
1

DRAFT
Final Report

AFRL SBIR Phase 3 Project

Indiana University
Sensor Cloud Project

April 23rd, 2012

2

TABLE OF CONTENTS

1. SENSORCLOUD ARCHITECTURE
1.1 SensorCloud Overview
1.2 Sensor Cloud Middleware
1.3 Grid Builder
1.4 Sensor Grid
1.5 Sensor Service Abstration Layer
1.6 Container Service

2. USER GUIDES
2.1 SensorCloud components
2.2 Deployment and User Guides

2.2.1 Tutorial of sensor deployment
2.2.2 User Guides for Sensor

2.3 How to develop sensors and clients
2.4 Advanced Guide to develop sensors and clients
2.5 Sensor Cloud development: An overview
2.6 NaradaBroker Distribution
2.7 LDAP Security feature
2.8 Rest Easy

2.8.1 Guide for SensorCloud Client End users
2.8.2 Guide for SensorCloud client developers

2.9 Streaming Web Server
2.10 Configuring dynamic deployment of domains
2.11 OpenStack Compute: Deployment and Overview

3. PERFORMANCE METRICS
3.1 This section will be completed by May 7th!

4. APPENDIX
4.1 APPENDIX A Secure Cloud Computing with Brokered Trusted Sensor Networks
4.2 APPENDIX B Overview of Status of Clouds

3

1. SENSORCLOUD ARCHITECTURE

1.1 Sensor Cloud Overview

Introduction
Anabas, Inc. and the Indiana University Pervasive Technology Institute have partnered to develop a
Sensor-Centric Middleware System hereafter referred to as the Sensor Cloud.

The objective of the Sensor Cloud Project is to provide a general-purpose messaging system for
sensor data called the Sensor Grid Server, and a robust Application API for developing new sensors
and client applications. The key design objective of the Sensor Grid API is to create a simple
integration interface for any third party application client or sensor to the Sensor Grid Server. This
objective is accomplished by implementing the publish/subscribe design pattern which allows for
loosely-coupled, reliable, scalable communication between distributed applications or systems.

Publish/Subscribe Architecture
The publish/subscribe (pub/sub) design pattern describes a loosely-coupled architecture based
message-oriented communication between distributed applications. In such an arrangement
applications may fire-and-forget messages to a broker that manages the details of message delivery.
This is an especially powerful benefit in heterogeneous environments, allowing clients to be written
using different languages and even possibly different wire protocols. The pub/sub provider acts as
the middle-man, allowing heterogeneous integration and interaction in an asynchronous (non-
blocking) manner.

The pub/sub architecture uses destinations known as topics. Publishers address messages to a topic
and subscribers register to receive messages from the topic. Publishers and subscribers are
generally anonymous and may dynamically publish or subscribe to the content hierarchy. The
system takes care of distributing the messages arriving from a topic's multiple publishers to its
multiple subscribers. Topics retain messages only as long as it takes to distribute them to current
subscribers. Figure 1 illustrates pub/sub messaging.

Message publication is inherently asynchronous in that no fundamental timing dependency exists
between the production and the consumption of a message. Messages can be consumed in either of
two ways:

• Synchronously. A subscriber or a receiver explicitly fetches the message from the
destination by calling the receive method. The receive method can block until a message
arrives or can time out if a message does not arrive within a specified time limit.

• Asynchronously. A client can register a message listener with a consumer. A message
listener is similar to an event listener.

4

Figure 1 Elements of a Publisher/Subscribe System

A publish/subscribe system can be conveniently implemented using a Java Messaging Service
(JMS) compliant Message-Oriented Middleware (MOM) such as NaradaBrokering, ActiveMQ,
SonicMQ etc. to handle message mediation and delivery.

Sensor Cloud Overview
The Sensor Cloud implements the publish/subscribe design pattern to orchestrate communication
between sensors and client applications which form an inherently distributed system.

• Sensor Cloud Server creates Publisher-Subscribe Channels (Represented as a JMS Topic)
• Sensors acting as publishers create TopicPublishers to send messages to a Topic
• Client applications acting as subscribers create TopicSubscribers to receive messages on a

topic
• Apache ActiveMQ is used as the default underlying MOM and any other JMS style broker

can be used as well.

Figure 2 shows a high-level overview of a typical deployment scenario for the Sensor Grid. Sensors
are deployed by the Grid Builder into logical domains; the data streams from these sensors are
published as topics in the sensor grid to which client applications may subscribe.

5

Figure 2 Schematic of the Sensor Cloud

Examples of physical devices already implemented include:

• Web/IP Cameras
• Wii Remotes
• Lego MindStorm NXT Robots
• Bluetooth GPS Devices
• RFID Readers

However Sensors can be made from chat clients, Power Point presentations, web pages virtually
anything which produces data in a time-dependent stream can be implemented as a Sensor Grid
sensor.

High-Level Sensor Cloud Architecture
The main objective of the Sensor Cloud Project is to design and develop an enabling framework to
support easy development, deployment, management, real-time visualization and presentation of
collaborative sensor-centric applications. The Sensor Grid framework is based on an event-driven
model that utilizes a pub/sub communication paradigm over a distributed message-based transport
network.

The Sensor Grid is carefully designed to provide a seamless, user-friendly, scalable and fault-
tolerant environment for the development of different applications which utilize information
provided by the sensors. Application developers can obtain properties, characteristics and data from
the sensor pool through the Sensor Grid API, while the technical difficulties of deploying sensors
are abstracted away. At the same time, sensor developers can add new types of sensors and expose
their services to application developers through Sensor Grid’s Sensor Service Abstraction Layer

6

(SSAL). Narada Broker (NB) is the transport-level messaging layer for the Sensor Grid. The
overall architecture of the Sensor Grid is shown in Figure 3.

Figure 3 Sensor Grid Components

Sensor Grid Server (SG)

The SG mediates collaboration between sensors, applications and the GB. Primary function of SG
is to manage and broker sensor message flows.

• Sensor/SG flow - The SG keeps track of the status of all sensors when they are deployed or
disconnected so that all applications using the sensors will be notified of changes. Sensor
data normally does not pass through SG.

• Application/SG flow - Applications communicate application API, which in turn
communicates with SG internally. Applications can define their own filtering criteria, such
as location, sensor id, and type to select which sensors they are interested in. These filters
are sent to SG for discovering and linking appropriate sensors logically for that application
and forwards messages among the relevant sensors and that application. SG must always
check which sensors meet the selected filter criteria and update the list of relevant sensors
accordingly. It then sends an update message to application if there are any changes of the
relevant sensors.

7

• Sensors’ properties are defined by the sensors itself. Applications have to obtain this
information through SG.

• Application/Sensor flow – The SG provides each application with information of sensors
they need according to the filtering criteria. The application then communicates with
sensors through the application API for receiving data and sending control messages.

Application API

The Sensor Grid aims at supporting a large amount of applications for users and service providers of
different industries (e.g. financial, military, logistics, aerospace etc.). The Sensor Grid provides a
common interface which allows any kind of application to retrieve information from the sensor pool
managed by SCMW. The API also provides filtering mechanism which provides application with
sensors matching their querying criteria only.

Sensor

The definition of sensor is a time-dependent stream of information with a geo-spatial location. A
sensor can be a hardware device (e.g. GPS, RFID reader), a composite device (e.g. Robot carrying
light, sound and ultrasonic sensor), Web services (e.g. RSS, Web page) or task-oriented
Computational Service (e.g. video processing service).

Sensor Client Program

A sensor needs a Sensor Client Program (SCP) to connect to the Sensor Grid. The SCP is the bridge
for communication between actual sensors and SCMW. On the sensor side SCP communicates with
the sensor through device-specific components such as device drivers. On the Sensor Grid side SCP
communicates with the Sensor Grid through the Sensor Service Abstraction Layer.

8

1.2 Sensor Cloud Middleware

Figure 4 Sensor Cloud Middlware

Sensor-Centric Grid Middleware Management System (SCMW) is carefully designed to provide
a seamless, user-friendly, scalable and fault-tolerant environment for the development of
different applications which utilize information provided by the sensors. Application developers
can obtain properties, characteristics and data from the sensor pool through the Application API
(see Appendix B for details), while many of the technical difficulties of deploying sensors are
abstracted away. At the same time, sensor developers can add new types of sensors and expose
their services to application developers through SCMW’s Sensor Service Abstraction Layer
(SSAL) (see section 3.5 for details).

NaradaBrokering (NB) is the transport-level messaging layer for SCMW. It is a distributed
message-based transport network based on the pub/sub messaging model.

9

By using NB as the transport different components of SCMW can be deployed and works
collaboratively in a distributed manner.

The overall architecture of SCMW is shown in Figure 4. Internally SCMW is composed of 2
main modules – Sensor Grid (SG) and Grid Builder (GB) which serves different functions.

1.2.1 Grid Builder (GB)
Given the large amount of sensors, GB is a sensor management module which provides
mechanism and services to do the following:

1. Define the properties of sensors
2. Deploy sensors according to defined properties
3. Monitor deployment status of sensors
4. Remote Management - Allow management irrespective of the location of the sensors
5. Distributed Management – Allow management irrespective of the location of the

manager / user

GB itself posses the following characteristics:
1. Extensible – the use of Service Oriented Architecture (SOA) to provide

extensibility and interoperability
2. Scalable - management architecture should be able to scale as number of managed

sensors increases
3. Fault tolerant - failure of transports OR management components should not cause

management architecture to fail

The details of GB are discussed in Section 3.3.

1.2.2 Sensor Grid (SG)
SG communicates with a) sensors b) applications c) Grid Builder to mediate the
collaboration of the three parties. Primary functions of SG are to manage and broker sensor
message flows.

1.2.2.1 Sensor/Sensor Grid flow
SG keeps track of the status of all sensors when they are deployed or disconnected so that all
applications using the sensors will be notified for changes. Sensor data normally does not pass
through SG except when it intentionally has to be recoded. In this case SG will subscribe to data
of that particular sensor.

1.2.2.2 Application/Sensor Grid flow
Applications communicate with SCMW through the Application API, which in turn
communicates with SG internally. Applications can define their own filtering criteria, such as
location, sensor id, and type to select which sensors they are interested in. These

10

filters are sent to SG for discovering and linking appropriate sensors logically for that
application and forwards messages among the relevant sensors and that application. SG must
always check which sensors meet the selected filter criteria and update the list of relevant
sensors accordingly. It then sends an update message to application if there are any changes of
the relevant sensors.

1.2.2.3 Grid Builder/Sensor Grid flow
Sensors’ properties are defined in GB. Applications have to obtain this information through SG.
Moreover, filtering requests are periodically sent to GB for updating the lists of sensors needed
for each application according to their defined filter parameters. Much of the information will be
stored in a SG to minimize queries to Grid Builder.

1.2.2.4 Application/Sensor flow
SG provides each application with information of sensors they need according to the
filtering criteria. The application then communicates with sensors through the Application
API for receiving data and sending control messages.

The details of SG are discussed in Section 1.4.

1.2.3 SCMW API

The SCMW aims at supporting a large amount of applications for users and service providers of
different industries (e.g. financial, military, logistics, aerospace etc.). SCMW provides an API
which allows any kind of application to retrieve information from the sensor pool managed by
SCMW. The API also provides filtering mechanism which provides application with sensors
matching their querying criteria only.

Details of the SCMW API are discussed in Section 1.5.1

1.2.4 Sensor

The definition of sensor is any time-dependent stream of information with a geo-spatial location. A
sensor can be a hardware device (e.g. GPS, RFID reader), a composite device (e.g. Robot carrying
light, sound and ultrasonic sensor), Web services (e.g. RSS, Web page) or task-oriented
Computational Service (e.g. video processing service).

1.2.4.1 Sensor Client Program
A sensor needs a Sensor Client Program (SCP) to connect to SCMW. The SCP is the bridge
for communication between actual sensors and SCMW. On the sensor side SCP communicates
with the sensor through device-specific components such as device drivers. On the SCMW side
SCP communicates with SCMW through Sensor Service Abstraction Layer (refer to section 3.5
for details).
Figure 5 shows a physical sensor and the corresponding Sensor Client Program.

11

environmental
data

Sensor sensor data
Service

processed

Figure 5 Structure of a Sensor Client Program

1.2.4.2 Computational Service
Computational Service is a special kind of sensor which does not take input from the
environment. Instead, they take output of other sensors as their input, perform various
computations on the data, and output the processed data finally. Since a Computational
Service also produces a time-dependent stream of data it matches our definition of a sensor.

Figure 6 shows the data flow of how environmental data is transformed by processing data
through a sensor and a Computational Service. The architecture of SCMW allows the data source
to be assigned and reassigned dynamically.

Figure 6 Computational Service

1.2.5 Sensor Service Abstraction Layer (SSAL)
SCMW can potentially support large amount of sensors of different kind. Ease of adding new
sensors by different sensor developers without internal knowledge of SCMW is one of the
most important requirements. SSAL provides a common interface for adding new sensors to
the system easily. Sensor developers have to write simple programs utilizing SSAL libraries

12

for connecting sensors to SCMW. Afterwards the sensor will be available for all applications
right away.

Details of the SSAL are discussed in Section 1.5.2

1.3 Grid Builder

1.3.1 An Overview of the Grid Builder Architecture

Figure 7 An overview of the Grid Builder architecture

13

Figure 7 depicts the overall Grid Builder (GB) architecture. GB is originally designed for
managing Grid-of-Grids. For this project, GB is extended to include the management of a
generalized sensor-centric grid of grids. Description of GB will focus on this specialized version.
CGL-developed hpsearch is adopted and extended for this work [2].

The Grid which GB manages is arranged hierarchically into Domains. Each domain is typically,
but not necessarily, a single PC which manages sensors which are closely related. Sensors can
be deployed from any PC which is accessible from one of the domains. There can be only one
root node in the grid known as the Root Domain. Each domain is started by its Bootstrapping.

Within each domain, there exist some basic components:

Managers and Resources
GB manages grids and resources through a manager-resource model. Each type of
Resource which does not have a Web Service interface should be wrapped by a Service
Adapter (SA). Each kind of SA is managed by a corresponding Manager.

Since our grid contains sensors, a Sensor Manager is responsible for managing sensors through
Sensor Service Adapters (SSA). Each SSA has its own set of defined Sensor Policy. This
policy tells Sensor Manager how the SSA is to be managed, and defines the properties of the
sensor bound to the SSA.

The Health-check Manager is responsible for checking the health of the whole system
(ensures that the registry and messaging nodes are up and running and that there are enough
managers for resources).

Bootstrapping Service
This service ensures that bootstrap processes of the current domain are always up and
running. For example, it periodically spawns a health-check manager that checks the health of
the system.

Registry
All data about registered services and service adapters are stored in memory called Registry.
Registry is used to process messages so it can manage new SA, renew SA and update SA status.

44

I I nstantlates 1

1.3.2 Significant Classes

1.3.2.1 Class Diagram

Resource
Management

IWSMan
CIIentl

I I
I I

ISensorP
olicyl
I I
I I

jWSManPr
ocessorl

I I Sensor Service
I I Abstraction Layer

r-----------------------------------1
: I : 1 jsensorCiicntServiceAdapter pensorScrviceAdapterl 1

ISensorCIIent

Adapter1
----i I

L J II\

 I I
1 SensorCiient1 I I
I I 1 I nsta

tlate
I I I \]; I

instantltes ISensorCIIentAdapterl
 iSensorAdapterl -Instantiates IServlceAdapterl :

I I -Instantiates

-- --------,-

JSensorM
anager

I

: I I I I I I:

I_---------------:.:.-=--=--=--=--=--=--=--=--=--=--=--=---=-
IResourceManagerl

Domai
n

Management

Manager
s

-
instantiates

I

1 r -
-

-manager tI _

,I-Re-g-ste-re-dS-ub-D-om-

ai-nl-

f'rimaryHealt
hCheckerl

SAMModula Rolg storodSorvlce Rog storodServ ceAdapter

1--1------11 I I

1·, \V -onstantiates

 i 1

I · Registry I ·
L--- -:,---'

jBootstrapS
ervicel

ISystemHealthCheckerl I
Manager 11

1 Registry 1 'f

I I I I l - -- -
-

lf--- - - -] L
 fSContext
Store

•i"• IL__-:L--_-_-_- l -_-_jf_-_--_-_-_-_--_-_!\-_-_- y---i._•te_s j_l -+---====
I L _

I ---:---1

: :
jMessagingNode
l

._ _! , L J

r ---- 1 I I

--,

 7
MessageP«>Cef
lor _,.., •
loc :
Universatlocator

.2..
uuid :String

45

 I I I UserTools 1 I I I

t -ni
stantiates

r--=-

I I ..s nd message I

·in tantiates I L _I

 I

- -, 1 Brokelll'lode lf-_T_ra_n_sp_o_rtSubstr_at_e_--1

I UsarUI I

I I ---
-

+send(in
loc:Universallo

cator)
«send»

I I
I I

Messaging Layer

I

I

IFort<Daemon l
I t-- 1

L--
Figure 8 Class Diagram of Grid Builder

46

The diagram shows the class diagram of significant classes in GB. They are categorized into 5
main categories:

Messaging Layer
GB is built on top of a message-based architecture. All modules in GB such as BootstrapService,
ForkDaemon, Managers, Registry and ServiceAdapters are standalone and communicate with
one another by message passing. With this model, separate modules can be deployed as
distributed services.

GB has a set of classes dedicated for message passing. Each module has a unique UUID and one
or more UniversalLocator(s) (UL). UL provides all the information necessary to identify a
module in the network, including transport type, host address, port and path. 4 transport types are
supported: UDP, TCP, HTTP and NB. Each UL is responsible for message of one transport type.

TransportSubstrate is responsible for sending and receiving messages to and from a module. It
automatically serializes the message content according to the transport type of destination. Once
created, it spawns a thread which keeps waiting for incoming messages and notifies the associated
MessageProcessor upon message arrival.

Modules which want to receive message should implement the MessageProcessor interface
and associates itself with a TransportSubstrate. Important modules which implement this
interface include BootstrapService, Registry, SystemHealthChecker, Manager,
ServiceAdapter and UserTools.

Communications between SensorManager and SensorServiceAdapters use the Web
Service (WS) interface. WS in GB is built on top of this messaging layer.

Domain Management
Domain management in GB is done by BootstrapService. Each domain has one BootstrapService
which constantly communicates with the BootstrapServices of other domains. Each domain
hierarchy contains one Root node. Each domain connects with at most one parent node and any
number of child nodes. For now the hierarchy is defined using a configuration file
(mgmtSystem.conf).

To keep the whole hierarchy up and running, each domain periodically sends a heart beat
message to its parent domain. It also has to spawn the BootstrapService of all child domains if
any of them is not sending heart beat for some time.

47

Root

Heart beat Heart

spaw

Domain 1 Domain

Bootstrap
Service

Heart

Domain

Figure 9 Domain Management

Managers
In GB there are two levels of managers. The lowest level is ResourceManager, which
manages resource specific modules. For example, SensorManager is responsible for
managing a SensorServiceAdapter through the Web Service interface and performs operation
such as sending policies to the adapters.

The upper level is Manager, which manages ResourceManagers and ServiceAdapters. The
Registry keeps checking whether there are ServiceAdapters which have been registered but do
not have a Manager during the health check sequence. If there is one, the Manager is notified and
create a SAMModule in turn creates a ResourceManager for the particular resource in the
ServiceAdapter. SensorClientAdapter is an adapter inside SensorManager for communication
with the associated SensorServiceAdapter inside the Service Adapter.

48

Manager Discover new SA

SAMModule SAMModule register register

Sensor Manager Sensor Manager Service Adapter Service

Sensor Client Sensor Client Sensor Service Sensor

Adapter Adapter Adapter

Resource specific

Figure 10 Manager and Service Adapters

Resource Management
These classes are at the resource level, where resource specific tasks are performed. Each sensor
is treated as a resource in GB, and each sensor has a corresponding client program (represented by
SensorClient) responsible for interfacing the sensor with SCMW.

Sensor Service Abstraction Layer (SSAL) is the interface for connecting all types of sensor
client programs with GB. The class diagram only shows part of SSAL which resides in GB.
The whole SSAL involves classes of SXO as well.

Communication between resource managers (i.e. SensorManager) and Resources (i.e.
SensorServiceAdapter (SSA)) uses the Web Service (WS) interface for message passing. SSA
therefore conforms to the WS “Put”, “Get”, “Delete” and “Create”. “Get” is used for getting
SensorPolicy of the sensor and initiates connection with SG. “Delete” is used for disconnecting
connection with SG.

Registry
Each domain has a Registry which maintains the state of the entire domain, such as the
Universal Locator of every module, how many Service Adapters have been registered, the
status and policy of each sensor, which SA is assigned to which Manager etc.

RegisteredServiceAdapter is a class which contains information of ServiceAdapter such as
UniversalLocator, SensorPolicy and current status. RegisteredService contains information of
non-SA modules such as Managers and MessagingNodes.

49

Registry can work with or without persistent storage. By default all information is stored in
memory using hash tables. The user has an option whether to write all information to persistent
storage so that it can be retrieved later on even if the domain is restarted. The persistent storage
used is compliant to WS-Context specification [3].

Figure 11 shows the overall architecture of the Domains, Registry and WS-Context modules in
Grid Builder. To use WS-Context, an AXIS server and a MySQL server should be running in
each domain for WS communication and storage. All domain related information in the
Registry is stored in WS-Context and shared with other domains through NaradaBrokering’s
topic-based publish-subscribe messaging service.

Although the current implementation does not use WS-Context as a centralized database for
service discovery, it can be easily enhanced to provide such service since the system is already
WS compliant.

Figure 11 Registry and WS-Context

50

1.3.2.2 Class Description
This section provides brief description of each important class in GB.

Class name: MessageProcessor
Package name: cgl.hpsearch.core.transport
Description: Interface for classes which use GB's messaging layer to receive

messages
Important
interface:

processMessage()

Class name: MessagingNode
Package name: cgl.hpsearch.core.services.messagingNode
Description: Manages the GB's transport layer components (such as NB)

Important
interface:

setBootstrapLocator(), startBrokerNode()

Class name: TransportSubstrate
Package name: cgl.hpsearch.core.transport
Description: Responsible for receiving and sending messages to and from

MessageProcessor using different transport protocols
Important
interface:

register(), send(), getUniversalLocatorForTransport(), close()

Class name: Message
Package name: cgl.hpsearch.core.messages
Description: Superclass of all types of messages in GB. Different types of

message has different characteristics and serves different functions
Important
interface:

getType(), getMessageId(), getTo(), getFrom(), getTimeStamp()

Class name: UniversalLocator
Package name: cgl.hpsearch.core.transport
Description: A locator which lets different modules to identify one another for

messaging passing. Records the host, port, and transport type of a
module

Important
interface:

getHost(), getPort(), getPath(), getTransportType()

Class name: UserTools
Package name: cgl.hpsearch.core.services.user
Description: Responsible for forwarding different user operations (e.g. deploy

sensors) to different modules in GB
Important
interface:

getServiceData(), putServiceData(), retrieveStatus(),
sendPolicyMessage(), sendRunMessage(), sendFilterMessage(),
sendForkMessage()

50

Class name: UserUI
Package name: cgl.hpsearch.NaradaBrokering.usergui
Description: Graphical user interface of GB's management console

Class name: Manager
Package name: cgl.hpsearch.core.services.manager
Description: Manages all Resource Managers

Important
interface:

processMessage(), startSAMManagementThread(),
removeSAMManagementObject(), send()

Class name: SystemHealthChecker
Package name: cgl.hpsearch.core.services.manager
Description: Responsible for checking whether all modules are up and running in

a domain
Important
interface:

processMessage()

Class name: BootstrapService
Package name: cgl.hpsearch.core.services.bootstrap
Description: Responible for starting up all modules during domain initialization.

Periodically spawns SystemHealthChecker and sending heart beat to
parent domain

Class name: ForkDaemon
Package name: cgl.hpsearch.core.services.fork
Description: Responsible for creating different modules locally as processes

Important
interface:

process()

Class name: SAMModule
Package name: cgl.hpsearch.core.services.manager
Description: Manages resources (sensors). Has one to one mapping to each

Service Adapter and the corresponding Resource Manager.
Important
interface:

send(), checkIfOwner(), getServiceData(), putServiceData(),
spawnProcess(), sendMessage()

Class name: SensorManager
Package name: cgl.hpsearch.sensor
Description: Resource manager for managing SensorServiceAdapter

Important
interface:

processMessage(), getServicePolicy(), putServicePolicy(),
runService()

Class name: SensorClientAdapter
Package name: cgl.hpsearch.sensor
Description: The adapter of SensorManager for communication with

SensorServiceAdapters using Web Service
Important getServicePolicy, putServicePolicy(), runService()

51

Class name: ServiceAdapter
Package name: cgl.hpsearch.core.services.sa
Description: Associated with a Resource Manager to manage the corresponding

resource
Important
interface:

start(), close(), publishData()

Class name: SensorServiceAdapter
Package name: cgl.hpsearch.sensor
Description: Responsible for brokering the communication between a Resource

Manager and sensor client program using Web Service
Important
interface:

start(), close(), publishData(), handleSensorGridConnectionLoss(),
setSensorProp(), processWxMGMT_Rename(), processWxfDelete(),
processWxfPut(), processWxfCreate(), processWxfGet()

Class name: SensorClientServiceAdapter
Package name: cgl.hpsearch.sensor
Description: Responsible for brokering the communication between a Resource

Manager and service sensor client program using Web Service

Important
interface:

start(), close(), publishData(), handleSensorGridConnectionLoss(),
setSensorProp(), sendControl(), setFilter(), subscribeSensorData(),
unsubscribeSensorData(), processWxMGMT_Rename(),
processWxfDelete(), processWxfPut(), processWxfCreate(),
processWxfGet()

Class name: SensorPolicy
Package name: cgl.hpsearch.core.policies
Description: Holds resouce specific policy, that is the property of a sensor

Important
interface:

getType(), getSensorProperty()

Class name: WSManClient
Package name: cgl.hpsearch.wsmgmt
Description: Client interface for communicating with WSManProcessors (end

points) using Web Service messaging
Important
interface:

getMyEndPoint(), getServiceEndPoint(), setServiceEndPoint(),
setWsEventingClient(), processMessage(), executeOneWay(),
executeRequestReply(), sendOut(), CreateAndMarshallMessage()

Class name: WSManProcessor
Package name: cgl.hpsearch.wsmgmt
Description: End point for receiving Web Service Message

Important
interface:

setMessageSender(), setMyEndPoint(), processSOAPMessage(),
processWxMGMT_Rename(), processWxfDelete(), processWxfPut(),
processWxfCreate(), processWxfGet()

52

1.3.3 Important Features

1.3.3.1 System Health Check
Every module in GB are deployed in a distributed manager and linked together by different
network protocols. A health check system is therefore fundamental to ensure every modules are
indeed deployed and working properly. GB performs periodic System Health Check (SHC) to
ensure that every thing is up and running.

SHC can be divided into three stages:

Initialization

Figure 12 System Health Check (SHC) Initialization

To start a new Domain X, a user has to execute a script to perform a Primary Health Check
Sequence. This action creates a Permanent Messaging Node, which is responsible for
communication between all modules within a domain, and communication with other domains.
After that, a Fork Daemon is created. Every module of Grid Builder (e.g. Registry, Service
Adapters, Sensor Service Adapters etc.) is executed as a separate process in the operating
platform. Fork Daemon is responsible for creating modules as separate processes.

After primary health check, the domain is now capable of receiving messages from other
domains. The Bootstrap Service is launched when a message is received from the root domain.
The Bootstrap Service is responsible for making sure that every module is up and running in a
domain. It periodically spawns a System Health Checker to check the health of the system.

After Bootstrap Service has been initialized, it creates the Registry. The system then checks if
all modules are up and running for every minute. If not, create the module that is missing (for
details please refer to section 3.3.4.3).

53

Detect Changes

Figure 13 Adding Service Adapter

When we introduce changes to the system, such as deploying a sensor, SHC automatically
detects and reacts to the change. For example, a user deploys a sensor by starting the
corresponding sensor client program. The program automatically creates a new Service Adapter
for the sensor which in turn creates a Sensor Service Adapter. If no Manager is present in the
domain, a Manager process is created by ForkDaemon to manage the sensor through Service
Adapter.

54

Maintain System State

Figure 14 System Health Check (SHC) Maintaining System State

To make sure that every resource is up and running, each module periodically notifies its
manager and the registry of its presence.
1.3.3.2 Classification Scheme
Classification defines all properties which are shared by all sensors supported by
SCMW. Classification serves the following functions:

1. Allows GB to differentiate among different sensors for visualizing sensor’s
policies

2. Defines what can be filtered
3. Allows meaningful visualization of sensor data at application side
4. Allows application to differentiate different sensors

Figure 8 shows the class diagram of classification. It can be divided into 3 categories:

Sensor Property
In order to introduce a new sensor to SCMW, the following properties have to be defined
in class SensorProperty:

Table 3-1 Fields of Sensor Property

Property Description

55

sensorId A Human readable ID for identification which does not have to be
unique

groupId Sensors can be assigned to different logical groups for easier
management. GroupId identifies the group

sensorType Textual description of the type of a sensor
sensorTypeId An integer which helps identifying the sensor type. Application

has to compare this together with field sensorType to uniquely
identify the type of a sensor

location Textual description of the location of a sensor, including street,
city, state/province and country

historical Defines whether to archive collected sensor data in SG. Currently
this feature is not implemented

sensorControl An array of integers which uniquely identifies each control
message

controlDescription A string array of textual description of control messages. Should
align with sensorControl array

userDefinedProperty A class which defines any user-defined properties specific for
each type of sensor

SCMW comes with a set of predefined types. Class PredefineType contains information for
generating predefined SensorProperty. UserDefinedProperty contains properties which are
essential for the sensor but may not be common for all sensors (e.g. for deploying a RFID
reader it needs the COM port for hardware interfacing). A set of user-defined properties for
predefined sensors are implemented as subclasses of UserDefinedProperty.

For location, class PredefinedLocation contains a list of predefined mapping of city names
and GPS latitude-longitude for easy visualization on a map.

Sensor Data
For each type of sensor, its data format is usually quite different from other sensors. In SCMW
a class which extends SensorData should be created which defines how to decode and use data
from a sensor.

Message Serialization
Each time before the property of a sensor is sent among modules (e.g. passing from
GPSManager to SensorServiceAdapter and Registry), it is serialized into xml format. Class
SensorClassificationUtil provides operation for message serialization and deserialization.

56

PredefinedType -instantiates SensorProperty

+sensorPropertyToXml()

-CITIES

NXTRobotData GpsData WiiRemoteData

*

Figure 15 Class diagram of classification scheme in SCMW

1.3.3.3 Filtering Mechanism

Overview --
Sensor
F11ter
Query

''
'

''
I''

(1
)

--
--

(3)

--
--

'\
' \

\ ' '

(5)
\

I

\
I ' \

' \ '

'' (4)

' ") (1) '

'' (1')
(4)

'
'
'''

(6) ' \
\ 'I

\ I \ \

Sensor
Grid

DOMAIN1

Registry (File 110) Registry (File
1/0)

\
' ' '

DOMAIN3

Registry (File
110)

Step 1. Sensor Grid looks for a registry for filler query.Publish a request message on a
common topic or all registries. the registry which replies the eMiest will be chosen.
(1) GET_GRID_BUILDER_SERVICE_POLICY
(2) GET_GRID_BUILDER_SERVICE_POLICY_RESPONSE

Step 2. Sensor Grid sends a Sensor Filter Query to the chosen registry (say
registry in Domain1) (3) FILTER_SERVICE_POLICY_QUERY
(/oca/=false) (Note:localmeans localsearch only]

Step 3.Reg1stry publishes a filter query to all other registries
(4) FILTER_SERVICE_POLICY_QUERY (loca/=tnue,with timestamp)
[Note:timestamp is a unique Identifier for the query]

Step 4.Reg1stry receives a filter query with local=true.it will response with the result

immediately
through the
umque topic of
the request
registry.
(5)
FILTER_SERVI
CE_POLICY_Q
UERY_RESPO
NSE (ol
ca/=true,with
timestamp)

step 5.Regrstry

aggregates the responses (identified by timestamp) and send back to Sensor Grid
(6) FILTER_SERVICE_POLICY_QUERY_RESPONSE (loca/=false)

Figure 3-14 SCGMlv.IS sensor filtering mechanism in a distributed architecture

Request

Response

57

At the application standpoint filtering is essential for retrieving only the required sensors from a
possibly huge sensor pool. Filtering is done based on the SensorProperty of each sensor, which is
defined according to based on rules in classification.

Defining a Filter
Applications have to define filtering criteria according to their UDOP requirements. The criteria
are encapsulated in a SensorFilter object. A SensorFilter is composed of a set of properties
defined in SensorProperty connected with Boolean “and” or “or” operators. Please refer to
section 3.3.3.2 for the definition of SensorProperty. Given that a list of sensor properties in a
sensor filter are connected together with the “and” operator, only sensors which have properties
with exact match in string comparison with ALL the properties defined in the filter should get
through. Similarly sensors which have
properties with exact match in string comparison with ANY of the properties defined in a sensor
filter with sensor properties connected together with the “or” operator should get through.

The list of “and” and “or” sensor properties are represented as a 2D string array in
SensorFilter. For example, if someone wants to get a list of SAID which have policy
((sensorType=GPS and location="Hong Kong") or (sensorType=RFID and location="New
York" and historical=true)), set the filter like this:

SensorFilter filter=new SensorFilter(); String[][]
comp=new String[2][]; comp[0]=new String[2];
comp[1]=new String[3];
comp[0][0]="sensorType=GPS";
comp[0][1]="location=Hong Kong";
comp[1][0]="sensorType=RFID";
comp[1][1]="location=New York";
comp[1][2]="historical=true";
filter.setOrComparison(comp);

Data Flow
Filtering is done in three stages:

Application to SG
A filter query request is initiated from the application. For each filter query, fields which exist in
SensorProperty can be combined using the “and” or “or” operator to form a query string. This
string is then sent to SG.

SG to GB
SG forwards the request to GB. At this stage, GB searches through the registry of all domains
and aggregates the unique id of sensors which match the query in a response message. The
response message is then sent back to SG. SG periodically checks if the filter request from
application changes. If it does, the application is notified in the same manner.

58

SG to application
SG releases the resources (e.g. unsubscribe sensor's NB topic) used by sensors which are
no longer in the list, and initiates resources for new sensors. Then SG notifies the client
for all changes made.

59

60

ManagementSystem
udp:

1 :

PrimaryHealthChecker

1 .

4 4 3

ForkDaemon

1.3.4 Detailed Description
In this section, message flow of various operation of SG will be discussed at Class level using
UML collaboration diagrams.

1.3.4.1 Starting a Domain
The following diagram shows the events happening when a domain is started.

Figure 3-15 Event flow when starting a sensor grid domain

1. A user starts the domain by executing “runPrimaryHealthCheck.bat”
2. ManagementSystem.BootStrap() is called to initialize all system properties, environment

variables and various user-defined properties from configuration files
3. Send a PingRequestMessage to the expected locator(s) of messaging node(s) registered in

configuration files. If any messaging node does not respond with PingResponseMessage
within 5 seconds, go to 3.1. Otherwise go to 4
3.1. For each messaging node not responding, send a request to ProcessRunner to start a

PermanentMessagingNode process
3.2. ProcessRunner starts the messaging node process
3.3. Spawns a thread which continuously monitors the presence of itself by using udp

messages (ping request and response). Starts a BrokerNode (NB) according the
configuration provided by configuration file (defaultMessagingNode.conf)

4. Send a PingRequestMessage to the expected locator(s) of ForkDaemon(s) registered in
configuration files. If any ForkDaemon does not respond with PingResponseMessage within
5 seconds, go to 4.1. Otherwise go to 5
4.1. For each ForkDaemon not responding, send a request to ProcessRunner to start a

ForkDaemon process
4.2. ProcessRunner starts the ForkDaemon process

5. PrimaryHealthChecker sleeps for 10 seconds to allow any pending processes to instantiate.
Then it checks whether all messaging nodes and ForkDaemons are up and running. If yes, it
sleeps for 30 seconds. Afterwards, it goes to step 3 and checks everything again

61

Thread::ParentBootstrapRegistr
ation

 3

1

RegisteredSubDomain

n
ForkDaemon

:3

Runner

BootstrapService::SubDomain ForkDaemon::SubDomain Proceed to Normal

Check Sequence (Stage

1.3.4.2 Starting BootstrapService of a Domain
When a domain is start, it undergoes the following Bootstrap sequence.

Figure 3-16 Starting BootstrapService of a Domain

1. Initialize the Bootstrap node from config file, including domain hierarchy and locators of
ForkDaemons, RegistryForkDaemon, MessagingNodeDaemons. NB transport is initialized for
NB communications with other domains

2. If the current domain is not a leaf node, register all sub-domains locally
3. If the current domain is not the root node, runs a thread that periodically sends a

RegisterRenewMessage to the BootstrapService of its parent telling this domain’s
BootstrapService is running. If the domain is a leaf node, go to 3.1. Else go to 4
3.1. Starts a thread that periodically spawns a SystemHealthCheck process for each

registered ForkDaemon.
3.2. Spawns a SystemHealthChecker process by sending a ForkProcessMessage to

ForkDaemon with the “healthcheck” parameter
3.3. ForkDaemon spawns the Manager process with the “healthcheck” parameter.
3.4. Manager starts the SystemHealthChecker thread. System undergoes Normal Health

Check Sequence (Please refer to section 3.3.4.3 for details). BootstrapService waits 10
seconds for the reply from SystemHealthChecker

3.5. The replied status from SystemHealthChecker is either COMPLETE, UNKNOWN or
RUNNING. Repeat 3.1 after some sleep

4. If the node is not a leaf node, spawns a thread that periodically checks the status of ALL
RegisteredSubDomains (RSD). Under the Health Check mechanism, all
RegisteredSubDomains are supposed to send a RegisterRenewMessage to its parent.

5. If no RegisteredRenewMessage is received from a SubDomain within a specified amount of
time, the thread spawns a BootstrapService of the SubDomain remotely by sending a
ForkProcessMessage to its ForkDaemon

6. ForkDaemon creates the BootstrapService of the SubDomain

62

WSContextStore

usSender

nb

2 : b

 :

BootstrapService SystemHealthChecker

Proceed to Normal

 Check Sequence (Stage

1.3.4.3 Normal Health Check Sequence (Stage 1)
System Health Check has a number of stages. During the first state, Bootstrap Service checks if the
Registry is present. If not, creates a Registry process using the Fork Daemon.

Figure 3-17 Normal Health Check Sequence (Stage 1)

1. After NB transport is initialized, a thread is started that automatically kills the the health
checker if it is still running after 60 seconds

2. A thread is started that automatically notifies the BootstrapService at an interval of 2 seconds
that the health checker is running

3. Checks if there is a Registry running in the domain by sending a RegistryQueryMessage to the
defined Registry locator. If a RegistryQueryResponse message is received, go to 4. If no, go
to 3.1
3.1. Try spawning a Registry process by sending a ForkProcessMessage to ForkDaemon.

Max retries = 5. After each retry, repeat 3. If number of retries reached, health checker
terminates with abnormal exit status

3.2. ForkDaemon creates the Registry process. Registry checks if persistent storage is used in
configuration file (mgmtSystem.conf). If yes, go to 3.2.1. Otherwise persistent storage
won’t be used and everything will be saved in memory. Please proceed to 3.3

63

Refer to Service
Adapter

ForkDaemon

n 3 . b

1 : 1
b 1 n

nb: 2

SystemHealthChecker BootstrapService

3.2.1. Registry asks PersistantStoreFactory for an instance of WSContextStore, which
is responsible for storing and retrieving settings from persistent storage (e.g.
relational database)

3.2.2. WSContextStore is initialized by making connections to various components
defined in WSContext and removing all previous entries (e.g. registered service
adapters, service policy, service status etc.). If any errors occur during initialization,
go to 3.3 and everything will be saved in memory

3.2.3. Registry loads all settings from WSContextStore to in memory hash tables
3.3. Registry initializes NB transport by subscribing to two topic – one common to all

registries and one uniquely identify itself. Registry spawning process has been finished.
Go back to 3

4. Registry responds to SystemHealthChecker with the number of managers and service
adapters expected in the domain.

5. System now enters health check stage 2. Proceed to section 3.3.4.4 .

1.3.4.4 Normal Health Check Sequence (Stage 2)
System Health Check has a number of stages. During the second stage, Bootstrap Service checks
if enough Managers are spawned as defined in the configuration file.

Figure 3-18 Normal Health Check Sequence (Stage 2)

1. The Registry responds to SystemHealthChecker with the number of managers and service
adapters expected in the domain. If there are enough managers for all
RegisteredServiceAdapters, go to 2. Otherwise go to 1.1

64

Registry

1 n n n
. 6

b : b : : b 7 . 3
n

4

Manager

1.1. For each Manager lacking, create a Manager process without the "healthcheck"
parameter sending a ForkProcessMessage to ForkDaemon

1.2. ForkDaemon creates the Manager process
1.3. Request system configuration from BootstrapService, including locator of Registry,

ForkDaemon
1.4. BootstrapService replies with system configuration
1.5. Initialize NB transport support. Starts a SAFinderThread which keep sending

FindSAToManageMessage to Registry requesting corresponding ServiceAdapters to
manage. If no reply from Registry, the request is repeated periodically at 2 second
interval. For details of this part, please refer to section 3.3.4.6 .

1.6. The Manager periodically sends a RegisterRenewMessage to the Registry to notify its
presence

2. SystemHealthChecker sleeps for 10 seconds to allow any pending processes to instantiate.
Then it checks whether all expected processes are up and running. If yes, it sends a
SystemHealthCheck message to BootstrapService, notifying that System Health Check is
completed and then terminates itself. Otherwise, it checks the system’s health from stage one
again (section 3.3.4.3) and tries spawning the process(s) missing

1.3.4.5 Registered Service Adapter Health Check Sequence
SAMModule notifies the Service Adapter which Manager it should send heart beat
messages to

Figure 3-19 Registered Service Adapter (RSA) Health Check Sequence

1. Checks if the associated RSA has sent a HEARTBEAT within the specified interval. If yes,
sleep for a while and do 1 again. Else go to 2

2. Sends a GetCurrentManager message to the associated RSA to check if it is the RSA’s
current owner. If RSA replies, go to 3. Else go to 4

3. If UUID of RSA’s current owner matches with this SAMModule, go to 3.1. Else go to 4

65

3.1. Sends a HEARTBEAT message to the RSA and wait. If RSA replies within a time
limit, sleep for a while and do 1 again. Else go to 4

4. Ask ResourceManager(RM) whether to release the RSA.
5. If RM knows that the RSA is up and running, go to 7. Else go to 6
6. Notifies the Manager that the associated RSA is unreachable.

6.1. Sends a UPDATE_SA_STATUS message to the Registry, saying that the RSA is
UNREACHABLE

6.2. Registry performs status update
7. Re-register with the RSA by sending a HEARTBEAT to it. Sleep for a while and do 1 again

1.3.4.6 Service Adapter Discovery
System Health Check checks if every Service Adapter is associated with its Manager.

Figure 3-20 Message flow of service adapter discovery in a sensor grid

1. SAFinderThread sends a FindSAToManageMessage to Registry. If persistent storage is used in
the Registry, go to 1.1. Otherwise go to 1.2.

66

1.1. Registry retrieves the information of a list of Registered Service Adapters from
WSContextStore

1.2. Registry replies with ServiceAdapterToManageMessage to the Manager if there is at
least one ServiceAdapter (SA) which does not have an associated SAMModule. Status
of the SA is set to MANAGED. At most one SA will be replied for each request. If
there are no SA to manage, the Manager shutdowns itself.

2. For each SA, the Manager creates a SAMModule which manages the SA.
3. SAMModule creates a specific type of ResourceManager specified in the SA (in

ServiceAdapterInfo), and starts the ResourceManager in a new Thread. For sensors, a
SensorManager (ResourceManager for sensors) is instantiated

4. A SensorClientAdapter is instantiated. The SAMModule of SensorManager is passed as
message sender and the locator of the associated SA is set as message destination

5. SAMModule starts a HeartBeatCheckerThread that periodically checks 1) if SA is up and
running 2) if SA is still associated with this SAMModule (possibly taken control by other
Managers)

6. Sends a setHeartBeatLocator message to SA to associate the SA with this SAMModule and
tells SA the locator of Manager which heart beat messages should be sent to. Afterwards,
HeartBeatCheckerThread enters the loop of SA health check (please refer to section 3.4.5 -
Registered Service Adapter Health Check Sequence)

7. Sends a GetServicePolicyMessage to SAMModule, request for the policy of the associated
resource (i.e. sensor)

8. Forwards the request to SensorManager by calling getServicePolicy()
9. Invokes the associated SensorClientAdapter’s getServicePolicy()
10. Sends a Wxf_Get message to the associated SensorServiceAdapter through SAMModule
11. Wraps the message with ServiceSpecificMessage and forwards it to the associated

ServiceAdapter
12. Invokes processSOAPMessage of the associated SensorServiceAdapter (SSA)
13. If SensorPolicy has been defined, serialize it with PolicyManager. Otherwise, just create an

empty message
14. If this is the first time SSA is assigned to a Manager, starts a SensorGridBroker which notifies

SG of its presence
15. Sends back a response message with the serialized policy (if any)
16. Forwards the response to SAMModule
17. Forwards the response to Manager
18. Forwards the response to Registry
19. Updates the policy of the SA to the corresponding RSA in Registry. If persistent storage is

used, go to 19.1; otherwise, go to 19.2
19.1. The RSA is stored in WSContextStore
19.2. The RSA is stored in memory

67

6

ForkDaemon GPSManager

 5

nb:4

Registry ServiceAdapter

3 :
nb :

1

UserUI DeployDialog

1.3.5 Deploying and Disconnecting sensors

1.3.5.1 Deploying a GPS Sensor
The message flow of deploying any sensors in a sensor grid is similar. For illustrative
purposes, the message flow of deploying a GPS sensor is shown in Figure 3-21.

Figure 3-21 Deploying a GPS Sensor

1. User chooses a domain and clicks “deploy”
2. UserUI creates a DeployDialog
3. User defines the policies of the sensor and clicks “ok”. A ForkProcessMessage is sent to the

Registry to spawn a sensor client program
4. The message is forwarded to BootstrapService
5. The message is forwarded to ForkDaemon
6. ForkDaemon starts the type of sensor client program according to policy defined. Suppose

user needs a GPS sensor. ForkDaemon creates a GPSManager process
7. Creates an instance of SensorPolicy according to the type of sensor and classification.
8. Creates an instance of SensorAdapter, passing in a SensorAdapterListener,

SensorGridControlListener and SensorPolicy
9. Creates an instance of ServiceAdapter (SA) with parameters

“saType=cgl.hpsearch.sensor.SensorServiceAdapter” and
“manType=cgl.hpsearch.sensor.SensorManager”

10. Subscribes to the SA's own NB topic. Instantiates a SensorServiceAdapter according to
“saType”

11. Sends a RegisterRenewMessage to the Registry
12. If the SA is new to the Registry, it registers the SA, set SA's status to REGISTERED and

replies SA with the new instanceId. If the SA is already registered, renew the status of SA
according to its instanceId

68

UserUI

p:

ud d

1
p 1

UserTools

1

ServiceAdapter SensorManager

nb:

7
nb:

SensorServiceAdapter

 1

Stops the
Client

13. Subscribes to a new NB topic according to the returned instanceId. Starts a new thread
responsible for sending RegisterRenewMessage (heart beat) to the Registry. SA enters a
state that keep tracking if NB connection is down. If yes, try to reconnect

14. GPSManager makes physical connection to the sensor, and starts a WatchDog which
monitors the physical connection

After the new SA is registered in the registry, the Normal Health Check Sequence for Managers
(Stage 2) will discover the new SA is not yet managed. A Manager will be assigned to it. For
details please refer to session 3.3.4.4 .

1.3.5.2 Disconnecting a Sensor
There are two ways to disconnect a sensor. The first way is to terminate the Sensor Client
Program explicitly. The second way is to do it through GB’s management console. The diagram
below shows the message flow of disconnecting a sensor through GB’s management console.

Figure 3-22 Disconnecting a sensor by using the Grid Builder management console

1 User selects a sensor in GB’s management console and clicks “Stop”. UserUI invokes
sendRunMessage() of UserTools

2 UserTools creates a RunServiceMessage with parameters indicating the message is for
disconnecting a sensor. The message is sent to Registry

70

3 Registry locates the Manager of the corresponding RegisteredServiceAdapter and forwards
the message to it

4 Manager locates the corresponding SAMModule responsible for managing the
ServiceAdapter and forwards the message to it

5 SAMModule forwards the message to the associated SensorManager
6 SensorManager forwards the message to the associated SensorClientAdapter
7 SensorClientAdapter sends a Wxf_Delete message to the associated SensorServiceAdapter

through SAMModule
8 Wraps the message with ServiceSpecificMessage and forwards it to the associated

ServiceAdapter
9 Invokes processSOAPMessage of the associated SensorServiceAdapter (SSA)
10 SensorServiceAdapter stops the sensor through SSAL. For details please refer to section

3.4.4.9
11 An error report message is replied indicating if any error exists
12 Forwards the reply to SensorClientAdapter
13 Wraps the reply with a RunServiceResponse message, and sends it back to Registry

through SAMModule
14 Forwards the response to Manager
15 Forwards the response to Registry
16 Registry does not do anything to the response

1.4 Sensor Grid

1.4.1 Overall Architecture of Sensor Grid and Related Modules

71

Figure 3-23 Overall Architecture of Sensor Grid and related Modules

Sensor Grid (SG) is the brokering module of SCMW connecting the sensors,
application clients and Grid Builder. It serves two functions:

72

1.4.1.1 Message Brokering
It enables the flow of messages among all parties including:

1. sensor data
2. sensor control messages
3. filtering requests and results
4. changes of sensor status
5. sensor policies

The following modules are essential for communication among the parties.

GXO

GXO is a messaging layer which uses NaradaBrokering (NB) for message passing. It has the
following characteristics:

1. supports a lot of transport layer protocols, including tcp, niotcp, udp, http, https and so

on
2. abstracts messages into byte, text and object messages which performs automatic

message serialization and de-serialization
3. uses a topic-based, publish and subscribe model which eliminates the need for

identifying end points explicitly
4. allows flexible construction of brokering network

With the use of GXO, messages can propagate to the destination with minimum
programming effort.

SXO

SXO is a layer built on top of GXO. It is the internal API which facilitates communications
between sensors, application clients and SG. It handles the connection
and disconnection of both sensors and application in a seamless and fault-tolerant manner. It
contains logic and libraries for both Application API and SSAL to communicate with applications
and sensors respectively.

Application API
All kinds of applications communicate with SCMW through the same API. The
Application API provides libraries for applications to:

1. access data and metadata of sensors
2. send control messages to sensors
3. notified for change of sensor status
4. send filter requests to SCMW

These actions are done with the help of the following modules in the API:

Application Client Broker
Interface used by application clients to send requests to SG, such as sending filter
requests to SG and control messages to sensors (through SSAL).

73

Sensor Change Listener
Interface used by application clients to receive messages from SG such as sensor status change.

Sensor Data Listener
Interface used by application clients to receive data from sensors.

To support different applications, Application API in turn communicates with SCMW
through SXO. For more detailed description of Application API, pleased refer to section
3.5.

SSAL

All sensors communicate with SCMW through SSAL. Remember each sensor has a
corresponding Sensor Client Program (SCP) to communicate with SCMW. SSAL provides
libraries for sensors to do the following through SCP:

1. publish data
2. receive control messages
3. receive stop request from SCMW
4. subscribe to data of another sensor
5. listen to status change of subscribed sensor

Not all kind of sensors have to use all functionalities listed above. Remember sensors can be
further classified into normal sensors and Computational Service. In fact these two categories
utilize different subset of classes in SSAL. Some of the important modules of SSAL are listed
below:

Sensor Client Adapter
An interface for publishing data

Sensor Data Listener
An interface for listening to data from subscribed sensors. Used by Computational
Service

Sensor Adapter Listener
An interface for listening to stop requests from SCMW. The SCP should terminate upon
receiving the request

Sensor Change Listener
An interface for being notified when the subscribed sensor has any status change. Used by
Computational Service

Sensor Grid Control Listener
An interface which sensors listen to control messages

For more detailed description of SSAL please refer to section 3.5.2 .

74

Application X Application Y

Sensor

Table A_S Table

Application Sensors Sensor

X S1, S2, S4 S1 Policy

Y S3 S2 Policy

S3 Policy
Table

S4 Policy
Application

S5 Policy
X Criteria

Y Criteria 2 Table

Online

S1, S2, S3, S4,

S1 S2 S3 S4 S5 Sensors

1.4.1.2 Application Management
In SCMW, SG is responsible for maintaining the state of the whole system. For each deployed
sensor and running application, SG caches down their presence and their relationships with one
another. The figure below shows a scenario which 2 applications and 5 sensors are connected to
SG. The four tables shows how SG maintains the state of the system, they include:

A list of online sensors (Table S)
SG maintains a list of online sensors which dynamically changes with the deployment status
of the sensor

Application to sensor mapping (Table A_S)
Each application needs a different set of online sensors according to its filtering criteria. This is
to make sure that sensors which are not concerned by the application do not hold unnecessary
resources. A table is maintained to remember this mapping

Application to filter mapping (Table S_F)
Each application has its own filter, which are the criteria that define which sensors are needed
by the application. The filter can be modified by the application at any time.

Sensor to sensor policy mapping (Table S_P)
Sensor Policies defines the characteristics of sensors. It is defined by Grid Builder before
deployment. The sensor policy is obtained from GB and cached whenever a sensor is being
deployed.

Figure 3-24 SG System Management

74

 change

1.4.2 Sig nificant Classes

1.4.2.1 Class Diagram
r------------------------------------

ClientGrdl Broker
 f:11entGrldChangeListener sxo

I

Application API
 AppletV
CMaln

 /. 1

I

' GXO

sensoriCi."Hash"seic'ii.nioa lste. er> I '
l

HashMap

--------- - -instantiates l.;in$,tantiates
I I I

.....
I ClicntGridOataUstener I 1 SGCIIentvlew I I i

 i ----r I I
1

----------T- sensorld I l--- I
HeshSel : I I ensorCiientGridBroker

---------------- -- ------ - r J---- _: -control jsGsensorView !SensorGridBroker I

-+--r

sensortd
I

I

I

I

----------------- .,_ I

I SGResou rce r------- -

I
 SensorGrldContr
ollistencr I I I

SensorAdapte
rListencr

ensorCIIen tAdapter SensorAdapter

I
I I I I t--- I
SSAL I
1 ---------------- --- --

SensorCIIent
'---- sensorld

r ------------------------------------ M-------------------- ---
prldBullder
Broker

LSensorMan ager

GSesslonloglc

75

 Sensor Grid

FiltetfJi
onitOf

-pol cies

I"
"'

-filters

!J.·client senS«s

--------- Ci·
 j J,.-:'sn

ls nso_rld,
Sensoof>ollcy I
Hash
Map

l r-i.id_:s-
ensolile-r
1 HashMap

 nsorld I L ---
HashSet

l e-nt-_ld,-Ha-sh-S-et<-se-ns-
ofi-d>-I

HashMap

Figure 3-25 Class Diagram of SG, Sensor and Application Client
The figure above shows the class diagram of significant classes in SXO and SG. Within SXO, classes
used by application clients and classes for sensors are also indicated respectively.

76

1.4.2.2 Class Description
This section provides brief description of important classes of SG and SSAL.

Class name: ClientGridBroker
Package name: com.anabas.sensorgrid.client
Description: Part of the Application API. Provides the interface for external

applications to communicate with SG and sensors. Notifies GXO for
application joining

Important
interface:

setFilter(), sendControl(), subscribeSensorData(),
unsubscribeSensorData()

Class name: ClientGridChangeListener
Package name: com.anabas.sensorgrid.client
Description: Part of the Application API. Provides the interface for receiving

sensor status change due to sensor deployment, disconnection and
filtering

Important
interface:

handleSensorInit(), handleSensorChange()

Class name: SGClientView
Package name: com.anabas.sensorgrid.session.sharedlet
Description: Part of SXO. Contains most of the application-client-side logic for the

communication with SG and sensors, such as receiving sensor
change, sending filter to SG and sending control messages to sensors.
All NB topic and streams are handled here

Important
interface:

setChangeListener(), startConnection(), subscribeSensorData,
unsubscribeSensorDawta(), setFilter(), sendControl()

Class name: ClientGridDataListener
Package name: com.anabas.sensorgrid.client
Description: Part of the Application API, responsible for notifying the application

on sensor data arrival. If the application clients wants to receive data
from a particular sensor, it has to create a ClientGridDataListener for
that sensor. Afterwards, the listener will be notified for data arrival

Important
interface:

handleSensorData()

Class name: SGSensorView
Package name: com.anabas.sensorgrid.session.sharedlet
Description: Part of SXO. Contains most of the sensor-side logic for the

communication with applications, such as publishing data and
receiving control messages. All NB topics and streams are handled
here

Important
interface:

setControlListener(), publishData()

77

Class name: SensorGridBroker
Package name: com.anabas.sensorgrid.sensor
Description: Part SXO. Brokers communication between SSAL, SG and sensors.

Notifies GXO for sensor deployment and disconnection

Important publishData(), close()
interface:

Class name: SensorClientGridBroker
Package name: com.anabas.sensorgrid.sensorclient
Description: Part of SXO. Brokers communication between SSAL, SG and service

sensors. Notifies GXO for sensor deployment and disconnection

Important
interface:

publishData(), sendControl(), setFilter(), subscribeSensorData(),
unsubscribeSensorData()

Class name: SensorGridControlListener
Package name: com.anabas.sensorgrid.sensor
Description: Part of the SSAL. Provides the interface for receiving control

messages
Importan
t
interface:

handleSensorControl()

Class name: SensorAdapter
Package name: com.anabas.sensor.sensoradapter
Description: Part of SSAL. Provides the interface for sensors to publish data to

applications
Importan
t
interface:

publishData(), start(), close()

Class name: SensorAdapterListener
Package name: com.anabas.sensor.sensoradapter
Description: Part of SSAL. Responsible for receiving termination commands from

GB
Importan
t
interface:

handleSensorConnectionLoss(), handleSensorStopRequest()

Class name: FilterMonitor
Package name: com.anabas.sensorgrid.session.sharedlet
Description: Actually this is an inner class of SensorManager responsible for

periodic checkup to update the set of sensors for each application
according to their corresponding filter

Important 0
interface:

Class name: SensorManager

78

Package name: com.anabas.sensorgrid.session.sharedlet
Description: Part of SG. Contains the logic for managing all connected

applications and sensors. Maintained HashSets and HashMaps to
cache sensor policies, applications' filters and sets of sensors
mapped to each application.

Important
interface:

addSensor(), removeSensor(), addClient(), startClient(),
removeClient(), setFilter()

Class name: SGSessionLogic
Package name: com.anabas.sensorgrid.session.sharedlet
Description: Part of SG. Responsible for handling communications with all

applications and sensors through GXO. Performs state update

79

Important
interface:

through SensorManager for every connections and disconnections of
sensors and applications (notified by GXO)
userJoined(), userLeft()

Class name: AppletVCMain
Package name: com.anabas.sharedlet.appletframework
Description: Part of GXO. Resides at client side (applications and sensors) for

allocating and releasing resources
Importan
t
interface:

allWindowsClosed()

1.4.3 Important Features

1.4.3.1 NB Data Flow and Topic Management
Communication between applications, sensors and SG relies on NaradaBrokering (NB) for
communication. This section provides a brief description of data flow between the three parties.

Each sensor creates a topic for publishing data and a topic for subscribing control messages.
When an application is notified by SG for a new sensor, it subscribes to the two topics of the
corresponding sensor directly for receiving data and publishing control messages.

For the communication between applications and SG, each application creates its own topic
using its unique id for receiving sensor change notification. SG also creates a topic to receive
filter requests from all applications.

80

Stream NB Topic
T_SG application/x-sharedlet-sensorgrid/private
T_CY application/x-sharedlet-sensorgrid/client/CY
T_CX application/x-sharedlet-sensorgrid/client/CX
T_S1_Data application/x-sharedlet-sensorgrid/sensordata/S1
T_S1_Control application/x-sharedlet-sensorgrid/sensorcontrol/S1
T_S2_Data application/x-sharedlet-sensorgrid/sensordata/S2
T_S2_Control application/x-sharedlet-sensorgrid/sensorcontrol/S2

Figure 3-26 Message flow between a Sensor Grid (SG), applications and sensors

81

1 2 3

SGSessionLogic SensorManager GridBuilderBroker

4

Thread::FilterMonitor

1.4.4 Detailed Description
In this section, message flow of various operation of SG will be discussed at Class level using
UML collaboration diagrams.

1.4.4.1 Sensor Grid Startup
Sensor Grid starts a perpetual session.

Figure 3-27 A Sensor Grid startup sequence

1 An instance of SGSessionLogic is created by the framework
2 An instance of SensorManager is created, which is responsible for handling sensor-

application interaction
3 An instance of GridBuilderBroker is created, which is responsible for obtaining SensorPolicy

from Grid Builder
4 A thread is created which do filtering for different application-clients for every 5 seconds

80

SensorGridControlListener

SensorClient SensorServiceAdapter

1 3

SensorAdapter ServiceAdapter

7 8

SGSessionLogic SensorManager

Thread::FilterMonitor HashMap::id2Policy

Periodic filtering

1.4.4.2 Deploying a Sensor
When deploying a sensor through the Grid Builder, sequencecs of messages are invoked to
enable the management of deployed sensors as well as mechanisms to filter sensors based on
sensor policies. Message flow when a sensor is deployed through Grid Builder is illustrated in
Figure 3-28

Figure 3-28 Message flow when depolying a sensor through the Grid Builder

1 The sensor client program instantiates SensorAdapter when it is started by Grid Builder
2 SensorAdapter instantiates ServiceAdapter, which is later on managed by Grid Builder
3 Service Adapter instantiates SensorServiceAdapter, which resides in SSAL for

communication with SensorManager of Grid Builder
4 SensorServiceAdapter instantiates SensorGridBroker, which communicates with Sensor

Grid
5 SensorGridBroker initializes all parameters needed for the sensor to join the Sensor Grid,

including sensorId and system configuration, then instantiates AppletVCMain with all the
parameters which tells the framework to prepare for a sensor client. Sleep for 5 seconds.

6 A SGSensorView is instantiated by the framework, which is responsible for message
passing between application clients, sensors and Sensor Grid. A unique NB stream is
created for publishing sensor data and another one created for subscribing control
messages. SensorGridBroker obtains a reference to SGSensorView from the framework and
registers the SensorGridControlListener

7 The framework notifies that a new sensor has joined through the SessionListener interface
of SGSessionLogic (userJoined()).

81

SensorFilter

HashMap::clientId2Filter

6
5

 SGClientView GridBuilderBroker

n b:

HashSet::onlineSensors

8 Invokes addSensor() of SensorManager. SensorManager caches down the sensor in
HashSet and its Policy in HashMap

9 Asks Grid Builder for SensorPolicy of the sensor through the GridBuilderBroker interface
(getPolicy())

10 FilterMonitor Thread will notify all application-clients the presence of new sensor if it
matches with the Filter. Please refer to section 3.4.4.3 for details

1.4.4.3 Periodic Filtering
SG periodically checks the status of sensors and whether there are changes for each filter defined
by applications. Below shows the message flow.

Figure 3-29 Sensor Grid message flow during periodic sensor filtering

1 Every 5 seconds, the FilterMonitor Thread performs a filtering sequence. For each registered
application-clients, the corresponding Filter object is obtained from a HashMap. Invokes
doFiltering() of SensorManager

2 Send a request to Grid Builder acquiring a list of sensors which matches the filtering criteria
defined by the Filter

3 GridBuilderBroker returns a list of sensors fulfilling the criteria
4 Compare the list of returned sensors with the currently cached list of sensors for the

application-client. Notifies the application-client all changes by sending a
SENSOR_CHANGE message through a application-client specific NB stream

5 Updates the cached list of online sensors in HashSet. Invokes handleSensorChange() of the
registered ClientGridChangeListener (Sensor Change Listener)

6 ClientGridChangeListener notifies application client of sensor change. Application client
performs corresponding actions

82

1.4.4.4 Application Client Joining A Sensor Grid (SG)
When a sensor grid application client joins a sensor grid (SG), the message flow is
illusgtrated as follows:

Figure 3-30 Message flow when an application joins a sensor grid

1 The application-client which implements the ClientGridChangeListener (Sensor Change
Listener) interface, instantiates an instance of ClientGridBroker (Application Client Broker)

2 ClientGridBroker initializes all parameters needed for the application to join the Sensor Grid,
including a generated client id which is unique to the system and client’s system
configuration, then instantiates AppletVCMain with all the parameters which tells the
framework to prepare for an application client. Sleep for 5 seconds.

3 A SGClientView is instantiated by the framework, which is responsible for message passing
between application clients, sensors and Sensor Grid. A unique NB stream is created for
subscribing messages from Sensor Grid (e.g. sensor change information). ClientGridBroker
obtains a reference to SGClientView from the framework and registers the
ClientGridChangeListener

4 The framework notifies that a new application client has joined through the SessionListener
interface of SGSessionLogic (userJoined()).

5 invokes addClient() of SensorManager. SensorManager initializes NB streams for
communication with application client

6 Registers application client’s ClientGridChangeListener. Invokes
SGClientView’s startConnection()

7 Sends a START_CLIENT message with its client id
8 Forwards the request to SensorManager

83

SensorClient ClientGridDataListener

1

7

SensorAdapter Application SGClientView

 2

3

SensorServiceAdapter SensorGridBroker

9 Creates a HashMap which maps the id of all online sensors to SGResource instances
wrapping the policy and status of the sensors

10 Sends a INIT_SENSOR message to the client, containing the created HashMap
11 Updates the cached list of online sensors in HashSet. Invokes handleSensorInit() of the

registered ClientGridChangeListener
12 ClientGridChangeListener notifies application client of sensor change. Application client

performs corresponding actions

1.4.4.5 Sensor Publishing Data
After a sensor is deployed in a sensor grid, real-time stream of sensor data and metadata will be
published to the sensor grid. The message flow of a sensor publishing data to the sensor grid in
which application clients could subscribe to such live streams is illustrated in Figure 3-31.

Figure 3-31 Message flow from deployed sensors to applications in a sensor grid

1 SensorClient publishes data by calling publishData() of SensorAdapter
2 SensorAdapter forwards the data to SensorServiceAdapter by calling publishData()
3 SensorServiceAdapter forwards the data to SensorGridBroker by calling publishData()
4 The data is forwarded to SGSensorView
5 Broadcast the data through the unique NB stream for the sensor
6 For ALL the SGClientViews which has subscribed to this NB stream, locates all registered

ClientGridDataListeners (Sensor Data Listener) which has subscribed to data from this
sensor

7 For each ClientGridDataListener found, notifies it for data arrival by
invoking handleSensorData()

8 Notifies the application for data arrival

1.4.4.6 Subscribing Sensor Data
Applications that implement the SCMW API could receive relevant live sensor streams in the
sensor grid by subscribing to them. The message flow of an application subscribes to live
stream of a deployed sensor is shown below in Figure 3-32.

84

2 3

Application SGClientView

SensorFilter

10
2

Application ClientGridBroker HashSet::onlineSensors

nb:
8

HashMap::clientId2Filter SensorManager

7

Figure 3-32 Message flow from a sensor grid to a subscribing application

1 After application client knows the presence of a sensor, it creates an instance of
ClientGridDataListener (Sensor Data Listener) for the sensor

2 call subscribeSensorData() and provides the sensor id and ClientGridDataListener as
parameter

3 Forwards the call to SGClientView
4 Register the ClientGridDataListener so that when sensor data arrives the listener will be

notified. If this is the first request of subscribing data from this sensor, subscribes to the NB
stream unique to the sensor

1.4.4.7 Setting a Filter
The design of SCMW suppots filtering of sensor streams in a sensor grid to facilitate
construction of UDOP for situational awareness. The message flow of an application setting up
a filter query is shown in

Figure 3-33 Message flow of filter setup in a sensor grid

1 Application client instantiates a SensorFilter object according to application-specific
filter criteria

85

1

Application ClientGridBroker

5

SensorClient

2 initiates a setFilter() request to ClientGridBroker, using the SensorFilter as parameter
3 Forwards the request to SGClientView
4 Sends a FILTER_MSG message to Sensor Grid through NB, together with the SensorFilter

object
5 Pass the SensorFilter object to SensorManager
6 Send a request to Grid Builder acquiring a list of sensors which matches the filtering criteria

defined by the Filter
7 GridBuilderBroker returns a list of sensors fulfilling the criteria
8 Compare the list of returned sensors with the currently cached list of sensors for the

application-client. Notifies the application-client all changes by sending a
SENSOR_CHANGE message through a application-client specific NB stream

9 Updates the cached list of online sensors in HashSet. Invokes handleSensorChange() of the
registered ClientGridChangeListener (Sensor Change Listener)

10 ClientGridChangeListener notifies application client of sensor change. Application client
performs corresponding actions

1.4.4.8 Sending Control to a Sensor
Some sensors do not only send live streams to a sensor grid. They could receive control
information from users or applications and respond with sensor information that corresponds to
received control information. The message flow of an application sending a control message to a
sensor is illustrated in Figure 3-34.

Figure 3-34 Message flow of control messages from applications to sensors in a sensor grid

1 Application client invokes sendControl() of ClientGridBroker with the specified sensor id
and control message recognizable by the sensor

2 Forwards the request to SGClientView
3 Sends the SENSOR_CONTROL to the sensor through a unique NB stream for the sensor
4 Forwards the control message to the registered SensorGridControlListener by

handleSensorControl()
5 Notifies SensorClient that a control message is received. The sensor client performs the

corresponding actions

86

1.4.4.9 Disconnecting a Sensor
To disconnect a sensor, one of the ways is to stop the sensor client program through GB’s
management console. The diagram below shows the message flow of disconnecting a sensor this
way.

Figure 3-35 Message flow when disconnecting a deployed sensor from a sensor grid

1 A disconnection request is received from Grid Builder (please refer to session 3.3.5.2 for
details). processWxfDelete() of SensorServiceAdapter is invoked

2 Reports the running status of the associated sensor client program by sending a
Wxf_DeleteResponse message to SensorServiceAdapter. If the sensor client program is
running, go to 3. Otherwise, does nothing and exits

3 Invokes close() of SensorGridBroker
4 Notifies the framework to dispose resource allocated to the sensor by calling

allWindowsClosed() of AppletVCMain
5 Notifies the associated SensorAdapterListener to terminate the sensor client program by

calling handleSensorStopRequest()
6 SensorClient disconnect all connections and exits
7 The framework notifies SGSessionLogic that the sensor has disconnected by invoking

userLeft()

87

8 invokes removeSensor() of SensorManager
9 Removes the cached SensorPolicy and status for this sensor. For each application client,

removes the sensor from the cached list of sensors associated with it, then notifies the
application client by sending a SENSOR_CHANGE message through the unique NB stream
for the client

10 Updates the cached list of online sensors in HashSet. Invokes handleSensorChange() of the
registered ClientGridChangeListener (Sensor Change Listener)

11 ClientGridChangeListener notifies application client of sensor change. Application client
performs corresponding actions

1.5 SCMW Application Program Interface (API) and Sensor Service
Abstraction Layer (SSAL)

1.5.1Overview of the SCMW API

The SCCGMMS Application Program Interface (API) allows any third party application to
connect and utilize functions provided by SCMW. An application can do the following through
the SCMW API:

1. Obtains the policies and data of all sensors which are currently up and running
2. Selectively subscribes to sensors with their policies fulfilling filtering criteria defined

by the application
3. Sends control messages to sensors
4. Dynamically notified for new sensors which fulfill the filtering criteria, and for sensors

which have been disconnected

To use the SCMW API, an application has to instantiates an Application Client Broker
(ClientGridBroker) and implements the Sensor Change Listener (ClientGridChangeListener)
interface. Moreover, a Sensor Data Listener (ClientGridDataListener) has to be created for
subscribing to data stream of each sensor.

88

Figure 3-36 SCMW Application Programming Interface

Sensor Service Abstraction Layer (SSAL)

1.5.2 Overall Sensor Service Abstraction Layer Architecture

Figure 3-37 A high-level architecture of the Sensor Service Abstractioon Layer (SSAL)

Sensor Service Abstraction Layer (SSAL) provides a common interface for all kinds of sensors.
Sensor developers add new sensors to SCMW by writing Sensor Client Programs (SCP)
which connects to SCMW through libraries in SSAL.

Internally, SSAL communicates with GB for sensor management (e.g. creation, registration,
definition) and SG for run-time management (e.g. data publishing, receiving control messages).

In SSAL, sensors are categorized into two categories:

Normal Sensors – Sensors which take input from external environment. The input data is external
to SCMW.

Computational Service – Sensors which do not take input from the environment. Instead, they
take output of other sensors as input, perform various computations on the data, and output the
processed data finally

Functionalities of the two different categories of sensors are supported by two different sets of
classes in SSAL. Some classes are shared between the two categories for common functionalities.

1.5.3 SSAL Architecture for General Sensor Services

star
t

control

r----

Sensor
Control

sto
p

dat
a

Sens
or
Adapter

1
I

I

I

Management Console

Listener Sensor Adapter listener
Servic
e
Adapt
er

Stop

creat
e

Sensor Manager

Control
messages

Stop-4----
-'=1

 I

Sensor
Client
Adapt

er

data--------------

Get policy, initialize
I

I

: ud ---

sxo Filter result sensor policies

Send filter

Sensor Grid

Figure 3-38 A detailed SSAL architecture for gmeral sensor sercvices

Figme 3-38 shows the architectme of SSAL for general sensors to be wrapped and
deployed as sensor services. The following subsections explain the message flow for
some basic operations.

1.5.3.1 Sensor Deployment
To deploy a sensor, the corresponding SCP has to instantiate a Sensor Adapter which notifies
SCMW for its presence and data publishing. It also has to implement a Sensor Control Listener
(for receiving control messages) and a Sensor Adapter Listener (for actions such as terminating
SCP). The SCP can either be started by a way decided by the sensor developer (e.g. run a .bat
script), or it can be embedded in SCMW so that it can be started by GB’s Management Console.
For a more detailed message flow, please refer to section 3.3.5 .

1.5.3.2 Data Publishing
SCP is responsible for collecting data from the sensor, and then publishes it through Sensor
Adapter. Sensor Adapter in turn forwards the data to the corresponding Sensor Service
Adapter, and finally to all applications that have subscribed to its data through SXO. For a
more detailed message flow, please refer to section 3.4.4.5 .

1.5.3.3 Performing Actions on Sensor Client Program
Sometimes the user may want to perform some actions remotely on the SCP, such as pausing
or terminating the SCP. SCP listens for these actions through Sensor Adapter Listener.
Currently, there is only one action supported by SCMW – terminating the SCP.

1.5.4 SSAL Architecture for Computation as a Sensor Service

Figure 3-39 A detailed SSAL architecture for computation as a sensor service

Architecturally SSAL for Computational Service combines SSAL for normal sensors and SCMW
API since it needs functionalities from both sides. Figure 3-39 shows SSAL for Computational
Service. You can observe that components of the SCMW API are integrated with components of
the original SSAL and some new modules to form the

94

SSAL for Computation as a Sensor Service. The extension of SSAL to cover computation as a sensor service
significantly broadens the applicability of the Sensor- Centric Grid of Grids and eases the integration of new or
legacy system of systems with sensor-centric applications.

The following subsections explain the message flow for some operations of
Computational Services.

1.5.4.1 Sensor Deployment
To deploy a Computational Service, the corresponding SCP has to instantiate a Sensor Client Adapter which
notifies SCMW for its presence and for various sensor related operations such as data publishing, subscribing
data from source sensors and sending control messages to source sensors. It also has to implement a Sensor
Control Listener (for receiving control messages) and a Sensor Adapter Listener (for actions such as
terminating SCP) as what normal sensors do.

1.5.4.2 Subscribe Sensor Data
Since Computational Services take input from other sensors (source sensor), they have to subscribe data from
other sensors in a similar way to applications. To subscribe data, the SCP of a Computational Service has to
invoke functions of Sensor Client Adapter which in turn setup the connections through SXO. SCP has to
implement the Sensor Change Listener and Sensor Data Listener interfaces. Whenever the state of source sensor
changes (e.g. online to offline) the SCP will be notified through Sensor Change Listener. Similarly SCP will be
notified for data arrival through Sensor Data Listener.

1.6 Container Service

Sensor Container (Manager & Services)

Motivation
Prior to the implementation of Sensor Container Manager & Services, every Sensor invoked used to live in its own JVM,
hence there by consuming a lot of memory due to the overhead of individual ‘Run Times’, ‘Garbage Collectors’ etc. Due to
limitation of system resources in a given Domain, the total number of Sensors that could be hosted/supported in a given Leaf
Domain was limited by the degree of available system resources and not by the capacity of the underlined Broker. This was
leading to Broker starvation, the Sensor Container Manager & Services implementation work towards eliminating this issue.

Implementation & Working
To support a huge number of Sensors in a single domain we looked forward towards possible use of Inter Process
Communication (IPC) and hence thereby we came up with the Container managed services. Where a container provides space
for multiple sensors to live and service within a single JVM process and thereby sharing a single JVM resources. This results
in huge decrease in the consumption of system resources. The inner working of Sensor Container (Manager & Services) are
mentioned below:

 Sensor Container Management Service (SCMS) is invoked using a script.
 SCMS brings up the first Container and provides the service Lock to the same.
 Once the container holding up the Service Lock is filled out, the same container shuts down its external services and

releases the Lock.
 SCMS at that instance brings up another Container and provides the new container with the service lock.
 At any given instance if a few sensors have been shut down from a given container, the container registers to obtain

the Service Lock and the same is handed over to the requesting Container by the SCMS once the current container
holding the Service Lock is filled up and releases the Lock.

95

 SCMS also helps in cleaning up empty containers.

Architecture Diagram:

Sensor Container Management Service (SCMS)

Container 1

’x’ No Of
Sensors

Container 2

’y’ No Of
Sensors

Container 3

’z’ No Of
Sensors

Container N

’#’ No Of
Sensors

Sensor Services

96

Architecture of Container Service

A sensor invoke request is generated either directly by a script or by the User Management tool via ForkDeamon for a given
Domain. In either of the case it forks a new process containing the Sensor Invoke Client code. The Sensor Invoke Client
repeatedly sends a request to the Sensor Service hosted by the Locked in Container until it receives a success response.

Once the Sensor Service receives the request it brings up a Sensor of a specific type requested with in the container which
holds the lock at that instance. Hence there by multiple sensors could coexist with in a single Container.

Flow Diagram

97

98

2. USER GUIDES
2.6 Sensor Cloud components

The main components of the Sensor Cloud project are:
1. sensorcloud-middleware: This is the core component which consists of the middleware code of

the Sensor Cloud Framework which wraps around the original Narada Broker pub-sub
architecture.

2. sensorcloud-sensors: The sensors can publish sensor data to the middleware. This maven
module composes of the set of defined sensors and the users can add their custom sensors to this
module.

3. sensorcloud-clients: The clients subscribe to the sensor data from the middleware published by
the sensors. This maven module composes of code to display the data subscribed to the user.

4. sensorcloud-managementui: The Management User Interface is a swing application which is
used to manage all the Grid Builder domains and sensors invoked.

5. sensorcloud-managementwebui: This is a Web Management interface developed with Google
Web Toolkit which performs the same function as management ui.

6. sensorcloud-restservlet: The module makes use of JBoss rest easy technology to get and put
sensor data at the web browser from the SGX.

7. sensorcloud-streaming: The module is used to make the streaming of sensor data from the SGX
to the web browsers.

8. sensorcloud-distribution: The module distributes the jar packages of all the Maven modules to
the Maven repository.

Sensor Cloud Framework can be started on the local machine by executing the following steps:

Launch Grid Builder

• Go to %SENSORCLOUD_HOME%\scripts
• Execute startLocal.bat by double-clicking it
• Several Console windows will startup
• Wait until the Java Grid Builder Management Console pops up (shown in the next figure)

99

Video Reference: http://screenr.com/DjTs

Once you have launched Grid Builder, you can use either or both of the following programs to interact
with sensors that you chose to deploy with Grid Builder.
(1) Meeting Console Client

• Go to %SENSORCLOUD_HOME% \scripts\clients
• Execute prepareConsoleClient.bat by double clicking it
• Meeting Console Client program displays the sensors those are active in the Sensor Grid

Framework and the messages exchanged between the sensor and the Sensor Cloud

(2) Swing Client

• Open Command Prompt
• Go to %SENSORCLOUD_HOME%\scripts\clients
• Execute prepareSwingClientLocal.bat
• Sensor Grid demo is a graphical display for the sensors that are active in the Sensor Grid

framework.

100

The Sensor Grid processes can be shut down by executing the following commands in the command
prompt

• Run taskkil.exe /f /IM *.java
• Run taskkill.exe /f /IM cmd.exe

OR by executing the script killer.bat at %SENSORCLOUD_HOME%\scripts\

2.7 Deployment and User Guides

2.7.1 Sensor Deployment Tutorial

We have developed a simple GPS Sensor for illustrative purposes which can display the GPS co-
ordinates on the client console. In the next section of this guide, we shall describe how to deploy and use
this sensor.

Tutorial: GPS Sensor

Go to %SENSORCLOUD_HOME%\scripts and execute the batch file GettingStartedDemo.bat. The
contents of this batch file would look like:

ECHO Executing ...

cd GridBuilder

start runGPS "IU Innovation Center" GPS "2719 East 10th Street" Bloomington IN US yes yes
yes yes yes virtual_3910.38746,N_08630.12594,W

start runGPS "Ball" GPS "2875 Presidential Drive" Fairborn OH US yes yes yes yes yes
virtual_3946.6524,N_08403.56274,W

This batch file will deploy two instances of the GPS sensor with virtual geo co-ordinates which are given
as the last two parameters for this sensor.

Viewing the output:

The sensor data generated by this sensor can be viewed either of the two ways mentioned below:

1. Console Client: Go to %SENSORCLOUD_HOME%\scripts\clients and execute
prepareConsoleClient.bat which will open the client console in a command window where the
GPS data received from the Sensor Grid can be viewed.

101

2. Sensor Grid Demo: Go to %SENSORCLOUD_HOME%\scripts\clients and execute
prepareSwingClientLocal.bat which will open a graphical interface where the GPS data received
from the Sensor Grid can be viewed in a graphical format.

Fig: View Using Swing Client

Video Reference: http://screenr.com/bjTs

2.2.2 User Guide for Sensors

Introduction

The CloudSensor can be used to deploy various kinds of sensors. This guide states the various steps
involved in deploying various sensors. Each sensor can be deployed in 2 ways. One way to deploy is
using the swing based GUI client and the other way to deploy them using batch scripts.

1. Twitter Sensor

GUI client Steps :
a) Run the startLocal.bat file to start the GUI interface for deploying twitter sensor.

102

b) The startLocal script opens up the GUI

103

c) Once the GUI opens, click on the Deploy

d) Clicking on the deploy button, opens a new window for sensor selection. Enter the relevant
data for twitter sensor and select the type from dropdown selection box.

104

e) After filling the required details, click on OK button

f) Then the twitter sensor gets deployed and we can see it in the GUI as shown in following
screenshot.

105

g) The sensor can be stopped by clicking on Stop button as shown above.

Batch Script Steps:

a) Go to command prompt and run the “prepareTwitterSensor” batch script as shown

b) Then once the Twitter sensor gets deployed successfully, you can see a new command

prompt opening up as shown in screenshot.

106

2. Chat Sensor
GUI Client Steps:

a) Run the startLocal.bat file to start the GUI interface for deploying chat sensor.

107

b) The startLocal script opens up the GUI

c) Once the GUI opens, click on the Deploy

108

d) Clicking on the deploy button, opens a new window for sensor selection. Enter the relevant
data for chat sensor and select the type from dropdown selection box.

109

e) After filling the details, click on OK button.

f) Then the chat sensor gets deployed and we can see it in the GUI as shown in following
screenshot.

110

g) The client can be stopped by pressing the stop button

111

Batch Scripts Steps :
a) To deploy a chatSensor, just run the script prepareChatSensor which would inturn execute the

runChatSensor script which would deploy the chat sensor.

b) Once the Chat sensor gets deployed successfully, you can see a new command prompt
opening up as shown in screenshot.

112

3. FileTransfer Sensor

GUI Client Steps:
a) Run the startLocal.bat file to start the GUI interface for deploying file transfer sensor.

113

b) The startLocal script opens up the GUI

c) Once the GUI opens, click on the Deploy

114

d) Clicking on the deploy button, opens a new window for sensor selection. Enter the relevant
data for file transfer sensor and select the type from dropdown selection box.

115

e) After filling the details, click on OK button.

f) Then the file transfer sensor gets deployed and we can see it in the GUI as shown in
following screenshot.

116

g) The sensor can be stopped by clicking on the Stop button

117

Batch Scripts Steps:

a) To deploy a File Transfer Sensor, just run the script prepareFileTransferSensor which would
in turn execute the runFIleTransferSensor script which would deploy the chat sensor.

b) Once the Chat sensor gets deployed successfully, you can see a new command prompt

opening up as shown in screenshot.

118

4. GPS Sensor

GUI Client Steps:
a) Run the startLocal.bat file to start the GUI interface for deploying GPS sensor.

119

b) The startLocal script opens up the GUI

c) Once the GUI opens, click on the Deploy

120

d) Clicking on the deploy button, opens a new window for sensor selection. Enter the relevant
data for GPS sensor and select the type from dropdown selection box.

121

e) After filling the details, click on OK button.

f) Then the GPS sensor gets deployed and we can see it in the GUI as shown in following
screenshot.

122

g) To stop the sensor, the stop button can be clicked.

Batch Scripts Steps:

a) To deploy a GPS Sensor, just run the script prepareGPSSensor which would in turn execute
the runGPS Sensor script which would deploy the chat sensor.

123

2.8 Guide to develop sensors and clients

Getting Started with Coding:

For our purposes a sensor is anything that transmits data. A video camera, a GPS unit, and for this discussion a
sensor that sends message to the Grid, are all examples of sensors.

I have a sensor I want to use it to send data, what should I do now?
Great!! You need to let the sensor grid know that you have a sensor and you want to publish/subscribe the data. By
doing this you are allowing the sensor grid to recognize the sensor and also adding it to the grid. In order to do
that, you have to instantiate a sensor adapter object.
Let’s Walk through our example QuickStart Sensor class to understand how to develop a sensor.

What is a SensorAdapter/SensorClientAdapter?

There are two main classes SensorAdapter and SensorClientAdapter which does all the primary functions in
hooking up the sensor with the grid and maintaining the sensor in the grid.

SensorAdapter and SensorClientAdapter are the classes which allows you to implement the following functions

• Connecting the sensor to the sensor Grid and initializing the sensor over the grid
• Monitor the status of the sensor in the grid
• Receives data from the grid and publish the data on the grid
• Subscribe a sensor to monitor another sensor’s data

The primary functions of the SensorAdapter are listed below along with the corresponding classes which
implement them.
Creates and sets the policy (Sensor properties) of a sensor (SensorPolicy)
Allows the sensor to listen to the control signals (SensorGridControlListener)
Allows the sensor to create functions to handle connection loss or sensor stop requests (SensorAdapterListener)

The constructor of the SensorAdapter looks like this

SensorClientAdapter is the adapter which basically does the same functions of the SensorAdapter except that it
does from the client side but with an additional functionality. Any client which is subscribed to a sensor might
want to be notified any changes in the grid about a new sensor being added or if the status of an existing sensor
changes. This it implements an additional interface called ClientGridChangeListener.

124

The constructor of the SensorClientAdapter looks like this

public SensorClientAdapter (SensorPolicy sPolicy,
SensorGridControlListener sensorCtrlListener, ClientGridChangeListener clientChangeListener,
SensorAdapterListener saListener)
{
Init(sPolicy, sensorCtrlListener, clientChangeListener, saListener, null);

What are those arguments in the constructor?
Let’s see in detail about the arguments listed above.
SensorPolicy – The properties of the sensor are wrapped in to this SensorPolicy class. Once you create
an instance of SensorPolicy you can access the property of a sensor through this class. The constructor of
the SensorPolicy looks like the one below.

public SensorPolicy(SensorProperty sensorProperty)
 {
 this.sensorProperty = sensorProperty;
 }

Now,lets talk in detail about SensorProperty. Every sensor has few properties which are to be defined
while creating a sensor. There are two types of sensor properties. The pre-defined generic sensor
property and the user-defined sensor property. The predefined generic sensor properties include the
following list
Property Datatype Description
sensorId String A description to identify the

sensor. Eg:- QuickStartSensor
groupId String A Description to identify the

logical group to which the
sensor belongs to Eg:-
QuickStartSensorGroup

sensorType String To identify the Type of the
Sensor. Eg: Video, Audio,
GPS etc..A list of predefined
types are available in class
PredefinedType.

sensorTypeId Int This allows the application to
uniquely identify a sensor
combining with the
sensorType

Location String Geo-Spatial location of the

125

sensor. E.g (United States,
Bloomington)

Historical Booelan To identify if the sensor has
time inter dependence with
one another

sensorControl Int[] An integer array which
identifies all control messages
idenified by the sensor

controlDescription String[] Textual description of what
each control message
represents. Align it with the
sensor control array.

userDefinedPropXml String Any other properties of the
sensor cab be put here as
XML string.

UserDefinedProperty:
Apart from the above predefined generic properties, a sensor can have a property of its own. For
example, a Wii remote sensor might need Bluetooth address to connect to a System, the property of
which is not present in the predefined properties. So the user can create their own property to hold
Bluetooth address.
In this example of QuickStartSensor, we pass a String variable in the constructor while creating a
SensorProperty instance. (Note: we can also create an empty UserDefinedProperty by using
UserDefinedProperty.newInstance()).
The values for these sensor properties will be entered during the time of sensor deployment. So you need
to have a SensorProperty class to bind the values to the properties.
We now know that SensorPolicy is a class which holds the properties of the sensor(SensorProperty)

SensorGridControlListener:
This is an interface which handles methods for listening to control messages from the application. It has
a handleSensorControl method in it which should be implemented while implementing this interface.

public void handleSensorControl(String commander, int sensorControl);
public void handleSensorControl(String commander, int sensorControl, Serializable[] parameters);

Suppose if the sensor is capable of receiving control messages from the applicaion/sensor this class will
be useful then. The string commander is the ID of the commander which sends out the control message.

ClientGridChangeListener:
Before knowing about ClientGridChangeListener, we need to know what is a SensorGridResource.

SensorGridResource is a class which facilitates the application to know about the properties of a

126

particular sensor along with the status of the sensor in the grid.
The constructor of this class looks like below

public SensorGridResource(Policy policy, short status) {
 this.policy = policy;
 this.status = status;
 }

Whenever this class is created, the sensor’s policy and the status of the sensor is passed in the arguments.
We know the first parameter, sensor policy gives access to the property of the sensor and the second one,
status defines the current status of the sensor in the grid. It could be either 0(offline) or 1(online).
Now we know the SensorGridResource holds the properties and status of a sensor. But we do not know
to which sensor are these values mapped to. So we now introduce a new variable sensorInitInfo which is
a hashmap of sensor Id and SensorGridResource. With sensorInitInfo we can find a corresponding
sensor’s properties and status on the grid.
So, coming back to ClientGridChangeListener interface, a change happens in the Grid when

i. a new sensor is added to the grid
ii. a sensor’s status change from online to offline or vice versa

To handle the first event we should initialise the new sensor that is added to the grid. This is when we
implement the below method in ClientGridChangeListener interface.
public void handleClientInit(HashMap<String, SensorGridResource> sensorInitInfo);

We have the sensorInitInfo, therefore we know the sensor’s properties. Hence we can intitialise the
sensor by subscribing it to receive data from any other sensor.

To handle the second event we should add or remove the SensorMonitor corresponding to the sensor’s
status. If the sensor’s status changes from offline to online, we have to subscribe the sensor to receive
data from the requested sensor. If the sensor’s status changes from offline to online we no longer should
unsubscribe the sensor from monitoring any other sensor’s data.

public void handleClientChange(HashMap<String, SensorGridResource> sensorChangeInfo, boolean
newFilter);

The newfilter is in the above method is to indicate the status of the sensor.

SensorAdapterListener:

Sometimes we might have to kill the sensor forcefully or sometimes the sensor looses the connection
with the grid. We need to handle these situations. The SensorAdapterListener interface implements two
methods to capture the above two situation.

public interface SensorAdapterListener {
 public void handleSensorStopRequest();
 public void handleSensorConnectionLoss();
}

127

We need to implement these two methods in the sensorManager class. In our QuickStartSensor example
we simply exit the sensor’s out of the grid.

 public void handleSensorStopRequest() {
 log.info("Stop Request...");
 close();

 System.exit(0);
 }

 public void handleSensorConnectionLoss() {
 log.info("Connection Loss...");
 close();

 System.exit(0);
 }

But, how do I actually publish and subscribe the data to the grid ?

Previously we learned,
1. how to connect a sensor to the grid?
2. What happens in the grid when a sensor is initated or when the status of the sensor is changed?
3. How does the sensor handles control signals from the application ?
4. What happens when the sensor gets terminated or when there is a connection loss ?

Now we need to know, How to actually publish and subscribe a sensor’s data in the grid ?
We basically need to have a data(SensorData) that has to be published over the grid and a listener
platform for the sensor(ClientGridDataListener) to listen to a specific SensorData. When you are ready
with these two, you can call any of the three methods(mentioned below) of the SensorClientAdapter to
publish and subscribe/unsubscibe your SensorData. The three methods are

• publishData(SensorData sensorData)
• subscribeSensorData(String sensorID, ClientGridDataListener listener)

128

• unsubscribeSensorData(String sensorID, ClientGridDataListener listener)

The publishData(SensorData sensorData) method is implemented in the SensorClientAdapter in such a
way that it can publish the SensorData over the grid. Similarly the subscribeSensorData(String sensorID,
ClientGridDataListener listener) and unsubscribeSensorData(String sensorID, ClientGridDataListener
listener) does subscribing and unsubscribing of a sensor from a sensor data.
Let’s see in detail about
• SensorData
• ClientGridDataListener

SensorData:
You need to define the type of data you would be publishing/subscribing from the grid. Typically we
define a class to specify the type of data to deal with, which extends an abstract class SensorData.
The QuickStartSensorData which is used for the QuickStartSensor looks like the one below.

public class QuickStartSensorData extends SensorData {

 /**
 * Serialization Version
 */
 private static final long serialVersionUID = 1L;
 private String message;

 /**
 * @param timestamp - Message creation time
 * @param message - Message to publish
 */
 public QuickStartSensorData(long timestamp, String message) {
 super(timestamp);
 this.message = message;
 }

 public String getMessage() {
 return message + " " + Long.toString(this.getTimestamp());
 }
 }

Since in the QuickStartSensor we are just reading strings of data and displaying on a command console,
we have a string variable to take care of it. In real world we might be using a little more complicated
sensors like Wii remote where we have to take care of all the keys and buttons in the remote.

ClientGridDataListener:
What should the sensor do upon receiving a data from the grid? we need to take care of the data.
ClientGridDataListener is an interface which demands you to implement a method on how to handle the
sensor data that is received from the grid. This is when we implement the DataMonitor class. Every

129

sensor has a DataMonitor class which extends the ClientGridDataListener. This DataMonitor class
monitors the grid for the sensor data and upon receving a sensor data, the handleSensorData method
decides on what should be done with the SensorData.

public interface ClientGridDataListener {
 public void handleSensorData(String sensorID, SensorData sensorData);
}

The above method is implemented through the ClientGridDataListener. It basically takes in the
SensorData and the sensorID and decides on what should be done.

The DataListener for the QuickStartSensor looks like the one below.

 public void handleSensorData(String sensorID, SensorData data) {

 //We have some data, check to see if it is from a QuickStartSensor
 if(data instanceof QuickStartSensorData) {
 // We have QuickStartSensor Data get the message
 QuickStartSensorData quickStartSensorData = (QuickStartSensorData)data;

 String output = "\nQuickStartSensor Data received, id: " + id +
 ", data: " + quickStartSensorData.getMessage() + "\n";
 log.info(output);
 } else {
 // Here we dump data from all other sensors in a generic blob.
 String output = "\nOther Data received, id: " + id + "\n";
 log.info(output);

130

 }

 }

The variable quickStartSensorData would have the string value read from the QuickStartSensor. Once
the data is retrieved, we have used a QuickStartClient which will display the message on the client
command window.

Publishing data on the Grid

Data received from the sensor

 SensorData

 extends

 QuickStartSensorData

131

 Creates an
 instance of

 QuickStartSensor.publishData(SensorData)

 SensorData

SensorClientAdapater.publishData()

 SensorData

SensorClientServiceAdapter.publishData()
SensorClientGridBroker.publishData()
SGSensorView.publishData() – Publishes data through
NaradaBrokering

-------Understanding of these classes requires extensive
discussion of the SGX architecture

Data gets published in the Grid

Subscribing sensor Data

 ClientGridDataListener

 implements

 QuickStartSensorDataMonitor

 Creates an instance of

QuickStartClient.subscribeSensorData(SensorId, ClientGridDataListener)

132

ClientGridBroker.subscribeSensorData(SensorId, ClientGridDataListener)

SensorClientServiceAdapter.subscribeSensorData()
SensorClientGridBroker.subscribeSensorData()
SGSensorView.subscribeSensorData() – subscribes to the
specified topic through NaradaBrokering

-------Understanding of these classes requires extensive
discussion of the SGX architecture

 Sensor is subscribed to the requested

How a Client sends control messages to a Sensor with whome the Client has subscribed.
The Client would already contain an instance of ClientGridBroker and in case if we are looking at a
Client which is ment to behave both as a Client and a Sensor (e.g. ChatSensor.java) and inisitates a
SensorClientAdapter in it’s constructor. In either case both of them exposes a method
“sendControl(String sensorID, int sensorControl)”, this is the required method which needs to be call
when the Client needs to send a control message to the sensor.

Note: in case of SensorClientAdapter the actual implementation of sending controlMessage is
encapsulated in SensorClientGridBroker.

Moving towards explaining how to use the QuickStart Client to send a control message to the Sensor.
We can obtain the required HELP contents by typing “HELP” command directly in to the console which

133

provides us the required information about how to query about the Sensors with the Client has
subscribed and and what are the avaliable/valid control messages. And hence to send control message to
a sensor type:

<Sensor ID> <Control Message>

Please Note this demostration only applies to QuickStart Sensors and QuickStart Client.

Before moving on to the next section let’s just recap what we have learned so far!

Recap:
 Once you decide on the sensor that you are going to develop the first thing to do is to instantiate a

SensorClientAdapter
 A SensorAdapter is the bridge between the sensor and the grid which lets the sensor grid know about

the sensor’s existence
 SensorAdapter takes four different parameters in its constructor. They are
 SensorPolicy
 SensorGridControlListener
 ClientGridChangeListener
 SensorAdapterListener

 SensorPolicy has the properties of the Sensor
 SensorProperty is the class which holds all the properties of a sensor
 There are two types of sensor properties. Predefined properties and the user defined properties

 SensorGridControlListener implements handleSensorControl method which takes care of control
messges from the application

ClientGridChangeListener takes care of what happens when a new sensor gets registered in the grid or
when the status of the sensor changes in the grid? It implements two

 methods, handleClientInit and handleClientChange to handle the above situations correspondingly
 SensorGridResource is a class which holds SensorProperty and the status of the sensor.This is used

to identify the properties of a sensor along with its status on the grid
 SensorAdapterListener listens to the application specific events such as connection loss. In order to

publish and subscribe a sensor data, we need to create two classes:
 CustomSensorData which extends the SensorData class
 DataMonitor which implement the ClientGridDataListener interface

I need to start writing the Main function. What should I do now ?
Let’s start writing the Main function now.

public static void main(String[] args){

134

....then what ?

Its simple. Just find a way to get the properties of the sensor you are developing. Once you have the
values of these properties, then you create an instance of SensorProperty class. Now that we have the
SensorProperty of the current sensor, create a SensorPoilcy instance.
We now have everything to create an instance of the current sensor class (QuickStartSensor) and allow it
to join the grid. The constructor of the QuickStartSensor looks like this

public QuickStartSensor (SensorPolicy sPolicy) {

 this.m_sensorPolicy = sPolicy;
 m_uuid=UIDGenerator.getUUID();
 m_sensorClientAdapter = new SensorAdapter(sPolicy, this, this,
 m_uuid);

 }

We know that inorder to let the sensor grid know the sensor’s existence we have to create a
SensorClientAdapter instance. We also know, what are the arguments needed to be passed to the
SensorClientAdapter class. (Note that here we have an extra parameter “m_uuid”(*). We will discuss
about this later).
Things are set now! The only thing remaining is publishing and subscribing the data itself. Get the data
from the sensor and wrap it inside the SensorData class. Pass this SensorData to the publishMethod of
the SensorClientAdapter. The data is thus published over the grid.

 public void publishData() {
 // In our contrived example we just publish the message we stored in the sensorPolicy
 QuickStartSensorUserDefinedProperty userDefinedProp =
 (QuickStartSensorUserDefinedProperty)
 sensorPolicy.getSensorProperty().getUserDefinedProp();

 QuickStartSensorData data = new QuickStartSensorData(
 System.currentTimeMillis(), userDefinedProp.getMessage());

 sensorAdapter.publishData(data);
 System.out.println(data);
 }

By now we should have already implemented the handleClientInit() method of the
ClientGridDataListener interface in such a way that it can handle, when a new instance of this sensor is
created and added to the grid. In case of QuickStartSensor it should automatically be added to the

135

DataMonitor of a similar sensor. This might not be same for all the sensor’s.

For example, In case of an AndroidSensor when a new instance of the sensor is created, the
handleClientInit() method can subscribe this instance to a NXTRobotSensor.
Similarly handleClientChange() method should take care of implementing details on what should happen
when the sensor’s status goes from online to offline or vice versa. In case of QuickStartSensor, when a
sensor goes from online to offline, we need to remove the sensor from the DataMonitor.
Here the sensor’s are getting subscribed/unsubscribed to the grid to listen to a data from another sensor
through handleClientInit() method and handleClientChange() method. We can also allow the sensor to
subscribe/unsubscribe to the grid explicitly in the main class by creating a monitor and calling the
SensorClientAdapter subscribe()/unsubscribe() method.
Thus a sensor is added to the grid, allowed to publish the data on the grid and subscribed over the grid to
receive the data from any sensor of your choice.

4. Integrating the custom sensor with SGX framework
Create a batch file for starting the sensor, which would look like:

2.9 Advanced Guide to develop sensors and clients

@echo off

:: Use this to launch a Quick Start Sensor! You must supply the sensor

:: properties from the command line or another script.

CALL setEnv.bat

java "%JAVA_LIB%" -classpath %cp%
cgl.sensorcloud.quickstart.sensor.QuickStartSensor %*

136

Before going in detail about this topic, let’s brush up a few things that are very important to publishing
data over the grid.

 The data is published using the NaradaBrokering messaging system.
 Every data is published over a particular topic in the NB messaging system.
 Data can be published either over a private topic or a public topic.
 Publishing a data on a public topic means, the data is published over the grid and the data reaches

all the sensors available online. Handling those public data is up to the clients and sensors online.
 Publishing data over a private topic means, the data is actually sent to only those sensors/clients

that are subscribed to the private topic.
 There are two types of data that could be published. The control data and the sensor data

Coming back to our original question, when a data is published over the grid it’s actually published with
the help of the NBJmsInitilializer class in the Narada Brokering.

Creation of NBJmsInitilializer for Sensors
The creation of this NBJmsInitilializer for sensors in SGX happens in the below fashion,
SensorGridBroker ---initializes—SGLogic in which we create a new NaradaJMSBridge by passing all
the connection properties, transport type, topic and the connection loss listener. The NaradaJMSBridge
class is responsible for creating this NBJmsInitializer. The NaradaJMSBridge apart from creating the
NBJmsInitializer it also takes care of creating publisher, publishing and subscribing messages to the
Narada Brokering messaging system.

Creation of NBJmsInitilializer for Clients
The creation of this NBJmsInitilializer for clients in SGX happens in the below fashion,
ClientGridBroker ---initializes—SGLogic, and similarly like the sensor in the previous section SGLogic
encapsulates the creation and the working (publish/subscribe) of the NBJmsInitializer.

 Fig 1.0 NaradaJmsBridge

 SensorGridBroker

 SGLogic

 NaradaJMSBridge

 NBJmsInitializer

NBJmsInitilalizer

NARADA BROKERING

• Creates Publisher
• Subscribers and un

subscribers the data to
javax.jms.MessageListener

137

How the Data is being published over the Grid?

Publishing a Sensor Data

SensorGridBroker initializes and holds on to a SGSensorView object by passing over the
NaradaJMSBridge and the Sensor ID while creating it. The SGSensorView class also uses
NaradaJMSBridge in its constructor to instantiate Topic/TopicPublisher (javax.jms.TopicPublisher) over
which sensor data is published. SGSensorView class also takes care of creating private and public topics
for the current publisher

application/sensorgrid/sensordata/m_sensorID – public topic and
application/sensorgrid/private – Private topic

Thus the data reaches the grid over a particular topic created by the sensor.

Publishing a control data

While the SGSensorView takes care of publishing a SensorData it’s the responsibility of the
SGClientView to publish a control data. Since mostly it’s the clients who send the control signals to the
sensor, the SGClientView takes care of publishing a control data. The publisher for control data creates a
topic of the type

application/sensorgrid/sensorcontrol/+sensorID

and publishes the control signals over this topic. All the sensors created are by default subscribed to this
topic so that they receive any control messages that are sent to this topic.

What happens to the data after publishing it on the grid?

There are two types of data that reaches the grid,

• The SensorData that is being published by a sensor
• The control data published by a client or other sensors that has to reach a particular sensor

Both SGClientView as well as SGSensorView implement the javax.jms.MessageListener interface and
therefore provide concrete implementation of the onMessage method of the JMS message listener. This
method is triggered every time when a data reaches the grid, and hence through the onMessage method
the clients get access to the data published by the sensors and similarly the Sensors gets to listen to the
control messages by the Client.

The Client’s implementation of onMessage also includes differential implementation of
different/multiple data types.

138

Filtering Sensors

All the sensors that we develop by default publish information to the Sensor Grid. A sensor could also be
used subscribe to other sensors online on the grid by using SensorClientAdapter instead of
SensorAdapter as in the previous case also for a sensor to be able to listen to messages from other
sensors it should implement ClientGridChangeListener. Take a simple chat sensor application that we
developed. It has its subscriptions made to other chat sensors, which are present on the grid and
communicate with each other using the messaging broker system. In the Inter-language chat sensor
application that we developed however, we establish a simple filtering mechanism in a way that the chat
sensors which are deployed do not directly subscribe to other chat sensors but instead subscribe to
special translate sensors that are fired at the time of launching the chat sensor provided it satisfies certain
conditions. Thus we have architecture such that each chat client does not care about other clients unless
they satisfy certain rules but only on the translation sensors of its default language.

In the regular sensor client model (e.g. The Quick Start Application), we have the sensors implement the
SensorAdapter interface so that it can publish information to the grid and we have the clients implement
the ClientGridChangeListener interface so that the clients can listen to the grid for changes like new
sensors coming online or existing sensors leaving the grid so that it can make changes to its subscriptions
as and when the changes occur. These two interfaces are the ones that specify boundaries between the
sensor and the client as the sensor does not care about the information once it’s published over the grid.

The filters that we implement for the Chat Application however act as both a client and a sensor as it
implements both the SensorClientAdapter and ClientGridChangeListener interfaces to both publish and
subscribe to information. This is a feature that distinguishes a filter from a regular client or sensor.

139

2.5 SensorCloud development: An overview

Architecture
The overall architecture of the system that we implemented is shown as follows. A few interesting things
to note about the proposed model is that we assume that most of the users who come about to use our
system know English and hence we assume English to be the main language for intermediate
translations. Initially, the launcher client is run where the username and the default language of the chat
client is selected by the user. Once this information is submitted we fire up the chat client with the
default language entered in the launcher set in its User Defined properties. This language property is
what is used to make comparisons to other chat clients and translation sensors to determine which to
subscribe to and which not.

An important point to note about this architecture is that it scales well as the number of clients increases
as the number of translation sensors fired up does not scale exponentially with the number of clients.
This implemented model is the 2nd most efficient architecture possible compared to the more efficient
method of having similar topics in the message broker for communications in a particular language in a
way that other clients and translators can just subscribe to that particular topic instead of looking into its
properties for the language it needs.

140

a. Architecture Model

141

Flow of Control
A snapshot of the overall flow of control in the system is shown below in the diagram.

b. Control Flow

Initially, the launcher is presented to the user who enters his Username and their default language to chat
in and the launcher proceeds in creating the ChatSensor client. It sets the User Defined Language

142

property of the sensor to the language selected in the Launcher. This is the language that the other clients
and translation sensors use to subscribe to the sensor. Once the chat client is created, a check is done to
check if there is a need to fire additional translate sensors, this includes checking if the language of the
chat client is English, if so there are no translators fired and we can move on to the subscription phase
but if it is not English, then we check the Grid to look on the list of online sensors for one which has the
same default language as the currently initialized sensor, if existing, we know that translators from and to
the default language have already been created and we move on to the subscription stage. If that is not
found, then we proceed forward in creating the new translators from the Language X to English and vice
versa. The next stage is the subscription phase, which is where we have used translators as filters to the
chat sensors.

Filtering and Subscribing
Once we have created the necessary translators and the chat clients are initialized and ready, we must let
the newly initialized client subscribe to other translate sensors and clients. We must also update
subscriptions of the already existing sensors to account for the latest sensor on the grid. The following
rules apply for subscriptions

1. If the initialized chat client is English, then we subscribe to all the chat sensors whose language is
English including itself and all the translation sensors whose ‘to’ language is English so that we
receive translated text from all the clients.

2. In case of a translation sensor from the foreign language X to English, we subscribe to all the
chat sensors which have a language X so that it will receive inputs of Language X which it
translates and publishes to the Grid in English.

3. In case of a translation sensor from English to the foreign language X, we first subscribe to all
chat sensors with default language English so that this English input from English clients can be
converted to a foreign language and then we also subscribe to translation sensors with the ‘to’
language as English, this ensures that this translates the outputs of all other translators from
English to its native language.

4. In case we have a chat sensor whose language is not English, we subscribe to other chat sensors
with the default language as X and all translation sensors with the ‘to’ language as X.

In the above subscription model, we have achieved a case where the chat sensors do not subscribe
directly to other chat sensors unless absolutely necessary and they pass their outputs on to another set of
sensors namely the translation sensors in this case and they are dependent on only these filters to send
and receive information in most cases unless we see two clients of the same native language. Hence we
have achieved a sort of ‘filtering’ that changes the subscriptions to other sensors depending on the
‘default language’ property of the Chat sensor.

Another important factor to note in this case is that the subscriptions must be done and redone in two
cases namely when a new chat sensor comes online i.e. during the client initialization and when some

143

sensor comes online or an existing sensor goes offline from the grid, i.e. when there is a change in the
state of the grid.

There are two methods where the calls must be made for subscribing to new sensor data. Namely the
handleClientInit() method and the handleClientChange() method.

handleClientInit():

public void handleClientInit(
 final HashMap<String, SensorGridResource> sensorInitInfo)

{

……………………………

if(!Language.equalsIgnoreCase("ENGLISH"))
{

 System.out.println(Language + "Is the Source Clients Language Found");
 checkLanguageClient = 1;
 }

………………………

}

The above code segments shows us the handleClientInit() method which accepts a hashmap of currently
available sensors on the grid as input parameters. We check if the default language is English and set a
flag appropriately to call the addSensorMonitor() which is where we subscribe to other sensors.

handleClientChange():

public void handleClientChange(
 final HashMap<String, SensorGridResource> sensorChangeInfo,
 final boolean newFilter)

{

…………………………
if (Language.equalsIgnoreCase("ENGLISH")){

if (sensorID2.endsWith("_TranslationSensor_English")){
 System.out.println("Calling addmonitor to subscribe French to English Translator");
 addSensorMonitor(sensorID, (SensorPolicy)sensorChangeInfo.get(sensorID).getPolicy(),
"display");
 }
}
…………………
}

The above segment of code shows how we call the addSensorMonitor() method when we confirm that
we get are looking at a translation sensor with the ‘to’ language as English. The routine for subscribing
to a sensor is specified in this addSensorMonitor() method.

144

In addition to the general signals the client receives, we can also receive control messages which are
used to trigger the handleSensorControl() method. A look at the overall control signal handler is as
follows

public void handleSensorControl(String commander, int controlMessageId,
 Serializable[] paramaters) {
 }

Or

public void handleSensorControl(String commander, int controlMessageId) {
 this.handleSensorControl(commander, controlMessageId, null);

 }

In general, for handling control messages, we pass the name of the sensor or entity requesting an explicit
action to be taken along with the controlMessageId which is predefined to a number of commands.

Please Note Implementation of a Filter-Sensor could be viewed in TranslationChatSensor.java

Calling 3rd Party Computation Resources
It is also possible to call to some other computation resources which are from a third party source to help
a sensor to go about its job. In this particular chat example, we make calls to the Google Translate© API.
To go about making calls to 3rd party resources, we take the following steps:

1. We first start up by importing the JAR file consisting of the libraries of the service we might
need to use into our maven dependencies. This can be done by mentioning the name of the JAR
we are looking for in the POM file which we use to build or by uploading the file into our own
repository and mentioning its name in the POM file. In our example, we have chosen the latter.

2. Once we have imported the JAR into our project, we simply call to the required methods as
simple as we usually do in other projects. We provide an example of the calls we make in our
case.

3.
Excerpts of the source code used for translation are shown below:

Translator translator = new Translator();
Language source = Language.valueOf(incomingLanguage);
Language destination = Language.valueOf(outgoingLanguage);
outgoingText = translator.translate(msg, source, destination);

In the above mentioned code block, we create a new object of the ‘Translator ‘class and we call its
methods to actually translate text from one language to another.

145

As seen, it is very simple and can be used to call other services if needed also.

2.6 NaradaBroker Distribution

To setup a network of narada brokers, download the Core NaradaBrokering Software from
http://www.naradabrokering.org or find them already present as a part of the project at
%{SENSORCLOUD_HOME}\sensorcloud-middleware\src\main\java\cgl\narada. All related
dependencies are imported from the maven repositories

http://www.naradabrokering.org/

146

Initially, to set up a single broker on a machine, one starts the startBroker.sh script present in
%{SENSORCLOUD_HOME}/bin. Internally, the broker instantiates threads which listen to incoming
connections from other brokers.

Brokers uses different ports for different transport level protocols that it supports. One can get all the
information about these ports used by the broker from BrokerConfiguration.txt located in
%{SENSORCLOUD_HOME}/config. In order to run two brokers on same machine, one has to change
the ports used by the second broker, in other words you need to change BrokerConfiguration.txt.

Now, to set up a broker network, start the broker on another machine. Again, just run startBroker.sh on
second machine. But, at this point we just have 2 brokers running on two machines without any
connection. If you are facing some issues to run a broker, then there can be 2 reasons. Either you have
already started a broker on the machine. In that case, just kill the process and start all over again. The
second reason could some path variable is not set properly.

After having started brokers successfully on both machines, we need to connect these two brokers. On
the second machine, say B, run brokerInteract.sh. Make sure you run brokerInteract.sh only after you
have instantiated the broker on the same machine using startBroker.sh as brokerInteract by default uses
the broker on localhost. Then you will be able to see ‘Type h for help and Usage indicators’. Here, we
can type the command to connect the broker running on B to broker running on first machine, say A. The
command to connect to another broker goes as follows.

C <IP_NEW_BROKER > <PORT> <PROTOCOL>,

c 10.0.0.3 5045 t.

The command can be interpreted as...you want your broker to connect 'c' to broker running on machine
with IP address 10.0.0.3. 5045 determines the port used by transport layer service of the second broker.
In other words, here we try to connect to A's broker using TCP connection and TCP connection of
second broker uses 5045 port. You can establish connection between brokers using other protocols such
as udp. In this case, your command would look like this.

 c 10.0.0.3 3045 u.

How did we come to know about the UDP port? BrokerConfiguration.txt gave me this information. How
did we come to know ‘u’ denotes our UDP service? Type h or have a look at the parser code for this

147

command in BrokerNode.java.

 The connect command connects two brokers gives you a link id (Here, tcp://10.0.0.3:5045 in this
case). This id is useful to assign a logical node address to broker running in machine B. The next step
after connection is to get a logical address for broker running on B. type following command.

 <NA> <Generated_Link_Address> 0

na tcp://10.0.0.3:5045 0

Here, the last parameter denotes address level. This parameter is useful when one wants to setup a
hierarchical broker network. For a point to point connection like one in our example, the address level
can be 0.This ends the connection set up between two brokers.

Now, to verify whether the connection is actually established, we can test it by downloading the
NaradaBrokering-C++ bridge from http://www.naradabrokering.org/software.htm. After downloading
the software, we need to create an executable test program called pubsub. Use the make tool and run it
from src folder of the software download. Include certain standard library headers in the mentioned files
in case we are faced with compile time errors. In case you face issues, try including all the necessary
headers files (not many though) until ‘make’ is successful and it generates an executable called pubsub
in the bin folder. Perform these steps mentioned above on both the machines, A and B. Run executable
generated in last step with following command.

./pubsub 10.0.0.3 chat.

Here, 10.0.0.3 denotes the IP of the broker and chat is name of the topic. On the second machine B, run
‘pubsub’ 10.0.0.3 chat. In this case , your pubsub client on B is using the broker running on machine A
that has IP address 10.0.0.3. But, you can make it use its local broker by replacing 10.0.0.3 in the
command with localhost. But remember that your broker should be connected to broker running on A
using the steps mentioned in the document before trying out this command local broker. Type any
message from one window and see if other client connected broker is able to see your message.

http://www.naradabrokering.org/software.htm

148

Steps

 1.3) Configure the two compute nodes as an NB overlay network

 1.3.1) Configure the first broker (master node, example ip:192.168.1.10).

a) open the ${SENSORCLOUD_HOME}/config/BrokerConfiguration.txt, change the
AssignedAddress parameter to true

b) cd ${SENSORCLOUD_HOME}/bin; chmod +x startBroker.sh

 c) ./startBroker.sh {start the first broker}

 1.3.2) Configure the second broker (slave node, example ip:192.168.1.11).

a) open the ${SENSORCLOUD_HOME} /config/BrokerConfiguration.txt, change the
AssignedAddress parameter to false

 b) cd ${SENSORCLOUD_HOME} /bin; chmod +x *.sh

 c) ./startBroker.sh

 1.3.3) Require the overlay network address from the first broker for the second broker. You need to
connect second broker to first broker, then require the overlay network address. Try out following
commands from host running the second broker.

 a)./brokerInteract.sh //tools used to interact with other broker

 b) c 192.168.1.10 5045 t

 c) na tcp://192.168.1.10:5045 0

In the second machine, the commands go as follows:

149

On performing the above mentioned steps, we will be able to stand up independent Narada
Brokers and have them interfacing with each other using the brokerInteract script.

While migrating to a more dynamic deployment, we come to see that brokerInteract is a script
which keeps a live thread running which waits for the user to mention information of the domain which
hosts the broker to which we have to connect to. Instead, we have a replicated though, slightly modified
version of the BrokerNodeFront file which interfaces two brokers.

This changed script takes a single line of input in which we mention the IP address of the target
Broker machine and if it should obtain its address from the broker it needs to connect to. This script file
is called brokerConnect.sh and can be found in ${SENSORCLOUD_HOME}/bin.

The format for using this script is as follows:

./brokerConnect <IP_TARGET_NB> <ASSIGN_ADDRESS_BOOL> &

./brokerConnect 129.79.49.173 false &

150

 This third parameter of it being true or false is an indicator whether the broker which is just up is
to behave as a standalone broker or get its logical address from another broker making it part of a
network.

NOTE: Make it a point to have the AssignedAddress parameter in BrokerConfiguration.txt to false when
setting up a network of brokers. Only the first broker is to have it set as true, Indicating that it is the only
standalone broker and all the others are part of its network.

 Upon successful connection to the first machine, we can check the logs for a prompt which
indicates the success. This message can be found in
${SENSORCLOUD_HOME}\logs\broker_<timestamp>.log and it looks as follows:

Any possible problems, like connection refused issues or ports in use problems can also be seen in these
logs and corrected.

151

2.7 LDAP Security feature

What is LDAP?

LDAP, Lightweight Directory Access Protocol, is an Internet protocol that programs and other programs
use to look up user authentication information from a server. In general LDAP is a set of protocols for
accessing information directories. LDAP is based on the standards contained within the X.500 standard,
but is significantly simpler. And unlike X.500, LDAP supports TCP/IP, which is necessary for any type
of Internet access. Because it's a simpler version of X.500, LDAP is sometimes called X.500-lite.

Sensor Cloud Middleware has an authentication/authorization layer that uses LDAP as the user store.
The user login and and publication/subscription rights are stored in an OpenLDAP server.

How about OpenLDAP?

OpenLDAP Software is a free, open source implementation of the Lightweight Directory Access
Protocol (LDAP) developed by the OpenLDAP Project. It is released under its own BSD-style license
called the OpenLDAP Public License. LDAP is a platform-independent protocol. Several common Linux
distributions include OpenLDAP Software for LDAP support. The software also runs on BSD-variants,
as well as AIX, Android, HP-UX, Mac OS X, Solaris, Microsoft Windows (NT and derivatives, e.g.
2000, XP, Vista, Windows 7, etc.), and z/OS.

This document describes the LDAP server configuration required; the security model employed by the

152

Sensor Cloud Middleware System and the implementation details of the model.

153

LDAP Server Configuration

For this prototype we have deployed our own LDAP server and populated it with some sample users and
groups.

You can connect to our LDAP server with the following information:

Host: sensorcloud.uits.indiana.edu
Port: 389
User DN: cn=admin,dc=home,dc=local
Password: bobafet12bobafet12

You may also connect over SSL using port 636 and the authentication mode of SSL+User+Password.
Please note our server only has a self-signed SSL certificate and you will have to agree to trust the SSL
certificate.

154

The LDAP server address is *hardcoded* in:

com.anabas.sensorgrid.authentication.LDAPAuthentication.java

You may wish to modify this file to point to your own LDAP server and make whatever changes are
necessary based on the schema of your directory. We will be able to assist you with those changes.

In our LDAP hierarchy user accounts are located at:

uid={user},ou=people,dc=home,dc=local

For the prototype we have created 12 user accounts:

abhy, bitan, dale, don, ryan, shankar, shivaraman, stephen, tim, vignesh and vinod

We have set each account to use same password of ‘bobafet12bobafet12’.

155

Publisher roles (i.e. groups) are located at:

cn={role},ou=groups,dc=home,dc=local

156

We have created three publisher roles:

Role: ball indiana securesensor

Members: Dale, Don,
Stephen and Tim

Abhy, Bitan, Ryan,
Shankar, Shivaraman,
Supun, Vignesh and

Vinod
Ryan and Stephen

157

Security Model

When a sensor is deployed we collect a list of properties describing that sensor, these properties include:

Sensor ID Authentication
Group ID Publisher Role
Street Address Data Encryption
City Safety
State/Province Reliability
Country

Please note that ‘Data Encryption’, ‘Safety’ and ‘Reliability’ are not currently enabled in the middleware

Here is how sensor deployment now works:

• If the Authentication property is any value except ‘yes’ then
o The system will set Authentication to ‘no’ and Publisher Role to ‘anonymous’
o No authentication will be done and the sensor will be deployed as an anonymous

publisher

• If the Authentication property is ‘yes’ then
o The system will authenticate the user against our LDAP server and determine if that user

has the right to publish to the role set in Publisher Role
o If that check fails the sensor will raise an authentication exception and will not be

deployed

Examples:

GPS_1 GPS_Group “101 First St.” Bloomington IN USA no no no no no

will not do authentication and publish the sensor as:

GPS_1 GPS_Group “101 First St.” Bloomington IN USA no anonymous no no no

GPS_2 GPS_Group “101 First St.” Bloomington IN USA yes securesensor no no no

will do an authentication checking to see if the current user is in the ‘securesensor’ group

158

GPS_3 GPS_Group “101 First St.” Bloomington IN USA yes ball no no no

will do an authentication checking to see if the current user is in the ‘ball’ group

GPS_4 GPS_Group “101 First St.” Bloomington IN USA no ball no no no

will not authentication and publish the sensor as:

GPS_4 GPS_Group “101 First St.” Bloomington IN USA no anonymous no no no

Note if you are using the Grid Builder management tool to deploy a sensor to a remote machine both
machines (local and remote) must have authorization to deploy to the requested sensor Publisher Role.

Here is how sensor clients now work:

Clients are able to subscribe to (and send control messages to):

• All sensors in the ‘anonymous’ role
• All sensors those Publisher Role matches a group that the current user belongs to

Examples:

The user ‘tim’ is in the ‘ball’ group. So a client launched by Tim can see all of the anonymous sensors
and any authenticated sensors publishing in the ‘ball’ role.

The user ‘stephen’ is in the ‘ball’ and ‘securesensor’ groups. Therefore clients launched by Stephen can
see authenticated sensors in these groups. (And all anonymous sensors too)

159

Implementation

For this prototype only the absolute minimum number of changes to the existing API was made.
Therefore the current implementation of the security model described in this document won’t require any
changes to existing sensors, clients, or deployment scripts.

This implementation will also work well in a headless (i.e. ssh based) cloud-deployment scenario.

To get started a user must do the following steps.

1. Get the latest version of the code from https://sensorcloud.uits.indiana.edu/svn/SGX/trunk/1.4

2. Change the $SENSORCLOUD_HOME/keystore/PublicationCredentials.conf file to specify the
user account you want to use

3. Optional: change com.anabas.sensorgrid.authentication.LDAPAuthentication.java to match your LDAP server.

2.8 Rest Easy

Introduction:

Cloud Sensor Rest Servlet API are programmed using concept of RestEasy API by JBoss. RestEasy is a
JBoss project that provides various frameworks to help you build RESTful Web Services and RESTful
Java applications. It is a fully certified and portable implementation of the JAX-RS specification. JAX-
RS is a new JCP specification that provides a Java API for RESTful Web Services over the HTTP
protocol.

https://sensorcloud.uits.indiana.edu/svn/SGX/trunk/1.4
http://jsr311.dev.java.net/

160

RESTEasy can run in any Servlet container, but tighter integration with the JBoss Application Server is
also available to make the user experience nicer in that environment. While JAX-RS is only a server-side
specification, RESTEasy has innovated to bring JAX-RS to the client through the RESTEasy JAX-RS
Client Framework. This client-side framework allows you to map outgoing HTTP requests to remote
servers using JAX-RS annotations and interface proxies.

Cloud Sensor RestServlets provides a set of API’s using which an end user can get information about
sensors deployed at Sensor Grid. This information will be discussed later in details.

Why Use RestServlet?

Using these rest services, client HTMLs can discover active sensors and fetch information about them.
This restful service even will allow web based clients to get asynchronous sensor data. Clients should
use our streaming web server to get real time video data.

2.8.1 Guide for SensorCloud Client End users

User Web Services

The first step to using the Cloud Sensor Rest Servlet is to initialize the RESTful services by hitting the
following URL:

http://[ip_address or localhost]:8080/sensorcloud/restful-services/sgxservice/init/[ip_address]

Figure 1 : Client Initialization

The above URL will check whether the RESTful client is already initialized or not. In case it is not
initialized it will initialize it and post a message "Begin Client Initialization..." on the browser. In case it

161

is already initialized, the user will get "Client already Initialized" message on the browser.

After successful initialization, the user can use the following services to gather various information, as
explained in the following parts of this document.

1. Fetch list of Sensors with Id and Type:
The user can hit the following URL to get a list of all active sensors with their respective sensor
Id and sensor types at the sensor grid.

http:// [ip_address or localhost]:8080/sensorcloud/restful-services/sgxservice/getSensors

Figure 2: ScreenShot

Once this URL is hit, the user can see a list of all active sensors in XML format as shown above.

2. Fetch Id and Type about a particular Sensor:

The user can hit the following URL to get information like sensor id and type about a particular

162

active Sensor.

http://[ip_address or localhost]:8080/sensorcloud/restful-
services/sgxservice/getSensor/[Sensor_id]

Figure 3: Sensor by Id

If the requested sensor is active, the sensor details will get displayed as XML.
In case the sensor is not active, the user will get error message.

3. Fetch list of properties of all active Sensors:

The user can hit the following URL to get information about all properties of active sensors.

http:// [ip_address or localhost]:8080/sensorcloud/restful-
services/sgxservice/getSensors/properties

http://localhost:8080/sensorcloud/restful-services/sgxservice/getSensors/properties
http://localhost:8080/sensorcloud/restful-services/sgxservice/getSensors/properties

163

Figure 4 : Properties of all Sensors

Once the URL is hit, the user can see the information in XML format

4. Fetch list of properties for a particular active Sensor:

The user can hit the following URL to get information about all properties of a particular active
sensor.

http:// [ip_address or localhost]:8080/sensorcloud/restful-
services/sgxservice/getSensor/[Sensor_id]/properties

164

Figure 5: Properties for a particular Sensor

Once the URL is hit, the user can see the information in XML format

5. Fetch a list of user defined properties for a particular active Sensor:

The user can hit the following URL to get information about all user defined properties of a
particular active sensor.

http:// [ip_address or localhost]:8080/sensorcloud/restful-
services/sgxservice/getSensor/[Sensor_id]/user defined

Once the URL is hit, the user can see the information in XML format.

6. Send control to particular active Sensor:

The user can hit the following URL to send control information to a particular active sensor.

http:// [ip_address or localhost]:8080/sensorcloud/restful-services/sgxservice/
putSensor/[Sensor-Id]/control/

165

Possible Error Messages and Causes

This section lists possible error codes and their cause which can be encountered by user when using
these services.

1. Error code = 500
Possible cause:
a) The web service client has not been initialized. Refer to User Web services section.

Figure 6: Screenshot of Error 500

2. Error code = 404
Possible cause:
a) There is no active sensor with the Id requested.
b) There is no property defined for the sensor.
c) There is no user defined property for the sensor.

166

Figure 7: Screenshot of Error 404

Introduction to programming the web service

This section will give a programmer a basic intro on programming new web service or modifying
existing web service:

Basic structure: The restservlet package consists of model package, SGXClientHandler interface,
SGXClient class and SGXService class. The model package in turn consists of Online Sensor and Sensor
Control classes. Let us see a brief summary of each of these components:

1. Online Sensor class: This class basically defines a Sensor by storing sensor type and sensor Id.

2. Sensor Control class: This class is used to define a control for a sensor and it defines a control by
control Id and params(parameters).

3. SGXClientHandler : This interface ensures that every SGX client handler has function definitions
for handling logging and connection loss.

4. SGXClient class : This class contains the business logic and attributes for an SGX client which
would use SGX services.

5. SGXService class: This class contains the business logic and implementation logic for the
different kind of web services which can be invoked by end user.

167

Notes on Annotations used while programming:

a) @GET – This annotation is used to implement HTTP GET request.

b) @Path – This annotation is used to specify the path that should be included in URL to access the
service

c) @Produces – This annotation is used to specify the format of output after invoking the service.

d) @Consumes – This annotation is used to specify the format of input if any, required by the
service while invoking it.

e) @XMLRootElement – This annotation is used to map a specific class to a XML root element

f) @XMLElement – This annotation is used to map a specific property to a XML element.

2.8.2 Guide for SensorCloud Client developers

168

Programming a sensor cloud RESTful Java client

 In this section of the document, we will provide details on how to write client that uses the

rest service offered by the sensor cloud. We will consider Twitter Sensor as a example and show how the
rest easy client can be written that passes control messages and retrieves data from the sensor.

 ClientRequest getSensorsReq = new ClientRequest(

 "http://localhost:8080/sensorcloud/restful-
 services/sgxservice/getSensors");

 getSensorsReq.accept("application/xml");

 ClientResponse<String> getSensorsResp = null;

 try {

 getSensorsResp = getSensorsReq.get(String.class);

 } catch (Exception e) {

 e.printStackTrace();

 }

 String getSensorsRespString = getSensorsResp.getEntity();

 String[] sensorIds = getSensorIds(getSensorsRespString);

 String[] senTypes = getSensorTypes(getSensorsRespString);

 Snippet 1

 Snippet 1 depicts code snippet of a client the written using jboss rest easy client , we assume that
one has already deployed sensorcloud rest service in a servlet container such as Apache Tomcat.

http://localhost:8080/sensorcloud/restful-

169

Before using the rest service to get data from the sensors , the rest service has to be initialized. Following
url can be used to initialize the rest service. At the end of the url , we can see an ip address 127.0.0.1.
This ip address can be replaced with ip address of the machine hosts servlet container. In this example ,
the servlet container is client is located on the same machine.

 http://localhost:8080/sensorcloud/restful-services/sgxservice/init/127.0.0.1

 The code snippet sends a requests to retrieve the list of active sensors. Snippet 2, depicts a
response retrieved from the rest service. It contains the details of the sensor such as sensor id and sensor
type. The sensor id is useful information as other services use this id. The sensor type can be helpful
information if client is written for specific type of sensor such as twitter sensor in our example.

 <collection>

 <sensor>

 <sensorId>

 f8cb8f24-8959-11e1-a858-77481f5cec79

 </sensorId>

170

 <sensorType>

 Twitter Sensor

 </sensorType>

 </sensor>

 </collection>

Snippet 2

Next step would be to use this sensor id to retrieve data from the sensor. Snippet 3 depicts the code to
retrieve the sensor data.

 String getSensorDataUrl = "http://localhost:8080/sensorcloud/restful-
services/sgxservice/getSensor/data/"+senId;

 ClientRequest getSenDataReq = new ClientRequest(getSensorDataUrl);

 getSenDataReq.accept("application/xml");

171

 ClientResponse<String> getSenDataResp = null;

 try {

 getSenDataResp = getSenDataReq.get(String.class);

 } catch (Exception e) {

 e.printStackTrace();

 }

 String getSenDataRespString = getSenDataResp.getEntity();

 Snippet 3

 Here, the senId represents the id of the sensor. A typical repose from twitter sensor would look
like one shown in Snippet 4. The data that we obtain from the sensor depends on the type the sensor. In
other words the implementation of the SensorData class for the sensor and annotations.

 <TwitterSensorData>

 <timestamp>

 1334756772925

 </timestamp>

 <feed>

 @wandy_onedy-done Gilr,.. RT @bhy_abhy @wandy_onedy : follback
 masbro ;)

172

 </feed>

 </TwitterSensorData>

 Snippet 4.

 In addition to retrieving data from the sensor, the sensor cloud rest service allows one to pass
control messages to the sensor. Snippet 5 depicts a code snippet that shows how the put request can be
passed. The <sensor control> is a message in xml format. It contains the control id and the

parameters that a client would like to pass to the sensor. After passing the control message to the sensor,
client can get sensor data by the method described in last paragraph.

String putControlUrl = "http://localhost:8080/sensorcloud/restful-
services/sgxservice/putSensor/control/"+twSenId;

 ClientRequest putRequest = new ClientRequest(putControlUrl);

 StringBuilder putReqBody = new StringBuilder();

 putReqBody.append("<sensorcontrol>");

 putReqBody.append("<controlId>0</controlId>");

173

 putReqBody.append("<params>"+input+"</params>");

 putReqBody.append("</sensorcontrol>");

 putRequest.body(MediaType.APPLICATION_XML,putReqBody.toString());

 putRequest.accept(MediaType.TEXT_PLAIN);

 ClientResponse<String> putReqResp = null;

 try {

 putReqResp = putRequest.put();

 } catch (Exception e) {

 e.printStackTrace();

 }

 Snippet 5.

 Till now, we have seen methods to pass the control messages and get data from the sensor. There
are also few other services that are offered. For instance, one shown in Snippet 6 can be used to get
properties of a sensor. An example response is shown in Snippet 7.

 http://localhost:8080/sensorcloud/restful -services/sgxservice/getSensor/properties/<senId>

Snippet 6.

For more information about the rest service , one can have look at the implementation located at

SENSORCLOUD_HOME/sensorcloud-
restservlet/src/main/java/cgl/sensorcloud/resteasy/SGXService.java

http://localhost:8080/sensorcloud/restful

174

 <sensorproperty>
 <authentication>
 no
 </authentication>
 <dataEncryption>
 no
 </dataEncryption>
 <groupId>
 WebGroup
 </groupId>
 <historical>
 false
 </historical>
 <location>
 East
 </location>
 <location>
 Bloomington
 </location>
 <location>

175

 Indiana
 </location>
 <location>
 USA
 </location>
 <publisherRole>
 anonymous
 </publisherRole>
 <reliability>
 no
 </reliability>
 <safety>
 yes
 </safety>
 <sensorId>
 TwitterSensor
 </sensorId>
 <sensorType>
 Twitter Sensor
 </sensorType>
 <sensorTypeId>
 22
 </sensorTypeId>
 <userDefinedProp/>
</sensorproperty>
 Snippet 7.

2.9 Streaming Web Server

The SGX Streaming Web Server demonstrates how real-time sensor data may be collected from the sensor grid
and forwarded to web clients. In this specific case the Streaming Web server subscribes to video data from
IPCameraSensor sensors and republishes their video to HTTP urls.

The SGX Streaming Web Server encodes the video using the WebM container, using the VP8 video and Vorbis
audio codecs. As of this writing the WebM video format is supported as follows:

Browser Version VP8 (WebM)

Internet Explorer 9.0.2 Manual install

Internet Explorer Mobile 9.0 No

http://en.wikipedia.org/wiki/VP8
http://en.wikipedia.org/wiki/VP8
http://en.wikipedia.org/wiki/VP8
http://en.wikipedia.org/wiki/WebM_Project
http://en.wikipedia.org/wiki/Internet_Explorer
http://en.wikipedia.org/w/index.php?title=Template:Latest_stable_software_release/Internet_Explorer&action=edit
http://en.wikipedia.org/wiki/Internet_Explorer_Mobile

176

Mozilla Firefox 11.0 Yes

Google Chrome 18.0.1025.163 (Mac), 18.0.1025.162 (Linux and Windows) Yes

Chromium r47759 Yes

Android browser 2.3
Partial:

No streaming support

Safari 5.1.5 Manual install

Opera 11.62 Yes

Konqueror 4.8.2 Yes

The SGX Streaming Web Server uses Xuggler (http://www.xuggle.com/xuggler/) for Video/Audio transcoding
and Stream-m (http://code.google.com/p/stream-m/) as a light-weight WebM enabled web server.

To use the SGX Streaming Web Server:

1. Deploy a Sensor Cloud
2. Launch at least one IPCameraSensor
3. Edit the Streaming Server’s configuration file

o $SENSORCLOUD_HOME\conf\StreamingServer.conf
o The ‘server.port ‘ specifies the port number you want clients to connect to
o The ‘SGX Information’ section specifies the location of the Sensor Cloud

http://en.wikipedia.org/wiki/Mozilla_Firefox
http://en.wikipedia.org/w/index.php?title=Template:Latest_stable_software_release/Firefox&action=edit
http://en.wikipedia.org/wiki/Google_Chrome
http://en.wikipedia.org/w/index.php?title=Template:Latest_stable_software_release/Google_Chrome&action=edit
http://en.wikipedia.org/wiki/Chromium_(web_browser)
http://en.wikipedia.org/wiki/Android_(operating_system)
http://en.wikipedia.org/wiki/Safari_(web_browser)
http://en.wikipedia.org/w/index.php?title=Template:Latest_stable_software_release/Safari&action=edit
http://en.wikipedia.org/wiki/Opera_(web_browser)
http://en.wikipedia.org/w/index.php?title=Template:Latest_stable_software_release/Opera&action=edit
http://en.wikipedia.org/wiki/Konqueror
http://en.wikipedia.org/w/index.php?title=Template:Latest_stable_software_release/KDE_Software_Compilation_4&action=edit
http://www.xuggle.com/xuggler/
http://code.google.com/p/stream-m/

177

4. Launch the Streaming Web Server
o %SENSORCLOUD_HOME%\scripts\prepareStreamingServer.bat on Windows
o $SENSORCLOUD_HOME/bin/prepareStreamingServer.sh on Linux

178

Connect supported web browser to http://STREAMING_SERVER_IP:PORT/list

5. Clicking on a link will display the video feed. Video feeds are available at:
http://SERVER_IP:SERVER_PORT/consume/SENSOR_ID

http://STREAMING_SERVER_IP:PORT/list
http://STREAMING_SERVER_IP:PORT/list
http://SERVER_IP:SERVER_PORT/consume/SENSOR_ID

179

6. Still images are available at:
o http://SERVER_IP:SERVER_PORT/snapshot/SENSOR_ID

http://SERVER_IP:SERVER_PORT/snapshot/SENSOR_ID

180

7. A textual representations of the video data are available at:
o http://SERVER_IP:SERVER_PORT/info/SENSOR_ID

2.10 Configuring dynamic deployment of domains

The ROOT Node:

Edit the Config file which contributes towards creating the ‘mgmtSystem’ as follows:

Config Entries for Fork Daemon

This string should be unique for different networks
It is used to uniquely identify a Fork Daemon
ForkDaemon.UniqueString=ATGLOBAL-ISAAC
ForkDaemon.SharedRoot=TRUE

Config Entries for Root Bootstrap Node

http://SERVER_IP:SERVER_PORT/info/SENSOR_ID

181

The domain of the bootstrap program
ROOT-bootstrap.Level=/
ROOT-bootstrap.ForkProcessLocator=topic://FORKDAEMON/ATGLOBAL-ISAAC/:65535

Number of registered subDomains
ROOT-bootstrap.NumOfRegisteredSubDomains=1

Domain URI of subDomains and their locations

ROOT-bootstrap.RegisteredSubDomain_1=/ATGLOBAL-ISAAC
ROOT-bootstrap.RegisteredSubDomainForkProcess_1=topic://FORKDAEMON/ATGLOBAL-ISAAC/:65535

Locaton of ForkProcess Daemons for spawning Managers
ROOT-bootstrap.NumberOfForkDaemons=0
Locaton of Messaging Node
ROOT-bootstrap.NumberOfMessagingNodeDaemons=1
ROOT-bootstrap.MessagingNode_1=127.0.0.1

Config Entries for ISAAC - Bootstrap Node

The domain of the bootstrap program
ROOT_ATGLOBAL-ISAAC-bootstrap.Level=/ATGLOBAL-ISAAC

Number of registered subDomains
ROOT_ATGLOBAL-ISAAC-bootstrap.NumOfRegisteredSubDomains=0

Domain URI of subDomains and their locations

Registry Locator
ROOT_ATGLOBAL-ISAAC-bootstrap.RegistryForkDaemon=topic://FORKDAEMON/ATGLOBAL-
ISAAC/:65535
#ROOT_ISAAC-bootstrap.RegistryPersistentStore=wscontext:ISAAC198

Locaton of Messaging Node
ROOT_ATGLOBAL-ISAAC-bootstrap.NumberOfMessagingNodeDaemons=1
ROOT_ATGLOBAL-ISAAC-bootstrap.MessagingNode_1=127.0.0.1

Locaton of ForkProcess Daemons for spawning Managers
ROOT_ATGLOBAL-ISAAC-bootstrap.NumberOfForkDaemons=1
ROOT_ATGLOBAL-ISAAC-bootstrap.ForkDaemon_1=topic://FORKDAEMON/ATGLOBAL-ISAAC/:65535

Config Entries for Service Adapter

ServiceAdapter.NumOfMessagingNodes=1
ServiceAdapter.MessagingNode_1=127.0.0.1
ServiceAdapter.Level=/ATGLOBAL-ISAAC

Config Entries for User Console

user.MessagingNode=127.0.0.1

182

user.MessagingNodePort=25050
user.MessagingNodeTransport=niotcp
user.RegistryMonitorInterval=30000

Config Entries for BootStrapService UI

BootStrapServiceUI.MessagingNode=127.0.0.1
BootStrapServiceUI.MessagingNodePort=25050
BootStrapServiceUI.MessagingNodeTransport=niotcp

Child Node Connecting to its Parent Node:

Edit the Config file which contributes towards creating the ‘mgmtSystem’ as follows:

Config Entries for Fork Daemon

This string should be unique for different networks
It is used to uniquely identify a Fork Daemon
ForkDaemon.UniqueString=ATGLOBAL-XPS/ATGLOBAL-ZEN
ForkDaemon.SharedRoot=FALSE

Config Entries for XPS - Bootstrap Node

The domain of the bootstrap program
ROOT_ATGLOBAL-ZEN-bootstrap.Level=/ATGLOBAL-XPS/ATGLOBAL-ZEN

Number of registered subDomains
ROOT_ATGLOBAL-ZEN-bootstrap.NumOfRegisteredSubDomains=0

Domain URI of subDomains and their locations
ROOT_ATGLOBAL-ZEN-bootstrap.RegisteredSubDomain_1=/ATGLOBAL-XPS/ATGLOBAL-ZEN
ROOT_ATGLOBAL-ZEN-
bootstrap.RegisteredSubDomainForkProcess_1=topic://FORKDAEMON/ATGLOBAL-XPS/ATGLOBAL-
ZEN/:65535

Registry Locator
ROOT_ATGLOBAL-ZEN-bootstrap.RegistryForkDaemon=topic://FORKDAEMON/ATGLOBAL-
XPS/ATGLOBAL-ZEN/:65535
#ROOT_ATGLOBAL-ZEN-bootstrap.RegistryPersistentStore=wscontext:XPS199

Locaton of Messaging Node
ROOT_ATGLOBAL-ZEN-bootstrap.NumberOfMessagingNodeDaemons=1
ROOT_ATGLOBAL-ZEN-bootstrap.MessagingNode_1=127.0.0.1

Locaton of ForkProcess Daemons for spawning Managers
ROOT_ATGLOBAL-ZEN-bootstrap.NumberOfForkDaemons=1
ROOT_ATGLOBAL-ZEN-bootstrap.ForkDaemon_1=topic://FORKDAEMON/ATGLOBAL-XPS/ATGLOBAL-
ZEN/:65535

183

Config Entries for Service Adapter

ServiceAdapter.NumOfMessagingNodes=1
ServiceAdapter.MessagingNode_1=127.0.0.1
ServiceAdapter.Level=/ATGLOBAL-XPS/ATGLOBAL-ZEN

Config Entries for User Console

user.MessagingNode=127.0.0.1
user.MessagingNodePort=25050
user.MessagingNodeTransport=niotcp
user.RegistryMonitorInterval=30000

Config Entries for BootStrapService UI

BootStrapServiceUI.MessagingNode=127.0.0.1
BootStrapServiceUI.MessagingNodePort=25050
BootStrapServiceUI.MessagingNodeTransport=niotcp

BrokerConfigurationExistingSGX

NaradaBrokering - Community Grid Labs. Indiana University. #

Broker Configuration Parameters #

The "#" at the beginning of each line signifies comments. #

#This is the Non Blocking TCP port to which the broker listens for connections.
NIOTCPBrokerPort=3035

#This is the TCP port to which the broker listens for connections.
TCPBrokerPort=5045

#This is the UDP port to which the broker listens for connections. It
#is a good idea to have this port number be identical to the TCP port.
#The UDP communication is used specifically for transient bytes, since
#there are no error corrections for UDP based communication.
UDPBrokerPort=3045

#This is the PTCP port to which the broker listens for connections.
PTCPBrokerPort=15045
PTCPStreamNumber=5

184

MulticastGroupHost=224.224.224.224
MulticastGroupPort=0

#This is the Non Blocking Thread pool TCP port to which the broker listens for #connections.
PoolTCPBrokerPort=6045

#This is the HTTP port to which the broker listens for connections.
HTTPSBrokerPort=7045

#This is the SSL port to which the broker listens for connections.
SSLBrokerPort=8045

#This is the HTTP port to which the broker listens for connections.
HTTPBrokerPort=9045

#This is the UP2P port to which the broker listens for connections.
UP2PBrokerPort=0
PeerID=peerA
RelayServerHost=gf7.ucs.indiana.edu
RelayServerPort=60055

#Indicates if Support for RTP should be included within the system
SupportRTP=no

#This specifies the limit on concurrent connections. Base it on the
#capabilities of the machine hosting the broker. This is also used by
#the broker locator to determine the best available broker.
ConcurrentConnectionLimit=3000

#If this is a stand alone node, this should be "true". If this broker node
#is intended to be the first node within a distributed setting this should
#be "true". If this node is to receive its address from another broker, this
#should be "false".
AssignedAddress=false

Default Node address when AssignedAddress = true
NodeAddress=1,1,1,1

This gives the Geographical / Institutional info about this broker
AboutThisBroker=CGL, Indiana University, Bloomington, IN, U.S.A.

Comma seperated list of publicly known BDNs (listed in the order of preference)

BDNList=http://www.idonotexist.com,http://trex.ucs.indiana.edu:8080/BDN/servlet/BDN,http://www.gridserlocat
or.org/
BDNList=http://trex.ucs.indiana.edu:8080/BDN/servlet/BDN
BDNList=

185

Broker Discovery Request Response Policy
DiscoveryResponsePolicy=cgl.narada.discovery.broker.DefaultBrokerDiscoveryRequestResponsePolicy

A String (or UUID) referring to the private broker network ID to which this broker belongs
This value if missing OR * => this is a public broker
VirtualBrokerNetwork=network-CGL-1
VirtualBrokerNetwork=*

Locates the keystore to be used by the broker
BrokerKeyStore=keystore/NBSecurityTest.keys

Maximum number of requests to store
MAXBrokerDiscoRequests=1000

Info to connect to the existing NB Network
ConnectAddress=129.79.49.250
ConnectTransport=niotcp
ConnectPort=3035

existingNBMessageingNode

Prioritized Protocols

PRIORITIZED_PROTOCOL_LIST.prioritizedProtocolList=niotcp,tcp,udp,http,https,ssl

Default Messaging Node properties

DEFAULT_MESSAGING_NODE.NIOTCPBrokerPort=25050
DEFAULT_MESSAGING_NODE.TCPBrokerPort=25060
DEFAULT_MESSAGING_NODE.UDPBrokerPort=25070
DEFAULT_MESSAGING_NODE.HTTPBrokerPort=25600
DEFAULT_MESSAGING_NODE.HTTPSBrokerPort=25090
DEFAULT_MESSAGING_NODE.SSLBrokerPort=25080
DEFAULT_MESSAGING_NODE.PTCPBrokerPort=0
DEFAULT_MESSAGING_NODE.MulticastGroupPort=0
DEFAULT_MESSAGING_NODE.MulticastGroupHost=224.224.224.224
DEFAULT_MESSAGING_NODE.PoolTCPBrokerPort=0
DEFAULT_MESSAGING_NODE.PTCPStreamNumber=5
DEFAULT_MESSAGING_NODE.AssignedAddress=false
DEFAULT_MESSAGING_NODE.NodeAddress=1,1,1,1
DEFAULT_MESSAGING_NODE.VirtualBrokerNetwork=network-CGL-1
DEFAULT_MESSAGING_NODE.SupportRTP=no
DEFAULT_MESSAGING_NODE.BDNList=
DEFAULT_MESSAGING_NODE.ConcurrentConnectionLimit=3000

186

DEFAULT_MESSAGING_NODE.Discriminator=159.59.*
DEFAULT_MESSAGING_NODE.AboutThisBroker=Default Messaging Node
DEFAULT_MESSAGING_NODE.MAXBrokerDiscoRequests=1000
DEFAULT_MESSAGING_NODE.DiscoveryResponsePolicy=cgl.narada.discovery.broker.DefaultBrokerDiscove
ryRequestResponsePolicy
DEFAULT_MESSAGING_NODE.BrokerKeyStore=keystore/NBSecurityTest.keys
DEFAULT_MESSAGING_NODE.BrokerTrustStore=../keystore/Broker.TRUSTSTORE
DEFAULT_MESSAGING_NODE.BrokerTrustStorePass=passpass

These are required only if AssignedAddress is false
#DEFAULT_MESSAGING_NODE.ConnectAddress=64.151.140.115
#DEFAULT_MESSAGING_NODE.ConnectAddress=192.168.1.6
DEFAULT_MESSAGING_NODE.ConnectAddress=129.79.49.115
#DEFAULT_MESSAGING_NODE.ConnectAddress=72.44.37.62
#DEFAULT_MESSAGING_NODE.ConnectAddress=192.168.1.9
DEFAULT_MESSAGING_NODE.ConnectTransport=niotcp
#DEFAULT_MESSAGING_NODE.ConnectTransport=ssl
DEFAULT_MESSAGING_NODE.ConnectPort=25050
#DEFAULT_MESSAGING_NODE.ConnectPort=25080

standaloneMessageingNode

Prioritized Protocols

PRIORITIZED_PROTOCOL_LIST.prioritizedProtocolList=niotcp,tcp,udp,http,https,ssl

Default Messaging Node properties

DEFAULT_MESSAGING_NODE.NIOTCPBrokerPort=25050
DEFAULT_MESSAGING_NODE.TCPBrokerPort=25060
DEFAULT_MESSAGING_NODE.UDPBrokerPort=25070
DEFAULT_MESSAGING_NODE.HTTPBrokerPort=25600
DEFAULT_MESSAGING_NODE.HTTPSBrokerPort=25090
DEFAULT_MESSAGING_NODE.SSLBrokerPort=25080
DEFAULT_MESSAGING_NODE.PTCPBrokerPort=0
DEFAULT_MESSAGING_NODE.MulticastGroupPort=0
DEFAULT_MESSAGING_NODE.MulticastGroupHost=224.224.224.224
DEFAULT_MESSAGING_NODE.PoolTCPBrokerPort=0
DEFAULT_MESSAGING_NODE.PTCPStreamNumber=5
DEFAULT_MESSAGING_NODE.AssignedAddress=true
DEFAULT_MESSAGING_NODE.NodeAddress=1,1,1,1
DEFAULT_MESSAGING_NODE.VirtualBrokerNetwork=network-CGL-1
DEFAULT_MESSAGING_NODE.SupportRTP=no
DEFAULT_MESSAGING_NODE.BDNList=
DEFAULT_MESSAGING_NODE.ConcurrentConnectionLimit=3000

187

DEFAULT_MESSAGING_NODE.Discriminator=159.59.*
DEFAULT_MESSAGING_NODE.AboutThisBroker=Default Messaging Node
DEFAULT_MESSAGING_NODE.MAXBrokerDiscoRequests=1000
DEFAULT_MESSAGING_NODE.DiscoveryResponsePolicy=cgl.narada.discovery.broker.DefaultBrokerDiscove
ryRequestResponsePolicy
DEFAULT_MESSAGING_NODE.BrokerKeyStore=keystore/NBSecurityTest.keys
DEFAULT_MESSAGING_NODE.BrokerTrustStore=../keystore/Broker.TRUSTSTORE
DEFAULT_MESSAGING_NODE.BrokerTrustStorePass=passpass

These are required only if AssignedAddress is false
#DEFAULT_MESSAGING_NODE.ConnectAddress=64.151.140.115
#DEFAULT_MESSAGING_NODE.ConnectAddress=192.168.1.6
DEFAULT_MESSAGING_NODE.ConnectAddress=127.0.0.1
#DEFAULT_MESSAGING_NODE.ConnectAddress=72.44.37.62
#DEFAULT_MESSAGING_NODE.ConnectAddress=192.168.1.9
DEFAULT_MESSAGING_NODE.ConnectTransport=niotcp
#DEFAULT_MESSAGING_NODE.ConnectTransport=ssl
DEFAULT_MESSAGING_NODE.ConnectPort=25050
#DEFAULT_MESSAGING_NODE.ConnectPort=25080

2.11 OpenStack Compute: Deployment and Overview

INTRODUCTION TO OPENSTACK

Openstack is project undertaken to provide scalable cloud computing software. Two of its main projects
are Openstack compute and Openstack object storage. Compute increases computing power through
Virtual Machines on multiple networks whereas Object Storage is a software that deals with a redundant
scalable storage. We discuss Openstack compute in this manual and as already mentioned earlier, it is
software that is used to manage a network of Virtual Machines (VM’s) to make the entire system more
scalable and redundant. It allows users to creating and running VM instances, creating and managing
users and projects. Also work with the management of networks. This is an open source project made for
supporting a variety of configurations and hypervisors.

Two of the most recent releases of the software are Diablo and Essex. Diablo, released July 2011 is the
most recent and is being used. Diablo has an updated nova database schema and a few new packages
including the glance object store and the swift object retrieval system. This manual assumes the

188

installation of Openstack Diablo.
Essex is the more recent release in
April 2012.

Openstack Components

The Openstack project consists of
three main components,
Compute, Object storage and Imaging
service. Compute consists of a cloud
controller, which is used to start up the
VM’s for the users and also to set up
the network configurations that
they might need to use. It is responsible for setting up the number of networks assigned to each project
and so forth. Object storage is a system used as a large-scale redundant storage system which supports a
number of fail-safe procedures like archiving or backup of data. It can also store secondary data and
serve as a Content Delivery Network. The imaging service is an image storage system that provides
image lookup and retrieval. It can be configured to use Object storage, S3 storage or using S3 storage
with Object storage as an intermediate to S3.

A diagram of the presence of these three components and their relation to each other is shown below.

189

Openstack Compute

An introductory statement to Openstack compute has already been given earlier to make the function of
the Compute project clear. The underlying Openstack project is called Nova and it provides a software
that controls an Infrastructure as a service (IAAS) cloud platform. It does not include any virtualization
software rather it specifies drivers to interact with the virtualization mechanisms already present.

Compute was meant to be used by many customers, developers and managers and so it supports a variety
of user level access and privileges. The user management system of Compute uses a Role Based Access
Control (RBAC) model which supports primarily five roles, those of a Cloud Administrator, IT Security,
Project Manager, Network Administrator and a Developer. The Cloud administrator being the one who
enjoys privileges of the complete system and the developer, which is the common user’s default role.
Every project created on compute was also separate from the others and form the basic organizational
unit in Nova. The images, volumes, instances and certificates of one project are separated from the
others. There are certain quota allocations like the availability of IP addresses, processor cores, number
of instances and so on that limit the amount of resources dedicated to a project.

We load images on instances of a VM on Compute. An image is a file containing information about a
virtual disk replicating information about a working system like an entire operating system. Compute
uses Euca2ools command-line tools for managing the images. These images can be handles via the
Openstack Imaging service called Glance or using the nova-objectstore service. The instances that host
the images that we deploy is running inside a VM on our cloud environment. The host system must
support virtualization as Compute does not come with its own. Some Openstack standards that are
followed by Openstack are KVM, UML, XEN and QEMU.

Openstack compute consists of seven main components which together constitute the system’s
architecture. These components are:

190

• Cloud Controller: Global controller representing the state of the service and interacting with
other components

• API Server: Provides the web service front end for the cloud controller
• Compute Controller: Provides the compute resources
• Object Store component: Provides storage facilities for images
• Auth Manager: Provides various user authorization and authentication
• Network Controller: Provides Virtual networks for the compute nodes to interact over the

public network
• Scheduler: Selects the appropriate controller to host an instance

Compute is built as a share-nothing messaging based architecture. We run all major components on
multiple servers. The controller communicates with the internal Object store using HTTP but it
communicates to the volume and network controllers using an asynchronous Advanced Message Queue
protocol (AMQP) to avoid blocking calls. The share-nothing policy is implemented by having redundant
caches of vital information that can be accessed separately. Atomicity is hence enforced when required.

The logical architecture of Compute is shown below:

The Nova-API is the main module here, which is what the user actually interacts with. It is also
referenced as the Cloud controller class and acts as an endpoint for most User queries from setting up the
network to starting instances.

The Nova-scheduler is the module which is used to queue all instance requests. Whenever there are
many concurrent requests from many servers, it determines which instance runs on which host and which
order it has to run in. Certain user’s instances might be given preferences compared to others based on

191

user level. We can also manually specify the scheduling algorithm which needs to be used.

The Nova-compute is the core module, which is used to start up Virtual Machine (VM) instances, and
updates the status of the VM’s in the database.

The Nova-volume module manages the various persistent stores of volume associated with the needed
instances.

The Nova-network module makes the necessary network changes visible in the database and takes care
of marking the bridge interface and so on.

The Glance modules is a separate set of modules used for retrieving the images and other objects. It has a
separate API with which Nova-API interacts with to fetch images and other objects.

The Glance modules interface with the swift Image store and act as a mediator to retrieve these images.

Getting Openstack Set Up

System Specifics:

Hardware: OpenStack components are intended to run on standard hardware.

Operating System: OpenStack currently runs on Ubuntu and the large scale deployments running
OpenStack run on Ubuntu 11.04 LTS, so deployment-level considerations tend to be Ubuntu-centric.
Community members are testing installations of OpenStack Compute for CentOS and RHEL and
documenting their efforts on the OpenStack wiki at wiki.openstack.org. Be aware that RHEL 6 is the
most viable option (not 5.5) due to nested dependencies.

Networking: 1000 Mbps are suggested. For OpenStack Compute, networking is configured on multi-
node installations between the physical machines on a single subnet. For networking between virtual
machine instances, three network options are available: flat, DHCP, and VLAN.

Database: For OpenStack Compute, you need access to either a PostgreSQL or MySQL database, or you
can install it as part of the OpenStack Compute installation process.

192

Permissions: You can install OpenStack Compute either as root or as a user with sudo permissions if
you configure the sudoers file to enable all the permissions.

INSTALLATION PROCESS

The installation of openstack can be done manually or using a script. Using a script, the installation
procedure is the simplest and the quickest. We will go through both modes of installation here.
Installation can be performed in such a manner to run everything (controller and the compute services)
on the same machine or can be done so as to host every service on different machines.

Manual Installation

Initially we need to have super-user permissions to run the following commands. It is essential to install
the nova-services, euca2ools and all its dependencies before we move on. Initially, we set up a nova
package repository so that we can upgrade nova easily later whenever needed.

sudo apt-get update

sudo apt-get dist-upgrade

sudo apt-get autoremove

sudo apt-get install python-software-properties

sudo add-apt-repository ppa:openstack-release/2011.3

sudo apt-get update

Next, we install the rabbitMQ messaging server for inter-controller communication and the python
dependencies.

sudo apt-get install -y rabbitmq-server

When that is done, we now install the nova-services and its dependencies are installed automatically

193

apt-get install nova-volume nova-vncproxy nova-api nova-ajax-console-proxy
apt-get install nova-doc nova-scheduler nova-objectstore
apt-get install nova-network nova-compute
apt-get install glance

We finally install euca2ools and unzip

sudo apt-get install -y euca2ools unzip

Setting up MySQL on the Controller Node

Before we actually install MySQL we need to set environments with a ’pre-seed’ to set passwords and to
bypass installation prompts.

Bash

MYSQL_PASS=nova
NOVA_PASS=notnova
cat <<MYSQL_PRESEED | debconf-set-selections
mysql-server-5.1 mysql-server/root_password password $MYSQL_PASS
mysql-server-5.1 mysql-server/root_password_again password $MYSQL_PASS
mysql-server-5.1 mysql-server/start_on_boot boolean true
MYSQL_PRESEED

We install MySQL next using sudo apt-get install -y mysql-server

The conf files of MySQL has to be edited to change the bind address from localhost to any address.

sudo sed -i 's/127.0.0.1/0.0.0.0/g' /etc/mysql/my.cnf
sudo service mysql restart

Next, we create the Nova database, grant it access privileges and set the password for access.

194

sudo mysql -uroot -p$MYSQL_PASS -e 'CREATE DATABASE nova;'

sudo mysql -uroot -p$MYSQL_PASS -e "GRANT ALL PRIVILEGES ON *.* TO
 'root'@'%' WITH GRANT OPTION;"

sudo mysql -uroot -p$MYSQL_PASS -e "SET PASSWORD FOR 'root'@'%' =
 PASSWORD('$MYSQL_PASS');"

Setting up the Compute Node

Configuring the compute nodes involves setting up the nova.conf file and using nova-manage commands
to set up the projects, project networks and the user roles.

We start up by changing the flags in the nova.conf file. This is a file that does not read white spaces and
comments. This is the main file which is looked up for any information. The default file is already
present in /etc/nova/ with a few default flags like the following:

--daemonize=1
--dhcpbridge_flagfile=/etc/nova/nova.conf
--dhcpbridge=/usr/bin/nova-dhcpbridge
--logdir=/var/log/nova
--state_path=/var/lib/nova

Other than these default flags, it is necessary to define certain other flags for the system to get the
information it needs. A detailed description of available flags is found by running /bin/nova-api –help. A
table of all the mandatory flags is shown below.
Flag Description

--sql_connection

IP address; Location of OpenStack Compute SQL
database

--s3_host

IP address; Location where OpenStack Compute is
hosting the objectstore service, which will contain the
virtual machine images and buckets

--rabbit_host

IP address; Location of OpenStack Compute SQL
database

--cc_host

IP address; Location where the nova-api service runs

--ec2_url

HTTP URL; Location to interface nova-api. Example:
http://184.106.239.134:8773/services/Cloud

195

--network_manager

Configures how your controller will communicate
with additional OpenStack Compute nodes and
virtual machines. Options:

• nova.network.manager.FlatManager
Simple, non-VLAN networking

• nova.network.manager.FlatDHCPManager
Flat networking with DHCP

• nova.network.manager.VlanManager

VLAN networking with DHCP; This is the Default if
no network manager is defined here in nova.conf.

--fixed_range

IP address/range; Network prefix for the IP network
that all the projects for future VM guests reside on.
Example: 192.168.0.0/12

--network_size

Number value; Number of IP addresses to use for VM
guests across all projects.

A complete usable nova.conf file excerpt is shown below. This is for a configuration file with the
compute and the controller nodes on the same system

--dhcpbridge_flagfile=/etc/nova/nova.conf
--dhcpbridge=/usr/bin/nova-dhcpbridge
--logdir=/var/log/nova
--state_path=/var/lib/nova
--verbose
--s3_host=129.79.49.115
--rabbit_host=129.79.49.115
--cc_host=129.79.49.115
--ec2_url=http:// 129.79.49.115:8773/services/Cloud
--fixed_range=10.0.0.0/12
--network_size=8
--FAKE_subdomain=ec2
--routing_source_ip=129.79.49.115
--sql_connection=mysql://root:nova@129.79.49.115/nova
--network_manager=nova.network.manager.FlatDHCPManager
--flat_network_dhcp_start=10.0.0.2
--flat_network_bridge=br100
--flat_interface=eth2
--flat_injected=False
--public_interface=eth

196

A similar Nova config file for a working FlatDHCP Networking network is shown below:

--dhcpbridge_flagfile=/etc/nova/nova.conf
--dhcpbridge=/usr/bin/nova-dhcpbridge
--logdir=/var/log/nova
--state_path=/var/lib/nova
--lock_path=/var/lock/nova
--flagfile=/etc/nova/nova-compute.conf
--verbose
--sql_connection=mysql://novaUSER:novaDBsekret@127.0.0.1/nova
--network_manager=nova.network.manager.FlatDHCPManager
--flat_network_bridge=br100
--flat_injected=False
--flat_interface=eth0
--public_interface=eth1
--vncproxy_url=http://129.79.49.66:6080
--daemonize=1
--rabbit_host=129.79.49.66
--osapi_host=129.79.49.66
--ec2_host=129.79.49.66
--image_service=nova.image.glance.GlanceImageService
--glance_api_servers=129.79.49.66:9292
--use_syslog
--use_deprecated_auth

Next, we create a nova group to set file permissions as this file consists of our MySQL password.

sudo addgroup nova

chown -R root:nova /etc/nova

chmod 640 /etc/nova/nova.conf

It’s always good to restart all the Nova-services once we make any changes to the config file. There are 6
services to restart namely:

197

restart libvirt-bin;

restart nova-network;

restart nova-compute;

restart nova-api;

restart nova-objectstore;

restart nova-scheduler

Once this is done, we use the nova-manage commands to set up the database schema, users, projects and
the project network as follows:

/usr/bin/nova-manage db sync

/usr/bin/nova-manage user admin <user_name>

/usr/bin/nova-manage project create <project_name> <user_name>

/usr/bin/nova-manage network create <project-network> <number-of-
networks-in-project> <IPs in project>

Certain examples of these commands are:

/usr/bin/nova-manage db sync

/usr/bin/nova-manage user admin ADMIN

/usr/bin/nova-manage project create SGX ADMIN

/usr/bin/nova-manage network create 10.0.0.0/24 1 255

In this example, the number of IP’s are /24 as it is within the /12 range mentioned in the nova.conf file.

198

We can also create and allocate specific public IP’s using commands from the nova-manage API.

The following commands are used to create public IP’s, list them and delete them respectively

nova-manage floating create hostname CIDR_Range

nova-manage floating list

nova-manage floating delete CIDR_Range

Once the floating point addresses are created, we need to obtain an address and then associate that
allocated address to the required instance. This is done using the following euca-commands

euca-allocate-address

129.79.49.65  allocated_address

euca-associate-address –i instance_number allocated_address

Creating certifications

Once the users have been created, it is necessary to create credentials for that particular user and project.
This is done using the nova-manage command to generate the zipfile containing the credentials for the
project. We have these credentials in /root/creds as follows:

mkdir –p /root/creds

/usr/bin/python /usr/bin/nova-manage project zipfile $NOVA_PROJECT $NOVA_PROJECT_USER
/root/creds/novacreds.zip

A warning message "No vpn data for project <project_name>" can be ignored safely depending on the
networking configuration.

We then unzip the file and add the file to our environment as shown:

199

unzip /root/creds/novacreds.zip -d /root/creds/

cat /root/creds/novarc >> ~/.bashrc

source ~/.bashrc

NETWORK CONFIGURATION

There are three types of network configurations that can be set using the –network_manager flag in
nova.conf. These modes are

• Flat Networking
• FlatDHCP Networking
• VLAN Networking

Flat Networking

This mode is selected when we set the Network Manager to nova.network.manager.FlatManager. In such
a mode compute needs to use a bridge interface. By default the interface is assumed to be br100 and is
stored in the database. We need to edit the network interfaces configuration to add the unused interface
eth0 to the bridge as follows

< begin /etc/network/interfaces >
The loopback network interface
auto lo
iface lo inet loopback

Networking for OpenStack Compute
auto br100

iface br100 inet dhcp
 bridge_ports eth0
 bridge_stp off
 bridge_maxwait 0
 bridge_fd 0
< end /etc/network/interfaces >

200

We now restart using sudo /etc/init.d/networking restart to apply the changes. No other changes needs to
be made in the nova.conf file as it already has the information it needs.

FlatDHCP Networking

In this networking mode, we do not use VLAN’s but we create our own bridge. We need an interface
that is free and does not have an associated IP address. We can simply tell the network manager to bridge
into the interface by specifying the –flat_interface flag in the flag file to the interface we need. The
network host will automatically add the gateway ip to this bridge. You can also add the interface to
br100 manually and not set flat_interface. If so, we edit nova.conf to have the following lines:

--dhcpbridge_flagfile=/etc/nova/nova.conf
--dhcpbridge=/usr/bin/nova-dhcpbridge
--network_manager=nova.network.manager.FlatDHCPManager
--flat_network_dhcp_start=10.0.0.2
--flat_interface=eth2
--flat_injected=False
--public_interface=eth0

Once that is done, we are all set.

VLAN Networking

This is the default networking mode in compute and is taken if we do net explicitely include the –
network_manager flag in nova.conf. For use of this mode, we need to make sure the bridge compute
creates is integrated to our network and we have the necessary hardware components to support VLAN
tagging.

To allow users access instances in their projects, a special VPN instance called cloudpipe has to be
created. This image is a Linux instance with openvpn installed. It needs a simple script to grab user data
from the metadata server, b64 decode it into a zip file, and run the autorun.sh script from inside the zip.
The autorun script should configure and run openvpn to run using the data from Compute.

For certificate management, it is also useful to have a cron script that will periodically download the
metadata and copy the new Certificate Revocation List (CRL). This will keep revoked users from
connecting and disconnects any users that are connected with revoked certificates when their connection
is re-negotiated (every hour). You set the --use_project_ca flag in nova.conf for cloudpipes to work
securely so that each project has its own Certificate Authority (CA).

Scripted Installation

Scripted installation is much simpler and quicker compared to the manual process, we need to grab the
script from:

201

git://github.com/cloudbuilders/devstack.git
and just start the installation using:
 cd devstack;
 ./stack.sh
 and follow the stages of installation. A better explanation of what exactly happens in this script can be
found at http://devstack.org/stack.sh.html

We copy the nova.conf file from the cloud controller node next to the compute node. After the
installation we must still source the novarc file to accept the generated credentials. Some details like the
following needs to be provided during the stages of the installation.

• MySQL password
• The default S3 IP.
• The RabbitMQ host IP
• The Cloud controller IP
• The MySQL IP

The installation script also runs us through the process of creating the new user, project association and
the network addresses associated to the project.

RUNNING OPENSTACK COMPUTE

Starting and Deleting Instances

Once we have the required image that we need to publish to compute, we use the uec-publish-tarball
command to get it done. We can get the working images of any Ubuntu release from http://uec-
images.ubuntu.com/. Once we have the image to upload, we do so using the following command.

uec-publish-tarball $path_to_image [bucket-name] [hardware-arch]

We get three references, emi, eri, eki values. We use the emi value of the images while starting
instances. We now need a public key to connect to an image. You might need to create and source
credentials as a key pair using euca2ools commands as follows:

euca-add-keypair mykey > mykey.priv

chmod 0600 mykey.priv

We then create instances for the image using the euca-run-instances command as follows:

euca-describe-images

euca-run-instances $emi -k mykey -t m1.tiny

http://devstack.org/stack.sh.html
http://uec-images.ubuntu.com/
http://uec-images.ubuntu.com/

202

...OUTPUT...

RESERVATION r-1jj2a80v proj_name default

INSTANCE i-00000001 ami-00000002 10.0.0.2 10.0.0.2 building mykey (proj_name, SIX) 0
m1.tiny 2011-08-18T21:06:03Z nova aki-00000001 ami-00000000

...OUTPUT...

Once the status of the instance goes from untarring to scheduling to launching to running openstack we
are ready to ssh into the instance using the following command

ssh ubuntu@$ipaddress

Where IPaddress is the one assigned to the instance when created.

To delete an instance we use the following command

euca-terminate-instances $instanceid

CREATING CUSTOM UEC IMAGES

We can create edit a standard UEC Image for us to run our own code. It involves the following steps:

• Download the required Ubuntu version’s UEC image from http://uec-images.ubuntu.com/.
• Unarchive the tar.gz image to actually get the .img file we need to edit.
• We now need to expand the .img file as it is limited to a certain size and our implementation

requires us t have certain extra software.
• This is done by first running the command fsck.ext3 imageName.img to change its file format

followed by resize2fs imageName.img SIZE where SIZE is the required size you need it resized
it to.

• Now, we need to mount this image to add the required files. This is done by using mount –o loop
imageName.img mountDir where mountDir is any directory on which the image is mounted.

• Now mountDir denotes the file structure of the image. We copy the required software to run on
the instance. In our case, the SGX code checked out from
https://sensorcloud.uits.indiana.edu/svn/SGX/trunk/1.3

• We also copy a version of Apache Maven 3.0.3 and an appropriate version of JDK to the
appropriate location in the image.

• Once that is done, we need to edit the .bashrc file of the root user to source the environment
variables SENSORCLOUD_HOME, JAVA_HOME and M2_HOME to the appropriate locations
to which the SGX code and Maven 3.0.3 are copied to.

• We can checkout the code from repository and install Java using the default package manager
once we get into the instances by creating a script to perform the mentioned task.

• Once these changes are made, we need to unmount the image using the command umount –l
mountDir.

http://uec-images.ubuntu.com/
https://sensorcloud.uits.indiana.edu/svn/SGX/trunk/1.3

203

• Once that is done, we need to zip back the .img file and its other accessories of the UEC image
back into the .tar archive.

• Once we do that, we are ready to publish this image on to the grid using uec-publish-tarball as
mentioned in the ‘Starting Instances’ section.

• Well established methods of creating images off running instances can also be found at:
o http://wiki.openstack.org/CreatingRHELImages
o http://open.eucalyptus.com/participate/wiki/creating-image-existing-vm-centos
o http://kb.iu.edu/data/bbsn.html

• The above mentioned guides primarily consider RHEL and Eucalyptus but can be easily
extended to cover Ubuntu and Openstack as both of them deal with using the same euca2ools
API.

• Main stages of the image creation include, creating the Kernel Image and registering it, creating
the Ramdisk image and registering it and creating the actual image and registering it with the
previously created Ramdisk and Kernel images.

ISSUES AND FAQ’s

-1-

Errors when setting up the project network using nova-manage

These errors are mostly because the range of IP’s provided in this command exceeds the number of
assigned IP’s in the nova.conf file. Reduce the number of IP’s in this command or increase the range of
assigned IP’s in nova.conf.

The nova-manage service assumes that the first IP address is your network , the 2nd is your gateway and
the broadcast is the last IP in the range defined. If not, it is required to edit the nova database’s
‘networks’ table.

When using some other networking scheme rather than flat mode, it is necessary to mark one of the
networks already defined as a bridge so that compute knows that a bridge exists.

-2-

Access forbidden 403, 401 errors

These are the errors usually which show up because there is a credential problem with the project. Occur

http://wiki.openstack.org/CreatingRHELImages
http://open.eucalyptus.com/participate/wiki/creating-image-existing-vm-centos
http://kb.iu.edu/data/bbsn.html

204

when we try to perform any euca-XXX command. Through current installation methods, there are
basically two ways to get the novarc file. The manual method requires getting it from within a project
zipfile, and the scripted method just generates novarc out of the project zip file and sources it for you. If
you do the manual method through a zip file, then the following novarc alone, you end up losing the
credentials that are tied to the user you created with nova-manage in the steps before. When you run
nova-api the first time, it generates the certificate authority information, including openssl.cnf. If it gets
started out of order, you may not be able to create your zip file. Once your CA information is available,
you should be able to go back to nova-manage to create your zipfile.

-3-

Instance startup errors

There are times when instances are scheduling indefinitely, or startup and shutdown immediately or
simply stay ‘launching’ forever. These can be cause due to a number of reasons including bad
networking settings or credentials. One way of finding out what the kind of problem we face is to check
console output of an instance using euca-get-console-output <instance ID> to check the status of the
instance or to simply check the nova-api.log in/var/logs/nova/

-4-

Unable to ping or ssh instances that are running

There are a number of reasons for this case to occur. One of the usual reasons is because we have not yet
granted access permissions to access ports for ssh or pinging. Use the ‘euca-authorize’ command to
enable access. Below, you will find the commands to allow ‘ping’ and ‘ssh’ to your VMs:

euca-authorize -P icmp -t -1:-1 default

euca-authorize -P tcp -p 22 default

Another common issue is you cannot ping or SSH your instances after issuing the ‘euca-authorize’
commands. Something to look at is the amount of ‘dnsmasq’ processes that are running. If you have a

205

running instance, check to see that TWO ‘dnsmasq’ processes are running. If not, perform the
following: killall dnsmasq service nova-network restart

Some other cases might also occur. A possible case can be that the instance might be waiting for a
response from a metadata server by default that it does not receive. Such cases can be identified from the
console output of the instance. Usually metadata forwarding is done by the gateway. In flat mode, we
must do it manually so requests should be forwarded to the api server. A simpler solution would be to try
another networking mode like flatDHCP.

It usually helps restarting all the related services once there is a problem. Specifics can be obtained from
the logs in /var/logs/nova/.

-5-

Network host issues

In certain cases, faulty deployment of the instances which might not show in the euca-get-console-output
command might lead to a certain ‘Destination host unavailable’ when we ping the instances or the ‘No
route to host’ when we try to ssh into a host which is not ready. These problems are fixed by re-bundling
the image to the server and trying again. Most likely caused by a small glitch while bundling. This can
be verified using the euca-describe-images command and looking for the required upload bucket to
confirm that the status of the image we need to deploy is ‘available’ and not ‘untarring’. These are most
likely caused when the nova services are restarted immediately after the new image is uploaded without
giving the system any time to actually register the image internally.

-6-

Euca-tools freezing issues once an image is registered

In most cases, after registering the image, the system will take a while to respond to euca-commands.
Restarting the nova-services before it registers the image will cause its state to remain in untarring when
we check using ‘euca-describe-images’. Such images will not be able to startup.

4. Performance Metrics

206

In the presentation entitled Distributed FutureGrid Clouds for Scalable Collobaroative Sensor-Centric
Grid Applications general FutureGrid network throughput and performance of the underlying Narada
Broker was evaluated using video sensors publishing 352x288 H264 encoded video.

For this experiment we created a virtual BenchmarkSensor to simulate a typical data stream from an IP
Camera. We selected the popular TRENDnet TV-IP422WN camera as our baseline. The TV-IP422WN
camera streams audio and video data over RTSP at a data rate of approximately 1800kbps when using
the following encoding:

Video: codec MPEG4; width: 640; height: 480; format: YUV420P; frame-rate: 30 frames/sec;
Audio: codec PCM_MULAW; sample rate: 8000; channels: 1; format: FMT_S16

In order to simulate video sensors of this type we publish dummy data in 7680 bytes packets at a rate of
30 packets per second. This frame rate and packet size will also be a reasonable simulation of Microsoft
Kinect sensors.

Here is our experimental arrangement:

We hosted the SGX 1.4 Sensor Grid middleware on the FutureGrid in four “large” instances.

• 2 cpu
• 6000MB ram
• 10GB disk

http://grids.ucs.indiana.edu/ptliupages/presentations/Ball27July11/AMSA%20TO4%20TIM%20July%2027%202011.ppt
http://grids.ucs.indiana.edu/ptliupages/presentations/Ball27July11/AMSA%20TO4%20TIM%20July%2027%202011.ppt

207

Various numbers of virtual video sensors were deployed evenly across the four Grid Builder domains
and we measured the latency in message delivery times to subscribing client.

0
200
400
600
800

1000
1200
1400
1600
1800

0 20 40 60 80 100 120 140 160 180 200

La
te

nc
y

m
s

Number of Sensors

Video Sensor Perfomance 640x480

20 fps

30 fps

60 fps

208

Appendix A: Secure Cloud Computing with Brokered Trusted Sensor Networks

Apu Kapadia, Steven Myers, XiaoFeng Wang and Geoffrey Fox
School of Informatics and Computing

Indiana University, Bloomington
{kapadia, samyers, xw7, gcf}@indiana.edu

ABSTRACT

We propose a model for large-scale smartphone based sen- sor
networks, with sensor information processed by clouds and
grids, with a mediation layer for processing, filtering and
other mashups done via a brokering network. Final aggregate
results are assumed to be sent to users through traditional
cloud interfaces such as browsers. We conjec- ture that such a
network configuration will have significant sensing
applications, and perform some preliminary work in both
defining the system, and considering threats to the system as a
whole from different perspectives. We then dis- cuss our current,
initial approaches to solving three por- tions of the overall
security architecture: i) Risk Analysis relating to the
possession and environment of the smart- phone sensors, ii)
New malware threats and defenses in- stalled on the sensor
network proper, and iii) An analysis of covert channels being
used to circumvent encryption in the user/cloud interface.

KEYWORDS: Sensor Network, Brokered Network, Se-
curity, Wireless.

1. INTRODUCTION

We consider systems in which there are large groupings of
sensors reporting exorbitant quantities of potentially sensi- tive
data, and the need to perform large amounts of process- ing or
computation on this data with multiple large grid and cloud
computing installations. The processing may need to be done
in real or near-real time. Further, we consider that there are
adversaries that have a vested interest in ei- ther learning
information from the system, modifying the results finally
output from the system (be it through modi- fication of the
sensor input, filtering or processing of data), or denying access
to the system. Therefore maintaining

data provenance, secrecy and trust is of paramount impor- tance
throughout the data life-cycle (i.e, from the point of data
collection by the sensors, to its final consumption by an
individual or process). All data-transformation and fil- tering,
networking and sensor aspects of these systems are assumed to be
susceptible to attack. Similarly the environ- ment in which
some parts of the system operate is assumed to be potentially under
adversarial control. In our modeling we assume the actual cloud-
computing facility to be secure. Our goal is to be able to provide
reliable results computed from sensor data in a manner that enables
one (be it the user or the system) to make educated decisions on the
reliability of that data based on trust metrics, while
simultaneously preventing the loss of data-secrecy or integrity.
Further, maintenance of system integrity and security is
considered a core requirement. Issues such as anonymity are
beyond the scope of our current research. Herein we provide a
for- mal description of the networking architecture we antici-
pate and the security threats. We delineate between threats and
security holes for which conventional security technol- ogy
suffices to solve the problem, those threats for which
modifications to conventional technology are required, and those
which are new and somewhat specific to the problem at hand. We
next outline a largescale feasible research pro- gram to solve the
many associated problems. We conclude by highlighting several
of the aspects of this program for which we are actively
engaged in producing solutions, and the architectures for our
solutions.

1.1. Roadmap

In Section 2. we provide a high-level specification of the type
of systems we are considering. This is followed, in Section
3., by a high-level threat model that depicts ways adversaries
can manipulate such systems and their mal- leable
environments. In Section 4., we provide more in depth
discussions on three specific subsets of security prob- lems from
Section 3. for which we are currently developing solutions. In
Section 5. we provide related work for these

209

problems. Section 6. finishes off with discussion and con-
clusions.

2. COMPUTATION, NETWORKING &

SENSING MODEL

Cloud
Computing

Cloud
Computing Cloud

Computing

Router

We consider a model in which there are potentially mil-
lions of deployed sensors. The sensors may be (but are not
necessarily) organized by some principle into different
hierarchical layers or partitions. These sensors may be con-
tinuously publishing their observations, or supply their ob-
servations on request. In either event the observations are

Router

Router

Router

External
Storage

External
Storage

relayed through a brokering and filtering network, where
sensor data is eventually consumed by a cloud or grid-
computing infrastructure; alternatively the data can be fil- tered
or processed, and stored. Importantly, we do not con-

Mini Computer Mini Computer Mini Computer Mini Computer

sider traditional low-power sensors such as motes, RFIDs and
smartdust, where a great preponderance of wireless sensor-
network research has been done. Rather, we con- sider
potentially high throughput sensors attached to a — in
comparison — large amount of computational and net-
working power, e.g., in the cloud. Specifically, we con-
sider smartphone-class devices with reliable cellular net-
work connectivity (with hundreds of Kbps throughput as

Tower-mount
Antenna

Wireless Bridge

Router

Router

Router

Router

Tower-mount

Antenna

opposed to tens of Kbps available on motes) and frequent
recharging (e.g., nightly) that supports more computation- ally
intensive applications than motes. Yet, this model still leaves
open a large number of security issues that must be solved.
In Fig. 2. we visualize the different components of the
networked system. Android smartphones denote the sen- sors in
the system, and are in the possession of individu- als. The
smartphones have some computational capacity, and transmit
through WiFi or cellular services to a broker- ing network,
running over traditional TCP/IP services. The brokering service
can itself have computers performing fil- tering, processing
and/or creating other mashups of sensor data.

2.1. The Sensor

Herein, we consider the sensors to be modern smartphones. These
devices are diversely deployed in the field, con- tain a large
number of sensors, and have moderate com- putational ability.
Further, they are fully networked, and with modern 3G
networks have reasonable bandwidth (e.g.,
100–1000kbps). Additionally, most sensors have 802.11
WiFi radios, and may have sporadic or continuous WiFi
connections in urban environments, with bandwidth of 1-
50Mbps. These phones may be in the control of trusted (or
semi-trusted) individuals, or be located in some poten- tially
untrusted environment. Further, they have a reason- able
processing capability on modern low-power proces-

Figure 1. A Depiction of the Different Components of
the Sensor and Cloud-Computing Network.

sors, such as an ARM architecture processor running at
500–800MHZ. It is assumed that the phones have standard sensors
including, eGPS, 802.11x, Bluetooth v2 (Class 1,
2 or 3), temperature, orientation, acceleration, audio mi-
crophone, and camera (stills or video). In particular, our
project focuses on the use of HTC G1 Android (v1.6) de-
velopment phones, due to the ease of programming and their
ability to multi-task (unlike the iPhone). Such plat- forms
can perform a full host of cryptographic operations, but also
have security issues relating to the fact that they are multi-
purpose computing platforms. Thus OS secu- rity issues are
larger, and it is difficult to construct a small OS, such as
TinyOS [19] designed for motes, which can be more easily
hardened to withstand attack. While the smart- phones are
capable of more standard cryptographic proto- cols, a large
number of such sensors in a region that are broadcast could
overwhelm communications channels, and battery life is still a
concern — if not as pressing. There- fore, low bandwidth and
energy usage requirements are still a concern. However, one can
easily port low-energy and bandwidth secure networking
stacks, such as those pro- vided by TinySec [17] or MiniSec
[21].

210

2.2. The Brokering Network

With potentially millions of smartphone sensors producing data
at any given time, the need for a high performance networking
infrastructure that is capable of self-filtering unimportant
data feeds before they are transmitted for pro- cessing becomes
apparent. Further, the need to funnel po- tentially very large
amounts of bandwidth to a few collec- tion points for
processing is also evident. The communi- cation between the
sensors and the computing infrastruc- ture is mediated by a
brokering network that uses a pub- lish/subscribe model. In
such a model, each sensor can publish the data it is collecting
on a continuous basis, along with appropriate meta-data that
depict the content, prove- nance and trustworthiness of the data.
Requests for specific information at the cloud or grid
computing interface will drive the request for specific types and
trustworthinesses of data from the sensors. Such requests will
further invoke the subscription to different forms of data both
real-time and stored. Typical forms of data cleaning and
processing can, of course, be performed by dedicated servers who
indepen- dently subscribe to sensor feeds, and then publish their
own mashed data feeds for consumption by others. In such cases
provenance and trustworthiness must be maintained. Ul-
timately, there will be many different parallel consumers of
data, and thus the network must be as responsible as is possible
to prevent duplication of effort, redundant routing, streaming
and processing of data.

For this project, the Narada Brokering network1 is being used.
The network can provide basic secrecy and integrity
requirements, but does not by default provide any informa- tion
regarding provenance or trustworthiness. While other suitable
brokering networks can be used (e.g., Solar [?]) we chose Narada
because of local expertise and support avail- able to our project.

2.3. Computing Model

We assume that the final consumers of data will be cloud or
grid computations, as will many of the filtering and pro- cessing
modules. While each cloud or grid may see its out- put as the
final consumable, the desire to recycle computa- tion means that
the data may itself become simply another input to an alternate
computation upstream. The study of securing cloud and grid
computation are separate research fields in their own right, and
so our model simply assumes that these computations do not leak
information, break in- tegrity of the data nor provide covert
channels to the data. Computational power and storage is
considered to be more or less limitless to within reasonable
bounds.

1 See www.Naradabrokering.org

3. SECURITY, PRIVACY & TRUST IS-
SUES

The computing environments of a sensor grid are fraught with
different kinds of threats, which endanger the security and
privacy assurance the system can provide. Mitigation of these
threats relies on establishing trust on individual system layers
through proper security control. In this sec- tion, we survey the
security and privacy risks on each layer of senor-grid computing
and the technical challenges for controlling them.

A sensor grid interacts with its operating environment through
a set of sensors. Those sensors work either au- tonomously or
collaboratively to gather data and dispatch them to the grid.
Within the grid, a brokering system fil- ters and routes the data
to their subscribers, the clients of the sensor grid. We now
describe the security and privacy issues on each layer of such
an operation. This includes the environment the sensors are
working in; the sensors; the grid; the clients; and the
communications between the sensor and grid, and the grid and
clients.

The Environment. An adversary could compromise the
sensors’ working environments to contaminate the data they
collect. For example, one can add ice around individ- ual sensors
to manipulate the temperatures they measure; alternatively, one
could imagine that GPS signals were be- ing spoofed in an area.
Detection of such a compromise can be hard, when the adversary
has full control of the en- vironment. A possible approach is to
check the consistency of the data collected from multiple
sensors and identify anomalous environmental changes as
indicated by the data.

Sensors. Sensors can be tampered with by the adversary who
can steal or modify the data they collect. Mitigation of this threat
needs the techniques that detect improper opera- tions on the
sensors and protect its sensitive data. Since we assume sensors are
smartphones, they also are susceptible to a large number of
security concerns of traditional PCs, which includes viruses and
malware.

Cloud or Grid. Information flows within the grid can be
intercepted and eavesdropped on by malicious code that is
injected into the system through its vulnerabilities. Authen-
tication and information-flow control need to be built into the
brokering system to defend against such a threat.

Client. The adversary can also manage to evade the secu- rity
and privacy protection of the system through exploit- ing the
weaknesses of the clients’ browsers. The current design of
browsers is well known to be insufficient for fending off
attacks such as cross-site scripting (XSS) and

http://www.naradabrokering.org/

211

cross-site request forgery (XSRF). Such weaknesses can be used
by the adversary to acquire an end user’s privileges to wreak
havoc on the grid. Defense against the threat relies on design
and enforcement of a new security policy model that improves
on the limitations of the same origin policy adopted in all of
the mainstream browsers.

Communication Channels. The communications be- tween
the sensors and the brokering network, the broker- ing network
and the cloud or grid, and the cloud or grid and the client, are
subject to both passive (e.g., eavesdrop- ping) and active (e.g.,
man-in-the-middle) attacks. Coun- tering this threat depends
on proper cryptographic proto- cols that achieve both data
secrecy and integrity. In each case, different engineering
requirements based on differ- ing scarce resources require
different solutions. In the case of the wireless connection
between the sensor network and the brokering network,
bandwidth and power-usage are key requirements. Once on the
brokering network, data prove- nance becomes a key challenge.
Traditional cryptographic protocols would seemingly suffice
from the cloud to the user. However, a tricky issue here is the
information leaks through side channels. For example, packet
sizes and se- quences. Our preliminary research shows that such
infor- mation reveals the state of web applications, which can
be further utilized to infer sensitive data within the applica-
tion. Understanding and mitigating the problem needs fur- ther
investigation.

4. PROBLEMS TO BE ADDRESSED

While there are a large number of potential security issues to be
addressed, as partially scoped and enumerated in the previous
section, the investigators are working on the fol- lowing
specific problems.

4.1. Detection of anomalous use of sensors

A key issue involved in trusting data from the sensors in the
described network is to ensure that the sensors themselves can be
trusted. That is, either they are in the possession of individuals
who are trustworthy, or they have not been tampered with in
their environment if not possessed by an individual.

In our model if the sensor is in the possession of a trusted
individual, it is more likely that its sensors are reporting an
honest or legitimate environment, and not one that has been
manipulated with the goal of producing faulty results that get
incorporated in to final computation. Smartphones, however, can
be easily stolen, misplaced or temporarily in- tercepted and
reprogrammed by adversaries. If stolen or misplaced, the
environment that the sensors report may be

altered, and thus the data collected may be untrustworthy. The
use of traditional authentication technologies to ensure a
legitimate user is in control of the smartphone sensor is not
practical, as said users cannot be queried to authenticate every time
the sensor-net needs to report readings.

We propose a system in which a phone attempts to deter- mine
if it is or is not in the possession of a legitimate user. In cases
where the phone determines it is in questionable hands it
deauthenticates itself. Deauthentication either re- moves it from
the sensor network, or forces its sensor read- ings to be tagged as
untrustworthy, with risk measurements being included in
provenance data to ensure that the risk of improper readings is
communicated down stream and taken into account on further
processing. In order for the phone to determine whether it is
under legitimate possession, we are developing a risk assessment
system based on the inputs from the sensors of the phone itself.
Thus the sensors are used directly to determine if the sensors’
readings should be trusted. We are implementing a prototype of
this system on the HTC/Google G1 Android (v1.6) Phone.

We are taking different approaches with different sensors on
the phones. Note we are using these sensors to de- termine
risk of improper possession independent of which sensors are of
interest to the sensor network. Further, we make two broad
classifications of the use of sensor input for risk determination.
First, environmental sensors attempt to measure properties of the
environment around the phone, or of the user. Second, social-
networking sensors measure “friendly” or “unfriendly” people
that surround the phone.

4.1.1. Environmental Sensors

Positioning Information. Android smartphones can de-
termine their position using a combination of several differ- ent
information sources, which includes cellular transmis- sions (in
particular, tower location), GPS positioning and WiFi
positioning. The combination of all of these pieces of
information is often called eGPS, and frequently provides
position far more accurately than any of the technologies alone.
Our high-level goal is for the phone to learn certain geographic
locations and routines that correspond to either a safe or
dangerous state.

We extend the work of Farrahi and Gatica-Perez [14]. We are
using a third-order Hidden Markov Model (HMM) to
determine the risk of misuse of a phone based on current
positional information. Farrahi and Gatica-Perez consid- ered
the problem of determining location for contextual ap- plication
purposes, but without specific interest in authen- tication and
security mechanisms. A day is divided into blocks of 30
minutes. In any given period the phone is con-

212

sidered to be in one of four specified places (e.g., Home,
Work, Aux 1, No Location Reading) or in a generic un-
labeled place (Other). Thus the location of an individual
through a time period is being converted into a string, as is
depicted in Fig. 2. Currently, we are considering a super- vised
learning case where a user specifically defines these five
locations, with the goal of using clustering algorithms to
eventually learn popular locations. Traces of individ- uals’
positions are then collected, and the HMM iterative Viterbi
training and Forward algorithm are used for train- ing on this
past annotated data sequences and predicting risk. Based on a
trained HMM, and a recent history of the phones’ positions,
the forward algorithm is used to deter- mine the likelihood of
the recent history, and this estimate is used to determine the risk
associated with the phone’s current position. Of clear
importance is the efficiency with which both training and
evaluation can be performed. Due to the need to only
occasionally perform training (say daily or weekly to update the
movement model with the most re- cent trends), its efficiency is
of lesser importance than that of real-time risk evaluation
which needs to be performed on demand in real-time in order
to prevent users form be-

(H)ome

0-2 3-5 6-8 9-11

12-14 15-17 18-20 21-23

A hierarchical HMM model is used to learn users schedules. At the outer
layer we in essence have a node for each 3 hour block of time in the day.

Each node contains within
it a 3rd order multi-state
HMM to learn the
schedule over the
corresponding hours.

Figure 3. A Depiction of the Constructed HMM for
Predicting Position.

risk analysis we have no preference for any specific termi- nal
state, and so we are interested in Pr[M → x1 , . . . , xt]. A simple
modification that sums the probabilities over all final states
runs in O(n3 · t), and returns the value of in- terest. Given
the running time is cubic in the number of states and we need
near real-time evaluations of the algo- rithm, we need to
minimize the state space. To minimize

(O)ther

(W)ork

(A)ux the state space we actually construct 8 individual HMMs to learn

patterns of behavior during different 3-hour periods of the day,
and link them together through a simple state- machine.2 The
model is depicted in Fig. 3.

Location recorded every 30-Min. for 24 Hrs. producing the string

HOWAAA.....

String is parses starting on each letter into triplets for 3rd order HMM

H O W W A
O W A A A
W A A A A

Figure 2. A Depiction of How Positional Data Through the
Day is Converted in to a String Over a Small Alphabet.

As previously mentioned, risk evaluation is based on the use
of the forward algorithm. The forward algorithm runs in
O(n2 · t) where n is the number of states and t is the

We justify this construction as a reasonable model because the
risk of one’s current geographic position is a function of both
one’s current position and recent historical position relative to
the current time, as opposed to one’s longterm schedule. We are
currently in the process of experimentally determining the correct
recent history window that will de- liver the best ability to
detect abnormal behavior.

Temperature Temperature of the phone can be used to
determine information relating to whether the phone is cur-
rently in someone’s physical possession. If the phone reads
approximately body temperature (37o C) then it is reason- able
to assume that is in a person’s possession.3 Similarly, if the
phone is at approximately room temperature or the outdoor
ambient temperature, then the phone is likely ei- ther not
directly on the person and is likely to have either

number of time-blocks being analyzed; given an HMM M
the forward algorithm returns the probability that a given
sequence of positions x1 , .., xt is output by an HMM, given that
it terminates in state σt . More formally, Pr[M → x1 , . . . ,
xt |σt], for a given x1 , ..., xt , and σt . However, for

2 This construction could be viewed as a Hierarchical HMM in which the
transition distribution in the high-level HMM are all Kronecker δ-
functions.

3 There may need to be some invalidation of this metric at times when the
ambient temperature is the same as body temperature.

213

been put down or remain in a bag.

While we believe there is strong potential to help use the
phone’s current temperature to monitor risks, our initial test of
the Android phone is that the delay in converging to new
temperatures by the phone’s sensor makes this data unus- able
for our intended applications. We found that when moving
the phone in a pocket at body temperature and moving it
onto a desk, it took on the order of tens of min- utes to
converge to anywhere near the ambient room tem- perature.
Further, in the same scenario it took several min- utes to
decisively report non-body temperature readings.

Acceleration Acceleration measurements can be used in several
manners to help determine risk. Techniques have been
developed to measure a person’s gait using the ac- celerometer
in phones, assuming they are placed in an individual’s
pocket, or otherwise carried on the person [30, 15, 1].
While we do not intend to implement such a scheme ourselves,
we are looking at the possibility of in- cluding the results of
these works to deploy such a tech- nique in our larger sensor
scheme. Further, we plan to use techniques that include
simpler measurements but are based on other contexts. For
example, if a user does ex- plicitly authenticate to the device,
then at this point in time we know that the device is trusted. If
the device stays in motion for the next several minutes, then
one can assume that the correct user is still in possession of the
device. In contrast if the phone becomes stationary for a
prolonged period of time, the phone probably has been put down,
and now alternative risk measurements must be used.

4.1.2. Social Networking Sensor Risk Measurement

One key aspect of our system is to use a form of social net-
working for authentication and risk measurement. Imagine a
scenario where a phone finds itself in a previously un- visited
location, and other sensors are providing question- able risk
data. However, imagine that the device can find the presence of
a number of other phones that it frequently observes when in
known low-risk states. The presence of these phones should
indicate that the risk that an individual does not have proper
possession of the phone is low: the phones of colleagues, friends
and family members are near, so either the entire group is at risk
(unlikely or the phone is simply in a new environment). Our
system will employ a combination of white and black listing
of other phones, which will alter the risk assessments made by
the system. Additionally, we will learn “friendly” phones by
determin- ing which other phones are frequently in the
presence of the user in non-risky situations. This assessment
will be done by considering both Bluetooth and 802.11
wireless networks.

Bluetooth. General Bluetooth frames are much more dif- ficult
to detect than corresponding 802.11x frames with the standard
radio hardware built in to phones.4 There are two options
to bypass this problem. The first is that the phones broadcast
themselves in so called “Bluetooth dis- covery mode”, this
will make the phone visible to all, but can result in higher
battery usage. The second is to pair specifically with those
phones that are whitelisted to be considered friendly; pairing
requires a one-time user inter- vention. In this case, the phones
could attempt to pair when they are in close contact.

More problematically, our current implementation platform
(Android v1.6) does not provide an API to interface with the
Bluetooth infrastructure. Thus Bluetooth can only be accessed
by the user, and not a risk-analysis program. An- droid (v2.0)
does provide the implementation of such API, but there is
currently no firmware upgrade for our reference platform (HTC
G1 development).

WiFi (802.11x). Much of the widely deployed smart-
phones allow their WiFi radios to operate in promiscu- ous
mode, which permits the radio to listen to and com- municate
the existence of frames that it can receive, even if the radio was
not the target for the frame in question. This mode allows
802.11x radios to detect the presence of nearby devices. The
only requirement to instantiate our social-networking risk
measurement is to ensure that all the participating phones are
broadcasting their position by sending beacons on regular
intervals. It is yet to be deter- mined if the development
platform supports such modes of operation.

4.1.3. Combining Risk Measurements.

A more sensitive risk measurement can be constructed if one
does not require each sensor to independently gener- ate a risk
metric in our risk model. However, in order to make our
scheme flexible for different uses, and in devices with different
subsets of sensors, we consider an archi- tecture that treats the
sensor measurements independently, and then produces a global
risk measurement. Note that this separation does not prevent
the global risk measure- ment from learning co-dependencies
between risk profiles of different sensors, and making use of
such dependencies. There is a fair amount of research on
methods for aggre- gating risk measurements in a number of
different scenar- ios (e.g., Financial, Credit, Insurance, Intrusion
Detection). Currently we are determining which, if any, of the
current models provides a similar or appropriate model on which
to base an aggregation of our sensor work. In the mean time,

4 Relatively inexpensive hardware is available to capture general Blue- tooth
packets, but it is not standard on known phones.

214

we use an expected value of the different risk metrics that is
weighted with high-degrees to the positional and social
networking schemes.

4.2. “Sensory Malware” threats and defenses

To fully understand the threat space of malware on smart-
phones, we are exploring various attack scenarios. While
traditional malware defenses focus on protecting resources on
the computer (or as we would expect, on the smart- phone),
we are specifically interested in the new class of at- tacks where
sensory malware uses onboard sensors to steal information from
the user’s physical environment [5]. For example, the user
carries around a video and audio sen- sor (microphone) at all
times, and thus immense amounts of information such as
sensitive conversations, spoken passphrases or biometrics,
keyboard acoustic emanations when placed next to a keyboard,
and broader surveillance becomes possible. Video “sensors” can
gather visual infor- mation about a user’s private environment
such as pictures of colleagues [38], which may be sensitive
with military and intelligence-gathering agencies.
Accelerometers and GPS sensor information can be used to
infer location and activity patterns of users such as soldiers, thus
compromis- ing military secrecy.

While generic architectures [10, 23] have been proposed to
control access to the network, for example, after soft- ware has
accessed certain sensor information, various vec- tors exist for
leaking garnered information. Overt channels between
components on the smartphone (Android provides very little
security against communicating applications, for example), or
covert channels between related malware ap- plications (through
a storage channel, for example) are cur- rently viable vectors for
leaking sensitive data to adver- saries. It is even possible to
leverage other “blessed” ap- plications on the phone to act as a
carrier for such informa- tion (by invoking a web-browser with
an encoded URL, for example). Thus we are interested in
building a unified ar- chitecture for controlling access to sensor
data, and limiting what information can be gleaned from the
user’s environ- ment unless he or she is making use of
legitimate appli- cations. We are currently building a software
prototype of one instance of sensory malware to demonstrate the
reality of the threat, and to better understand defensive techniques
to limit such malware.

We aim to study types of sensory malware that are stealthy and
thus use few resources on the mobile device. For ex- ample,
speech-based malware may use several heuristics to target analysis
at only specific portions of the audio sample. Such targeted
analysis can drastically reduce the amount of resources needed to
analyze audio samples, thus decreasing

the observability of such malware. To conserve power, such
malware can also target its offline processing to when the
mobile device is connected to a power source for charging. Under
such circumstances the malware uses few precious resources and
does not detract from the user’s experience. Speech malware of
this type may even operate using more general “profiles” that
tune the malware to recognize sev- eral different situations, or
contexts, such as a recognized phone number that is dialed.
Based on the context, the speech malware can, for example,
detect a credit card cus- tomer service line and target analysis to
credit card number extraction. Calls to financial institutions
such as banks of- ten require portions of the user’s social
security number, which could be extracted similarly. Such
profiles can make use of other clues such as audio or video
triggers to better target surveillance and transmit specific
information.

To counter such threats, therefore, we need a framework that is
better equipped to deal with sensory malware threats. Research is
needed to understand the threat space of sen- sory malware, so
that effective defenses can be deployed. As mentioned earlier,
existing solutions are unable to deal with situations in which
malware communicates through covert channels, and thus such
work must also take into ac- count anomalous resource usage to
detect such covert chan- nels. Being low-powered devices makes
the job of defen- sive software much more challenging, and thus
lightweight detection techniques are necessary. It is even
possible that the mobile platform can leverage computation in
the cloud for “outsourced intrusion detection,” which might
strike a tradeoff between the time to detection and power
consump- tion.

4.3. Side-channel detection and mitigation

It is well known that the contents of encrypted traffic can be
disclosed by its attributes observable to a eavesdrop- per, for
example, packet sizes, sequences, inter-packet tim- ings. Such
attributes, often referred to as side-channel in- formation, often
pose a grave threat to the confidential- ity of the
communication under the protection of cryp- tographic
protocols. Side-channel leaks have been ex- tensively studied
for decades, in the context of secure shell (SSH) [27],
video-streaming [26], voice-over-IP (VoIP) [37], web
browsing and others. As an example, a line of research
conducted by various research groups stud- ied anonymity issues
in encrypted web traffic. It has been shown that because each
web page has a distinct size, and usually loads some resource
objects (e.g., images) of differ- ent sizes, the attacker can
fingerprint the page so that even when a user visits it through
HTTPS, the page can still be re-identified [9, 29]. This
vulnerability is known to be a serious concern for anonymity
channels such as Tor [31],

215

which are expected to hide users’ page-visits from eaves-
droppers.

A sensor grid system can also be highly susceptible to the threat
of side-channel leaks. As described before, such a system
collects data through distributed sensors, processes it within a
cloud, and delivers the data and related services to end clients.
This highly distributed computing paradigm is fraught with the
hazards of information leaks, when con- fidential data are
transmitted between the sensors and the cloud, and between the
cloud and the clients, despite the protection of the state-of-the-
art cryptographic techniques. Such privacy risks are described as
follows:

Wireless Sensor Communication. The wireless channel
connecting the sensors to the cloud is extremely vulnerable to the
eavesdropping attack. The sensitive data delivered through this
channel can be easily intercepted and analyzed by the adversary.
Though encryption can prevent a direct disclosure of the data, it
does not cover the side-channel in- formation, which, under some
circumstances, can be used to infer the content of the sensitive
data. As an example, collaborating with Microsoft Research
(MSR), we recently discovered that even for the organization
deploying up-to- date WPA/WPA2 Wi-Fi encryptions, it
cannot prevent an unauthorized party from collecting the query
words its em- ployees enter into Google/Yahoo/Bing Search.
This is be- cause the suggestion-list features of these search
engines makes the sizes of the packets generated in response to
different query letters distinct. As a result, the adversary who
observes these packets, despite not gaining access to their
contents, can map their sizes to the different letters one types
into the search engines.

Cloud–consumer Communication. The encrypted data
exchanged between the cloud and its customers are equally
subject to the side-channel threat. Cloud computing is built upon
the infrastructure of software as a service (SaaS), through
which web applications are delivered as services to web clients.
Unlike its desktop counterpart, a web applica- tion is split into
browser-side and server-side components. As a result, a subset of
its internal information flows (i.e., data flows and control
flows) are inevitably exposed on the network, which reveal
application states and state transi- tions. Our collaborative
research with MSR reveals that the side-channel weakness of
SaaS is fundamental, which can be used to infer a large amount
of information from many high-profile, extremely popular
web applications. The sen- sor grid system also faces the same
threat: it offers services and data to its customers through web
applications, whose side-channel information could lead to the
disclosure of the data, even when the communication has been
protected by the cryptographic protocols like HTTPS.

The seriousness of the side-channel threat varies from case to case,
depending on the features of the data and the way in which they
are transmitted. An important research, there- fore, becomes
how to design a systematic way to detect the side-channel
vulnerabilities within sensor/cloud inter- actions and the web
applications that serve the sensor grid’s customers. A possible
solution is to use information-flow analysis [28], when the
source code of related software is available. The software
developer can first label taint sources within a program, e.g.,
variables that contain sen- sitive user data, and then run a
detection tool to analyze its source code and track the propagation
of taint data through both data flows and control flows.
Whenever taint data are found to be transmitted across the
network between the ap- plication’s client and server
components, an information- leak evaluation is performed to
understand whether side- channel information, such as packet
sizes, sequences and timings, can be linked back to the content of
the data. When the source code is unavailable, we can use the
techniques like fuzz testing to evaluate sensor-cloud interactions
and cloud-client interactions on different data sets, to identify
the correlation between the attributes of encrypted traffic and
the content of the data.
Control of side-channel leaks can also be highly nontriv- ial,
particularly when web applications are involved. Our
collaborative research with MSR reveals that conventional
defenses like packet padding and adding noise can be less
effective and more costly than expected, without con- sidering
the specific properties of individual applications. This problem
comes from the difficulty in hiding the side- channel
information related to state transitions specific to each
application, and the limited information an application has about
the attributes of the web traffic it generates, due to the extension
or compression made by the web server. This vulnerability
calls for a change in the current way of developing web
applications to include the collaborations among multiple
related parties: as an example, we could let the software
developer specify the policies for padding packets at different
program states, and the web-server ven- dor enforce the policies
within the web server that actually generates the packets.

5. RELATED WORK

Kapadia et al. [16] list several security challenges for sim- ilar
smartphone based sensing environments. While their work
focuses mainly on an opportunistic sensing model where
sensors are tasked for readings sent back as reports to other
users or applications in urban sensing environ- ments, we
focus on environments where sensors push mas- sive amounts of
data to a compute cloud. We now list re- lated work for the
three specific problems discussed in Sec- tion 3..

216

5.1. Mobile phone security and privacy

There has been some work in using sensors to establish context
for different purposes on smartphones. The work of Peddemors
et al. [24] uses past networking and sensor events to predict
future network events. They give exam- ples of predicting
network availability. The ability to pre- dict events is distinct
from deviating from normal or pre- scribed behavior.
Nonetheless they use the prediction of being at home or work,
and for durations. Therefore, the system should be considered.
Of particular problem is the complexity of computing predicted
events, which would be too slow in our scenario.

The work of Tanviruzzaman et al. [30] is most similar to that
discussed here. In their work, they suggest the use of a hierarchy
of sensor information to establish authentica- tion, and show
some work on using accelerometer data on an iPhone to produce
a biometric that can be used to au- thenticate to the phone.

Other work by Jong-Kwon and Hou [18] has predicted user
behavior and movements from the perspective of a large WiFi
network, for the purposes of assigning scarce resources
appropriately. However, we do not rely on one overarching
network for our positioning system. Yet, the possibility exists
that such work could be used to have the network aid in
performing risk analysis.

The field of smartphone security and the security of
cellphone infrastructure is now being widely researched.
Traynor [32] gives a short overview of infrastructure pos-
sibilities and problems. Traynor et al. [34] consider the
potential effect of a malnet of smartphones on the cellular
network’s infrastructure. Enck et al. [13] discuss exploits in
the SMS-network infrastructure, and Traynor et al. [33] discuss
mitigation strategies for such exploits.

Relating to mobile phone security, there has been recent in- terest
in maintaining their security. The potential to attack these
devices, and that they would suffer similar security fates to
personal computers, such as viruses and malware, has been long
understood [8]. Specific approaches to con- sidering defense
against such software on smartphones has been considered by
Cheng et al. [7]. The specific strengths and weaknesses of the
Android security model are explored by Ongtang et al. [23]. The
ability to securely determine if software downloads are trusted
on such devices is explored by Enck et al.[11]. Enck et al.
[12] give an introduction to understanding the Android security
model specific to the smartphones we are using for
implementation.

5.2. Sensory malware threats and defenses

As mentioned earlier, researchers are already investigating attacks
and defenses related to sensory malware [5]. Xu et al. [38]
provide a proof-of-concept implementation of video-capture
malware. Their malware captures video and transmits this video
after suitable compression to lessen the burden on the network.
These malware do not appear to be stealthy enough because of the
large amounts of video data transferred on the network. We thus
seek to develop and evaluate solutions where malware is even
more stealthy, by limiting the network communication. In fact,
we would like to study situations where network access is
limited com- pletely using techniques such as Kirin, a
lightweight secu- rity certification mechanism for applications
on Android. Even in cases where a system such as Saints [23]
is used to control the interaction between applications, we
would like to study the use of covert channels to circumvent
such mechanisms.

Detection techniques such as behavioral detection of mal- ware
by monitoring system calls [3], and power consump- tion [20]
already attempt to detect malware on mobile plat- forms. We
aim to study the limits of such detection tech- niques since
resources are limited, and how malware can circumvent
detection because of the inherent limitations on the detection
techniques.

5.3. Side-channel information leaks

Side-channel leaks have been known for decades: a doc-
umented attack has been dated back to 1943 [22]. The threat
has been extensively studied in different contexts: information
is found to be exposed through electromag- netic signals (e.g.,
keystroke emanation [35]), shared mem- ory/registers/files
between processes (e.g., the recent dis- covery of the side-
channel weakness in Linux process file systems [39]), CPU
usage metrics, etc. Recently, such in- formation leaks are found
to threaten cloud computing plat- forms like Amazon EC2 [25].

Encrypted communications are often subject to the side-
channel attacks, which leverage such information as packet
timings and sizes to infer the contents of encrypted data.
Prominent examples include Brumley et al.’s attack on the
RSA secret keys used in OpenSSL [4], Song et al.’s work on
keystroke inference from SSH [27], Wright et al. and others’
analysis of phrases and sentences from the variable- bit-rate
encoding in VoIP [37], and Saponas et al.’s detec- tion of movie
titles in an encrypted video-streaming system (Slingbox Pro)
[26]. Encrypted web communication has also been found to be
vulnerable to the side-channel attack. Prior research shows that a
network eavesdropper can often

217

Threat Danger Mitigation
Sensor Ab-
duction

Malicious Sensor
Data

Detection of

Side-channel

leakage

Communication en-
cryption is circum-

by of
packet sizes&
ing

Flow-analysis
padding

Sensor mal-
ware

theft
control
els

fingerprint web pages using their side-channel characteris- tics
to identify the pages the victim visits. This idea first appeared
in the personal communication among Wagner, Schneier and
Yee in 1996 [36], and was later demonstrated in a course project
report in 1998 by Cheng et al. [6]. Sun et al. [29] and Danezis
[9] both indicated the impacts of the attack on anonymity
channels like Tor, MixMaster and WebMixes. It was also
discussed by Bissias et al. [2], who studied WPA and IPSec,
instead of SSL/TLS in other re- search.

6. SUMMARY

We have outlined a high-level architecture that should both be
realizable, and provide for the ability to perform on- demand
analysis and processing of data from a large num- ber of
heterogeneous and globally placed sensors. The net- work is
structured so that it is feasible to consider real or near-real time
processing and interpretation of the data with appropriate
resources. However, challenges remain in de- termining how to
assure privacy, integrity and provenance of the data from its
collection, through its life-cycle of pro- cessing to final
consumption. The authors’ belief is that the largest research
questions based on our model lie at the tail ends of the data life-
cycle; namely, there are open research questions at data-
collection by smartphone sensors and in the final delivery of a
processed data-consumable. Specific directions aimed at solving
these problems have been dis- cussed, along with initial
development of solutions. We summarize this in Table 1

Table 1. Summary of the Three Threats, Associated
Dangers and Mitigation Strategies We Actively Address.

REFERENCES

[1] Identifying users of portable devices from gait pattern with

accelerometers, volume 2, 2005.

[2] G.D. Bissias, M. Liberatore, D. Jensen, and B.N. Levine.

“Privacy vulnerabilities in encrypted http streams,” In pro-
ceedings of Privacy Enhancing Technologies Workshop (PET
2005), pages 1–11, 2005.

[3] A. Bose, X. Hu, K.G. Shin, and T. Park. “Behavioral de-

tection of malware on mobile handsets,” In MobiSys ’08:
Proceeding of the 6th international conference on Mobile sys- tems,
applications, and services, pages 225–238, New York, NY, USA,
2008. ACM.

[4] D. Brumley and D. Boneh. “Remote timing attacks are prac-

tical,” In proceedings of the 12th USENIX Security Sympo-
sium, pages 1–14, 2003.

[5] L. Cai, S. Machiraju, and H. Chen. “Defending against

sensor-sniffing attacks on mobile phones,” In MobiHeld ’09:
proceedings of the 1st ACM workshop on Networking, sys-
tems, and applications for mobile handhelds, pages 31–36, New
York, NY, USA, 2009. ACM.

[6] H. Cheng and R. Avnur. “Traffic analysis of SSL encrypted web

browsing,” http://citeseerx.ist.psu.edu/
viewdoc/download?doi=10.1.1.3.1201\&rep=
rep1\&type=url\&i=0, 1998.

[7] J. Cheng, S.H.Y. Wong, H. Yang, and S. Lu. “Smartsiren:

virus detection and alert for smartphones,” In MobiSys
’07: proceedings of the 5th international conference on Mo-
bile systems, applications and services, pages 258–271, New
York, NY, USA, 2007. ACM.

[8] D. Dagon, T. Martin, and T. Starner. “Mobile phones as com-

puting devices: The viruses are coming!” IEEE Pervasive
Computing, 3(4):11–15, 2004.

[9] G. Danezis. “Traffic analysis of the http protocol

over TLS,” http://homes.esat.kuleuven.be/
˜gdanezis/TLSanon.pdf, as of Dec 2009.

[10] W. Enck, M. Ongtang, and P. McDaniel. “On lightweight

mobile phone application certification,” In CCS ’09: pro-
ceedings of the 16th ACM conference on Computer and com-
munications security, pages 235–245, New York, NY, USA,
2009. ACM.

[11] W. Enck, M. Ongtang, and P. McDaniel. “On lightweight

mobile phone application certification,” In CCS ’09: pro-
ceedings of the 16th ACM conference on Computer and com-
munications security, pages 235–245, New York, NY, USA,
2009. ACM.

[12] W. Enck, M. Ongtang, and P.D. McDaniel. “Understand- ing

android security,” IEEE Security & Privacy, 7(1):50–57,
2009.

[13] W. Enck, P. Traynor, P. McDaniel, and T. La Porta. “Exploit- ing

open functionality in sms-capable cellular networks,” In CCS
’05: proceedings of the 12th ACM conference on Com- puter and
communications security, pages 393–404, New York, NY, USA,
2005. ACM.

[14] K. Farrahi and D.G. Perez. “Learning and predicting multi-

modal daily life patterns from cell phones,” In J.L. Crowley, Y.
Ivanov, C.R. Wren, D. Gatica-Perez, M. Johnston, and R.
Stiefelhagen, editors, ICMI, pages 277–280. ACM, 2009.

http://citeseerx.ist.psu.edu/
http://citeseerx.ist.psu.edu/
http://homes.esat.kuleuven.be/

218

[15] T. Iso and K. Yamazaki. “Gait analyzer based on a cell phone with a single three-axis accelerometer,” In MobileHCI
’06: proceedings of the 8th conference on Human-computer
interaction with mobile devices and services, pages 141–144,
New York, NY, USA, 2006. ACM.

[16] A. Kapadia, D. Kotz, and N. Triandopoulos. “Opportunis- tic Sensing: Security Challenges for the New Paradigm,” In The First International

Conference on Communication Sys- tems and Networks (COMSNETS), January 2009.

[17] C. Karlof, N. Sastry, and D. Wagner. “Tinysec: a link layer security architecture for wireless sensor networks,” In Sen- Sys ’04: proceedings of the
2nd international conference on Embedded networked sensor systems, pages 162–175, New York, NY, USA, 2004. ACM.

[18] J.K. Lee and J.C. Hou. “Modeling steady-state and tran- sient behaviors of user mobility: formulation, analysis, and application,” In MobiHoc

’06: proceedings of the 7th ACM international symposium on Mobile ad hoc networking and computing, pages 85–96, New York, NY, USA, 2006.
ACM.

[19] P. Levis, S. Madden, J. Polastre, R. Szewczyk, A. Woo, D.

Gay, J. Hill, M. Welsh, E. Brewer, and D. Culler. “TinyOS:
An operating system for sensor networks,” In Ambient Intel-
ligence. Springer Verlag, 2004.

[20] L. Liu, G. Yan, X. Zhang, and S. Chen. “Virusmeter: Pre- venting your cellphone from spies,” In E. Kirda, S. Jha, and D. Balzarotti, editors,

RAID, volume 5758 of Lecture Notes in Computer Science, pages 244–264. Springer, 2009.

[21] M. Luk, G. Mezzour, A. Perrig, and V. Gligor. “Minisec: a secure sensor network communication architecture,” In IPSN
’07: proceedings of the 6th international conference on Infor-
mation processing in sensor networks, pages 479–488, New
York, NY, USA, 2007. ACM.

[22] Wired News. “Declassified NSA document reveals the secret history of tempest,” http://www.wired.com/

threatlevel/2008/04/nsa-releases-se.

[23] M. Ongtang, S. E. McLaughlin, W. Enck, and P. D. Mc- Daniel. “Semantically rich application-centric security in An- droid,” In ACSAC, pages
340–349. IEEE Computer Society,
2009.

[24] A. Peddemors, H. Eertink, and I. Niemegeers. “Predicting mobility events on personal devices”, Pervasive and Mobile Computing, Special issue on

Human Behaviour in Ubiquitous Environments, To Appear.

[25] T. Ristenpart, E. Tromer, H. Shacham, and S. Savage. “Hey, you, get off of my cloud: exploring information leakage in third-party compute
clouds,” In CCS ’09: proceedings of the 16th ACM conference on Computer and communications security, pages 199–212, New York, NY, USA,
2009. ACM.

[26] T.S. Saponas, J. Lester, C. Hartung, S. Agarwal, and T.

Kohno. “Devices that tell on you: privacy trends in con-
sumer ubiquitous computing,” In SS’07: proceedings of 16th
USENIX Security Symposium on USENIX Security Sympo-
sium, pages 1–16, Berkeley, CA, USA, 2007. USENIX As-
sociation.

[27] D.X. Song, D. Wagner, and X. Tian. “Timing analysis of keystrokes and timing attacks on SSH,” In SSYM’01: pro- ceedings of the 10th

conference on USENIX Security Sym- posium, pages 25–25, Berkeley, CA, USA, 2001. USENIX Association.

http://www.wired.com/
http://www.wired.com/

219

[28] G.E. Suh, J.W. Lee, D. Zhang, and S. Devadas. “Secure program execution via dynamic information flow tracking,” In ASPLOS-XI:
proceedings of the 11th international con- ference on Architectural support for programming languages and operating systems, pages 85–96, 2004.

[29] Q. Sun, D.R. Simon, Y.M. Wang, W. Russell, V.N. Padman- abhan, and L. Qiu. “Statistical identification of encrypted web browsing traffic,” In SP

’02: proceedings of the 2002 IEEE Symposium on Security and Privacy, page 19, Washington, DC, USA, 2002. IEEE Computer Society.

[30] M. Tamviruzzaman, S.I. Ahamed, C.S. Hasan, and C.
O’brien. “ePet: when cellular phone learns to recognize its
owner,” In SafeConfig ’09: proceedings of the 2nd ACM
workshop on Assurable and usable security configuration,
pages 13–18, New York, NY, USA, 2009. ACM.

[31] The Tor Project. Tor: anonymity online. http://www. torproject.org/, 2009.

[32] P. Traynor. “Securing cellular infrastructure: Challenges and opportunities,” IEEE Security & Privacy, 7(4):77–79,

2009.

[33] P. Traynor, W. Enck, P. McDaniel, and T.L. Porta. “Miti- gating attacks on open functionality in sms-capable cellular networks,” In MobiCom

’06: proceedings of the 12th annual international conference on Mobile computing and network- ing, pages 182–193, New York, NY, USA, 2006.
ACM.

[34] P. Traynor, M. Lin, M. Ongtang, V. Rao, T. Jaeger, P.D. Mc- Daniel, and T.F. La Porta. “On cellular botnets: measuring the impact of malicious devices

on a cellular network core,” In E. Al-Shaer, S. Jha, and A.D. Keromytis, editors, ACM Con- ference on Computer and Communications Security,
pages
223–234. ACM, 2009.

[35] M. Vuagnoux and S. Pasini. “Compromising electromag- netic emanations of wired and wireless keyboards,” In pro- ceedings of the 18th USENIX

Security Symposium, pages 1–
16, Montreal, Canada, 2009. USENIX Association.

[36] D. Wagner and B. Schneier. “Analysis of the SSL 3.0 pro- tocol,” In WOEC’96: proceedings of the Second USENIX Workshop on Electronic

Commerce, pages 4–4, Berkeley, CA, USA, 1996. USENIX Association.

[37] C.V. Wright, L. Ballard, S.E. Coull, F. Monrose, and G.M.
Masson. “Spot me if you can: Uncovering spoken phrases in
encrypted voip conversations,” In SP ’08: proceedings of the
2008 IEEE Symposium on Security and Privacy, pages 35–
49, Washington, DC, USA, 2008. IEEE Computer Society.

[38] N. Xu, F. Zhang, Y. Luo, W. Jia, D. Xuan, and J. Teng. “Stealthy video capturer: a new video-based spyware in 3g smartphones,” In WiSec ’09:

proceedings of the second ACM conference on Wireless network security, pages 69–78, New York, NY, USA, 2009. ACM.

[39] K. Zhang and X. Wang. “Peeping Tom in the Neighbor- hood: Keystroke Eavesdropping on Multi-user Systems,” In USENIX Security ’09:

proceedings of the 18th USENIX Se- curity Symposium, Montreal, Canada, 2008. USENIX Asso- ciation.

http://www/

220

Appendix B: Overview of Status of Clouds

1. Introduction
The importance of simulation is well established with large programs, especially in Europe, USA, Japan and China supporting it in a variety of
academic and government initiatives. The requirements and consequent architecture of large scale supercomputers is well understood although
there are important challenges in meeting performance goals seen by international drives to reach first petascale (starting 15 years ago) and now
exascale performance. Performance on closely coupled parallel simulations drives both hardware (low latency high bandwidth networks, high
flop CPU’s) and software that can exploit it. Grids covered both the linkage of such computers and broader computing facilities. This has
spurred rise in high throughput computing, workflow and service oriented architectures (Software as a service); concepts of lasting value. Major
data intensive applications like LHC data analysis highlighted the many important pleasingly parallel applications that these were a major driver
of Grid and many task systems. Now the strong commercial interest is driving clouds and we can ask how they fit in? Clouds offer on-demand
service (elasticity), economies of scale from sharing, a plethora of new jobs making clouds attractive for students & curricula and several
challenges including security. Clouds lie in between grids and HPC supercomputers in their synchronization costs so all the high throughput
jobs run on grids should perform well on clouds. In this paper, we suggest that there is a class of explicitly parallel jobs that do not need the
highest performance interconnect and will have good performance and good user experience on clouds. We describe this in an application
analysis in section2. Of course, HPC supercomputers can do “all applications” subject to reservations about limited I/O (disk) capabilities.
However, they are overkill for many problems and it seems better to reserve such machines for the high-end applications that require them and
use commodity cloud environments when appropriate.
We stress that clouds offer not just a new humongous data center architecture but striking new software models spurred by the competitive
Platform as a Service PaaS market. In section 3 we focus on the possibilities suggested by MapReduce.

The term cloud is being in many ways so let’s first define a public data center model that describes the major offerings of Microsoft, Amazon
and Google. Their data centers are composed of containers of racks of servers which number between 10,000 and a million. Each server has 8
or more cpu cores and around 64GB of shared memory and one or more terabyte local disk drives. GPUs or other accelerators are not common.
There is a network that allows messages to be routed between any two servers, but the bisection bandwidth of the network is very low and the
network protocols implement the full TCP/IP stack so that every server can be a full Internet host with optimized traffic between users on the
Internet and the servers in the cloud. In contrast supercomputer networks minimize interprocessor latency and maximize bisection bandwidth.
Application data communications on a supercomputer generally take place over specialized physical and data link layers of the network and
interoperation with the Internet is usually very limited.

2. A Cloud Defined

Each server in the data center is host to one or more virtual machines and the cloud runs a “fabric controller” which manages large sets of VMs
fort scheduling and fault tolerance across the servers and acts as the operating system for the data center. An application running on the data
center consists of one or more complete VM instances that implement a web service. The basic unit of scheduling involves the deployment of
one or more entire operating systems, which is much slower than installing and starting an application on a running OS. Most large scale cloud
services are intended to run 24x7, so this long start-up time is negligiblen although running a “batch” application on a large number of servers
can be very inefficient because of the long time it may take to deploy all the needed VMs. Data in a data center is stored and distributed over
many spinning disks in the cloud servers. This is a very different model than found in a large supercomputer, where data is stored in network
attached storage. Local disks on the servers of supercomputers are not frequently used for data storage.

There are more types of clouds than is described by this public data center model. For example, to address a technical computing market,
Amazon has introduced a specialized HPC cloud that uses a network with full bisection bandwidth and supports GPGPUs. The major
commercial clouds offer higher level capabilities -- commonly termed Platform as a Service PaaS – built on a basic scalable IaaS Infrastructure
as a Service. For technical computing, important platform components include tables, queues, database, monitoring, roles (Azure), and the cloud
characteristic of elasticity (automatic scaling). MapReduce, which is discussed below, is another major platform service offered by these
clouds. Currently the different clouds have different platforms although the Azure and Amazon platforms have many similarities. The Google
Platform is targeted at scalable web applications and not as broadly used in technical computing community as Amazon or Azure, but it has
been used on some very impressive projects. We expect more academic interest in PaaS as the value of platform capabilities become clearer.

“Private clouds” are small dedicated data centers that have various combinations of the properties above and typically use one of the four major
open source (academic) cloud environments Eucalyptus, Nimbus, OpenStack and OpenNebula (Europe) which focus at the IaaS level with
interfaces similar to Amazon. FutureGrid is an NSF research testbed for cloud technologies and it operates a grid of cloud deployments running
on modest sized server clusters with support for all four academic IaaS. Private clouds do not fully support the interesting platform features of
commercial clouds. Open source Hadoop and Twister offer MapReduce features similar to those on commercial cloud platforms and there are
open source possibilities for platform features like queues (RabbitMQ, ActiveMQ) and distributed data management system (Apache
Cassandra). However, there is no complete packaging of PaaS features available today for academic or private clouds. Thus interoperability

221

Fig 1: Forms of Parallelism and their application on Clouds and Supercomputers

between private and commercial clouds is currently only at IaaS level where it is possible to reconfigure images between the different
virtualization choices and there is an active cloud standards activity. The major commercial virtualization products such as VMware and Hyper-
V are also important for private clouds but also do not have built-in PaaS capabilities.

3. Mapping Applications to Clouds
Previously we discussed mapping applications
to different hardware and software in terms
of 5 “Application Architectures”[1] mainly
aimed at simulations and extended it to data
intensive computing [2, 3]. One category,
synchronous, was popular 20 years ago but is
no longer significant. It describes applications
that can be parallelized with each
decomposed unit running the identical
machine instruction at each time. Another
category, asynchronous is typically not
important in practical computational science
and engineering. There was also a category of
metaproblems, which describe the domain
supported by workflow with coarse grain
interlinked components. The other categories
were pleasingly parallel (essentially
independent) and loosely (bulk) synchronous
which are critical application classes that
possibly combined in metaproblems describe
the bulk of eScience. As mentioned above,

pleasingly parallel problems whether parameter searches for simulations or analysis of independent data chunks (as in LHC events) are very
suitable for clouds. Loosely synchronous problems include partial differential equation solution and particle dynamics and after parallelization,
consist of a succession of compute-communication phases.

Clouds naturally exploit parallelism from multiple users or usages. The Internet of things will drive many applications of the cloud. It is
projected that there will soon be 50 billion devices on the Internet. Most will be small sensors that send streams of information into the cloud
where it will be processed and integrated with other streams and turned into knowledge that will help our lives in a million small and big
ways. It is not unreasonable for us to believe that we will each have our own cloud-based personal agent that monitors all of the data about
our life and anticipates our needs 24x7. The cloud will become increasing important as a controller of and resource provider for the Internet
of Things. As well as today’s use for smart phone and gaming console support, “smart homes” and “ubiquitous cities” and the current AFRL
project build on this vision. We expect a growth in these areas with emergence of cloud supported/controlled robotics.

Looking at data intensive applications we can re-examine the pleasingly parallel and loosely synchronous category as shown in figure 1 above.
This introduces map-only (identical to pleasing parallel), and separates off MapReduce and Iterative MapReduce classes from the large loosely
synchronous class whose remaining members are the last sub category d) on the right of figure 1. This area requires HPC architectures with low
latency high bandwidth interconnect. The MapReduce class b) consists of a single map (compute) phase followed by a reduction phase such as
gathering together the results of queries following an Internet search or LHC data analysis (histogram) of different datasets. As implemented in
Hadoop, one would normally communicate between Map and Reduce phases by writing and reading files. This leads to excellent fault tolerance
and dynamic scheduling features. At SC11, there was some buzz in favor of data analytics and Hadoop but that this is not clearly reasonable as
many data analysis (mining) applications involve kernels that do not fit Map only or MapReduce categories. Many algorithms including those
with linear algebra (needing to be parallelized) fall into the category c) Iterative MapReduce in figure 1. Problems in this category consist of
multiple (iterated) Map phases followed by reduction or collective operation communication phases. They do not have the many local
communication messages typically needed in parallel simulations shown in fig 1d) but rather larger collective operations mixing compute and
communication. We do not expect traditional MapReduce to be broadly useful but the Iterative extension is much more promising but the
breadth of its applicability needs much more study. Iterative MapReduce is a programming model that can have the performance of MPI and the
fault tolerance and dynamic flexibility of the original MapReduce. Open source Java Twister[4, 5] and Twister4Azure[6, 7] have been released
as an Iterative MapReduce framework. Figure 2 compares Twister4Azure with Amazon and a classic HPC configuration on a map-only case
while figure 3 shows Azure4Twister having a smooth execution structure and modest communication overhead (the uncolored gaps) on a
parallel data analytics algorithm. We expect the commonly used expectation maximization (EM) approach used for example in
Multidimensional Scaling MDS application of fig 3, to be particularly attractive for iterative MapReduce as EM can have large
compute/communication ratios. Category c) extends the clear value of clouds in the categories a) and b) of figure 1.

3. CLOUDS AND REPOSITORIES

222

It is traditional to set up data repositories for large observational projects. Examples are EOSDIS (Earth Observation), GenBank (Genomics),
NSIDC (Polar science), and IPAC (Infrared astronomy). The fourth paradigm implies an increase in data mining (analytics) based on such data
and this implies repositories need computing as well as data. We also expect that one should bring the computing to the data and not vice versa.
Thus we do not expect researchers to download large petabyte data samples to their local cluster; rather we expect repositories to be associated
with cloud resources (as cheapest and elastic) that allow data analytics on demand. Again further work is needed here. Some questions include
the data storage architecture (database or NOSQL) and how one supports mining of multidisciplinary science involving data from different
fields stored in different clouds.

4. Cloud Research Issues
We list areas where is substantial research activity and where we can expect major changes.
• New applications such as Biomedical and bioinformatics applications where cloud architecture brings special challenges in the area of

privacy (see later). Furthermore, Clouds have been attractive platforms for these applications as they are emerging big data areas and there
is less history in using existing platforms.

• Sensor webs studied in this project are another emerging area where elastic nature of Clouds is well suited for the often bursty nature of
sensor data.

• Big data applications based on new MapReduce or Iterative MapReduce environments are attractive on Clouds and result in broad research
areas include addressing both programming and storage challenges. Latter include SQL and NOSQL models and the reconciliation of
distributed data and centralized cloud computing

• Scheduling models optimized for MapReduce and for other Cloud usage modes such as scalable sensor webs (Sensor Grids or Clouds)
where one has Clouds controlling and supporting a distributed Grid of sensors.

• Optimizing the run time features and performance for MapReduce and Iterative MapReduce. This includes new reduction primitives,
polymorphic implementation on different systems with for example, exploitation of high performance networks as in classic MPI research.

• Support of federation of clouds and cloud bursting (typically the linkage of private and public Clouds) and on-demand cloud federation.
• New storage models such as data parallel HDFS and Hbase (Bigtable).
• NOSQL table structures such as Cassandra and commercial approaches such as Amazon SimpleDB and Azure Table.
• Economic models for an ecosystem with multiple cloud systems and CI.
• Research on Cloud software stacks. There is research at all levels of the software stack with two rather different emphasis areas. Research

on systems that provide basic virtual machine provisioning, deployment and management. This includes Eucalyptus, Nimbus, OpenStack
and OpenNebula with virtual networking as a distinct activity. At the other end are integration of capabilities to provide rich Platform-as-a-
Service as offered by major commercial systems. Concepts such as appliances provide novel ways of delivering these capabilities.

• Clouds tend to achieve scalability by allowing faults. Research is needed on both, how to expose faults to users as well as services to build
fault tolerant applications. Most research in HPC tends to be on forbidding faults; however Clouds highlight a different philosophy with
resilient applications running on faulty systems.

• Green IT is naturally synergistic with Clouds and related research includes examining the impact of Cloud features on power use, including
the cost of powering idle machines supporting elastic clouds as well as a application aware approaches to power management.

Security policies and mechanisms: Clouds tend to emphasis the need for quality security mechanisms due to the sharing of storage and
computing. One research area investigates hybrid architectures with algorithms broken into two; a low cost but non privacy preserving part
running on an intrinsically secure private clouds, and a time consuming but privacy preserving part executing on a public cloud. Genomic data
(human) and other health records are demanding here. The concept of differential privacy and health data anonymization is an active research
topic. As well as basic security for computing and storage there is research on privacy preserving search with the elegant but time consuming
concept of Homomorphic Encryption which allows encrypted data to be searched by encrypted queries.

Standards: There are many important standard activities, from those specifying the basic virtual machine structure to higher-level standards
defining the PaaS environment, for example, queue and table structures. Although there is some support for these standards – such as OCCI
(from OGF) in OpenNebula and OpenStack – this area is still under development. NIST and IEEE are playing leadership roles.

5. References
1) Fox, G.C., R.D. Williams, and P.C. Messina, Parallel computing works! 1994: Morgan Kaufmann Publishers,
2) calculating all Jaliya Ekanayake, Thilina Gunarathne, Judy Qiu, Geoffrey Fox, Scott Beason, Jong Youl Choi, Yang Ruan, Seung-Hee Bae,

and Hui Li, Applicability of DryadLINQ to Scientific Applications. January 30, 2010, Community Grids Laboratory, Indiana University.

Fig 2: A Map Only example pairs sequence distances

Fig 3: Parallel MDS on Azure4Twister showing communication
(white) and two compute map phases

223

3) Judy Qiu, Jaliya Ekanayake, Thilina Gunarathne, Jong Youl Choi, Seung-Hee Bae, Yang Ruan, Saliya Ekanayake, Stephen Wu, Scott
Beason, Geoffrey Fox, Mina Rho, and H. Tang, Data Intensive Computing for Bioinformatics. December 29, 2009.

4) SALSA Group. Iterative MapReduce. 2010 [accessed 2010 November 7]; Twister Home Page Available from:
http://www.iterativemapreduce.org/.

5) J.Ekanayake, H.Li, B.Zhang, T.Gunarathne, S.Bae, J.Qiu, and G.Fox, Twister: A Runtime for iterative MapReduce, in Proceedings of the
First International Workshop on MapReduce and its Applications of ACM HPDC 2010 conference June 20-25, 2010. 2010, ACM.
Chicago, Illinois.

6) Twister for Azure. [accessed 2011 May 21]; Available from: http://salsahpc.indiana.edu/twister4azure/.
7) Thilina Gunarathne, Bingjing Zhang, Tak-Lon Wu, and Judy Qiu, Portable Parallel Programming on Cloud and HPC: Scientific

Applications of Twister4Azure, in IEEE/ACM International Conference on Utility and Cloud Computing UCC 2011. December 5-7, 2011.
Melbourne Australia. http://www.cs.indiana.edu/~xqiu/scientific_applications_of_twister4azure_ucc_17_4.

http://www.iterativemapreduce.org/
http://salsahpc.indiana.edu/twister4azure/

224

Appendix B: Overiew of the Status of Clouds

1. Introduction
The importance of simulation is well established with large programs, especially in Europe, USA, Japan and China
supporting it in a variety of academic and government initiatives. The requirements and consequent architecture of
large scale supercomputers is well understood although there are important challenges in meeting performance goals
seen by international drives to reach first petascale (starting 15 years ago) and now exascale performance.
Performance on closely coupled parallel simulations drives both hardware (low latency high bandwidth networks,
high flop CPU’s) and software that can exploit it. Grids covered both the linkage of such computers and broader
computing facilities. This has spurred rise in high throughput computing, workflow and service oriented architectures
(Software as a service); concepts of lasting value. Major data intensive applications like LHC data analysis
highlighted the many important pleasingly parallel applications that these were a major driver of Grid and many task
systems. Now the strong commercial interest is driving clouds and we can ask how they fit in? Clouds offer on-
demand service (elasticity), economies of scale from sharing, a plethora of new jobs making clouds attractive for
students & curricula and several challenges including security. Clouds lie in between grids and HPC supercomputers
in their synchronization costs so all the high throughput jobs run on grids should perform well on clouds. In this
paper, we suggest that there is a class of explicitly parallel jobs that do not need the highest performance interconnect
and will have good performance and good user experience on clouds. We describe this in an application analysis in
section2. Of course, HPC supercomputers can do “all applications” subject to reservations about limited I/O (disk)
capabilities. However, they are overkill for many problems and it seems better to reserve such machines for the high-
end applications that require them and use commodity cloud environments when appropriate.
We stress that clouds offer not just a new humongous data center architecture but striking new software models
spurred by the competitive Platform as a Service PaaS market. In section 3 we focus on the possibilities suggested by
MapReduce.

The term cloud is being in many ways so let’s first define a public data center model that describes the major
offerings of Microsoft, Amazon and Google. Their data centers are composed of containers of racks of servers which
number between 10,000 and a million. Each server has 8 or more cpu cores and around 64GB of shared memory and
one or more terabyte local disk drives. GPUs or other accelerators are not common. There is a network that allows
messages to be routed between any two servers, but the bisection bandwidth of the network is very low and the
network protocols implement the full TCP/IP stack so that every server can be a full Internet host with optimized
traffic between users on the Internet and the servers in the cloud. In contrast supercomputer networks minimize
interprocessor latency and maximize bisection bandwidth. Application data communications on a supercomputer
generally take place over specialized physical and data link layers of the network and interoperation with the Internet
is usually very limited.

2. A Cloud Defined

Each server in the data center is host to one or more virtual machines and the cloud runs a “fabric controller” which
manages large sets of VMs fort scheduling and fault tolerance across the servers and acts as the operating system for
the data center. An application running on the data center consists of one or more complete VM instances that
implement a web service. The basic unit of scheduling involves the deployment of one or more entire operating
systems, which is much slower than installing and starting an application on a running OS. Most large scale cloud
services are intended to run 24x7, so this long start-up time is negligiblen although running a “batch” application on a
large number of servers can be very inefficient because of the long time it may take to deploy all the needed VMs.
Data in a data center is stored and distributed over many spinning disks in the cloud servers. This is a very different
model than found in a large supercomputer, where data is stored in network attached storage. Local disks on the
servers of supercomputers are not frequently used for data storage.

225

Fig 1: Forms of Parallelism and their application on Clouds and Supercomputers

There are more types of clouds than is described by this public data center model. For example, to address a technical
computing market, Amazon has introduced a specialized HPC cloud that uses a network with full bisection bandwidth
and supports GPGPUs. The major commercial clouds offer higher level capabilities -- commonly termed Platform as
a Service PaaS – built on a basic scalable IaaS Infrastructure as a Service. For technical computing, important
platform components include tables, queues, database, monitoring, roles (Azure), and the cloud characteristic of
elasticity (automatic scaling). MapReduce, which is discussed below, is another major platform service offered by
these clouds. Currently the different clouds have different platforms although the Azure and Amazon platforms have
many similarities. The Google Platform is targeted at scalable web applications and not as broadly used in technical
computing community as Amazon or Azure, but it has been used on some very impressive projects. We expect more
academic interest in PaaS as the value of platform capabilities become clearer.

“Private clouds” are small dedicated data centers that have various combinations of the properties above and typically
use one of the four major open source (academic) cloud environments Eucalyptus, Nimbus, OpenStack and
OpenNebula (Europe) which focus at the IaaS level with interfaces similar to Amazon. FutureGrid is an NSF research
testbed for cloud technologies and it operates a grid of cloud deployments running on modest sized server clusters
with support for all four academic IaaS. Private clouds do not fully support the interesting platform features of
commercial clouds. Open source Hadoop and Twister offer MapReduce features similar to those on commercial cloud
platforms and there are open source possibilities for platform features like queues (RabbitMQ, ActiveMQ) and
distributed data management system (Apache Cassandra). However, there is no complete packaging of PaaS features
available today for academic or private clouds. Thus interoperability between private and commercial clouds is
currently only at IaaS level where it is possible to reconfigure images between the different virtualization choices and
there is an active cloud standards activity. The major commercial virtualization products such as VMware and Hyper-
V are also important for private clouds but also do not have built-in PaaS capabilities.

3. Mapping Applications to Clouds
Previously we discussed mapping
applications to different hardware and
software in terms of 5 “Application
Architectures”[1] mainly aimed at
simulations and extended it to data
intensive computing [2, 3]. One
category, synchronous, was popular
20 years ago but is no longer
significant. It describes applications
that can be parallelized with each
decomposed unit running the
identical machine instruction at each
time. Another category,
asynchronous is typically not
important in practical computational
science and engineering. There was
also a category of metaproblems,
which describe the domain supported

by workflow with coarse grain interlinked components. The other categories were pleasingly parallel (essentially
independent) and loosely (bulk) synchronous which are critical application classes that possibly combined in
metaproblems describe the bulk of eScience. As mentioned above, pleasingly parallel problems whether parameter
searches for simulations or analysis of independent data chunks (as in LHC events) are very suitable for clouds.
Loosely synchronous problems include partial differential equation solution and particle dynamics and after
parallelization, consist of a succession of compute-communication phases.

226

Clouds naturally exploit parallelism from multiple users or usages. The Internet of things will drive many
applications of the cloud. It is projected that there will soon be 50 billion devices on the Internet. Most will be small
sensors that send streams of information into the cloud where it will be processed and integrated with other streams
and turned into knowledge that will help our lives in a million small and big ways. It is not unreasonable for us to
believe that we will each have our own cloud-based personal agent that monitors all of the data about our life and
anticipates our needs 24x7. The cloud will become increasing important as a controller of and resource provider for
the Internet of Things. As well as today’s use for smart phone and gaming console support, “smart homes” and
“ubiquitous cities” and the current AFRL project build on this vision. We expect a growth in these areas with
emergence of cloud supported/controlled robotics.

Looking at data intensive applications we can re-examine the pleasingly parallel and loosely synchronous category as
shown in figure 1 above. This introduces map-only (identical to pleasing parallel), and separates off MapReduce and
Iterative MapReduce classes from the large loosely synchronous class whose remaining members are the last sub
category d) on the right of figure 1. This area requires HPC architectures with low latency high bandwidth
interconnect. The MapReduce class b) consists of a single map (compute) phase followed by a reduction phase such
as gathering together the results of queries following an Internet search or LHC data analysis (histogram) of different
datasets. As implemented in Hadoop, one would normally communicate between Map and Reduce phases by writing
and reading files. This leads to excellent fault tolerance and dynamic scheduling features. At SC11, there was some
buzz in favor of data analytics and Hadoop but that this is not clearly reasonable as many data analysis (mining)
applications involve kernels that do not fit Map only or MapReduce categories. Many algorithms including those with
linear algebra (needing to be parallelized) fall into the category c) Iterative MapReduce in figure 1. Problems in this
category consist of multiple (iterated) Map phases followed by reduction or collective operation communication
phases. They do not have the many local communication messages typically needed in parallel simulations shown in
fig 1d) but rather larger collective operations mixing compute and communication. We do not expect traditional
MapReduce to be broadly useful but the Iterative extension is much more promising but the breadth of its
applicability needs much more study. Iterative MapReduce is a programming model that can have the performance of
MPI and the fault tolerance and dynamic flexibility of the original MapReduce. Open source Java Twister[4, 5] and
Twister4Azure[6, 7] have been released as an Iterative MapReduce framework. Figure 2 compares Twister4Azure
with Amazon and a classic HPC configuration on a map-only case while figure 3 shows Azure4Twister having a
smooth execution structure and modest communication overhead (the uncolored gaps) on a parallel data analytics

algorithm. We expect the commonly used expectation maximization (EM) approach used for example in
Multidimensional Scaling MDS application of fig 3, to be particularly attractive for iterative MapReduce as EM can
have large compute/communication ratios. Category c) extends the clear value of clouds in the categories a) and b) of
figure 1.

3. CLOUDS AND REPOSITORIES

It is traditional to set up data repositories for large observational projects. Examples are EOSDIS (Earth Observation),
GenBank (Genomics), NSIDC (Polar science), and IPAC (Infrared astronomy). The fourth paradigm implies an
increase in data mining (analytics) based on such data and this implies repositories need computing as well as data.

Fig 2: A Map Only example pairs sequence distances

Fig 3: Parallel MDS on Azure4Twister showing communication
(white) and two compute map phases

227

We also expect that one should bring the computing to the data and not vice versa. Thus we do not expect researchers
to download large petabyte data samples to their local cluster; rather we expect repositories to be associated with
cloud resources (as cheapest and elastic) that allow data analytics on demand. Again further work is needed here.
Some questions include the data storage architecture (database or NOSQL) and how one supports mining of
multidisciplinary science involving data from different fields stored in different clouds.

4. Cloud Research Issues
We list areas where is substantial research activity and where we can expect major changes.
• New applications such as Biomedical and bioinformatics applications where cloud architecture brings special

challenges in the area of privacy (see later). Furthermore, Clouds have been attractive platforms for these
applications as they are emerging big data areas and there is less history in using existing platforms.

• Sensor webs studied in this project are another emerging area where elastic nature of Clouds is well suited for the
often bursty nature of sensor data.

• Big data applications based on new MapReduce or Iterative MapReduce environments are attractive on Clouds
and result in broad research areas include addressing both programming and storage challenges. Latter include
SQL and NOSQL models and the reconciliation of distributed data and centralized cloud computing

• Scheduling models optimized for MapReduce and for other Cloud usage modes such as scalable sensor webs
(Sensor Grids or Clouds) where one has Clouds controlling and supporting a distributed Grid of sensors.

• Optimizing the run time features and performance for MapReduce and Iterative MapReduce. This includes new
reduction primitives, polymorphic implementation on different systems with for example, exploitation of high
performance networks as in classic MPI research.

• Support of federation of clouds and cloud bursting (typically the linkage of private and public Clouds) and on-
demand cloud federation.

• New storage models such as data parallel HDFS and Hbase (Bigtable).
• NOSQL table structures such as Cassandra and commercial approaches such as Amazon SimpleDB and Azure

Table.
• Economic models for an ecosystem with multiple cloud systems and CI.
• Research on Cloud software stacks. There is research at all levels of the software stack with two rather different

emphasis areas. Research on systems that provide basic virtual machine provisioning, deployment and
management. This includes Eucalyptus, Nimbus, OpenStack and OpenNebula with virtual networking as a
distinct activity. At the other end are integration of capabilities to provide rich Platform-as-a-Service as offered
by major commercial systems. Concepts such as appliances provide novel ways of delivering these capabilities.

• Clouds tend to achieve scalability by allowing faults. Research is needed on both, how to expose faults to users as
well as services to build fault tolerant applications. Most research in HPC tends to be on forbidding faults;
however Clouds highlight a different philosophy with resilient applications running on faulty systems.

• Green IT is naturally synergistic with Clouds and related research includes examining the impact of Cloud
features on power use, including the cost of powering idle machines supporting elastic clouds as well as a
application aware approaches to power management.

Security policies and mechanisms: Clouds tend to emphasis the need for quality security mechanisms due to the
sharing of storage and computing. One research area investigates hybrid architectures with algorithms broken into
two; a low cost but non privacy preserving part running on an intrinsically secure private clouds, and a time
consuming but privacy preserving part executing on a public cloud. Genomic data (human) and other health records
are demanding here. The concept of differential privacy and health data anonymization is an active research topic. As
well as basic security for computing and storage there is research on privacy preserving search with the elegant but
time consuming concept of Homomorphic Encryption which allows encrypted data to be searched by encrypted
queries.

Standards: There are many important standard activities, from those specifying the basic virtual machine structure to

228

higher-level standards defining the PaaS environment, for example, queue and table structures. Although there is
some support for these standards – such as OCCI (from OGF) in OpenNebula and OpenStack – this area is still under
development. NIST and IEEE are playing leadership roles.

5. References
8) Fox, G.C., R.D. Williams, and P.C. Messina, Parallel computing works! 1994: Morgan Kaufmann Publishers,
9) calculating all Jaliya Ekanayake, Thilina Gunarathne, Judy Qiu, Geoffrey Fox, Scott Beason, Jong Youl Choi,

Yang Ruan, Seung-Hee Bae, and Hui Li, Applicability of DryadLINQ to Scientific Applications. January 30,
2010, Community Grids Laboratory, Indiana University.

10) Judy Qiu, Jaliya Ekanayake, Thilina Gunarathne, Jong Youl Choi, Seung-Hee Bae, Yang Ruan, Saliya
Ekanayake, Stephen Wu, Scott Beason, Geoffrey Fox, Mina Rho, and H. Tang, Data Intensive Computing for
Bioinformatics. December 29, 2009.

11) SALSA Group. Iterative MapReduce. 2010 [accessed 2010 November 7]; Twister Home Page Available from:
http://www.iterativemapreduce.org/.

12) J.Ekanayake, H.Li, B.Zhang, T.Gunarathne, S.Bae, J.Qiu, and G.Fox, Twister: A Runtime for iterative
MapReduce, in Proceedings of the First International Workshop on MapReduce and its Applications of ACM
HPDC 2010 conference June 20-25, 2010. 2010, ACM. Chicago, Illinois.

13) Twister for Azure. [accessed 2011 May 21]; Available from: http://salsahpc.indiana.edu/twister4azure/.
14) Thilina Gunarathne, Bingjing Zhang, Tak-Lon Wu, and Judy Qiu, Portable Parallel Programming on Cloud and

HPC: Scientific Applications of Twister4Azure, in IEEE/ACM International Conference on Utility and Cloud
Computing UCC 2011. December 5-7, 2011. Melbourne Australia.
http://www.cs.indiana.edu/~xqiu/scientific_applications_of_twister4azure_ucc_17_4.pd

http://www.iterativemapreduce.org/
http://salsahpc.indiana.edu/twister4azure/

229

	Introduction
	Publish/Subscribe Architecture
	Sensor Cloud Overview
	High-Level Sensor Cloud Architecture
	How the Data is being published over the Grid?
	What happens to the data after publishing it on the grid?
	Filtering Sensors
	2.5 SensorCloud development: An overview
	Architecture
	Flow of Control
	Filtering and Subscribing
	Calling 3rd Party Computation Resources
	INTRODUCTION TO OPENSTACK

