
Real-Time Performance Analysis for Publish/Subscribe
Systems

Sangyoon Oh1, Jai-Hoon Kim2, Geoffrey Fox3

1 School of Information and Computer Engineering,
2 Graduate School of Information and Communications,

Ajou University, Suwon, S. Korea
{syoh, jaikim}@ajou.ac.kr

3 Pervasive Computing Labs., Indiana University, Bloomington, IN. U.S.A.
gcf@indiana.edu

Abstract. The publish/subscribe communication system have been popular
communication model in many area. Especially, it is well suited for distributed
real-time system in many ways. However, the research of cost model and anal-
ysis for publish/subscribe system in distributed real-time system has not been
announced yet. In this paper, we present our cost model for publish/subscribe
system in real-time domain, analyze its performance, and compare to other
communication models such as request/reply and polling models. Our empirical
result on mobile embedded device shows accordance with cost analysis, which
verifies correctness and usefulness of our cost model.

1 Introduction

Using publish/subscribe communication system [1] have been popular in many dis-
tributed application domains. Unlike traditional point-to-point model such as client-
server, publish/subscribe model decouples publisher and subscriber in time, space,
and synchronization. Producer (i.e. event source) declares the topics on which they
intend to publish event (data) and subscriber (i.e. event displayer) register to the top-
ics of interest. When the producer publishes events on a topic, server (i.e. event bro-
kering system) disseminates events to the subscriber. Subscriber can access published
data asynchronously anytime and anywhere at its own convenience. Because of its
location transparency and flexibility to dynamically add and remove participants, it is
appropriate communication system for large scale loosely coupled distributed systems.
Examples of such systems include collaboration systems which require an asynchron-
ous multicast messaging system and military system requiring distributed real-time
system support.

Publish-subscribe systems are well suited for distributed real-time system in num-
ber of ways [2,3]. First, events are delivered to the subscribers immediately after
event occurrence, thus subscriber can access the event data in real-time. Second, it is
asynchronous. Publish/subscribe systems free data sender (publisher) from waiting an
acknowledgement of receiver (subscriber). Thus, publisher can quickly move on to
the next receiver within deterministic time without any synchronous operations. The

other benefit of having publish/subscribe system for distributed real-time system is its
multicast-like model. Publisher sends only one event to the event broker and the
event is delivered to many subscribers [4]. Thus, an increasing number of distributed
real-time systems adopts publish-subscribe system for data transfer among massive
number of distributed entities.

There has been a lots of research proposals and implementations of pub-
lish/subscribe communication model [5-9] to improve performance of the system
including Siena [10], Gryphon [11], JEDI [12], Rebeca [13], Scribe [14] and Elvin
[19]. However, to the best of our knowledge, research of performance modeling for
distributed real-time system using a publish/subscribe system has not been announced
yet. We propose cost model for general publish/subscribe systems and pub-
lish/subscribe system in distributed real-time systems, analyze their performance, and
compare them to other interaction-based models such as client-server model and
polling models. We can estimate performance of publish/subscribe system in distri-
buted real-time system. We can also effectively adopt publish/subscribe systems by
using our proposed cost model and analysis of publish/subscribe systems.

Networking middleware that implements a real-time publish/subscribe model such
as Data Distribution Service (DDS) [16] is being used for many application domains.
It targets high performance (e.g. low latency, high throughput) applications, such as
multimedia or military systems. Thus, it is getting important to analyze performance
and effectiveness of publish/subscribe communication system, especially in condition
in which time is a key parameters such as in real-time condition.

Table 1. Model selection

models

remarks publish/
subscribe

request/
reply

Number of node large small
Pub/sub model has advantage when system
is large and data transfer is shared among
many clients

Number of event (data
update) per client’s
access

small large Pub/sub model is appropriate when events
or data update occurs infrequently.

Access rate of client high low When clients seldom use published data,
pub/sub model is not appropriate.

Degree of common
interest high – Pub/sub model is appropriate to disseminate

data of common interest
Cost of user’s inter-
vention (pull-based) high – Pub/sub model requires less user’s interven-

tion than request/reply model
Delay cost of event
(data) transfer to user high – Events (data update) are immediately deli-

vered to subscribers.
Real-Time perfor-
mance

Hard deadline
Short deadline

– Pub/sub model has advantages especially
when deadline is short or strict.

Our analysis shows that we can choose model as follows by a rule of thumb. As
shown in Table 1 and results of our analysis, publish/subscribe model are effective in

many cases. For the analysis, we define pull based publish/subscribe system model as
the case when user has intention to retrieve data (or message) from the broker.

We also experimentally measured and compared performance of pub-
lish/subscriber model to client/server model on our test bed with NaradaBroker [17]
which is a publish/subscribe based message brokering system to verify correctness of
our performance model on the real systems. Our cost analysis model is simple but
accordant with experimental results.

2 Cost Model

2.1 System Models

In this subsection, we propose cost analysis model for publish/subscribe systems.
We assume following basic system parameters to analyze cost.

 α (publish rate): We assume that publisher’s event generation is governed by

Poisson process with average inter arrival time of 1/α.
 β (request rate or process (reference access) rate): We use this parameter for two

meanings: (1) subscriber’s access rate of published events, and (2) request rate
of client in the client/server models. We assume that these rates are also go-
verned by Poisson process

 cps (α) (publish/subscribe cost per event): cost required for an event publish. cps
is divided into two parts: (1) cpub: ES(Even Source) publish events to EBS(Event
Brokering System), and (2) csub: EBS(Event Brokering System) relays the events
to ED(Event Displayer) which registered for the events.

 crr: (β) (cost per request and reply): cost for sending request and receiving re-
sponse in client-server model.

 cpoll(α,T) (cost of periodic publish or polling): We assume function of α and T
(ex. cpαT , cpoll), where T is length of period. (We can also think it as cost of pe-
riodic polling in client/server model.)

 cd(α,T) (cost of delaying publish): It is cost (or penalty) by delaying data transfer.
We assume function of α and T (ex. α T). We need to assign some function for
each application.

 s(n) (effect of sharing among n subscribers): For example, server can deliver
events with low cost when it broadcasts event to many subscribers. It will be be-
tween 1/n and 1.

 tps (time delay for publish/subscribe): time delay for publishing an event. tps is
divided into two parts: (1) tpub: time delay for publish, ES(Even Source) publish
events to EBS(Event Brokering System), and (2) tsub: time delay for subscribe,
ED(Event Displayer) subscribes events from EBS(Event Brokering System).

 trr (time delay for request and reply): time delay required for sending request
message and receiving response message in request-reply (client-server) model.

 tpoll(α, T): time delay for periodic publish.

 D: relative deadline from user’s access intension or event occurrence.

2.2 Cost Analysis

In this analysis, we analyze cost of three different models, publish/subscribe, re-
quest/reply, and periodic polling models without any failure of communication link or
node. We consider (1) conceptual total cost (e.g., the number of message, amount of
message, or time delay) per unit time for each model, (2) cost for each access by
client (or subscriber), (3) time delay for access after subscriber’s (or client’s) inten-
tion, and (4) time delay between event occurrence and notification to subscriber (or
recognition by client). Cost can be the number of message, amount of message, or
time delay.

Table 2. Cost Analysis for different models

Model Publish/Subscribe Request/Reply Polling
Conceptual total cost
per time unit α (cpub + n s(n)csub) β n crr.

(cpoll(α, T) + cdelay(α,
T)) /T

Cost for each access

β
α

(
n

cpub + csub) crr cpoll(α, T) + cdelay(α, T)

Time delay between
intention and access 0 trr T/2

Time delay between
event occurrence and
notifica-
tion/recognition
(or access)

tps = tpub + tsub

(tps = tpub + tsub+
β
1

) β2
1

 T/2

Deadline meet ratio
from user’s access
intention

1 1 when D ≥ trr

0 when D < trr
1 when D ≥ T

D/T when D < T
Deadline meet ratio
from event occurrence

1 when D ≥ tps
0 when D < tps

Dβε −−1
1 when D ≥ T

D/T when D < T

Cost of publish/subscribe model

Since we assume that cpub is cost for that ES(Even Source) publish events to
EBS(Event Brokering System), and csub is cost for that ED(Event Displayer) sub-
scribes events from EBS(Event Brokering System), cost of publish/subscribe model
for each event publish and subscribe is cpub + n s(n)csub . Please remember that n is the
average number of subscriber and s(n) is sharing effect among n nodes. When publish
rate is α, cost per time unit is:

α (cpub + n s(n)csub)

Now, we consider cost in the view point of subscriber (per each event access of
subscriber). We analyze three performance metrics, (1) conceptual cost for each
access, (2) time delay for subscriber to access event after its intention, (3) and time
delay until notification to subscriber after event occurring. The average number of
event occurred before each access is cost for each access:

β
α

βα
α

βα
β

=⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
++∑

∞

=0i

i

,

where cpub is shared among n subscriber and csub is required for each subscriber.
Thus, average cost for each access is:

β
α

(
n

cpub + csub)

There is no time delay for access after subscriber’s intention since event has al-
ready been received. Time delay between event occurrence and notification to sub-
scriber is:

tps = tpub + tsub

We analyze real-time performance (deadline meet ratio) for two aspects: one rela-

tive deadline (D) is set from the subscriber’s intention to access data and the other
deadline is set from the occurrence of event. Deadline meet ratio from the subscrib-
er’s intention is always 100% since data was published to the subscriber before sub-
scriber intends to access. However, Deadline meet ratio from the occurrence of event
is different. When D ≥ tps, subscriber can access data (event) within the deadline.
However, when D< tps, subscriber cannot access data (event) within the deadline.

Deadline meet ratio from the subscriber’s intention is:

1

Deadline meet ratio from the occurrence of event is:

1 when D ≥ tps
0 when D < tps

Cost of request/reply model

Cost for each request and reply is assumed to crr. Thus total cost is n crr, where n is
the number of client. When request rate is β, cost per time unit is:

β n crr.

Time delay for access after client’s intention is trr as we assume. Time delay be-
tween event occurrence and recognition of client is depends on request rate (similar to
polling rate):

β2
1

Deadline meet ratio from client’s intention is as follows: when D ≥ trr, client can
access data within the deadline; however, when D < trr, client cannot access data within
the deadline.

Now, deadline meet ratio from the occurrence of event is analyzed. Client can
access data within deadline when the client requests data within D after the occur-
rence of event. As client’s request rate is β , deadline meet ratio is:

D
D

tdt ββ εβε −− −=∫ 1
0

.

Periodic (polling) model

Periodic model is appropriate for applications in which delayed message is accept-
able. Cost of periodic model (periodic publish or polling) per period is cpoll(α, T) +
cdelay(α, T). Thus, cost per time unit is:

(cpoll(α, T) + cdelay(α, T)) /T ,
where cpoll(α, T) can be between crr and αTcrr.
If we assume periodic publish, cost per time unit is:

(cpub (α, T) + n s(n) csub(α, T) + cdelay(α, T))/T,
where cpub(α,T) is between cpub and αTcpub, cpub(α,T) and csub(α,T) is be between csub
and αTcsub,, and cdelay(α,T) is proportional to between cdelay and αTcdelay. Average time
delay for access after client’s intention is T/2. Time delay between event occurrence
and recognition of subscriber is T/2.

Client can always access data within the deadline when D ≥ T. When D < T, how-
ever, client can access data within the deadline of probability D/T. (Client can access
data within the deadline when it requests data after which the first following polling
occurs within D during the polling period T. We assume that data access is evenly
distributed during polling period T.

Now, deadline meet ratio from the occurrence of event is analyzed. Client can al-
ways access data within the deadline when D ≥ T. When D < T, however, client can
access data within the deadline of probability D/T, which is similar to analysis of
deadline meet ratio from the intention.

3. Performance Comparisons

We have conducted performance comparisons on simulated condition and verify
the parameter values by empirical experiments. They are explained in the following
subsections respectively.

3.1 Parametric Analysis

In this section, we describe performance comparisons by parametric analysis. We
set system parameters as follows:

Table 3. System parameters for analysis

Parameters values
α (publish rate) 0.5
β (request rate or access rate) 0.5
cps (publish/subscribe cost per event)
cpub (publish cost per event)
csub (subscribe cost per event)

2
1
1

crr: (cost per request and reply) 2
cpoll(α, T) (cost of periodic publish) 1 or α T
cdelay(α, T) (cost of delaying publish) 0, T, or α T
s(n) (effect of sharing among n subscribers) 1/n - 1
tps (time delay for publish/subscribe) 1
tproc (processing time for request/reply) 1 or 5
trr (time delay for request and reply) 1
tpoll(α, T) (time for periodic publish) 1, T, or α T
D (relative deadline from user’s access intension or
event occurrence) variable

Fig.2 shows performance comparisons between publish/subscribe, request/reply,

and polling systems. In this experiment, cost is communication cost for each transac-
tion. Since publish/subscriber system disseminates data via server instead of indivi-
dually for each client, it requires less cost than request/reply system. As the number
of client node increases, the cost gap between two systems increases. Periodic polling
system saves cost by transferring data once per period when delay cost is negligible.
However, cost increases as delay cost increase. Polling system is viable approach for
applications where data delay is allowed and delay cost is negligible.

Fig.3 and Fig. 4 show deadline meet ratios between publish/subscribe, re-
quest/reply, and polling systems for user’s access intention for pull based pub-
lish/subscribe model and for event occurrence respectively. As analyzed in the sec-
tion 2, we see the pub/sub curve meet the deadline better than req/rep and polling.

Fig. 1. Cost per client’s access of pub-

lish/subscribe model
(cpub=1 and csub=1)

Cost Comparisons

0

2
4

6

8
10

12

14
16

18

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

n (number of nodes)

C
o
s
t

pub/s ub
req/rep
periodic 1
periodic 2

Fig. 2. Communication cost per transaction

by varying number of clients
(α = 0.5, s(n)=1, cps = 2, and crr = 2; cpub(α,T)=
cpub, csub(α,T)= csub, and cdelay(α,T)= 0 for peri-

odic1; cpub(α,T)= αTcpub, csub(α,T)= αTcsub,
cdelay(α,T)= 2αTcdealy for periodic2)

Dealine Meet Ratio (Intention)

0
10
20
30
40
50
60
70
80
90
100

0 1 2 3 4 5 6 7 8 9 10

Deadline

M
e
e
t

R
a
t
i
o

pub/ sub
r eq/ r ep
pol l i ng

Fig. 3. Deadline meet ratio by varying
deadline from user’s access intention

Deadline Meet Ratio (Event)

0
10
20
30
40
50
60
70
80
90
100

0 1 2 3 4 5 6 7 8 9 10

Dealine

M
e
e
t

R
a
t
i
o

pub/ sub
r eq/ r ep
pol l i ng

Fig. 4. Deadline meet ratio by varying

deadline from event occurrence

3.2 Experimental Results

To verify the simulated result, we conducted empirical experiment using embedded
system clients and a message brokering system. The purpose of our experiment was
to get actual cps (tps) and crr (trr) which are publish/subscribe cost (i.e. time delay) per
event and request and reply cost (i.e. time delay), respectively, for both different
message sizes and numbers of clients in a practical environment. The experiment
environment consists of NaradaBrokering system which is message brokering system
with HHMS (Held Message Service) [18] Proxy plug-in for mobile and embedded
client. NaradaBrokering is developed at the Community Grids Laboratory at Indiana
University. It is a content distribution infrastructure which supports asynchronous
publish/subscribe communication model and originally designed for a uniform soft-
ware multicast to support a real-time collaboration. We choose to use HHMS for the
experiments because mobile or embedded devices are popular choice of client in
distributed real-time system.

1 3 5 7 9 S1
S3

S5
0

1

2

3

4

5

6

Cost per
client' s
access

Number of client

Number of
event per
client' s

5- 6
4- 5
3- 4
2- 3
1- 2
0- 1

We performed two types of experiments. First is the experiment to measure the da-
ta transition time between an event source (publisher) and an event displayer (sub-
scriber) by varying the size of message (i.e. size of payload). We performed on the
wireless environment which is common network environment for distributed real-
time system such as military system on the field. Since correct measurement of data
transition time on the embedded device is not easy task to achieve, we measured a
round trip time (RTT) on the event source and get cps = RTT where cps = cpub + csub. A
client application (i.e. subscriber) on Treo 600 mobile phone device [19] which is
connected to Internet through 2nd generation CDMA service just echoes back message
from the event source (i.e. publisher) which runs on Linux machine. We did the same
to get crr, ‘Cost of request/reply event.’

The experiment result of the data transition time of publish/subscribe message (tps)
and the data transition time of request/reply message (trr) is shown in Fig.5. From the
graph, we can get the relationship between tps and trr.

trr = tps + k, (1)

where k is constant. The k is relatively small to tps and trr if we increase the size of
message (i.e. payload). Thus, our system parameter setting in section 3.2, cps = crr and
tps = tr are valid

The second experiment is to measure the communication cost per transaction for
varying number of clients. Conducting an experiment with large number of client is
not acceptable in many cases and we were in the same situation where we have li-
mited number of mobile embedded devices. Thus, we performed the experiments
using J2ME simulators. It is not a quite similar experimental environment compare to
“simulation result” in section 3.1. The simulator in this experiment is a software plat-
form where the actual application runs on, thus it is more like to make an application
run on a virtual device. The experimental result is shown in Fig. 6. From the result,
we can see that the curves on both Fig. 2 and Fig. 6 are much resembled. Using these
verified parameters, we perform simulations for comparing real-time performance
(deadline meet ratio) Thus, we verify our simulation result.

0 200 400 600 800 1000 1200
0

0.5

1

1.5

2

2.5

Payload (byte)

D
at

a
Tr

an
si

tio
n

Ti
m

e
(s

ec
)

Pub/Sub
Req/Rep

Fig. 5. Delay time by Payload

0 5 10 15 20 25 30 35
0

50

100

150

200

250

300

350

400

Number of Clients

D
at

a
Tr

an
si

tio
n

Ti
m

e
(m

se
c)

Pub/Sub
RPC

Fig. 6. Delay Time by Number of Client

The experiment is performed on a Linux machine equipped with Pentium III 1GHz
CPU and 512MB memory and a mobile embedded device, Treo 600 equipped with
33MHz Motorola Dragonball processor and 8MB of memory. Time is measured with
the Linux native timer by JNI. The subscriber application on mobile embedded device
is written in Java Micro Edition for embedded and mobile device with MIDP 2.0.

4. Conclusion

Although publish/subscribe system has been popular in distributed real-time sys-
tem recently, cost analysis model is not been suggested and verified yet. In this paper,
we present our cost analysis model for publish/subscribe systems especially in distri-
buted real-time system domain. The empirical result from our test bed verifies our
cost model. By providing the simulation result and the empirical result which is based
on our cost analysis model, we give theoretical proof to the known claim, the pub-
lish/subscribe system is well suited for distributed real-time system.

5. References

[1] P. Eugster, P. Felber, R. Guerraoui, and A. Kermarrec, “The Many Faces of

Publish/Subscribe,” ACM Computing Survey, vol. 35, pp. 114-131, June 2003.
[2] R. Rajkumar, M. Gagliardi, and L. Sha, “The Real-time Publisher/subscriber

inter-process communication model for distributed real-time systems: design and
implementation,” In Proceedings of the 1st IEEE Real-time Technology and Ap-
plication Symposium, pp. 66-76, May 1995.

[3] J. Kaiser and M. Mock, “Implementing the Real-Time Publish/Subscriber Model
on the Controller Area Network (CAN),” In Proceedings of the 2nd IEEE Inter-
national Symposium on Object-Oriented Real-Time Distributed Computing, pp
172-182, May 1999.

[4] Y. Huang and H. Garcia-Molina, “Publish/Subscribe in a Mobile Environment,”
Wireless Networks, vol.10, pp 643-562, 2004.

[5] G. Deng, M. Xiong, A. Gokhale, and G. Edwards, “Evaluating Real-time Pub-
lish/Subscribe Service Integration Approaches in QoS-enabled Component Mid-
dleware,” In Proceedings of the 10th IEEE International Symposium on Object-
oriented Real-time Distributed Computing (ISORC), May 2007.

[6] P. Costa, M. Migliavacca, G. Picco, and G. Cugola, “Epidemic Algorithms for
Reliable Content-Based Publish-Subscribe: An Evaluation,” In Proceedings of
the 24th International Conference on Distributed Computing Systems
(ICDCS04), 2004

[7] J. Pereira, F. Fabret, F. Llirbat, and D. Shasha, “Efficient Matching for Web-
Based Publish/Subscribe Systems,” In Proceedings of the 7th International Con-
ference on Cooperative Information Systems, pp. 162 - 173, 2000.

[8] V. Ramasubramanian, R. Peterson and E. G. Sirer, “Corona: A High Perfor-
mance Publish-Subscribe System for the World Wide Web,” In Proceedings of

Networked System Design and Implementation (NSDI), San Jose, California,
May 2006.

[9] M. Caporuscio, A. Carzaniga, and A. Wolf, “Design and Evaluation of a Support
Service for Mobile, Wireless Publish/Subscribe Applications,” IEEE Transac-
tions on Software Engineering, vol. 29, no. 12, pp. 1059 – 1071, Dec. 2003.

[10] Carzaniga, D. Rosenblum, and A. Wolf, “Design and evaluation of a wide-area
event notification service,” ACM Transactions on Computer Systems, vol. 19,
pp. 332-382, August 2001.

[11] M. Aguilera, R. Strom, D. Sturman, M. Astley, and T. Chandra, “Matching
events in a content-based subscription system,” In Proceedings of the 18th an-
nual ACM symposium on Principles of distributed computing pp. 53 – 61, May
1999.

[12] G. Cugola, E. Di Nitto, A. Fuggetta, “The JEDI Event-based infrastructure and
its Application to the Development of the OPSS WFMS,” IEEE Transactions of
Software Engineering, vol. 27, issue 9, pp. 827-850, September 2001.

[13] L. Fiege, G. Muhl, and F. Gartner, “A Modular Approach to Building Event-
Based Systems,” In Proceedings of the 2002 ACM Symposium on Applied
Computing, pp. 385-392, 2002

[14] Antony I. T. Rowstron, Anne-Marie Kermarrec, Miguel Castro, and Peter Drus-
chel, "SCRIBE: The design of a large-scale event notification infrastructure," in
Networked Group Communication, 2001, pp. 30--43

[15] B. Segall, D. Arnold, J. Boot, M. Henderson and T. Phelps, “Content Based
Routing with Elvin4,” In Proceedings of AUUG2K, Canberra, Australia, June
2000.

[16] G. Pardo-Castellote, “OMG Data-Distribution Service: Architectural Overview,”
In Proceedings of the 23rd International Conference on Distributed Computing
Systems, pp. 200-206, May 2003

[17] S. Pallickara and G. C. Fox, “ NaradaBrokering: A Middleware Framework and
Architecture for Enabling Durable Peer-to-Peer Grids,” In Proceedings of
ACM/IFIP/USENIX International Middleware Conference Middleware2003,
Rio de Janeiro, Brazil, June 2003.

[18] S. Oh, G. C. Fox, and S. Ko, “GMSME: An Architecture for Heterogeneous
Collaboration with mobile Devices,” In Proceedings of The Fifth IEEE/IFIP
Conference on Mobile and Wireless Communications Networks, Singapore, Oc-
tober 2003.

[19] Palm, Treo 600, http://www.palm.com/us/products/smartphones/treo600/

