
Building Messaging Substrates for Web and Grid Applications

Geoffrey Fox, Shrideep Pallickara, Marlon Pierce, Harshawardhan Gadgil
(gcf@, spallick@, marpierc@, hgadgil@cs.) indiana.edu

Community Grids Laboratory
 Indiana University

Abstract
Grid application frameworks have increasingly aligned themselves with the developments in Web Services. Web
Services are currently the most popular infrastructure based on Service Oriented Architecture (SOA) paradigm.
There are three core areas within the SOA framework: a set of capabilities that are remotely accessible,
communications using messages, and metadata pertaining to the aforementioned capabilities. In this paper, we focus
on issues related to the messaging substrate hosting these services; we base these discussions on the
NaradaBrokering system. We outline strategies to leverage capabilities available within the substrate without the
need to make any changes to the service implementations themselves. We also identify the set of services needed to
build Grids of Grids. Finally, we discuss another technology, HPSearch, which facilitates the administration of the
substrate and the deployment of applications via a scripting interface. These issues have direct relevance to scientific
Grid applications, which need to go beyond remote procedure calls in client-server interactions to support integrated
distributed applications that couple databases, high performance computing codes, and visualization codes.

1. Introduction
With the advent of the Open Grid Computing Architecture (OGSA) [1] and the UK e-Science program, Grid
computing has aligned itself with Web Service standards activities: Grid infrastructure will be Web Service
infrastructure, although the aggressiveness in developing and adopting extensions is a matter of debate. The current
general consensus is that Web and Grid Services should follow Service Oriented Architecture (SOA) principles,
such as discussed by the World Wide Web Consortium’s Web Service Architecture working group. We summarize
key SOA features as follows, following Ref. [2]:

1. SOAs are composed of services that present programmatic access to resources to remote client applications.
Typical basic (atomic) services include data access (logically wrapping storage technologies such as
databases and file systems), the ability to run and manage remote applications. More complicated services
may be composed of these basic services using such expression languages as coupled with workflow
engines.

2. Services communicate using messages. Messages are usually encoded using SOAP. The asynchronous
nature of messaging is one of the keys to Grid and Web Service scalability beyond the intranets.

3. SOAs are metadata rich. We must describe service interfaces, provide descriptions of services so that we
know how to use them, provide look-up registries to find service URLs, and so forth.

Much debate has gone into refining concepts such as stateful conversations and stateful resources accessed through
services [3]. However, we believe that the other two characteristics, messaging and metadata, have been somewhat
overlooked. In this paper, we are particularly interested in the messaging infrastructure needed to realize such things
as the SOAP message processing model (particularly in SOAP 1.2), which allows for multiple intermediaries that
will need to process header information required by WS-Addressing and WS-Security.

These issues have direct relevance to scientific Grid applications, which need to go beyond remote procedure calls
in client-server interactions to support integrated distributed applications that couple databases, high performance
computing codes, and visualization codes [4, 5]. These coordinated, composite applications are asynchronous by
their nature: applications may take hours or days to complete. Message-based Grids, events, and service
coordination are not just abstract Grid research issues: they are needed to meet the requirements of real science
application Grids. We note further that service-based scientific Grids imply a higher level of encapsulation: one can
think of this as a “Grid shell” for programming different services. The processing engines for such shells are
essentially workflow engines. These higher level languages are also suitable for putting Grid application
development directly in the hands of science application developers.

Consider the following example: during month-long experiments, plasma fusion scientists participating in the
United States Fusion Grid, collaborating with European and Japanese partners, analyze plasma shot data using
interactive visualization tools such as ReviewPlus (http://web.gat.com/comp/analysis/uwpc/reviewplus/manual/).
Since these users are obviously not in the same control room, they cannot look over each other's shoulders to

 1

examine and interact with the tools on the same display. Through the use of generalized event middleware, we can
convert standalone applications like ReviewPlus into collaborative tools using shared events and shared data:
multiple researchers examining the same data set can pass control to each other to control displays. Local events
(mouse clicks, new file loads, etc.) are captured and distributed to each participant. Their ReviewPlus displays are
automatically recreated using the new event, as if the remote event was locally generated. This remote event system
can be generalized to other applications: the same event middleware can be used for software multicasting the audio
and web camera displays of each researcher at his or her desktop.

In this paper we investigate issues pertinent to the intersection of most popular incarnation of SOA, Web Services,
and a distributed messaging infrastructure, NaradaBrokering. We first begin by providing an overview of the
NaradaBrokering infrastructure along with a discussion of its current capabilities in section 2. In section 3, we
discuss how NaradaBrokering can be deployed to augment Web Service interactions and capabilities. Section 4
outlines our work on building a Grid of Grids, this section also includes a discussion of the infrastructural issues
related to deploying such systems. Section 5 includes a discussion of the HPSearch technology that provides
scripting support to a variety of operations. Finally in section 6 we outline future work.

2. Web Service Messaging Infrastructure: Internet-on-Internet
The SOAP processing model supports a general purpose messaging strategy of multiple, distributed SOAP
processing nodes that can act as intermediaries, routing nodes, and final destinations. This model goes well beyond
the standard client-server, remote procedure call methodology that many current Web Service implementations use.
In this section, we review the general requirements for building a message oriented middleware (MoM) that will
realize the SOAP processing model as well as several Web Service extensions. A more detailed discussion of these
topics is given in [6]. Such middleware messaging substrates may, in addition, provide additional levels of support
that are logically separate from services and messages, such as performance, fault tolerance, and reliability. The
Community Grids Lab has for several years been developing a messaging substrate NaradaBrokering [7, 8].
Communication within NaradaBrokering is asynchronous, thus facilitating the design of loosely coupled systems.
As we have shown [9], messaging systems may achieve communication speeds with millisecond latencies.
Messaging systems typically are used to communicate specialized messages called events to all parts of a system.
Events can encapsulate information pertaining to transactions, data interchange, method invocations, system
conditions and finally the search, discovery and subsequent sharing of resources. NaradaBrokering places no
constraints either on the size, rate and scope of the interactions encapsulated within these events or the number of
entities present in the system.

2.1. Routing of events
An event comprises of headers, content descriptors and the payload encapsulating the content. An event’s headers
provide information pertaining to the type, unique identification, timestamps, dissemination traces and other quality
of service (QoS) related information pertaining to the event. The content descriptors and the values these content
descriptors take collectively comprise the event’s content synopsis. Entities within the system can register their
interests by specifying constraints on the event’s synopsis. The destinations associated with an event are computed
based on the registered interests and the event’s synopsis. In NaradaBrokering this synopsis could be based on tag-
value pairs, integers and strings. Entities can also specify SQL queries on properties contained in a specialized
message. The synopses could also be XML documents, in which case XPath constraints can be specified. More
recently support for regular expression queries on an event’s content synopsis has been added.

Every event has an implicit or explicit destination list, comprising entities, associated with it. The brokering system
as a whole is responsible for computing broker destinations (targets) and ensuring efficient delivery to these targeted
brokers en route to the intended entity(s). Events as they traverse through the broker network have their traces
updated to snapshot its dissemination within the broker network (an example is depicted in Figure 1): this eliminates
continuous echoing. The broker network maps (BNM) at individual brokers is used to compute best broker hops to
reach target brokers. The routing is very efficient [10] since for every event, the associated targeted brokers are
usually the only ones involved in disseminations. Furthermore, every broker, either targeted or en route to one,
computes the shortest path to reach target destinations while eschewing links and brokers that have failed or have
been failure-suspected. Connections originating from a broker are tracked by a monitoring service. The factors
measured on individual links include loss rates, standard deviations and jitters. This can then be used to augment the
weights associated with edges in the BNMs to facilitate real-time responses, by the routing algorithms, to changing
network conditions.

 2

SSC-A
 SC-1

SC-2

SC-3

l
13 14

15

n
20

21

i4 5
6

j
7 8

9

m16 17

18

k10 11
12

h1 2
3

19

Broker Node

End Client

Figure 1: A sub-section of the NaradaBrokering broker network

2.2. Services within Messaging Infrastructures
In messaging systems, entities should be able to specify constraints on the Quality of Service (QoS) related to the
delivery of messages. The QoS pertain to the reliable delivery, order, duplicate elimination, security and size of the
published events and their encapsulated payloads. We have researched these issues for NaradaBrokering [11] of
events to authorized/registered entities. The delivery guarantee is satisfied in the presence of both link and node
failures. Entities are also able to retrieve events that were missed during failures or prolonged disconnects. The
scheme also facilitates exactly-once ordered delivery of events.

2.2.1 Reliable Delivery Service and Replay of events
The NaradaBrokering substrate’s reliable delivery guarantee holds true in the presence of four conditions.
1. Broker and Link Failures: The delivery guarantees are satisfied in the presence of individual or multiple broker

and link failures. The entire broker network may fail. Guarantees are met once the broker network (possibly a
single broker node) recovers.

2. Prolonged Entity disconnects: After disconnects an entity can retrieve events missed in the interim.
3. Stable Storage Failures: The delivery guarantees must be satisfied once the storage recovers.
4. Unpredictable Links: Events can be lost, duplicated or re-ordered in transit over individual links.
The scheme also facilitates ordered and exactly once delivery of events. More recently the reliable delivery
framework has been extended to incorporate support for multiple replications. Any of these replicas could be used
for recovery from failures or to ensure reliable delivery. The replicas themselves may fail and a recovering replica
arrives at a consistent after exchanging a series of control messages with the other replicas.

The NaradaBrokering reliable delivery scheme has been extended to provide support replays of events. A variety of
replay requests formats are supported. Furthermore, a time differential service which preserves the time-spacing
between successive events in the replay is also available.

2.2.2 Dealing with large payload sizes: Compression/Fragmentation
Web Service messaging systems that support science Grids should provide a means for managing very large data
transmissions. Compression and decompression are obviously desirable capabilities. Additionally, message
fragmentation/coalescence can be used to verify completed and uncorrupted large transmissions, and also support
partial re-transmissions in the case of failures. The latter efficiently eliminates the need to re-transmit the entire

 3

message in the case of a few incorrectly delivered fragments. Fragmentation also allows for parallel transmission
within the MoM.

This capability in tandem with the reliable delivery service was used to augment GridFTP to provide reliable
delivery of large files across failures and prolonged disconnects. The recoveries and retransmissions involved in this
application are very precise. Additional details can be found in Ref [12]. Here, we had a proxy collocated with the
GridFTP client and the GridFTP server. This proxy, a NaradaBrokering entity, utilizes NaradaBrokering’s
fragmentation service to fragment large payloads (> 1 GB) into smaller fragments and publish fragmented events.
Upon reliable delivery at the server-proxy, NaradaBrokering reconstructs original payload from the fragments and
delivers it to the GridFTP server.

In one of our measurements involving Cardiff University in UK and Indiana University in the US, we compared the
latencies involved in the delivery of large payloads between GridFTP and NaradaBrokering enhanced GridFTP.
Both these versions used parallel TCP streams as the underlying transport for delivery. For a payload of 400 MB the
latency for the NB-enhanced GridFTP was 418.25 seconds while for GridFTP it was 424.85 seconds. Additional
results can be found in Ref [13]. Currently the NaradaBrokering substrate provides support for zlib compressions,
high performance compression algorithms could improve performance significantly, by efficiently trading off
between computation cycles vis-à-vis network cycles. This needs to be investigated further.

2.2.3 Time and Buffering Services
Proper time sequence ordering of messages and events is of utmost importance in many applications, such as
audio/video collaboration systems. The NaradaBrokering system provides this capability through an
implementation of the Network Time Protocol (NTP). The NaradaBrokering TimeService [14] allows
NaradaBrokering processes (brokers and entities alike) to synchronize their timestamps using the NTP algorithm
with multiple time sources (usually having access to atomic time clocks) provided by various organizations, like
NIST and USNO. The NaradaBrokering time service plays an important role in collaborative environments and can
be used to time order events from disparate sources. The substrate includes a buffering service which can be used to
buffer replays from multiple sources, time order these events and then proceed to release them.

2.2.4 Security Services

Messaging systems possess many interesting requirements not present in client-server systems. The latter may be
suitably handled by transport level security, but in MoMs the messages may pass through many intermediaries and
may be destined for multiple recipients. The NaradaBrokering security framework [15] provides a scheme for end-
to-end secure delivery of messages between entities within the system. The scheme protects an event in its traversal
over multiple, possibly insecure, transport hops. Entities can verify the integrity and source of these events, before
proceeding to process the encrypted payload.

3. Incorporating Support for Web Services within the Messaging Substrate
SOAP [16] has emerged as the de facto standard for encapsulating and transporting various Web Services
interactions. SOAP, along with WSDL [17] and UDDI [18], has been included as part of the WS-I Basic Profile [19].
Addressing support for SOAP within the substrate is thus central to our strategy. Subsequent sub-sections describe
our approach to providing support for Web Services within the substrate.

3.1. Incorporate the SOAP processing stack into the substrate
By incorporating the SOAP processing stack into the substrate applications residing in different hosting
environments (C++ based gSOAP, .NET-based WSE, or Perl-based SOAP::Lite) can interact with the substrate.
Furthermore, so long as these Web Services are connected to the substrate they can partake from all the QoS
provided to the NaradaBrokering clients. This includes features such as failure resilience and recovery from failures.
This approach requires the substrate to function as a SOAP node which conforms to the SOAP processing model
governing the actions that need to taken upon receipt of a SOAP message. Specifically in SOAP 1.2 the substrate
needs to deal with the role (in SOAP 1.1 this corresponds to the actor attribute), mustUnderstand and the
relay attributes. The substrate will issue a fault if the message contains any headers targeted to its role, with the
mustUnderstand attribute set, which it cannot process.

 4

Finally it must be noted that the substrate may forward or interact with other SOAP intermediaries inside or outside
the substrate to accomplish certain functions. The SOAP 1.2 model allows the relay attribute to be incorporated
into SOAP message headers to facilitate such an interaction. In some cases, such as WS-Eventing [20] and WS-
Notification [21], the substrate can provide support for delegated interactions such as information regarding the list
of topics, management of subscriptions and their lifetimes, and replays of notification messages to recovering
endpoints. Another related capability is that of a proxy where the substrate can interact with other Web Services on
behalf of a non-Web Service endpoint.

3.2. Provide services for SOAP messages
The substrate can provide a variety of services to SOAP messages. This includes support for compressing and
decompressing, fragmenting and coalescing data encapsulated in the SOAP body, and logging of messages for
subsequent replays among others. A substrate operates in variety of roles. A SOAP message can include such
processing directives for the substrate through SOAP headers targeted to it as a SOAP intermediary. Additionally
the substrate can provide support for conversion between different encoding schemes that may be employed in a
SOAP message.

3.3. Facilitate federation between specifications
The substrate can facilitate federation between competing specifications in the same target area. Examples of such
scenarios include WS-ReliableMessaging (WSRM) [22] and WS-Reliability [23] in the reliable delivery area and
WS-Eventing and WS-Notification in the area of notifications. Such a federation would enable service endpoints
from competing specifications to interoperate with each other. This capability requires the substrate to map not only
the structural elements of the SOAP messages but do so while ensuring that the semantics encapsulated within the
original message are also mapped accordingly. It is entirely possible that in some cases it might not be possible to
find a semantically equivalent operation in a target specification; here we may either throw faults or provide for
custom extensions.

3.4. Facilitate the discovery of services
The substrate can facilitate the discovery of services hosted within the substrate. Services advertise themselves in an
XML based schema. The substrate provides support for XPath queries and regular-expressions based queries; this
capability can be used to discover services that satisfy the search criteria. Individual queries may also constrain the
realms within which the discovery should occur. This allows an entity to control how localized the services should
be.

3.5. Permeating service endpoints: The filter approach
In this section we include a brief description of the typical deployment of services and accesses to these services.
We also discuss extensions that most hosting environments provide for augmenting the behavior and functionality of
service endpoints. This lays the groundwork for our strategy for making the substrate permeate service endpoints.

To facilitate incremental addition of capabilities to service endpoints one can also configure filters (examples
include filters for encryption, compression, logging etc.) in the processing path between the service endpoints. Since
the service endpoints communicate using SOAP messages these filters operate on SOAP messages. Several of these
filters can be cascaded to constitute a filter pipeline. Services are generally hosted within a hosting environment
also known as a container. The container provides a variety of services which the service implementation can use.
For example, a service implementation need not worry about communication details since this necessary
functionality would be implemented within a container component such as servlets in the Java J2EE environment.
This component in tandem with the container support classes is responsible for packaging data received over the
wire into data structures that can be processed by the service implementation. An instance of the web component is
typically automatically generated by the container during the deployment phase of the Web Service. This scenario is
depicted in Figure 2. It is possible to deploy services without a container. In the simplest case one may simply use
the TCP protocol for communications and reconstruct SOAP messages from byte packets received over a socket; a
custom deployment component can used to configure filter pipelines.

 5

Figure 2: Deployment of services and filter-pipelines

Filters within a pipeline operate on SOAP messages encapsulating invocation requests or responses. In the case of a
service this pipeline is configured between the container component and the service, while in the case of clients this
is configured between the support classes and the application logic. It should also be noted that individual filters are
autonomous entities that have access to the entire SOAP message encapsulating the request/invocation. Individual
filters are allowed to modify both the header and body elements of SOAP messages. The order in which filters
operate on messages needs to be consistent, for example the stages at which encryption/decryption and
compression/decompression take place at the service endpoints should be consistent otherwise unpredictable
results/behavior may ensue.

There are three advantages to utilizing the filter approach. First, it entails no changes to the service endpoints: this
facilitates incremental addition of capabilities. Second, filters can be developed and tested independent of the service
endpoints thus providing greater robustness. Finally, the filter approach promotes code reuse since different filters
corresponding to security, compressions, logging or timestamps can be utilized by multiple services.

The substrate can provide additional capabilities by permeating a service endpoint. Specially designed filters allow
the incremental addition of capabilities to existing services. These filters encapsulate several of the substrate’s
capabilities and in some cases allow for richer interaction with the substrate. A heart-beat filter would send a
message at regular intervals to the substrate indicating that it is alive; this in turn helps discovery services within the
substrate to identify live service instances. A performance monitoring filter would in turn notify the substrate at
regular intervals about the load that it is experiencing. This in turn allows the substrate to load balance service
requests by routing them to the least overloaded service instance. A filter may also automatically generally service
advertisements along with information related to the transports available at the service endpoint. Additionally, these
filters can also leverage the substrate’s capabilities to communicate across NAT (Network Address Translator),
firewall and proxy boundaries.

3.6. Negotiate and provide an optimal transport for SOAP messages
The substrate provides support for a very wide array of transports (TCP, UDP, Multicast, SSL, HTTP and
ParallelTCP among others). Depending on the size of SOAP message and the nature of continuing interactions
appropriate transports will be deployed for communications. The nature of continuing interactions are dictated by
issues such as whether the service exchanges messages at a high rate for a long time or whether the service considers
reliable delivery to be more important than timely delivery. Filters at an endpoint can negotiate the best possible
transport between itself and the substrate. The choice of the transport protocol being deployed is a function of the
reliability, volume, rate and security requirements at the endpoint. The transport negotiations are carried out using a

 6

set of SOAP messages some of which are used to determine performance metrics such as latency, bandwidth, loss
rates and jitters.

Note that the SOAP messages being transported can be based either on the traditional RPC style request/response
message or the asynchronous one-way messaging. In the former case of RPC the substrate will facilitate correlations
between requests and responses over transports, such as UDP, that do not naturally support a request/response based
interaction that is at the heart of HTTP. The substrate will generate a UUID for such messages and include this as a
header in the SOAP message. This message identifier when included in responses allows correlation with the
original request.

The multicast transport currently available within NaradaBrokering is based on best effort multicast. The system can
leverage reliable multicast protocols since transport capabilities are abstracted by the protocol layers within the
system. Examples of reliable multicast include efforts such as Scaleable Reliable Multicast (SRM) and Tree Based
Reliable Multicast (TRAM) protocols. Different protocols may implement different communication pathways such
as trees or rings. Wherever multicast is available the dissemination capabilities offered by reliable multicast is very
powerful. There are two issues which need to taken into consideration. First, multicast requires MBONE, which
generally is not available at several locations. Second, multicast is typically not firewall friendly with most
administrators blocking such traffic. That aside it should be noted that Multicast-based systems such as the
AccessGrid have been successfully deployed at several academic institutions. Multicast deployment strategies in
Grid settings can be found in Ref [24].

Finally, since NaradaBrokering is based on the content-based publish/subscribe paradigm managing subscriptions
using a pure multicast model is a difficult problem since subscriptions and multicast groups do not typically map
very well. It is entirely possible that one could run into 2n groups for n subscribers. Dealing with issues such as the
negotiation of appropriate multicast groups and Denial of Service attacks are also issues that need to be investigated
further. Reliable multicast protocols are very promising and this is an area we plan to investigate closely.

3.7. Message Dispatching and enforcement of policies
Here the substrate sitting at the edge of the organization facilitates the dispatch of messages to the endpoint
identified in the WS-Addressing [25] endpoint-reference. The substrate also facilitates the creation of these
endpoint-references. The dispatcher generates these endpoint references such that they reflect the optimal protocol to
reach these endpoints. Also, the substrate can enforce policies that govern the processing of SOAP messages. Here
the substrate can automatically add policy information to outbound messages; such a move would allow applications
to incorporate policy changes without entailing code rewrites.

4. Grid of Grids
We may view it as a collection of capabilities provided by different organizations that have banded together to form
a “Virtual Organization” [26]. A capability is just a Web Service, and Grids may be built from collections of Web
Services. A Grid service is just a Web Service, although it may follow more restrictive conventions defined by
OGSA. It is actually better to define a Grid by how it is used rather than how it is built. In this section we investigate
some of the issues involved in building Grids of Grids.

We recommend two sets of services to facilitate such a scenario. Services provided within the substrate constitute
the Internet-on-Internet (IOI) services. It is referred to as IOI since it enables us to build an application-level
“Internet” of services connected by a messaging substrate that replicates in the application layer many of the
desirable features (security, guaranteed delivery, optimal routing) that are normally found in the TCP/IP stack. See
Ref [27] for a discussion of why TCP/IP is not enough, and thus why IOIs are necessary for SOAP messages. These
services have been described in detail in sections 2 and 3.

The IOI services will be invisible to the applications that run in it. Applications would simply specify the QoS
constraints and the substrate would deal with the complexity of satisfying these constraints. There are a number of
higher level services and capabilities that do not belong in the IOI layer: these services typically extend the
capabilities available through the IOI layer and are more specifically needed for Web Service management and
apply to specific domains. Typical examples include service information and metadata management. We refer to
this collection of capabilities as the Context and Information Environment (CIE). CIE services broadly fall into the
following 5 categories.

 7

1. Collaboration: Some collaborative applications may place a premium on the ability to pause/replay live streams
rather than timely delivery. It is easy to see how the buffering strategies may vary in such scenarios. Strategies
for the demarcation and subsequent retrieval of major and minor events may vary in different domains.

2. Authorization and authentication interfaces: Depending on the domain authentication schemes may span the
wide spectrum from bio-metrics to text-based passwords. Same is true for trust propagation.

3. Support for specifications in various domains: Prime examples of this include WS-Discovery which is suitable
for ad-hoc networks, and WS-Context which maintains contexts for a distributed computation.

4. Metadata Management: Different domains may have different formats for storing metadata and constraints
regarding their exchange. In some scenarios custom solutions may be used or some endpoints may choose to
use WS-Metadata exchange which facilitates exchange of metadata between two end points.

5. Portal Services: This involves allowing access to all metadata, the management of system deployments, firewall
tunnels, performance information, and error-logs. Additionally a portal service may aggregate a set of services
and provide a domain specific view of the state of these services.

5. Scripting Environments for the Messaging Substrate
As we have discussed in the introduction, messaging substrates are important given the asynchronous and collective
nature of composite science application services. Building on this messaging system, we need to provide simple
ways of expressing these composite application services and the data streaming pipes that connect them in scripting
languages. Apart from expressing workflows, such scripting languages and engines have two important advantages:
first, they provide a high level language suitable for science application developers to use to program the Grid; and
second, they provide tools for creating and managing messaging systems.

To address these issues, we have been developing HPSearch [28] as an extension to an existing scripting language
that binds Uniform Resource Identifiers (URIs) to the scripting language. Every resource (data source, application,
system objects) is identified by an URI on the web. In our case we use a scripting environment to bind URIs as first-
class objects that can be used to manipulate the resource identified by the URI. We currently support reading from
http/ftp and databases and reading or writing to files, topics and sockets. We have implemented a simple scheme to
map the results of database queries to XML for streaming purposes

The HPSearch system assumes that all data that flows through is essentially a stream and uses NaradaBrokering to
route these data streams. In effect, processing is done by passing data through various programs that are accessible
as services, in a Pipe-Filter fashion. To prevent overloading from the concepts we discussed in earlier sections, we
refer to these filters as “sieves”. In this architecture every sieve has a set of input and output ports. The sieve
transforms or refines the data it receives on its input ports. The processed data is sent out on the output port to the
next sieve.

We currently implement HPSearch scripting using Rhino (http://www.mozilla.org/rhino/), a Java based
implementation of Javascript, although any other scripting language like Python/Jython may be supported in the
future. Rhino further allows us to define custom Javascript objects called hostobjects that help to dynamically
access the host system. This feature can be useful to create objects that help manipulate data streams and aid system
management tasks as outlined in the next few sections. We also present our approach to build sieves as services that
process data in a stream. The overall application, which is made up of numerous such data sieves is then controlled
via HPSearch objects.

 8

HPSearch Kernel

Figure 3: HPSearch architecture

The system, as depicted in Figure 3, consists of one or more “HPSearch Kernels” which contain a Javascript based
console application, FlowHandlers (for distributing flow components), RequestHandlers (for controlling specific
types of resources that are components of the flow) and other system objects. Every Kernel is itself a Web Service
and exposes ports to remotely run scripts, query system information and perform other management tasks. These
Kernels communicate via messages using the brokering network (shown by black double-headed arrows). The
presence of multiple such Kernels serves the following purposes a) distributing the handling of tasks for load-
balancing b) utilizing a kernel (RequestHandler component of Kernel) nearest to the resource in question for
minimizing the data transfer overhead and c) certain local resources (such as files) may not be accessible, or certain
hosts may not be given permission to access resources (for example, for security purposes, only specific hosts may
be allowed access to database) on a specific host unless the RequestHandler component runs on that particular host.

The Kernel runs a RequestHandler for every component it handles, such as reading and writing to files, sockets,
topics or reading from databases, reading from files using http/ftp and controlling web-service proxys (shown by
thick dashed lines). Each of these resources might be accessible using web-services and could be reachable via an
endpoint reference. We plan to add a more generic form of addressing every type of resource by implementing
support for WS-Addressing mechanisms. An interesting component of the RequestHandler is WSProxyClient that
allows us to control the functioning of WSProxy (Web Service Proxy wrapper for components processing streaming
data), as explained below. The WSProxyClient controls the instantiation of the WSProxy service and its operation
(shown by the thick dashed line) via normal web-service calls (simple SOAP requests). Since the WSProxy is a
normal web-service, it can be controlled by any workflow engine and hence is workflow engine and workflow
language independent.

The WSProxy is essentially a wrapper over an existing application or a data processing code. The WSProxy can be
deployed in any standard web-service container such as Apache AXIS. The WSProxy a) exports life-cycle
operations as web-service operations so that the deployed service may be controlled by standard means (such as by
sending simple SOAP requests), b) maintains state of the application and allows it to recover from faults in the event
of failure, and c) notifies the controlling application (WSProxyClient or workflow engine) of errors and other
notifications that the wrapped service may produce. A StreamProxy (see Figure 3) is a wrapper over data streams.
The WSProxy may utilize a StreamProxy to help negotiate ideal transport characteristics whenever possible (based
on the discussion outlined in section 3.6).

WSProxy encapsulates a service using two interfaces (Runnable and Wrapped). Runnable is suited for quickly
creating data sieving applications and provide more control on the life-cycle operations of the service. Wrapped
provide less control on the lifecycle of the service but allows us to wrap an existing code for creating a pluggable
component and exposing it as a Web Service. Wrapped service provides best results if the service being wrapped
reads data from standard input and writes data to standard output.

Broker Network

WSProxy

Request Handler

WSProxyClient

Resource

DB Connector

WSProxy
Wrapped
Service

WSProxy
Wrapped
Service

Wrapped or programmed
service

...

Files, Sockets, Topics
HPSearch Kernel

Request Handler

Javascript Shell Data base

Flow Handler

Other System
Objects Could possibly be web

services

StreamProxy handles data streaming
by negotiating with other StreamProxys
or Web Services. The RED represents
raw data (input) and the GREEN
represents filtered / processed data
(output)

HPSearch
Kernel

 9

When a user submits a script containing the data flow specification and creates a Flow object, the shell invokes the
FlowHandler which in conjunction with other Kernels, decides the best Kernel to handle the individual components
of the flow. These task descriptions are then distributed to the individual Kernels who in turn invoke
RequestHandlers to process the request. The RequestHandler is responsible for handling errors and notifications (if
any) from the resource it is handling and taking the appropriate action.

We can compose a distributed data-flow by joining multiple WSProxy wrapped services and setting the correct input
and output streams. The brokering network can be used to handle the data communication between the services.

5.1. Managing the Messaging Substrate
HPSearch provides a console for system management. By providing appropriate bindings (objects) to various system
management operations we can control various features of the brokering substrate from instantiation to management
and dynamic manipulation of brokering network characteristics. We highlight here the major parts of this effort:
broker topology creation and performance measurements.

Broker Topology Creation: This is an interface to the broker locator service to locate existing brokers and
instantiate new brokers for efficient routing. This binding may be combined with the performance metrics and
objects for creating new links between brokers to achieve higher throughput by avoiding busy routes.

The NaradaBroker object serves as a scripting front-end to instantiate a broker and to create links between
brokers. A partial implementation is available. For example, the following code listing creates a linear topology
consisting of three brokers. This scenario is depicted in Figure 4.

156.56.104.170

Figure 4: Instantiating brokers and creating a broker topology
b = new NaradaBroker("school.cs.indiana.edu");
b.create("");
b_connLink = b.connectTo("156.56.104.170", "5045", "t", "");
b.requestNodeAddress(connLink, "0");

c = new NaradaBroker("trex.ucs.indiana.edu");
c.create("");
c_connLink = c.connectTo("156.56.104.170", "5045", "t", "");
c.requestNodeAddress(c_connLink, "0");

This is also useful in dynamically creating a virtual broker network for a particular application and then deploying
the application over the virtual network

Measuring Broker Performance: The PerfMetrics object can be initialized to read the performance metrics
published by the Performance Monitoring Service (described in Section 2 above) on a specialized topic for
performance data (such as /cgl/narada/perfdata). Further the accumulated metrics may be queried using
the query function. As an illustration, the following code queries the accumulated metrics to find the link with an
average latency greater than 5.0 and then re-queries to find the jitter for the link.

Here we can use XPath expressions to query the performance metrics.

6. Future Work
In the Grid services community there are currently two frameworks that seek to deploy Grid applications using Web
Services. The dominant OGSI framework was recently factored into a set of Web Service specifications: WSRF.

badLink = PerfMetrics.query("//link[avgLatency > 5.0]/@id");
jitter = PerfMetrics.query("//link[@id='" + badLink[0] + "']/jitter");

trex.ucs.indiana.edu

HPSearch Shell
school.cs.indiana.edu

 10

WSRF focuses primarily on providing support for stateful interactions. The central tenet of WSRF is that services
have state and these services are modeled as resources with the ability to inspect their properties and lifetimes. WS-
GAF [29] in turn considers services to be stateless, and provides a set of design patterns to model Grid applications
using widely-accepted Web Service specifications. We plan to investigate the ability to reconcile the differences
between the aforementioned approaches so that applications may themselves be composed of services conforming to
either specifications but can continue to deal with each other as if they were part of the framework with which they
are aligned.

More recently Microsoft has released a set of specifications – WS-Transfer, WS-Enumeration and WS-Eventing –
which deal with the ability to have stateful interactions. We expect this approach to coexist alongside WSRF for the
foreseeable future. We plan to investigate issues related to the ability to interoperate between these specifications.

7. References
[1] I. Foster, C. Kesselman, J. Nick, S. Tuecke, “The Physiology of the Grid: An Open Grid Services Architecture

for Distributed Systems Integration.” Open Grid Service Infrastructure WG, Global Grid Forum, June 22, 2002.
Available from http://www.globus.org/research/papers/ogsa.pdf.

[2] D. Booth, H. Haas, F. McCabe, E. Newcomer, M. Champion, C. Ferris, and D. Orchard, “Web Services
Architecture.” W3C Working Group Note 11 February 2004. Available from
http://www.w3.org/TR/2004/NOTE-ws-arch-20040211/.

[3] I. Foster (ed), J. Frey (ed), S. Graham (ed), S. Tuecke (ed), K. Czajkowski, D. Ferguson, F. Leymann, M. Nally,
I. Sedukhin, D. Snelling, T. Storey, W. Vambenepe, S. Weerawarana, “Modeling Stateful Resources with Web
Services v. 1.1.” March 5, 2004. Available from http://www-106.ibm.com/developerworks/library/ws-
resource/ws-modelingresources.pdf.

[4] Andrea Donnellan, Jay Parker, Geoffrey Fox, Marlon Pierce, John Rundle, Dennis McLeod Complexity
Computational Environment: Data Assimilation SERVOGrid 2004 Earth Science Technology Conference June
22 - 24 Palo Alto.

[5] Andrea Donnellan, Jay Parker, Greg Lyzenga, Robert Granat, Geoffrey Fox, Marlon Pierce, John Rundle,
Dennis McLeod, Lisa Grant, Terry Tullis The QuakeSim Project: Numerical Simulations for Active Tectonic
Processes 2004 Earth Science Technology Conference June 22 - 24 Palo Alto.

[6] Geoffrey Fox, Shrideep Pallickara and Savas Parastatidis Towards Flexible Messaging for SOAP Based
Services. To appear, proceedings of ACM/IEEE Conference on Supercomputing Applications 2004.

[7] The NaradaBrokering Project at the Community Grids Lab: http://www.naradabrokering.org
[8] Shrideep Pallickara and Geoffrey Fox. NaradaBrokering: A Middleware Framework and Architecture for

Enabling Durable Peer-to-Peer Grids. Proceedings of ACM/IFIP/USENIX International Middleware
Conference Middleware-2003.

[9] Shrideep Pallickara et. al. Performance of a Possible Grid Message Infrastructure. (To appear) Journal of
Concurrency and Computation: Practice & Experience. UK e-Science meeting on Grid Performance Edinburgh,
UK.

[10] Shrideep Pallickara and Geoffrey Fox. On the Matching Of Events in Distributed Brokering Systems.
Proceedings of IEEE ITCC Conference on Information Technology. April 2004. pp 68-76 Volume II.

[11] Shrideep Pallickara and Geoffrey Fox. A Scheme for Reliable Delivery of Events in Distributed Middleware
Systems. Proceedings of the IEEE International Conference on Autonomic Computing. 2004.

[12] G. Fox, S. Lim, S. Pallickara and M. Pierce. Message-Based Cellular Peer-to-Peer Grids: Foundations for
Secure Federation and Autonomic Services. (To appear) Journal of Future Generation Computer Systems.

[13] Sang Lim et al. Performance Measurements for NaradaBrokering enhanced GridFTP.
http://www.naradabrokering.org/papers/GridFTPResults.pdf

[14] Hasan Bulut, Shrideep Pallickara and Geoffrey Fox. Implementing a NTP-Based Time Service within a
Distributed Brokering System. ACM International Conference on the Principles and Practice of Programming in
Java. Pp 126-134.

[15] Pallickara et al. A Security Framework for Distributed Brokering Systems. Available from
http://www.naradabrokering.org.

[16] M. Gudgin, et al, "SOAP Version 1.2 Part 1: Messaging Framework," June 2003.
http://www.w3.org/TR/2003/REC-soap12-part1-20030624/

[17] Web Services Description Language (WSDL) 1.1 http://www.w3.org/TR/wsdl
[18] Universal Description, Discovery and Integration UDDI.
[19] Web Services Interoperability http://www.ws-i.org/

 11

http://www.naradabrokering.org/
http://www.w3.org/TR/2003/REC-soap12-part1-20030624/
http://www.w3.org/TR/wsdl
http://www.ws-i.org/

[20] Web Services Eventing. Microsoft, IBM & BEA. http://ftpna2.bea.com/pub/downloads/WS-Eventing.pdf
[21] [Web Services Notification (WS-Notification). IBM, Globus, Akamai et al.

http://www-106.ibm.com/developerworks/library/specification/ws-notification/
[22] Web Services Reliable Messaging Protocol (WS-ReliableMessaging)

ftp://www6.software.ibm.com/software/devel oper/library/ws-reliablemessaging200403.pdf
[23] [Web Services Reliable Messaging TC WS-Reliability. http://www.oasis-open.org/
[24] Maziar Nekovee, Marinho P. Barcellos and Michael Daw. Reliable Multicast for the Grid: A Case Study

inExperimental Computer Science. (To appear) Philosphical Transcations of the Royal Society. Special Issue on
Grid Computing.

[25] WS-Addressing. IBM and Microsoft. http://www.w3.org/Submission/2004/SUBM-ws-addressing-20040810/
[26] The Anatomy of the Grid: Enabling Scalable Virtual Organizations. I. Foster, C. Kesselman, S. Tuecke.

International J. Supercomputer Applications, 15(3), 2001
[27] W. Vogels, “Web Services Are Not Distrubted Objects.” IEEE Internet Computing, vol. 7 (6), pp59-66, 2003.
[28] [HPSearch: Design & Development via Scripting. http://www.hpsearch.org
[29] [S. Parastatidis, J. Webber, P. Watson, and T. Rischbeck, “WS-GAF: A Framework for Building Grid

Applications Using Web Services.” To appear in Concurrency and Computation: Practice and Experience.

 12

http://ftpna2.bea.com/pub/downloads/WS-Eventing.pdf
http://www-106.ibm.com/developerworks/library/specification/ws-notification/
http://www.oasis-open.org/
http://www.w3.org/Submission/2004/SUBM-ws-addressing-20040810/
http://www.hpsearch.org/

	Introduction
	Web Service Messaging Infrastructure: Internet-on-Internet
	Routing of events
	Services within Messaging Infrastructures
	Reliable Delivery Service and Replay of events
	Dealing with large payload sizes: Compression/Fragmentation
	Time and Buffering Services
	Security Services

	Incorporating Support for Web Services within the Messaging
	Incorporate the SOAP processing stack into the substrate
	Provide services for SOAP messages
	Facilitate federation between specifications
	Facilitate the discovery of services
	Permeating service endpoints: The filter approach
	Negotiate and provide an optimal transport for SOAP messages
	Message Dispatching and enforcement of policies

	Grid of Grids
	Scripting Environments for the Messaging Substrate
	Managing the Messaging Substrate

	Future Work
	References

