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Abstract 
Grid application frameworks have increasingly aligned themselves with the developments in Web Services. Web 
Services are currently the most popular infrastructure based on Service Oriented Architecture (SOA) paradigm. 
There are three core areas within the SOA framework: a set of capabilities that are remotely accessible, 
communications using messages, and metadata pertaining to the aforementioned capabilities. In this paper, we focus 
on issues related to the messaging substrate hosting these services; we base these discussions on the 
NaradaBrokering system. We outline strategies to leverage capabilities available within the substrate without the 
need to make any changes to the service implementations themselves. We also identify the set of services needed to 
build Grids of Grids. Finally, we discuss another technology, HPSearch, which facilitates the administration of the 
substrate and the deployment of applications via a scripting interface. These issues have direct relevance to scientific 
Grid applications, which need to go beyond remote procedure calls in client-server interactions to support integrated 
distributed applications that couple databases, high performance computing codes, and visualization codes. 
 
1. Introduction 
With the advent of the Open Grid Computing Architecture (OGSA) [1] and the UK e-Science program, Grid 
computing has aligned itself with Web Service standards activities: Grid infrastructure will be Web Service 
infrastructure, although the aggressiveness in developing and adopting extensions is a matter of debate.  The current 
general consensus is that Web and Grid Services should follow Service Oriented Architecture (SOA) principles, 
such as discussed by the World Wide Web Consortium’s Web Service Architecture working group. We summarize 
key SOA features as follows, following Ref. [2]: 

1. SOAs are composed of services that present programmatic access to resources to remote client applications. 
Typical basic (atomic) services include data access (logically wrapping storage technologies such as 
databases and file systems), the ability to run and manage remote applications.  More complicated services 
may be composed of these basic services using such expression languages as coupled with workflow 
engines. 

2. Services communicate using messages.  Messages are usually encoded using SOAP.  The asynchronous 
nature of messaging is one of the keys to Grid and Web Service scalability beyond the intranets. 

3. SOAs are metadata rich.  We must describe service interfaces, provide descriptions of services so that we 
know how to use them, provide look-up registries to find service URLs, and so forth. 

 
Much debate has gone into refining concepts such as stateful conversations and stateful resources accessed through 
services [3].  However, we believe that the other two characteristics, messaging and metadata, have been somewhat 
overlooked.  In this paper, we are particularly interested in the messaging infrastructure needed to realize such things 
as the SOAP message processing model (particularly in SOAP 1.2), which allows for multiple intermediaries that 
will need to process header information required by WS-Addressing and WS-Security.  
 
These issues have direct relevance to scientific Grid applications, which need to go beyond remote procedure calls 
in client-server interactions to support integrated distributed applications that couple databases, high performance 
computing codes, and visualization codes [4, 5].  These coordinated, composite applications are asynchronous by 
their nature: applications may take hours or days to complete.  Message-based Grids, events, and service 
coordination are not just abstract Grid research issues: they are needed to meet the requirements of real science 
application Grids.  We note further that service-based scientific Grids imply a higher level of encapsulation: one can 
think of this as a “Grid shell” for programming different services.  The processing engines for such shells are 
essentially workflow engines.  These higher level languages are also suitable for putting Grid application 
development directly in the hands of science application developers.  
 
Consider the following example: during month-long experiments, plasma fusion scientists participating in the 
United States Fusion Grid, collaborating with European and Japanese partners, analyze plasma shot data using 
interactive visualization tools such as ReviewPlus (http://web.gat.com/comp/analysis/uwpc/reviewplus/manual/).  
Since these users are obviously not in the same control room, they cannot look over each other's shoulders to 
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examine and interact with the tools on the same display.  Through the use of generalized event middleware, we can 
convert standalone applications like ReviewPlus into collaborative tools using shared events and shared data: 
multiple researchers examining the same data set can pass control to each other to control displays.  Local events 
(mouse clicks, new file loads, etc.) are captured and distributed to each participant.  Their ReviewPlus displays are 
automatically recreated using the new event, as if the remote event was locally generated.  This remote event system 
can be generalized to other applications: the same event middleware can be used for software multicasting the audio 
and web camera displays of each researcher at his or her desktop. 
 
In this paper we investigate issues pertinent to the intersection of most popular incarnation of SOA, Web Services, 
and a distributed messaging infrastructure, NaradaBrokering. We first begin by providing an overview of the 
NaradaBrokering infrastructure along with a discussion of its current capabilities in section 2. In section 3, we 
discuss how NaradaBrokering can be deployed to augment Web Service interactions and capabilities. Section 4 
outlines our work on building a Grid of Grids, this section also includes a discussion of the infrastructural issues 
related to deploying such systems. Section 5 includes a discussion of the HPSearch technology that provides 
scripting support to a variety of operations. Finally in section 6 we outline future work. 
 
2. Web Service Messaging Infrastructure: Internet-on-Internet 
The SOAP processing model supports a general purpose messaging strategy of multiple, distributed SOAP 
processing nodes that can act as intermediaries, routing nodes, and final destinations.  This model goes well beyond 
the standard client-server, remote procedure call methodology that many current Web Service implementations use.  
In this section, we review the general requirements for building a message oriented middleware (MoM) that will 
realize the SOAP processing model as well as several Web Service extensions. A more detailed discussion of these 
topics is given in [6].  Such middleware messaging substrates may, in addition, provide additional levels of support 
that are logically separate from services and messages, such as performance, fault tolerance, and reliability. The 
Community Grids Lab has for several years been developing a messaging substrate NaradaBrokering [7, 8]. 
Communication within NaradaBrokering is asynchronous, thus facilitating the design of loosely coupled systems.  
As we have shown [9], messaging systems may achieve communication speeds with millisecond latencies. 
Messaging systems typically are used to communicate specialized messages called events to all parts of a system. 
Events can encapsulate information pertaining to transactions, data interchange, method invocations, system 
conditions and finally the search, discovery and subsequent sharing of resources. NaradaBrokering places no 
constraints either on the size, rate and scope of the interactions encapsulated within these events or the number of 
entities present in the system.  
 
2.1. Routing of events 
An event comprises of headers, content descriptors and the payload encapsulating the content. An event’s headers 
provide information pertaining to the type, unique identification, timestamps, dissemination traces and other quality 
of service (QoS) related information pertaining to the event. The content descriptors and the values these content 
descriptors take collectively comprise the event’s content synopsis. Entities within the system can register their 
interests by specifying constraints on the event’s synopsis. The destinations associated with an event are computed 
based on the registered interests and the event’s synopsis.  In NaradaBrokering this synopsis could be based on tag-
value pairs, integers and strings. Entities can also specify SQL queries on properties contained in a specialized 
message. The synopses could also be XML documents, in which case XPath constraints can be specified. More 
recently support for regular expression queries on an event’s content synopsis has been added. 
 
Every event has an implicit or explicit destination list, comprising entities, associated with it. The brokering system 
as a whole is responsible for computing broker destinations (targets) and ensuring efficient delivery to these targeted 
brokers en route to the intended entity(s). Events as they traverse through the broker network have their traces 
updated to snapshot its dissemination within the broker network (an example is depicted in Figure 1): this eliminates 
continuous echoing. The broker network maps (BNM) at individual brokers is used to compute best broker hops to 
reach target brokers. The routing is very efficient [10] since for every event, the associated targeted brokers are 
usually the only ones involved in disseminations. Furthermore, every broker, either targeted or en route to one, 
computes the shortest path to reach target destinations while eschewing links and brokers that have failed or have 
been failure-suspected. Connections originating from a broker are tracked by a monitoring service. The factors 
measured on individual links include loss rates, standard deviations and jitters. This can then be used to augment the 
weights associated with edges in the BNMs to facilitate real-time responses, by the routing algorithms, to changing 
network conditions. 
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Figure 1: A sub-section of the NaradaBrokering broker network 

 
2.2. Services within Messaging Infrastructures 
In messaging systems, entities should be able to specify constraints on the Quality of Service (QoS) related to the 
delivery of messages. The QoS pertain to the reliable delivery, order, duplicate elimination, security and size of the 
published events and their encapsulated payloads. We have researched these issues for NaradaBrokering [11] of 
events to authorized/registered entities.  The delivery guarantee is satisfied in the presence of both link and node 
failures. Entities are also able to retrieve events that were missed during failures or prolonged disconnects. The 
scheme also facilitates exactly-once ordered delivery of events.  
 
2.2.1 Reliable Delivery Service and Replay of events 
The NaradaBrokering substrate’s reliable delivery guarantee holds true in the presence of four conditions.  
1. Broker and Link Failures: The delivery guarantees are satisfied in the presence of individual or multiple broker 

and link failures. The entire broker network may fail. Guarantees are met once the broker network (possibly a 
single broker node) recovers.  

2. Prolonged Entity disconnects: After disconnects an entity can retrieve events missed in the interim.  
3. Stable Storage Failures: The delivery guarantees must be satisfied once the storage recovers.  
4. Unpredictable Links: Events can be lost, duplicated or re-ordered in transit over individual links. 
The scheme also facilitates ordered and exactly once delivery of events. More recently the reliable delivery 
framework has been extended to incorporate support for multiple replications. Any of these replicas could be used 
for recovery from failures or to ensure reliable delivery. The replicas themselves may fail and a recovering replica 
arrives at a consistent after exchanging a series of control messages with the other replicas.  
 
The NaradaBrokering reliable delivery scheme has been extended to provide support replays of events. A variety of 
replay requests formats are supported. Furthermore, a time differential service which preserves the time-spacing 
between successive events in the replay is also available. 
 
2.2.2 Dealing with large payload sizes: Compression/Fragmentation 
Web Service messaging systems that support science Grids should provide a means for managing very large data 
transmissions.  Compression and decompression are obviously desirable capabilities. Additionally, message 
fragmentation/coalescence can be used to verify completed and uncorrupted large transmissions, and also support 
partial re-transmissions in the case of failures.  The latter efficiently eliminates the need to re-transmit the entire 
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message in the case of a few incorrectly delivered fragments.  Fragmentation also allows for parallel transmission 
within the MoM. 
 
This capability in tandem with the reliable delivery service was used to augment GridFTP to provide reliable 
delivery of large files across failures and prolonged disconnects. The recoveries and retransmissions involved in this 
application are very precise. Additional details can be found in Ref [12].  Here, we had a proxy collocated with the 
GridFTP client and the GridFTP server. This proxy, a NaradaBrokering entity, utilizes NaradaBrokering’s 
fragmentation service to fragment large payloads (> 1 GB) into smaller fragments and publish fragmented events. 
Upon reliable delivery at the server-proxy, NaradaBrokering reconstructs original payload from the fragments and 
delivers it to the GridFTP server.  
 
In one of our measurements involving Cardiff University in UK and Indiana University in the US, we compared the 
latencies involved in the delivery of large payloads between GridFTP and NaradaBrokering enhanced GridFTP. 
Both these versions used parallel TCP streams as the underlying transport for delivery. For a payload of 400 MB the 
latency for the NB-enhanced GridFTP was 418.25 seconds while for GridFTP it was 424.85 seconds. Additional 
results can be found in Ref [13]. Currently the NaradaBrokering substrate provides support for zlib compressions, 
high performance compression algorithms could improve performance significantly, by efficiently trading off 
between computation cycles vis-à-vis network cycles. This needs to be investigated further. 
 
2.2.3 Time and Buffering Services 
Proper time sequence ordering of messages and events is of utmost importance in many applications, such as 
audio/video collaboration systems.  The NaradaBrokering system provides this capability through an 
implementation of the Network Time Protocol (NTP). The NaradaBrokering TimeService [14] allows 
NaradaBrokering processes (brokers and entities alike) to synchronize their timestamps using the NTP algorithm 
with multiple time sources (usually having access to atomic time clocks) provided by various organizations, like 
NIST and USNO. The NaradaBrokering time service plays an important role in collaborative environments and can 
be used to time order events from disparate sources. The substrate includes a buffering service which can be used to 
buffer replays from multiple sources, time order these events and then proceed to release them.  
 
2.2.4 Security Services 

Messaging systems possess many interesting requirements not present in client-server systems.  The latter may be 
suitably handled by transport level security, but in MoMs the messages may pass through many intermediaries and 
may be destined for multiple recipients. The NaradaBrokering security framework [15] provides a scheme for end-
to-end secure delivery of messages between entities within the system. The scheme protects an event in its traversal 
over multiple, possibly insecure, transport hops. Entities can verify the integrity and source of these events, before 
proceeding to process the encrypted payload.  
 
3. Incorporating Support for Web Services within the Messaging Substrate 
SOAP [16] has emerged as the de facto standard for encapsulating and transporting various Web Services 
interactions. SOAP, along with WSDL [17] and UDDI [18], has been included as part of the WS-I Basic Profile [19]. 
Addressing support for SOAP within the substrate is thus central to our strategy. Subsequent sub-sections describe 
our approach to providing support for Web Services within the substrate. 
 
3.1. Incorporate the SOAP processing stack into the substrate 
By incorporating the SOAP processing stack into the substrate applications residing in different hosting 
environments (C++ based gSOAP, .NET-based WSE, or Perl-based SOAP::Lite) can interact with the substrate. 
Furthermore, so long as these Web Services are connected to the substrate they can partake from all the QoS 
provided to the NaradaBrokering clients. This includes features such as failure resilience and recovery from failures. 
This approach requires the substrate to function as a SOAP node which conforms to the SOAP processing model 
governing the actions that need to taken upon receipt of a SOAP message. Specifically in SOAP 1.2 the substrate 
needs to deal with the role (in SOAP 1.1 this corresponds to the actor attribute), mustUnderstand and the 
relay attributes. The substrate will issue a fault if the message contains any headers targeted to its role, with the 
mustUnderstand attribute set, which it cannot process. 
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Finally it must be noted that the substrate may forward or interact with other SOAP intermediaries inside or outside 
the substrate to accomplish certain functions. The SOAP 1.2 model allows the relay attribute to be incorporated 
into SOAP message headers to facilitate such an interaction. In some cases, such as WS-Eventing [20] and WS-
Notification [21], the substrate can provide support for delegated interactions such as information regarding the list 
of topics, management of subscriptions and their lifetimes, and replays of notification messages to recovering 
endpoints. Another related capability is that of a proxy where the substrate can interact with other Web Services on 
behalf of a non-Web Service endpoint. 
 
3.2. Provide services for SOAP messages 
The substrate can provide a variety of services to SOAP messages. This includes support for compressing and 
decompressing, fragmenting and coalescing data encapsulated in the SOAP body, and logging of messages for 
subsequent replays among others. A substrate operates in variety of roles. A SOAP message can include such 
processing directives for the substrate through SOAP headers targeted to it as a SOAP intermediary. Additionally 
the substrate can provide support for conversion between different encoding schemes that may be employed in a 
SOAP message.  
 
3.3. Facilitate federation between specifications 
The substrate can facilitate federation between competing specifications in the same target area. Examples of such 
scenarios include WS-ReliableMessaging (WSRM) [22] and WS-Reliability [23] in the reliable delivery area and 
WS-Eventing and WS-Notification in the area of notifications. Such a federation would enable service endpoints 
from competing specifications to interoperate with each other. This capability requires the substrate to map not only 
the structural elements of the SOAP messages but do so while ensuring that the semantics encapsulated within the 
original message are also mapped accordingly. It is entirely possible that in some cases it might not be possible to 
find a semantically equivalent operation in a target specification; here we may either throw faults or provide for 
custom extensions.  
 
3.4. Facilitate the discovery of services 
The substrate can facilitate the discovery of services hosted within the substrate. Services advertise themselves in an 
XML based schema. The substrate provides support for XPath queries and regular-expressions based queries; this 
capability can be used to discover services that satisfy the search criteria. Individual queries may also constrain the 
realms within which the discovery should occur. This allows an entity to control how localized the services should 
be. 
 
3.5. Permeating service endpoints: The filter approach 
In this section we include a brief description of the typical deployment of services and accesses to these services. 
We also discuss extensions that most hosting environments provide for augmenting the behavior and functionality of 
service endpoints. This lays the groundwork for our strategy for making the substrate permeate service endpoints.  
 
To facilitate incremental addition of capabilities to service endpoints one can also configure filters (examples 
include filters for encryption, compression, logging etc.) in the processing path between the service endpoints. Since 
the service endpoints communicate using SOAP messages these filters operate on SOAP messages. Several of these 
filters can be cascaded to constitute a filter pipeline.  Services are generally hosted within a hosting environment 
also known as a container. The container provides a variety of services which the service implementation can use. 
For example, a service implementation need not worry about communication details since this necessary 
functionality would be implemented within a container component such as servlets in the Java J2EE environment. 
This component in tandem with the container support classes is responsible for packaging data received over the 
wire into data structures that can be processed by the service implementation. An instance of the web component is 
typically automatically generated by the container during the deployment phase of the Web Service. This scenario is 
depicted in Figure 2. It is possible to deploy services without a container. In the simplest case one may simply use 
the TCP protocol for communications and reconstruct SOAP messages from byte packets received over a socket; a 
custom deployment component can used to configure filter pipelines. 
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Figure 2: Deployment of services and filter-pipelines 
 
Filters within a pipeline operate on SOAP messages encapsulating invocation requests or responses. In the case of a 
service this pipeline is configured between the container component and the service, while in the case of clients this 
is configured between the support classes and the application logic. It should also be noted that individual filters are 
autonomous entities that have access to the entire SOAP message encapsulating the request/invocation. Individual 
filters are allowed to modify both the header and body elements of SOAP messages. The order in which filters 
operate on messages needs to be consistent, for example the stages at which encryption/decryption and 
compression/decompression take place at the service endpoints should be consistent otherwise unpredictable 
results/behavior may ensue. 
 
There are three advantages to utilizing the filter approach. First, it entails no changes to the service endpoints: this 
facilitates incremental addition of capabilities. Second, filters can be developed and tested independent of the service 
endpoints thus providing greater robustness. Finally, the filter approach promotes code reuse since different filters 
corresponding to security, compressions, logging or timestamps can be utilized by multiple services. 
 
The substrate can provide additional capabilities by permeating a service endpoint. Specially designed filters allow 
the incremental addition of capabilities to existing services. These filters encapsulate several of the substrate’s 
capabilities and in some cases allow for richer interaction with the substrate. A heart-beat filter would send a 
message at regular intervals to the substrate indicating that it is alive; this in turn helps discovery services within the 
substrate to identify live service instances. A performance monitoring filter would in turn notify the substrate at 
regular intervals about the load that it is experiencing. This in turn allows the substrate to load balance service 
requests by routing them to the least overloaded service instance. A filter may also automatically generally service 
advertisements along with information related to the transports available at the service endpoint. Additionally, these 
filters can also leverage the substrate’s capabilities to communicate across NAT (Network Address Translator), 
firewall and proxy boundaries. 
 
3.6. Negotiate and provide an optimal transport for SOAP messages 
The substrate provides support for a very wide array of transports (TCP, UDP, Multicast, SSL, HTTP and 
ParallelTCP among others). Depending on the size of SOAP message and the nature of continuing interactions 
appropriate transports will be deployed for communications. The nature of continuing interactions are dictated by 
issues such as whether the service exchanges messages at a high rate for a long time or whether the service considers 
reliable delivery to be more important than timely delivery. Filters at an endpoint can negotiate the best possible 
transport between itself and the substrate. The choice of the transport protocol being deployed is a function of the 
reliability, volume, rate and security requirements at the endpoint. The transport negotiations are carried out using a 
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set of SOAP messages some of which are used to determine performance metrics such as latency, bandwidth, loss 
rates and jitters. 
 
Note that the SOAP messages being transported can be based either on the traditional RPC style request/response 
message or the asynchronous one-way messaging. In the former case of RPC the substrate will facilitate correlations 
between requests and responses over transports, such as UDP, that do not naturally support a request/response based 
interaction that is at the heart of HTTP. The substrate will generate a UUID for such messages and include this as a 
header in the SOAP message. This message identifier when included in responses allows correlation with the 
original request.  
 
The multicast transport currently available within NaradaBrokering is based on best effort multicast. The system can 
leverage reliable multicast protocols since transport capabilities are abstracted by the protocol layers within the 
system. Examples of reliable multicast include efforts such as Scaleable Reliable Multicast (SRM) and Tree Based 
Reliable Multicast (TRAM) protocols. Different protocols may implement different communication pathways such 
as trees or rings. Wherever multicast is available the dissemination capabilities offered by reliable multicast is very 
powerful. There are two issues which need to taken into consideration. First, multicast requires MBONE, which 
generally is not available at several locations. Second, multicast is typically not firewall friendly with most 
administrators blocking such traffic. That aside it should be noted that Multicast-based systems such as the 
AccessGrid have been successfully deployed at several academic institutions. Multicast deployment strategies in 
Grid settings can be found in Ref [24]. 
 
Finally, since NaradaBrokering is based on the content-based publish/subscribe paradigm managing subscriptions 
using a pure multicast model is a difficult problem since subscriptions and multicast groups do not typically map 
very well. It is entirely possible that one could run into 2n groups for n subscribers. Dealing with issues such as the 
negotiation of appropriate multicast groups and Denial of Service attacks are also issues that need to be investigated 
further. Reliable multicast protocols are very promising and this is an area we plan to investigate closely. 
 
3.7. Message Dispatching and enforcement of policies 
Here the substrate sitting at the edge of the organization facilitates the dispatch of messages to the endpoint 
identified in the WS-Addressing [25] endpoint-reference. The substrate also facilitates the creation of these 
endpoint-references. The dispatcher generates these endpoint references such that they reflect the optimal protocol to 
reach these endpoints. Also, the substrate can enforce policies that govern the processing of SOAP messages. Here 
the substrate can automatically add policy information to outbound messages; such a move would allow applications 
to incorporate policy changes without entailing code rewrites. 
 
4. Grid of Grids 
We may view it as a collection of capabilities provided by different organizations that have banded together to form 
a “Virtual Organization” [26].  A capability is just a Web Service, and Grids may be built from collections of Web 
Services. A Grid service is just a Web Service, although it may follow more restrictive conventions defined by 
OGSA. It is actually better to define a Grid by how it is used rather than how it is built. In this section we investigate 
some of the issues involved in building Grids of Grids.  
 
We recommend two sets of services to facilitate such a scenario. Services provided within the substrate constitute 
the Internet-on-Internet (IOI) services. It is referred to as IOI since it enables us to build an application-level 
“Internet” of services connected by a messaging substrate that replicates in the application layer many of the 
desirable features (security, guaranteed delivery, optimal routing) that are normally found in the TCP/IP stack.  See 
Ref [27] for a discussion of why TCP/IP is not enough, and thus why IOIs are necessary for SOAP messages. These 
services have been described in detail in sections 2 and 3.  
 
The IOI services will be invisible to the applications that run in it. Applications would simply specify the QoS 
constraints and the substrate would deal with the complexity of satisfying these constraints. There are a number of 
higher level services and capabilities that do not belong in the IOI layer: these services typically extend the 
capabilities available through the IOI layer and are more specifically needed for Web Service management and 
apply to specific domains. Typical examples include service information and metadata management.  We refer to 
this collection of capabilities as the Context and Information Environment (CIE). CIE services broadly fall into the 
following 5 categories.  
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1. Collaboration: Some collaborative applications may place a premium on the ability to pause/replay live streams 
rather than timely delivery. It is easy to see how the buffering strategies may vary in such scenarios. Strategies 
for the demarcation and subsequent retrieval of major and minor events may vary in different domains. 

2. Authorization and authentication interfaces: Depending on the domain authentication schemes may span the 
wide spectrum from bio-metrics to text-based passwords. Same is true for trust propagation. 

3. Support for specifications in various domains: Prime examples of this include WS-Discovery which is suitable 
for ad-hoc networks, and WS-Context which maintains contexts for a distributed computation.  

4. Metadata Management: Different domains may have different formats for storing metadata and constraints 
regarding their exchange. In some scenarios custom solutions may be used or some endpoints may choose to 
use WS-Metadata exchange which facilitates exchange of metadata between two end points. 

5. Portal Services: This involves allowing access to all metadata, the management of system deployments, firewall 
tunnels, performance information, and error-logs. Additionally a portal service may aggregate a set of services 
and provide a domain specific view of the state of these services. 

 
5. Scripting Environments for the Messaging Substrate 
As we have discussed in the introduction, messaging substrates are important given the asynchronous and collective 
nature of composite science application services.  Building on this messaging system, we need to provide simple 
ways of expressing these composite application services and the data streaming pipes that connect them in scripting 
languages.  Apart from expressing workflows, such scripting languages and engines have two important advantages: 
first, they provide a high level language suitable for science application developers to use to program the Grid; and 
second, they provide tools for creating and managing messaging systems. 
 
To address these issues, we have been developing HPSearch [28] as an extension to an existing scripting language 
that binds Uniform Resource Identifiers (URIs) to the scripting language. Every resource (data source, application, 
system objects) is identified by an URI on the web. In our case we use a scripting environment to bind URIs as first-
class objects that can be used to manipulate the resource identified by the URI. We currently support reading from 
http/ftp and databases and reading or writing to files, topics and sockets. We have implemented a simple scheme to 
map the results of database queries to XML for streaming purposes  
 
The HPSearch system assumes that all data that flows through is essentially a stream and uses NaradaBrokering to 
route these data streams. In effect, processing is done by passing data through various programs that are accessible 
as services, in a Pipe-Filter fashion. To prevent overloading from the concepts we discussed in earlier sections, we 
refer to these filters as “sieves”. In this architecture every sieve has a set of input and output ports. The sieve 
transforms or refines the data it receives on its input ports. The processed data is sent out on the output port to the 
next sieve.  
 
We currently implement HPSearch scripting using Rhino (http://www.mozilla.org/rhino/), a Java based 
implementation of Javascript, although any other scripting language like Python/Jython may be supported in the 
future.  Rhino further allows us to define custom Javascript objects called hostobjects that help to dynamically 
access the host system. This feature can be useful to create objects that help manipulate data streams and aid system 
management tasks as outlined in the next few sections.  We also present our approach to build sieves as services that 
process data in a stream. The overall application, which is made up of numerous such data sieves is then controlled 
via HPSearch objects. 
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HPSearch Kernel 

 
Figure 3: HPSearch architecture 
 
The system, as depicted in Figure 3, consists of one or more “HPSearch Kernels” which contain a Javascript based 
console application, FlowHandlers (for distributing flow components), RequestHandlers (for controlling specific 
types of resources that are components of the flow) and other system objects. Every Kernel is itself a Web Service 
and exposes ports to remotely run scripts, query system information and perform other management tasks. These 
Kernels communicate via messages using the brokering network (shown by black double-headed arrows). The 
presence of multiple such Kernels serves the following purposes a) distributing the handling of tasks for load-
balancing b) utilizing a kernel (RequestHandler component of Kernel) nearest to the resource in question for 
minimizing the data transfer overhead and c) certain local resources (such as files) may not be accessible, or certain 
hosts may not be given permission to access resources (for example, for security purposes, only specific hosts may 
be allowed access to database) on a specific host unless the RequestHandler component runs on that particular host.  
 
The Kernel runs a RequestHandler for every component it handles, such as reading and writing to files, sockets, 
topics or reading from databases, reading from files using http/ftp and controlling web-service proxys (shown by 
thick dashed lines). Each of these resources might be accessible using web-services and could be reachable via an 
endpoint reference. We plan to add a more generic form of addressing every type of resource by implementing 
support for WS-Addressing mechanisms. An interesting component of the RequestHandler is WSProxyClient that 
allows us to control the functioning of WSProxy (Web Service Proxy wrapper for components processing streaming 
data), as explained below. The WSProxyClient controls the instantiation of the WSProxy service and its operation 
(shown by the thick dashed line) via normal web-service calls (simple SOAP requests). Since the WSProxy is a 
normal web-service, it can be controlled by any workflow engine and hence is workflow engine and workflow 
language independent. 
 
The WSProxy is essentially a wrapper over an existing application or a data processing code. The WSProxy can be 
deployed in any standard web-service container such as Apache AXIS. The WSProxy a) exports life-cycle 
operations as web-service operations so that the deployed service may be controlled by standard means (such as by 
sending simple SOAP requests), b) maintains state of the application and allows it to recover from faults in the event 
of failure, and c) notifies the controlling application (WSProxyClient or workflow engine) of errors and other 
notifications that the wrapped service may produce.  A StreamProxy (see Figure 3) is a wrapper over data streams. 
The WSProxy may utilize a StreamProxy to help negotiate ideal transport characteristics whenever possible (based 
on the discussion outlined in section 3.6). 
 
WSProxy encapsulates a service using two interfaces (Runnable and Wrapped). Runnable is suited for quickly 
creating data sieving applications and provide more control on the life-cycle operations of the service. Wrapped 
provide less control on the lifecycle of the service but allows us to wrap an existing code for creating a pluggable 
component and exposing it as a Web Service. Wrapped service provides best results if the service being wrapped 
reads data from standard input and writes data to standard output.  
 

Broker Network 

WSProxy 

Request Handler 

WSProxyClient 

Resource 

DB Connector 

WSProxy 
Wrapped  
Service 

WSProxy 
Wrapped  
Service 

Wrapped or programmed 
service 

... 

Files, Sockets, Topics 
HPSearch Kernel 

Request Handler 

Javascript Shell Data base 

Flow Handler 

Other System 
Objects Could possibly be web 

services 

StreamProxy handles data streaming 
by negotiating with other StreamProxys 
or Web Services. The RED represents 
raw data (input) and the GREEN 
represents filtered / processed data 
(output)  

HPSearch 
Kernel 
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When a user submits a script containing the data flow specification and creates a Flow object, the shell invokes the 
FlowHandler which in conjunction with other Kernels, decides the best Kernel to handle the individual components 
of the flow. These task descriptions are then distributed to the individual Kernels who in turn invoke 
RequestHandlers to process the request. The RequestHandler is responsible for handling errors and notifications (if 
any) from the resource it is handling and taking the appropriate action. 
 
We can compose a distributed data-flow by joining multiple WSProxy wrapped services and setting the correct input 
and output streams. The brokering network can be used to handle the data communication between the services. 
 
5.1. Managing the Messaging Substrate 
HPSearch provides a console for system management. By providing appropriate bindings (objects) to various system 
management operations we can control various features of the brokering substrate from instantiation to management 
and dynamic manipulation of brokering network characteristics.  We highlight here the major parts of this effort: 
broker topology creation and performance measurements. 
 
Broker Topology Creation: This is an interface to the broker locator service to locate existing brokers and 
instantiate new brokers for efficient routing. This binding may be combined with the performance metrics and 
objects for creating new links between brokers to achieve higher throughput by avoiding busy routes.  
 
The NaradaBroker object serves as a scripting front-end to instantiate a broker and to create links between 
brokers. A partial implementation is available. For example, the following code listing creates a linear topology 
consisting of three brokers. This scenario is depicted in Figure 4. 
 

156.56.104.170 

 
Figure 4: Instantiating brokers and creating a broker topology 
b = new NaradaBroker("school.cs.indiana.edu"); 
b.create(""); 
b_connLink = b.connectTo("156.56.104.170", "5045", "t", ""); 
b.requestNodeAddress(connLink, "0"); 
 
c = new NaradaBroker("trex.ucs.indiana.edu"); 
c.create(""); 
c_connLink = c.connectTo("156.56.104.170", "5045", "t", ""); 
c.requestNodeAddress(c_connLink, "0"); 

This is also useful in dynamically creating a virtual broker network for a particular application and then deploying 
the application over the virtual network 
 
Measuring Broker Performance: The PerfMetrics object can be initialized to read the performance metrics 
published by the Performance Monitoring Service (described in Section 2 above) on a specialized topic for 
performance data (such as /cgl/narada/perfdata).  Further the accumulated metrics may be queried using 
the query function. As an illustration, the following code queries the accumulated metrics to find the link with an 
average latency greater than 5.0 and then re-queries to find the jitter for the link. 

Here we can use XPath expressions to query the performance metrics. 
 

6. Future Work 
In the Grid services community there are currently two frameworks that seek to deploy Grid applications using Web 
Services. The dominant OGSI framework was recently factored into a set of Web Service specifications: WSRF. 

badLink = PerfMetrics.query("//link[avgLatency > 5.0]/@id"); 
jitter = PerfMetrics.query("//link[@id='" + badLink[0] + "']/jitter"); 

trex.ucs.indiana.edu

HPSearch Shell 
school.cs.indiana.edu
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WSRF focuses primarily on providing support for stateful interactions. The central tenet of WSRF is that services 
have state and these services are modeled as resources with the ability to inspect their properties and lifetimes. WS-
GAF [29] in turn considers services to be stateless, and provides a set of design patterns to model Grid applications 
using widely-accepted Web Service specifications. We plan to investigate the ability to reconcile the differences 
between the aforementioned approaches so that applications may themselves be composed of services conforming to 
either specifications but can continue to deal with each other as if they were part of the framework with which they 
are aligned.  
 
More recently Microsoft has released a set of specifications – WS-Transfer, WS-Enumeration and WS-Eventing – 
which deal with the ability to have stateful interactions. We expect this approach to coexist alongside WSRF for the 
foreseeable future. We plan to investigate issues related to the ability to interoperate between these specifications.  
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