homogeneous Poisson process. Job execution
time is independent and may follow generic distributions.
Also there is more than one server in the system. One
difference from the classic model is that a job may use
multiple servers during its execution and the execution time
depends on the number of used nodes. We propose Greedy
Task Splitting (GTS) which minimizes run time of each job
by splitting tasks to occupy all map slots and making tasks of
last round complete simultaneously. Because each job uses
all available nodes, following jobs cannot execute until
current running job completes. In other words, the queue
time of some jobs is increased compared with non-GTS
scheduling. As a result, change of job turnaround time
depends on both decrease of job execution time and possible
increase of job queue time. We will show that GTS gives
optimal job turnaround time.

A. Optimality of Greedy Task Splitting

Fig. 3 shows two examples of execution arrangement of a
job J. In (a), job J starts at S(J) and completes at F(J). It
uses all resources during the execution. In (b), the
processing is grouped to four segments - 1, 2, 3 and 4. Now
we formulate the scheduling model. C denotes capacity of a
certain type of resource in the system. n denotes number of
jobs to run. Si (1 ≤ i ≤ n) denotes total resource requirement
of job i. Resource usage function ,ݐ)ݎ	 ݅) represents the
amount of resource consumed by job i at time t. Constraints
are:

ݐ ≥ 0 (6)
,ݐ∀ ∑ ,ݐ)ݎ ݅)௡௜ୀଵ ≤ (7) ܥ
 ∀ 1 ≤ ݅ ≤ ݊∑ ,ݐ)ݎ ݅)ାஶ௧ୀ଴ ≥ ௜ܵ(ݎ݋ ׬ ,ݐ)ݎ ݅)dtାஶ௧ୀ଴ ≥ ௜ܵ) (8)

and objective function is
 min(∑ ,ݐ)ݎ}௧ݔܽ݉ ݅) ≠ 0௡௜ୀଵ }) (9)

Inequality (7) means that at any moment, resource consumed
by all jobs must not be more than capacity. Inequality (8)
means that the sum of resource consumption by any job
across time is not less than requirement of the job. The ideal
case that actual resource consumption is equal to resource
requirement, which means no overhead is incurred. In the
objective function, ݉ܽݔ௧{ݐ)ݎ, ݅) ≠ 0} is turnaround time for
job i. So our goal is to minimize overall job turnaround time.

Firstly we will show that once a job starts running, it
should complete as soon as possible by using all available
resources. Secondly we will convert this problem to n/1 (n
jobs/1 machine) scheduling problem solved in [17].

 Given a job J, its start time ܵ(ܬ) and its completion
time (ܬ)ܨ	 , Fig. 3 shows possible strategies of execution
arrangements. Execution arrangement of J affects

completion time of other jobs. One fact is start time of job J
does not matter when	(ܬ)ܨ is fixed. Intuitively, all parts of
execution of Job J should be placed as close to (ܬ)ܨ as
possible. In plot (b) execution of job J is interspersed along
time axis. Execution arrangement demonstrated in plot (b)
can be converted to that demonstrated in plot (a) by
interchanging interspersed execution segments of job J (e.g.
marked by 1, 2 and 3 in the plot) and execution segments of
other jobs falling into the continuous area S. After the
interchange, completion time of those affected jobs either
does not change or becomes earlier because their changed
execution segments starts earlier. This interchange process
can be iterated until each job utilizes all resources during its
execution (see Fig. 3 for an example). In each iteration, only
one job is considered. The whole process makes overall
turnaround time monotonically decrease regardless of order
of jobs picked during iterations.

Figure 3. Different ways to arrange execution of a job.

Figure 4. Multiple scheduled jobs (Each uses all resources for execution)

However, different job execution orders may result in
different overall turnaround time. The next question is how
to determine job execution order so that objective function is
minimized. Because at any moment only one job consumes
all resources, we can view the whole system as a single big
virtual node. This problem becomes the n/1 problem (n jobs
/ 1 machine) solved in [17]. Shortest-job-first strategy gives
overall optimal turnaround time. So jobs should be executed
in ascending order of execution time.

B. Multi-Job Scheduling

Given a number of jobs to run, the algorithm skeleton of
Shortest Job First Scheduling (SJFS) is shown below. Serial
Execution Time (SET) represents how long a job runs
serially.

Algorithm skeleton of SJFS

order jobs by SET in ascending order
schedule jobs in turn

If we know serial execution time of all jobs that are to be
run, we can apply SJFS directly. However, in real systems,
it is hard, if not impossible, to know all jobs to run ahead.
Jobs are submitted dynamically by end users or batch scripts.
To cope with the uncertainty, we use Non Overlapped
Periodic Shortest Job First Scheduling (NOPSJFS) in which
SJFS is run periodically. Let I be interval that SJFS is called.
So scheduling decision is made at time 0, ,ܫ ,ܫ2 … Let	ܬ௧ be
set of jobs that are submitted at or earlier than time t. At
time	݊ ∙ ௡∙ூܬ		SJFS is applied to the job set ,ܫ െ ூ. So∙(௡ିଵ)ܬ
jobs that are scheduled at time ݊ ∙ ܫ only include those
submitted between time (݊ െ 1) ∙ ݊	and ܫ ∙ Jobs submitted .ܫ
prior than time (݊ െ 1) ∙ are not considered at all even if ܫ
some of them are still waiting in the queue. This strategy
makes each job scheduled just once and jobs scheduled
during different period do not overlap. But unexpected
system fluctuation exists and prior knowledge of SET may
be inaccurate. So assumptions made when a job is scheduled
may be rendered useless by the time it is dispatched to run.
Overlapped Shortest Job First Scheduling (OSJFS) is
proposed in which all jobs are considered that have been
submitted but not completed yet. To avoid starvation of long
jobs, an aging factor is associated with each job which
measures how long a job has been waiting in the queue.
Priority is positively correlated to aging factor. So the longer
a job has waited, the higher its priority becomes.

VI. EXPERIMENT

We conduct experiments using the MapReduce simulator
mrsim [18] which is built on top of an event-driven
framework. Table I shows the configuration of simulated
system. Data is placed randomly on nodes. Each node hosts
only 1 map slot. We will assess effectiveness of our
approaches. So hardware configuration affects absolute job
turnaround time, but it does not affect comparison between
our strategies and default strategy.

TABLE I. CONFIGURATION OF TEST ENVIRONMENT

Number of nodes 64 Disk I/O - read 40MB/s
Processor frequency 500MHz Disk I/O - write 20MB/s
Map slots per node 1 Network 1Gbps

Two distributions are used to model execution time of

map operations - Gaussian distribution and step functions
abstracted from real workload trace. Firstly, we set up tests
to show that our approach improves performance in single
job environment.

A. Single-Job

In this set of tests, we investigate the effect of variation
of map task execution time on performance. We design a
micro-benchmark to measure performance improvement of
task splitting. Based on total number of map slots and that of
map tasks, two cases are considered.

When the number of map tasks is smaller than that of
available map slots, the default strategy cannot utilize all
resources. In the first test, we compose a job whose input
data has 32 blocks each of which is 64MB. The cluster has
64 nodes. We assume that task execution time follows

Gaussian distribution with negative values cut off. Mean is
fixed and variance is varied which is an indicator of variation
of execution time of map tasks. Baseline distribution is
uniform distribution with mean	ߤ and coefficient of variance
(CV) is zero by definition. We let Gaussian distributions
have the same mean and change variance to (݇ (1	ଶ(ߤ∙ ≤ ݇ ≤ 10). So CV is between 1 and 10. Job
turnaround time is shown in plot (a) in Fig. 5. One
observation is that job turnaround time increases as CV
increases. That results from cut-off of negative values
sampled from tested distributions. So the mean of sampled
values is no longer ߤ and it increases slightly with CV. Both
AS and ASPK improves performance significantly and
performance gain increases with CV. AS incurs larger
variation compared with ASPK. When CV is small, the
difference between AS and ASPK is not significant. As CV
becomes large, ASPK performs significantly better than AS.
When CV is 10, ASPK improves AS by 50%.

Now, we increase the number of map tasks of a job to
200 to make it significantly larger than the number of map
slots. Test environment is the same as previous test. Plot (b)
in Fig. 5 shows results. Distributions of task execution time
are the same as in previous test. Default scheduling has
embedded support for load balancing. Whenever a map slot
becomes available, it dispatches a waiting task to it. Because
execution time of map tasks is sampled from the same
distribution, the sum of task execution time for different
nodes follows the same distribution as well. In other words,
mixture of long and short tasks dispatched to nodes naturally
makes the load balanced during early lifetime of the job. In
the early phase of job execution, all map slots are occupied
so that task splitting does not benefit. Towards the end of
execution, all tasks are either running or completed. Any
released map slot cannot be utilized because there is no
waiting task. Then task splitting improves performance by
rebalancing load. Considering task splitting is mostly applied
near job completion, it may not benefit much. Test result
shows that even in that situation, AS and ASPK improves
performance by 50% at most. The larger CV is, the more
efficient ASPK is compared with AS.

Besides synthesized workload, workload data collected in
real clusters is also used. Concretely, we use cluster data
published by Google [19]. It is analyzed in [20] to extract
characteristics of jobs and tasks. One observation made in
the paper is that task execution time for three types of jobs is
bimodal. Around 75% of map tasks are short, running for
approximately 5 minutes. Around 20% of map tasks are
long, running for approximately 360 minutes. Execution
time of the remaining 5% the map tasks is between 5 minutes
and 360 minutes. This distribution is used to model task
execution time in this test. Slot completion time is termed to
describe when the last task run in a map slot completes. We
measured both job turnaround time and the variation of slot
completion time for all slots. Fig. 6 shows the results. AS
and ASPK shorten job turnaround time by 20% - 30%.
ASPK performs slightly better than AS by reducing job
turnaround time by 5% - 10%. Standard deviation of slot
completion time is shown in plot (b). For the default
scheduling, the value is 8521 seconds which indicates that

the last round of map task execution results in severe load
unbalancing. ASPK achieves the smallest standard deviation
around 9 seconds, so that its histogram is almost invisible in
the plot. This result is surprisingly good considering that the
job runs for tens of thousands of seconds. For AS, standard
deviation is around 570 seconds. To figure out whether the
best performance of ASPK is achieved by splitting much
more tasks than AS, number of spawned tasks is measured.
Plot (c) shows that ASPK even has smaller number of spawn
tasks than AS. So ASPK achieves shortest job turnaround
time and smallest variation of slot completion time by
spawning fewer tasks. This means when prior knowledge is
known additional optimization done in ASPK is effective.

Figure 5. Single-Job test results (Gaussian distribution is used)

Figure 6. Single-Job test results (Real profiled distribution is used)

Above tests demonstrate that task splitting strategy
improves performance significantly and the degree of
improvement is related to characteristics of map tasks.

B. Multiple jobs

As M/G/s model is adopted for multi-job scenario, inter-
arrival time of jobs follows exponential distribution. We
generate a workload to have 100 jobs each of which is
synthesized according to Google cluster data. We measure
average job turnaround time with and without SJF policy
applied. If interarrival time is longer than job execution
time, on average one job is running at most at any time.
Single-Job scheduling can be used directly. So we set mean
of interarrival time to be much shorter than average job
execution time.

In this test, all jobs have the same number of map tasks,
which is equal to total number of map slots, so that each job
can occupy all map slots. Execution time of tasks belonging
to a job is the same. 75% of jobs are short, 20% of jobs are
long and 5% of jobs are medium. 100 jobs are generated.
Task splitting in this test does not benefit much because all
map tasks of a job complete almost simultaneously and load
unbalancing occurs rarely. Results are shown in Fig. 7.
Non-SJF scheduling and SJF scheduling have comparable
makespan. SJF decreases the average job turnaround time
by 63%.

Then we tested the case where different jobs have the
same serial execution time. Obviously SJF strategy does not
make sense because all jobs are equally long. So we ignore
SJF and evaluate task splitting strategies. Task execution
time of each job follow the same distribution extracted from
Google cluster data. 100 jobs are generated and all slots are
used at any time except near completion. Fig. 8 shows that
both job turnaround time and makespan are shortened by 5%
- 10%. One well-known fact is that if a system is fully
loaded, it is harder to make optimization compared with the
situation where a system is partially loaded. Our test results
show that even if the system is fully loaded and SJF is
useless, task splitting still benefits. Considering that study in
Google shows CPU utilization ratio is between 20% and
50% for their production clusters, task splitting will give
more improvement in real clusters than in this test.

Figure 7. Multi-Job test results (task execution time is the same for a job)

Figure 8. Multi-Job test results (job execution time is the same)

VII. CONCLUSIONS

In this paper, we examined strategies for optimizing job
turnaround time in MapReduce. Firstly, we analyzed the
MapReduce model and its Hadoop implementation, and
found that the way map operations are organized into tasks in
Hadoop has several drawbacks, such as limit of concurrency,
task completion time skew and load unbalancing. Then we
proposed task splitting, which is a process to split unfinished
tasks to fill idle map slots, to tackle those problems. For
single-job scheduling, Aggressive Scheduling (AS) and
Aggressive Scheduling with Prior Knowledge (ASPK) were
proposed for cases where prior knowledge is known and
unknown respectively. For multi-job scheduling, we proved
that combination of Shortest-Job-First strategy and task
splitting mechanism gives optimal average job turnaround
time if tasks are arbitrarily splittable. Overlapped Shortest-
Job-First Scheduling (OSJFS) was proposed which invokes
basic short-job-first scheduling algorithm periodically and
schedules all waiting jobs. We also conducted extensive

experiments to show that our proposed algorithms improve
performance significantly compared with default strategy.
One thing we may explore in the future is how task splitting
and consolidation can benefit IO intensive applications.
Tradeoffs between data access concurrency and data locality
should be considered to achieve optimal performance.

ACKNOWLEDGMENT

This work is funded in part by the Pervasive Technology
Institute. We would like to thank Lizhe Wang for in-depth
discussions and feedbacks about our work.

REFERENCES
[1] J. Dean and S. Ghemawat, “MapReduce: simplified data processing

on large clusters,” Commun. ACM 51, 1 (January 2008),p107-113

[2] X. Qiu, J. Ekanayake, S. Beason, T. Gunarathne, G. Fox, R. Barga
and D. Gannon, “Cloud Technologies for Bioinformatics
Applications,” 2nd MTAGS, SC2009

[3] A. Grama, A. Gupta, G. Karypis, and V. Kumar, Introduction to
Parallel Computing, 2nd edition, Pearson AddisonWesley, London,
UK, 2003

[4] L. A. Barroso and U. H. Olzle, “The case for energy-proportional
computing,” Computer, 40(12), 2007.

[5] W. Lu, J. Jackson, J. Ekanayake, R. S. Barga, and N. Araujo,
“Performing Large Science Experiments on Azure: Pitfalls and
Solutions,” in Proc. CloudCom’10, 2010, p209-217

[6] S. Kavulya, J. Tan, R. Gandhi, and P. Narasimhan, “An Analysis of
Traces from a Production MapReduce Cluster,” in Proc. CCGRID
'10, 2010. p. 94-103

[7] O. Sinnen, Task Scheduling for Parallel Systems, Wiley 2007

[8] M. Adler, Y. Gong, and A. L. Rosenberg. “Optimal sharing of bags of
tasks in heterogeneous clusters,” In Proc SPAA'03 2003. p1-10.

[9] C. Weng and X. Lu, “Heuristic scheduling for bag-of-tasks
applications in combination with QoS in the computational grid,”
FGCS, Vol. 21, no. 1, pp. 271–280, 2005.

[10] SETI@home, http://setiathome.ssl.berkeley.edu

[11] H. Casanova and F. Berman, “Parameter sweeps on the grid with
APST,” in Grid Computing: making the global infrastructure a
reality, F. Berman, G. Fox, and T. Hey, Eds. Wiley, 2003

[12] M. Litzkow, M. Livny, and M. W. Mutka, “Condor - A hunter of idle
workstations,” In Proc. ICDCS’88 1988, pp. 104–111.

[13] BONIC http://boinc.berkeley.edu

[14] X. Zhang, Y. Qu and L. Xiao, “Improving Distributed Workload
Performance by Sharing both CPU and Memory Resources,” in Proc.
ICDCS’00, 2000, p.233-241

[15] V. Bharadwaj, D. Ghose, and T. G. Robertazzi, “Divisible Load
Theory: A New Paradigm for Load Scheduling in Distributed
Systems,” Cluster Computing Vol. 6, no. 1, Jan. 2003, p7-17

[16] D. G. Kendall, “Stochastic Processes Occurring in the Theory of
Queues and their Analysis by the Method of the Imbedded Markov
Chain,” The Ann. Math Stat. Vol. 24, No. 3, Sep. 1953, pp. 338-354

[17] R. W. Conway, W. L. Maxwell, and L. W. Miller, “Theory of
Scheduling,” Addison Wesley, 1967.

[18] S. Hammoud, M. Li, Y. Liu, N. K. Alham, and Z. Liu, “MRSim: A
discrete event based MapReduce simulator,” FSKD 2010, p2993-
2997

[19] http://code.google.com/p/googleclusterdata/

[20] Y. Chen, A. S. Ganapathi, R. Griffith, and R. H. Katz, “Analysis and
Lessons from a Publicly Available Google Cluster Trace,” University
of California, Berkeley, CA, Tech. Rep. 2010

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /CMYK
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Cambria
 /Cambria-Bold
 /Cambria-BoldItalic
 /Cambria-Italic
 /CambriaMath
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ARA <FEFF06270633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F00620065002000500044004600200645062A064806270641064206290020064406440637062806270639062900200641064A00200627064406450637062706280639002006300627062A0020062F0631062C0627062A002006270644062C0648062F0629002006270644063906270644064A0629061B0020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644064506460634062306290020062806270633062A062E062F062706450020004100630072006F0062006100740020064800410064006F006200650020005200650061006400650072002006250635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E0635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E>
 /BGR <FEFF04180437043f043e043b043704320430043904420435002004420435043704380020043d0430044104420440043e0439043a0438002c00200437043000200434043000200441044a0437043404300432043004420435002000410064006f00620065002000500044004600200434043e043a0443043c0435043d04420438002c0020043c0430043a04410438043c0430043b043d043e0020043f044004380433043e04340435043d04380020043704300020043204380441043e043a043e043a0430044704350441044204320435043d0020043f04350447043004420020043704300020043f044004350434043f0435044704300442043d04300020043f043e04340433043e0442043e0432043a0430002e002000200421044a04370434043004340435043d043804420435002000500044004600200434043e043a0443043c0435043d044204380020043c043e0433043004420020043404300020044104350020043e0442043204300440044f0442002004410020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200441043b0435043404320430044904380020043204350440044104380438002e>
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /CZE <FEFF005400610074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002c0020006b00740065007200e90020007300650020006e0065006a006c00e90070006500200068006f006400ed002000700072006f0020006b00760061006c00690074006e00ed0020007400690073006b00200061002000700072006500700072006500730073002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f007400650076015900ed007400200076002000700072006f006700720061006d0065006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076011b006a016100ed00630068002e>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e4007400740065006900640020006b00760061006c006900740065006500740073006500200074007200fc006b006900650065006c007300650020007000720069006e00740069006d0069007300650020006a0061006f006b007300200073006f00620069006c0069006b0065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740069006400650020006c006f006f006d006900730065006b0073002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e00740065002000730061006100740065002000610076006100640061002000700072006f006700720061006d006d006900640065006700610020004100630072006f0062006100740020006e0069006e0067002000410064006f00620065002000520065006100640065007200200035002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e000d000a>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /GRE <FEFF03a703c103b703c303b903bc03bf03c003bf03b903ae03c303c403b5002003b103c503c403ad03c2002003c403b903c2002003c103c503b803bc03af03c303b503b903c2002003b303b903b1002003bd03b1002003b403b703bc03b903bf03c503c103b303ae03c303b503c403b5002003ad03b303b303c103b103c603b1002000410064006f006200650020005000440046002003c003bf03c5002003b503af03bd03b103b9002003ba03b103c42019002003b503be03bf03c703ae03bd002003ba03b103c403ac03bb03bb03b703bb03b1002003b303b903b1002003c003c103bf002d03b503ba03c403c503c003c903c403b903ba03ad03c2002003b503c103b303b103c303af03b503c2002003c503c803b703bb03ae03c2002003c003bf03b903cc03c403b703c403b103c2002e0020002003a403b10020005000440046002003ad03b303b303c103b103c603b1002003c003bf03c5002003ad03c703b503c403b5002003b403b703bc03b903bf03c503c103b303ae03c303b503b9002003bc03c003bf03c103bf03cd03bd002003bd03b1002003b103bd03bf03b903c703c403bf03cd03bd002003bc03b5002003c403bf0020004100630072006f006200610074002c002003c403bf002000410064006f00620065002000520065006100640065007200200035002e0030002003ba03b103b9002003bc03b503c403b103b303b503bd03ad03c303c403b503c103b503c2002003b503ba03b403cc03c303b503b903c2002e>
 /HEB <FEFF05D405E905EA05DE05E905D5002005D105D405D205D305E805D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005D405DE05D505EA05D005DE05D905DD002005DC05D405D305E405E105EA002005E705D305DD002D05D305E405D505E1002005D005D905DB05D505EA05D905EA002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E05D005DE05D905DD002005DC002D005000440046002F0058002D0033002C002005E205D905D905E005D5002005D105DE05D305E805D905DA002005DC05DE05E905EA05DE05E9002005E905DC0020004100630072006F006200610074002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E>
 /HRV (Za stvaranje Adobe PDF dokumenata najpogodnijih za visokokvalitetni ispis prije tiskanja koristite ove postavke. Stvoreni PDF dokumenti mogu se otvoriti Acrobat i Adobe Reader 5.0 i kasnijim verzijama.)
 /HUN <FEFF004b0069007600e1006c00f30020006d0069006e0151007300e9006701710020006e0079006f006d00640061006900200065006c0151006b00e90073007a00ed007401510020006e0079006f006d00740061007400e100730068006f007a0020006c006500670069006e006b00e1006200620020006d0065006700660065006c0065006c0151002000410064006f00620065002000500044004600200064006f006b0075006d0065006e00740075006d006f006b0061007400200065007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c0020006b00e90073007a00ed0074006800650074002e0020002000410020006c00e90074007200650068006f007a006f00740074002000500044004600200064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200035002e0030002c0020007600610067007900200061007a002000610074007400f3006c0020006b00e9007301510062006200690020007600650072007a006900f3006b006b0061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d00690020006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b00750072006900650020006c0061006200690061007500730069006100690020007000720069007400610069006b007900740069002000610075006b01610074006f00730020006b006f006b007900620117007300200070006100720065006e006700740069006e00690061006d00200073007000610075007300640069006e0069006d00750069002e0020002000530075006b0075007200740069002000500044004600200064006f006b0075006d0065006e007400610069002000670061006c006900200062016b007400690020006100740069006400610072006f006d00690020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200035002e0030002000610072002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>
 /LVI <FEFF0049007a006d0061006e0074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006100730020006900720020012b00700061016100690020007000690065006d01130072006f00740069002000610075006700730074006100730020006b00760061006c0069007401010074006500730020007000690072006d007300690065007300700069006501610061006e006100730020006400720075006b00610069002e00200049007a0076006500690064006f006a006900650074002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006f002000760061007200200061007400760113007200740020006100720020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200035002e0030002c0020006b0101002000610072012b00200074006f0020006a00610075006e0101006b0101006d002000760065007200730069006a0101006d002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /POL <FEFF0055007300740061007700690065006e0069006100200064006f002000740077006f0072007a0065006e0069006100200064006f006b0075006d0065006e007400f300770020005000440046002000700072007a0065007a006e00610063007a006f006e00790063006800200064006f002000770079006400720075006b00f30077002000770020007700790073006f006b00690065006a0020006a0061006b006f015b00630069002e002000200044006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d006900650020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006e006f00770073007a0079006d002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /RUM <FEFF005500740069006c0069007a00610163006900200061006300650073007400650020007300650074010300720069002000700065006e007400720075002000610020006300720065006100200064006f00630075006d0065006e00740065002000410064006f006200650020005000440046002000610064006500630076006100740065002000700065006e0074007200750020007400690070010300720069007200650061002000700072006500700072006500730073002000640065002000630061006c006900740061007400650020007300750070006500720069006f006100720103002e002000200044006f00630075006d0065006e00740065006c00650020005000440046002000630072006500610074006500200070006f00740020006600690020006400650073006300680069007300650020006300750020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e00300020015f00690020007600650072007300690075006e0069006c006500200075006c0074006500720069006f006100720065002e>
 /RUS <FEFF04180441043f043e043b044c04370443043904420435002004340430043d043d044b04350020043d0430044104420440043e0439043a043800200434043b044f00200441043e043704340430043d0438044f00200434043e043a0443043c0435043d0442043e0432002000410064006f006200650020005000440046002c0020043c0430043a04410438043c0430043b044c043d043e0020043f043e04340445043e0434044f04490438044500200434043b044f00200432044b0441043e043a043e043a0430044704350441044204320435043d043d043e0433043e00200434043e043f0435044704300442043d043e0433043e00200432044b0432043e04340430002e002000200421043e043704340430043d043d044b04350020005000440046002d0434043e043a0443043c0435043d0442044b0020043c043e0436043d043e0020043e0442043a0440044b043204300442044c002004410020043f043e043c043e0449044c044e0020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200431043e043b043504350020043f043e04370434043d043804450020043204350440044104380439002e>
 /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200070006f0075017e0069007400650020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b0074006f007200e90020007300610020006e0061006a006c0065007001610069006500200068006f0064006900610020006e00610020006b00760061006c00690074006e00fa00200074006c0061010d00200061002000700072006500700072006500730073002e00200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d006f006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076016100ed00630068002e>
 /SLV <FEFF005400650020006e006100730074006100760069007400760065002000750070006f0072006100620069007400650020007a00610020007500730074007600610072006a0061006e006a006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b006900200073006f0020006e0061006a007000720069006d00650072006e0065006a016100690020007a00610020006b0061006b006f0076006f00730074006e006f0020007400690073006b0061006e006a00650020007300200070007200690070007200610076006f0020006e00610020007400690073006b002e00200020005500730074007600610072006a0065006e006500200064006f006b0075006d0065006e0074006500200050004400460020006a00650020006d006f0067006f010d00650020006f0064007000720065007400690020007a0020004100630072006f00620061007400200069006e002000410064006f00620065002000520065006100640065007200200035002e003000200069006e0020006e006f00760065006a01610069006d002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /TUR <FEFF005900fc006b00730065006b0020006b0061006c006900740065006c0069002000f6006e002000790061007a006401310072006d00610020006200610073006b013100730131006e006100200065006e0020006900790069002000750079006100620069006c006500630065006b002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e00200020004f006c0075015f0074007500720075006c0061006e0020005000440046002000620065006c00670065006c0065007200690020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200035002e003000200076006500200073006f006e0072006100730131006e00640061006b00690020007300fc007200fc006d006c00650072006c00650020006100e70131006c006100620069006c00690072002e>
 /UKR <FEFF04120438043a043e0440043804410442043e043204430439044204350020044604560020043f043004400430043c043504420440043800200434043b044f0020044104420432043e04400435043d043d044f00200434043e043a0443043c0435043d044204560432002000410064006f006200650020005000440046002c0020044f043a04560020043d04300439043a04400430044904350020043f045604340445043e0434044f0442044c00200434043b044f0020043204380441043e043a043e044f043a04560441043d043e0433043e0020043f0435044004350434043404400443043a043e0432043e0433043e0020043404400443043a0443002e00200020042104420432043e04400435043d045600200434043e043a0443043c0435043d0442043800200050004400460020043c043e0436043d04300020043204560434043a0440043804420438002004430020004100630072006f006200610074002004420430002000410064006f00620065002000520065006100640065007200200035002e0030002004300431043e0020043f04560437043d04560448043e04570020043204350440044104560457002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

