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1. Introduction 

The data deluge [1] is all around us, and this book describes the impact that this will have on science. 

Data are enabling new discoveries using a new – the fourth [2] -- paradigm of scientific investigation. 

This chapter provides an overview of the diverse nature of the data driving the fourth paradigm with 

the data’s richness of size, variety of characteristics and need for computational processing. New 

fields are being born from for example the study of tweets and the acceleration pace of changes in 

previously quiescent ice sheets. Other fields such as earthquake prediction cry out for new 

observations to improve forecasting. Areas such as genomics and the search for fundamental 

particles at the Large Hadron Collider drive the main stream of the field with many petabytes of data 

derived from advanced instruments. The deluge and its impact are pervasive. 

Data born digital comes in many sizes and shapes and from a vast range of sources – even in our 

daily lives we create a massive amount of digital information about ourselves and our lives. We do 

this by shopping with credit cards, using on-line systems, social networking, sharing videos, 

capturing traffic flow, measuring pollution, using security cameras, and so on. In addition, in 

healthcare we now routinely create digital medical images as part of ‘electronic health record’ or 

EHR.  In this chapter, after looking briefly at the explosion of digital data and devices that are 

impacting our daily lives, we shall focus on some examples of the scientific data deluge. We 

anticipate that some of the tools, techniques and visualizations that are now being used by scientists 

to explore and manage their challenging data sets will find their way into business and everyday life 

– just as was done with creation of the Web by Tim Berners-Lee and the particle physics community. 

In our focus on scientific data, it is important not to ignore the digital aspects of the social sciences 

and the humanities which, although physical artefacts still play an important role in research, are 

becoming increasingly digitally driven. 

Often one talks about the DIKW pipeline from Data to Information to Knowledge to Wisdom. Each 

step can be implemented as a service consuming the previous form and producing the next form of 

“data”. This model is implicit in our discussion and many examples are given in detail in this book. 

Our discussion is confined to the first two steps – data and information but we will follow common 

practice and use the term data generically to describe either step. Scientific research creates its data 

from observations, experimentation and simulation, and of course the outputs of such research 

include files and databases as well as publications in digital form. These textual publications 

increasingly need to be linked to the underlying primary data and this links the discussion of every 

day data including web pages in section 2 with the scientific data in sections 3, 4 and 5. Sections 6 

and 7 note that all this data is useless unless we can label, sustain and process it. 

 



2. An Explosion of Data in our lives 

A recent report by McKinsey Global Institute [3] reports that there are 30 billion pieces of content 

shared on Facebook every month, that the US Library of Congress had collected 235 terabytes of 

data by April 2011 and that 15 out of 17 sectors in the US have more data stored per company than 

stored by the US Library of Congress.  The future only sees this content increasing, with a projected 

growth of 40% in global data generated by commerce and individuals per year.  The McKinsey report  

[3] estimates that globally, enterprises stored more than 7 exabytes of new data on disk drives in 

2010, comprising data generated through interactions with a customer base and data supporting the 

provision of services through the Internet. Individuals stored a similarly impressive amount - more 

than 6 exabytes of new data on home and hand-held devices.  

The report also notes that there are over 30 million networked sensors deployed in the 

transportation, industrial, retail, and utilities sectors and that this number is increasing by more than 

30% per year.   We will return to the issue of sensor data below as we look in more detail at the 

Smart Grid and oceanographic examples of data collection.   

It is a truism to say that the Internet has changed everything - today our lives are often as much 

digital as physical.  Our collaborations and friendships are as likely to be virtual as being based on 

real, physical, face-to-face meetings, and the management of our lives – be it banking, house 

utilities, health, or car insurance – is increasingly dominated by networked systems and on-line 

commerce.   

The August 2011 Verisign report [4] indicates that by the end of second quarter 2011 there will be 

over 215 million domain name registrations - an increase of 8.6% over the previous year. It notes 

that the largest Top Level Domains or TLDs in terms of base size were, in order, .com, .de (Germany), 

.net, .uk (United Kingdom), .org, .info, .nl (Netherlands), .cn (China), .eu (European Union) and .ru 

(Russian Federation). Figure 1 shows the breakdown.  



 

Figure 1: Breakdown of Top Level Domains over 5 quarters [4] 

Using this information, TNW (The Next Web) [5] estimate the number of pages on the web to be 

between 42 billion and 121 billion, a 21 % increase from 2008.  There is an estimate [6] of 45-50 

billion for the indexed world wide web. Verisign also reports that in the last decade, the number of 

Internet users has increased by 500%. It is notable, however, that this growth is not homogenous 

globally. Certain international regions are exploding in their use of the Internet. For example, a 

decade ago, Africa had less than 5 million Internet users: it now has more than 100 million.  The 

report also estimates that in 2010 less than 40% of Internet users were English speaking.  

Social use of the Internet is generating content constantly and in ever-increasing amounts. Search 

Engine Watch [7] includes some interesting statistics on YouTube, the video sharing community site. 

In 2010, more than 13 million hours of video were uploaded to the site; in two months (60 days) 

more video was uploaded than had been created in six decades by the three major networks (ABC, 

CBS, NBC). By May 2011, more than 48 hours of video were being uploaded per minute, and 

YouTube had surpassed 3 billion views per day. 

 
The GreenPeace report “How clean is your data?” [8] reports that 1.2 Zettabytes of digital 

information has been generated by tweets, by Facebook where over 30 billion pieces of content are 



shared each month, emails, YouTube and other social data transfers. The use of these social network 

and related tools is beautifully illustrated by JESS3 [9] in Figure 2. 

 

 

Figure 2: The Geosocial Universe 

Flickr, the photo sharing site now hosts over 4 billion images.  These images are generally family 

photographs, holiday snaps and the like.  However, the increasing demand for digital image storage 

is a growing concern as we turn to healthcare and the medical images that are now a standard part 

of our healthcare systems.  Medical images are created in many forms and for a broad range of 

diagnostic reasons.  They include magnetic resonance imaging (MRI), digital mammography, positron 

emission tomography (PET), and X-ray computed tomography (CT).  Together, these images amount 

to over 20 thousand terabytes of data: a single CT study consists of sixty-four 512 x 512 x 16 bit 

images and  can correspond to as much as tens or even hundreds of megabytes. In the case of 

mammography, the size of digital data collected is approximately 200 megabytes per examination.   

Ninety-six percent of radiology practices in the USA are filmless and Table 1 below illustrates the 

annual volume of data across the types of diagnostic imaging [10]; this does not include cardiology 

which would take the total to over 109 GB (an Exabyte).  

Table 1: Types and Features of Radiology data 



Modality Part B non 

HMO 

All 

Medicare 

All 

Population 

Per 

1000 

persons 

Ave 

study 

size 

(GB) 

Total annual 

data generated 

in GB 

CT 22 million 29 

million 

87 million 287 0.25 21,750,000 

MR 7 million 9 million 26 million 86 0.2 5,200,000 

Ultrasound 40 million 53 

million 

159 million 522 0.1 15,900,000 

Interventional 10 million 13 

million 

40 million 131 0.2 8,000,000 

Nuclear Medicine 10 million 14 

million 

41 million 135 0.1 4,100,000 

PET 1 million 1 million 2 million 8 0.1 200,000 

Xray, total incl. 

mammography  

84 million 111 

million 

332 million 1,091 0.04 13,280,000 

All Diagnostic 

Radiology 

174 million 229 

million 

687 

million 

2,259 0.1 68,700,000 

 

The image repositories required to store medical images are  more complex than those required to 

store photos on Flickr – the data are more complex, there are often diverse user access 

requirements, and a need to search and analyze the data in collections,  according to particulars of 

an individual or to a specific disease type.   The National Cancer Institute maintains a survey of 

biomedical imaging archives [10] but the terabytes listed there are only the tip of the iceberg.  

There are also other considerations addressing the management of medical images. In the US, 

providers must meet HIPAA (Health Insurance Portability and Accountability Act) regulations that 

require a data back-up plan and disaster recovery plans. BridgeHead Software, who describe 

themselves as a Healthcare Storage Virtualization company, found the top IT spending priorities of 

hospitals for 2010 were disaster recovery (44%), Picture Archiving and Communication Systems or 

PACS (38%) and digitizing paper records (35%) [11]. In addition, each state in the US has its own 

medical record retention rules, typically for a minimum of seven years. 

Our actions in everyday life are captured by sensors of many kinds – pollution sensors in cities, ctv 

throughout many public places, and increasingly, by new technologies such as Smart Grids for 

electricity [12].  Smart Grids are a relatively new approach to energy management.  A Smart Grid is 

generally an energy network that incorporates information technology to allow real-time 

management of the energy generation and distribution using two-way communication between 



generators and end-users.  In the UK, the Department of Energy and Climate Change have set about 

rolling out smart meters across the UK [13] and it is anticipated that by 2019, 50 million smart 

meters will have been installed.  The likely data generated and collected from these meters includes 

12 readings per hour at 50 bytes per reading which, together with the system monitoring tools, will 

create Gbytes of data each.   The challenges for the Smart Grid are not only technical – how to store 

and analyse such data – but also raise issues of security and policy.  How will the data be kept 

private?  How long will it be kept for?  How much data should be kept locally versus centrally.  And 

of course the telecommunications networks required to implement such capabilities are not 

generally readily available.  However, the move to Smart Grids is global and as micro-generation of 

electricity increases through local renewable energy schemes, the requirements for Smart Grid 

technologies will only increase [14].  

Finally, an IDC report [15] titled ‘The 2011 Digital Universe Study: Extracting Value from Chaos’ 

estimates that in 2011 the total volume of information created and replicated ‘will surpass 1.8 

Zettabytes (1.8 trillion gigabytes) - growing by a factor of 9 in just five years’. The report estimates 

that 75% of this digital content will be created by individuals. The report also estimates that the 

number of files is growing even faster than the information itself and attributes this rapid growth to 

the increasing number of embedded systems now generating data.  

3. Research Data from Observations 

3.1 Astronomy: The Square Kilometre Array (SKA) 

At the present time hundreds of astronomers, computer scientists and technology engineers across 

the globe are designing the next generation radio telescope - the Square Kilometre Array or SKA 

[16]. It is anticipated that construction of the first phase of the telescope will begin in 2016 with the 

full telescope completed and in operation by 2022.  The decision where to locate the SKA will be 

made in 2012 and it is likely be located in either Australia or South Africa, in a desert so as to have 

little or no interference, but will be a collaborative effort involving over 50 groups in 19 countries.   

 

Figure 3: Possible Configuration of SKA and artist's impression of the SKA core [17] 

The present design [17-20] has a combination of aperture arrays in the core and up to 3000 phased 

array feeds on dishes giving a collecting area of approximately one square kilometer, with receptors 

extending out to a distance of 3000km from the centre of the telescope (Figure 3).  The SKA will have 

a sensitivity of more than 50 times that of existing telescopes, and 10,000 times the survey speed. It 



is intended to provide data to answer fundamental questions about gravitation and magnetism, 

galaxy formation and even the question of life on other planets.  The design of the SKA is developing 

through studies based on the science requirements, and on a number of SKA ‘Pathfinder’ projects 

that provide experience of design options, and technology capability considerations.   

The SKA provides an enormous information technology challenge, with a typical data rate from each 

dish antenna on the order of 100Gbs-1 aggregating to over 100Tbs-1 [18] and need for exaflop-scale 

computation [21] for post-processing.  The IT infrastructure required to support the science at the 

SKA will range from real-time capability to transport and analyse the data at these high-data rates 

together with the capacity to store and “publish” the data for later analysis and interpretation by the 

global astrophysics community.  The computational systems will likely range from specifically 

designed FPGA-like units to exascale computing systems and Cloud data centres.  The 

communications infrastructure will range from high bandwidth intra-chip and inter-chip connections 

on a high-performance computing system, to trans-oceanographic data transmission optical fibers 

supporting data rates of at least 100Gbs-1.   The SKA will succeed or not depending on both the 

physical implementation of the telescope design and the software infrastructure that will enable it.  

The software infrastructure required to realise this information technology challenge is itself has 

been identified as > 2000 person year task [22] but even this may not take full account of the 

complexity of the task.    

3.2 Astronomy: The Large Synoptic Survey Telescope (LSST) 

The Large Synoptic Survey Telescope (LSST) [23] is the most ambitious survey currently planned in 

the optical part of the electromagnetic spectrum.  The LSST is driven by four main science themes: 

probing dark energy and dark matter, taking an inventory of the Solar System, exploring the 

transient optical sky, and mapping the Milky Way. It will be a large, wide-field ground-based 

telescope designed to obtain multiple images covering the sky that is visible from Cerro Pachón in 

Northern Chile. The current LSST design has an 8.4m (6.7m effective) primary mirror, a 9.6 deg2 field 

of view, and a 3.2 Gigapixel camera. This will allow about 10,000 square degrees of sky to be covered 

using pairs of 15-second exposures twice per night, every three nights on average. The system is 

designed to yield high image quality as well as high astrometric and photometric accuracy. The total 

survey area will include 30,000 deg2 and will be imaged multiple times in six bands covering the 

wavelength range 320—1050 nm. The project is scheduled to begin the regular survey operations 

before the end of this decade. About 90% of the observing time will be devoted to a deep-wide-fast 

survey mode which will uniformly observe a 18,000 deg2 region about 1000 times (summed over all 

six bands) during the anticipated 10 years of operations. These data will result in databases including 

10 billion galaxies and a similar number of stars, and will serve the majority of the primary science 

programs [24, 25]. 

In terms of numbers, LSST will handle 15 terabytes of raw scientific image data each night. The final 

image data archive is estimated to have around 200 petabytes of data. It is estimated that the 

project will require a sustained petaflop/s computing capability and, of course, significant local 

processing power in Chile and very high bandwidth connection to the US archive site. The project 

plans to use SciDB, a novel open source database system that is optimized for scientific data 

management of ‘big data’ and for ‘big analytics’ [26]. 



3.3 Earth Observation Data 

NASA’s Earth Observing System Data and Information System, EODIS [27] manages and distributes 

data products through its Distributed Active Archive Centers or DAACs. Each DAAC processes, 

archives, documents, and distributes data from NASA’s past and current research satellites and field 

programs. Each center serves one or more specific Earth science sub-discipline and provides 

appropriate data products, data information and services for its community. In Europe, the 

European Space Agency ESA [28] plays a similar role to EOSDIS and oversees an Earth observation 

program. For EOSDIS the growth in the archive is around 1 PB/yr. For ESA, including missions such as 

Envisat, Cryosat and AATSR, the data volumes are comparable. Space missions from Japan and India 

contribute around 0.5 PB/yr and aircraft missions, including LIDAR, probably account for another 0.5 

PB/yr. New missions, still in the planning stage, which are expected to launch in the next 5 – 10 years 

are likely to generate another 1 PB/yr. 

If we add up all these sources we arrive at around 4 PB/yr for Earth observation data, depending on 

the precise definitions (i.e., storage or distribution). For example, EOSDIS distributes 3.62 PB/yr now 

– made up of 4200 data products, > 400 million product distributions and over 1M users.  

3.4 Oceanographic data 

Present ocean sensors tend to generate relatively low volumes of data and typically do so 

intermittently – during cruises or delivery to shore-side systems. All told, this probably only amounts 

to tens of GB/day. However, there will be a transformational change with the deployment of real-

time ocean observatories.  

The Ocean Observatory Initiative or OOI [29] is a long-term, NSF-funded program to provide 25-30 

years of sustained ocean measurements to study climate variability, ocean circulation and 

ecosystem dynamics, air-sea exchange, seafloor processes, and plate-scale geodynamics [25]. The 

OOI will enable powerful new scientific approaches for exploring the complexities of Earth-ocean-

atmosphere interactions, and accelerate progress toward the goal of understanding, predicting, and 

managing our ocean environment.  The Observatory is planned to be a networked infrastructure of 

science-driven sensor systems to measure the physical, chemical, geological and biological variables 

in the ocean and seafloor. When complete, the OOI will be one fully integrated system collecting 

data on coastal, regional and global scales. As a result, the data volumes are expected to increase 

dramatically and transform ocean-science from being a data-impoverished branch of science to one 

having an abundance of data. 

3.5 Earthquake Science 

Fortunately, for society if not science, large earthquakes are infrequent and so the study of 

earthquakes is observational data-limited compared to other fields. Major quakes occur all over the 

world and it is unrealistic to have substantial sensors deployed in most of these regions. Further, the 

quasi-periodicity of earthquakes implies that historical data is very important and we cannot 

increase that. Simulations can forecast damage and perhaps the aftershocks of an earthquake but 

the most important capability – forecasting new quakes is essentially entirely observational. 

Typically one uses patterns (in time series) to forecast the future with simulations useful to check if a 

particular pattern informatics approach is valid in an ensemble of simulated earthquakes. Important 

types of data include: 

1) Catalogs of Earthquakes with position and magnitude 



2) Geometry of Earthquake faults 

3) Global Positioning data (GPS) recording time dependent positions 

4) Synthetic Aperture Radar inferograms (InSAR) recording changes in regions over time.  

The first two types of data, 1) and 2), are gathered carefully with recording of earthquakes and field 

analysis.; This is small in size and only growing slowly but of very high value.  

For the GPS data there are currently fewer than 10,000 GPS stations recording data at intervals 

varying between one second and a day. Well-known GPS networks are the Southern California 

Integrated GPS Network, the Bay Area Regional Deformation Network in Northern California and the 

PBO Plate Boundary Observatory from UNAVCO [30]. 

The inSAR data could become voluminous but currently totals some 350 images (each covering 

around 10,000 km2) and only 2 Terabytes in size [31]. This data comes from uninhabited aerial 

vehicles  (UAVSAR [32] from JPL) or satellites (WInSAR from UNAVCO [30]). The situation could be 

revolutionized by the approval of the DESDynI-R Mission (Deformation Ecosystem and Dynamics of 

Ice–Radar) recommended in the Earth Science Decadal Survey [33]. DESDynI would produce around 

a Terabyte of data per day but the mission has not so far been approved and so is many years away 

from a possible launch. This data is analyzed (as by QuakeSim [34, 35] for recent earthquakes) to find 

rates of changes, which are then used in simulations that can lead to better understanding of fault 

structures and their slip rates. 

3.6 Polar Science 

Another interesting case is Polar Science which we illustrate with the work of the CReSIS (Center for 

Remote Sensing of Ice Sheets) [36] led by Kansas University that is pioneering new radar and UAV’s 

to be used to study ice-sheets. 

 



 

Figure 4: Architecture of PolarGrid data analysis Cyberinfrastructure [37] 

For the project, multiple expeditions fly instruments that collect data including:  

1) ice thickness and internal layering from radar and seismics, and Synthetic Aperture Radar 

(SAR) images of ice-bed interface;  

2)  bed topography generated from ice thickness and surface elevation);  

3) time series of change in surface elevation from airborne and satellite altimeters;  

4) time series of surface velocity from repeat-pass satellite images, in situ GPS measurements, 

and aerial photos;   

5) bed characteristics such as temperature, wetness, and sediment from seismics and radar.  

The spring 2011 CReSIS expedition took 80 terabytes of data in 2 months. After traditional 

processing with FFT’s, radar images are produced along multiple flight lines as illustrated in figure 4. 

Then image processing is needed to identify the top (red) and bottom (green) of an ice-sheet. 

Initially students performed this but recently it has been automated with an image analysis tool 

developed at Indiana University [37]. The deployment of UAV’s rather than current Orion and DC-8 

conventional aircraft will increase data gathering capability by allowing continuous operation. There 

are more complex data such as snow deposits showing the annual layers and revealing historical 

snow deposition. 



 

Figure 5: Radar Imagery from CReSIS with top and bed of ice sheet determined 

The glacier-bed data illustrated in figure 5 is fed into simulations that aim to understand the effect of 

climate change on glaciers. Note that gathering of data is complicated by the paucity of electrical 

power and poor internet connectivity to the Polar Regions. The use of GPU’s is an interesting 

technology to deliver possible lower power data processing. The data is gathered on removable disks 

mounted in a storage array connected to just one or servers with rugged laptops as personal 

machines.  

4. Data from Experimentation and Instruments 

4.1 Particle Physics: The Large Hadron Collider (LHC) 

The Large Hadron Collider LHC in Geneva is the highest energy particle accelerator ever constructed 

and operates in a 17 mile tunnel around the CERN Laboratory near Geneva [38]. Two proton beams 

can be accelerated to energies of up to 7 TeV and collided to produce a spectacular spray of 

particles. A major goal is to find a key ingredient of the Standard Model of particle physics, the Higgs 

Boson. The LHC is currently operating at half of its design energy and plans to go to the full energy of 

7TeV per beam in 2014.  

The LHC hosts four major experiments - Atlas, CMS, Alice and LHCb. The first two experiments each 

record around 100 events per second with each event about 1.5 Megabytes in size. These 100-450 

events are selected in real time from the eventual 109 collisions (events) occurring every second at 

LHC. The experimental detectors contain 150 million sensors that record data 40 million times 

second (each read out contains over 20 overlapping events). The reduction of a factor of 4 105 in 

data size is achieved with a multi stage trigger [39, 40]. Having an effective trigger is a major part of 

design and selection of an experiment. The trigger is based on detecting “unusual events” with 

signatures of high transverse momentum and interesting particles (leptons and not baryons or 

mesons) being produced. The multi-stage trigger includes an initial hardware selection (giving a 

factor of about 400) followed by a software refinement executing on a dedicated cluster, which for 

CMS has 7000 cores. The software used in this final “higher level trigger” is a stripped down version 

of the basic analysis software and must reduce the Terabit/second input from the hardware trigger 

by about another factor of 1000. Alice is a heavy ion experiment to investigate collisions of lead 

nuclei in the LHC and has larger events and data rates. The LHCb experiment is lower in both 

respects than Atlas and CMS. 

The LHC produces some 15 petabytes of data per year of all varieties and with the exact value 

depending on duty factor of accelerator (which is reduced simply to cut electricity cost but also due 

to malfunction of one or more of the many complex systems) and experiments. The raw data 

produced by experiments is processed on the LHC Computing Grid [41], which has some 200,000 

Cores arranged in a three level structure. Tier-0 is CERN itself, Tier 1 are national facilities and Tier 2 



are regional systems. For example one LHC experiment (CMS) has 7 Tier-1 and 50 Tier-2 facilities [42, 

43]. 

The initial data is analyzed in detail to find the parameters of the particles produced in the event and 

to disentangle the ~20 collisions in each event [44]. This analysis is often iterative as one improves 

the many calibration constants for the myriad of detector sensors. Detailed summaries of each event 

or reconstructed data are produced which yields about half the size of the raw data, i.e. ~0.75 Mb, 

with this process taking an average of around 15 minutes for each event. The experiments also 

create simple “analysis object data” or AOD that provides a trade-off between event size and 

complexity of the available information to optimize flexibility and speed for analyses. An AOD (~0.1 

mb) is 5% of size of the raw data but with enough information for a physics analysis including this 

event. The other 95% of raw data would be preserved elsewhere as it would be necessary if, for 

example, the physics quantities were to be recalculated with a re-interpretation or re-calibration of 

the raw data. Finally, there are TAGs, about 2 kbyte per event that have enough information to 

select events for a physics analysis that would be performed with the AOD containing more details.  

This analysis raw data  reconstructed data  AOD and TAGS  Physics is performed on the multi-

tier LHC Computing Grid. Note that every event can be analyzed independently so that many events 

can be processed in parallel with some concentration operations such as those to gather entries in a 

histogram. This implies that both Grid and Cloud solutions work with this type of data with currently 

Grids being the only implementation today. 

4.2 Photon Sources 

The European Synchroton Radiation Facility (ESRF) in Grenoble uses X-ray radiation in fields as 

diverse as protein crystallography, earth and materials science as well as certain areas of physics and 

chemistry [45]. The beamlines are planned to be upgraded to increase the present rate of data 

production, currently around 1.5 terabytes per day, by two or three orders of magnitude in ten 

years’ time. 

 

The European X-Ray Free Electron Laser Project (European XFEL) is an international project with 14 

participating countries that is located near Hamburg in Germany [46]. Free electron lasers generate 

high-intensity electromagnetic radiation by accelerating electrons to relativistic speeds in a linear 

accelerator. By 2015, the European XFEL will produce high-intensity X-ray pulses at intensities much 

brighter than those produced by conventional light sources. The data rates and data volumes 

generated by advanced facilities like the European XFEL or the LCLS at Stanford in the USA [41] will 

exceed those at conventional synchrotron light sources by at least an order of magnitude. Data rates 

are likely to be of the order of 7 terabytes per hour, depending on the experiment. 

 
These futuristic projections need to be tempered with reality. At present the UK Diamond Light 

Source is storing approximately 200 terabytes in 88m files, increasing to a petabyte by 2014 [47]. For 

these facilities, it is often the number of files which is a challenge, rather than the total data volume. 

4.3 Neutron Scattering and the Long Tail 

 

ISIS is the UK's national neutron scattering facility which draws several thousand visiting scientists a 

year from the UK and all over the globe do to experiments ranging from the safety of welds in 

aircraft engines, to magnetic domains on hard disks, the provenance of ancient weapons, the 



structure and interactions of drugs, and the design of shampoos. There are over 25 different 

instruments at ISIS that support different types of experiments generating up to a few terabytes of 

raw data in day, with the facility running 100-200 days a year and producing in total up to a quarter 

of a petabyte total data in a year. 

 

The large quantity of raw data doesn't necessary need to be moved far though. Consider one 

instrument SANS2d, which is a small angle scattering instrument. Neutrons are transported to the 

sample, where they are scattered at small angle and measured. One experimentalist [48] actually 

uses a white beam (neutrons from ~1.5 - 16 Angstrom) and a time of flight mode with a pulsed 

source. Small angle scattering gives you information about distance correlations that are "large" on 

the atomic scale, i.e. from about 8 - 400 Angstroms. This experiment class determines the structure 

of medium to large size biomolecules. This use of SANS2d can generate a gigabyte of raw data in a 

day but mostly this data largely records details that are not important for downstream analysis but 

are only important in the reduction of data down to the X-Y form in which it is normally used. Raw 

data files amounting to hundreds of megabytes are reduced to a single file of a few tens or maybe 

hundreds of kilobytes, and it is only that large because it is stored as a text file. The actual core data 

is probably less than a kilobyte. In the DIKW terminology the information (I) is this final kilobyte. 

 

ISIS has in-house and visiting users. An experiment, usually lasting a few days, will involve running 

hundreds of samples, which in turn generate hundreds of data files. These are transferred, usually 

via a pen drive, to a visiting scientist's laptop to be taken home for further analysis. The in-house 

experimentalist [48] has accumulated perhaps 50 Gb of files in tens of directories, each relating to a 

specific experiment, or project. The analysis process usually involves taking each of the files from the 

experiment, fitting them to a model (or using the data to generate a model), often manually or in a 

semi-automated fashion. This probably doubles the quantity of files and volume on the local hard 

disk. External storage or compute capacity is rarely needed.  

 

This analysis will probably get summarised in a table which is then used to draw conclusions about 

how the experimental parameters effected the system being studied. The composition of a mixture, 

temperature, or pH are all common variables, which are then graphed out and the changes 

compared to some physical theory. Alternately a whole series of measurements might be used to 

generate one model, generally a structure, of the system under study. This often involves a lot of 

exploration of different methods for working with the data, building test models, and comparing the 

results from a range of different methods. 

 

Ultimately, the experiment is usually condensed into one figure, a graph or a model structure, that is 

presented in a published paper. The data is rarely if ever made available beyond a representation in 

some graphs and the history (provenance) of the analysis is almost never recorded. The replication 

of results would rely on obtaining the data from the authors and re-fitting the models suggested to 

it. In practice, this almost never happens, and critique of results is generally based on design of 

experiments rather than the analysis itself. 



This example illustrates the “long tail of science”  [49, 50]. There are not, as in Large Hadron Collider 

LHC experiments, thousands of scientists collaborating on a single “big science” experiment but 

rather many thousands of individual scientists each doing their own experiment but with the total 

data involved at a petascale deluge.  

4.4 European Bioinformatics Institute 

Life sciences is one of the best examples of the data deluge and we start of giving examples from the 

European Bioinformatics Institute (EBI), which within Europe is the primary host for bioinformatics 

data, curating and sharing data from throughout Europe and beyond [51]. It is an academic research 

institute located in Hinxton near Cambridge (UK) and is part of the European Molecular Biology 

Laboratory (EMBL) [52].   The EBI annual report [53] reports on the status of the several databases 

within the EBI.  For example, the European Nucleotide Archive (ENA) had an accumulation rate of 

more than 500, 000 bases per second.  The data in figure 6, taken from the annual report [53], 

indicate the growth across other databases hosted at the EBI and the story is much the same.  

 

Figure 6: Growth in sizes of EBI databases from 2000-2010 



The increase in physical storage requirements of the Institute from 1996 to 2010 is shown in figure 

7.  The EBI, as part of the ENSEMBL project are now presenting data and services in the Cloud [54]– 

in this case in the Amazon Cloud.  

 
Figure 7: Storage requirments of the EBI from 1996 to 2010 

 

4.5 High Through-put Gene Sequencing 

The discussion of radiology in section 2 shows that the life science data deluge impacts both 

research and our lives. Genomics is a field that directly spans this classification and here we look at 

the future growth of genomic data by studying the expectation that genome measurements for 

individuals will become an integral part of personal medicine. We will use one current sequencing 

instrument, the Illumina HiSEQ [55] machine, to quantify the analysis [56]. Each of these instruments 

generates 108 reads, each roughly 100 Nucleotides long, each day. Each Nucleotide is defined by 2 

bits. It takes 100-10000 cores to use the Blast algorithm to compare with data from a central 

database in one day. Each read is distilled from a coverage of 50-100 times as much data including 

duplicates.  

If we take a unit as a Human Genome with 3x109 Nucleotides or 6x109 bits we can see more 

graphically the implications of this rate of data production.  Each day one Illumina machine 

sequences 1010 Nucleotides, equivalent to 3.3 Human Genome units per day. If we assume that 

today there are around 1000 Illumina machines deployed world-wide (500 in USA), each capable of 

sequencing 3300 Human genomes per day, then this amounts to 2x1013 bits per day corresponding 

to about 7 petabits of data per year. (700 petabits per year including the extra factor of 100 from the 

coverage.) 

Measuring the genome of every new born is ~11000 Human genomes per day for USA and 200,000 

Human genomes per day for world. Doing this on an ongoing basis – say 50 times in lifetime of every 

human is 5*10^6 genomes measured per day for world. This is 30 petabits per day or 10 exabits per 

year 



It requires the capability equivalent to 1.5 million present day Illuminas to measure Human 

genomic data and 1.5*10^8 to 1.5*10^10 continuously running present day cores to perform a 

simple Blast analysis on the generated data [57-59]. Genomic data is notable for the intense 

computing effort associated with the data. This aspect is highlighted by the NIH observation that the 

cost of generating sequences has decreased over a factor of 100 more than the cost of computing 

over the last 3 years [60]. Note that NIH recently announced closure of a petabyte database [61] as 

they could not support it. Thus building scalable computing and storage infrastructure for genomics 

is challenging. 

5. Data from Simulations 

5.1 Data from Weather and Climate Simulations 

At a September 2008 meeting involving 20 climate modeling groups from around the world, the 

WCRP's [62] Working Group on Coupled Modelling (WGCM) [63] agreed to promote a new set of 

coordinated climate model experiments. These experiments comprise the fifth phase of the Coupled 

Model Intercomparison Project (CMIP5) [64]. CMIP5 will notably provide a multi-model context for: 

 

1. Assessing the mechanisms responsible for model differences in poorly understood feedbacks 

associated with the carbon cycle and with clouds,  

2. Examining climate “predictability” and exploring the ability of models to predict climate on 

decadal time scales,  

3. Determining why similarly forced models produce a range of responses.  

 
The fifth Coupled Model Intercomparison Project (CMIP5) will involve the global production and 

analysis of several petabytes of data. The Program for Climate Model Diagnosis and Intercomparison 

(PCMDI) [65], with responsibility for archival for CMIP5, has established the global “Earth System 

Grid Federation” (ESGF) [66] of data producers and data archives to support CMIP5. ESGF will 

provide a set of globally synchronized views of globally distributed data – including some large cache 

replicas which will need to persist for (at least) decades. ESGF will stress international networks, as 

well as the data archives themselves – but significantly less than would have been the case of a 

centralized archive. Developing and deploying the ESGF has exploited good will and best efforts, but 

future developments are likely to require more formalized architecture and management. 

 

ESGF was born out of a number of initiatives to handle diverse, distributed data access for the 

climate community: In the U.S., the Earth System Grid (ESG [67]), in the UK, the NERC DataGrid [68] 

and in Germany, the Collaborative Climate Community Data Processing Grid (C3-Grid [69]). However, 

the dominant contribution has been that of the ESG. As a consequence, the ESGF architecture is 

currently a more mature version of the original ESG, extended and modified by both the code and 

experiences of the other partners. 

 
There are five key information classes which underpin the ESGF [70-72]: the data itself; the “data 

metadata” which exists within the data files; the “model and experiment metadata” created 

externally and ingested into the ESGF system; the “quality metadata” (which describes intrinsic 

checks on data fidelity rather than the extrinsic scientific quality); and “federation metadata” (to 

support user management and system deployment). 

 



ESGF exploits this information using four major components: data nodes, gateways, federation 

metadata services (to support authentication and authorization), and data services to be deployed 

adjacent (or on) the data nodes. 

5.2 Data from Petascale and Exascale Simulations 

In studies [73-75]  of the requirements of applications in exascale computing including High-Energy 

Physics . Climate , Nuclear Physics, Fusion, Nuclear Energy, Basic Energy Sciences, Biology,  and 

National Security  it was reported that exascale applications will generate terabytes of data per 

second making them  one of the largest sources of data.  For exascale computing this means a new 

design for memory, I/O, operating system and software systems.  It is likely that exascale simulations 

will behave as observational science does not in terms of reducing data created before seeking to 

store any results requiring a new integrated pipeline of data creation through to off-line storage.  

This data is produced for two important reasons. One is to provide checkpointing for restart and the 

second is for visualization and analysis of simulation results. As machines grow in performance, the 

data produced by simulations naturally scales in size but the associated challenges grow even more 

as the mean time between failure (MTBF) of total system grows and the compute performance of 

high end supercomputers tends to grow much faster than disk I/O bandwidth is increasing. There 

have been several studies of these issues recently [76, 78] as part of studies of the next generation 

exascale systems. The latter will have up to a billion concurrent processes (perhaps arranged as a 

1000 threads on each of a million nodes) compared to large simulations today on over 100,000 

cores. A new area of study is emerging of processing simulation data in parallel on the nodes of a 

supercomputer with ADIOS[79] being an interesting approach [80, 81]. A study of fusion simulations 

[77] identified need to output 2 gigabytes of data per simulated time step for each core in the 

parallel simulation. For “just” a million cores this corresponds to 2 petabytes of data per time step 

requiring an aggregate I/O rate of 3.5 terabytes/second for a ten minute time step with a simulation 

of 1 billion cells and 1 trillion particles. An exascale simulation might be 100 times this rate. These 

data rates are clearly much larger than those associated with observational data although 

checkpoint data for example can be overwritten and perhaps visualization data will be analyzed in 

place (by parallel algorithms on same nodes as simulation) and reduced in size before permanent 

storage. 

6. Data Context and Curation 

Data without context is of little or no value.  It matters where data has come from and how it has 

been processed up to that point. This is the ‘data provenance’ that must be associated with the data 

for it to be usable by other researchers.  Digital information is being generated in large quantities 

each day and, depending on the source, the data comes with a variety of characteristics and issues - 

ranging from questions about the appropriateness of the metadata and semantics to describe it, to 

the integrity and completeness of the data. Finally, all data comes with a cost for keeping it and 

pragmatic choices must be made about what data to keep and for how long - since it is impractical 

to retain all the data we are now generating. In some fields, such as particle physics and astronomy, 

the raw data rates are now so large that only a selection of the data can be retained for future 

analysis.  

The preparation of data for possible re-use and preservation is the process of ‘data curation’. This 

includes such things as data-cleansing, to check the integrity of the data, and the adding of metadata 



– data about the data – to document what the data is, how the data has been collected and what 

format has been used and so on, and perhaps adding higher-level annotations or semantic 

information by using ontologies or community-agreed vocabularies. All of these things are necessary 

to facilitate not only the ‘findability’ of data by search engines but also to allow the possibility of re-

use and the creation of meaningful ‘scientific mashups’ of different data sets.   Unfortunately, 

scientists are only human and the process of adding value to their data sets for others to use often 

receives scant reward. It is therefore not surprising that, all too often, the data curation and 

preservation procedures used will be imperfect or inadequate and that some important data will 

end up effectively being lost to future researchers. At least a part of our future occupation will likely 

to be something like a ‘digital archaeologist’ - trying to make sense of old data by piecing together 

the fragments of an inadequately documented historic past.  

An interesting cautionary tale is that of the digital Domesday Book project in the UK [82, 83]. After 

William the Conqueror won the Battle of Hastings and took control of what later became the 

kingdom of England, he decided to take a census of his new realm. The result was the Domesday 

book completed in 1086 which can still be seen in the National Archives in London. In 1986, 900 

years after the original census, the BBC produced a television program to celebrate this anniversary. 

One result of this project was an interactive video documentary implemented for the BBC 

microcomputer. At the launch of the UK Digital Preservation Coalition in London in 2002, 

broadcaster Lloyd Grossman called attention to the danger that the rapid evolution of computer 

media and recording formats would lead to the irretrievable loss of valuable historic records, and he 

gave the Domesday Book video-disks as an example.  His remark sparked a heroic effort by many 

people to rescue the digital images, text and video of the BBC Domesday interactive-video project. 

Eventually,after a lot of work by some exceptionally dedicated individuals, a version was produced in 

modern formats and that works on a modern PC. 

7. Data Architecture for e-Science 

The data deluge is changing the nature of computing in Science and the architecture of systems 

designed to support it [84]. Several important parameters differ between systems designed to 

support data analysis and those aimed at simulation. These include 

 The Ratio of Disk (I/O) bandwidth to instruction execution rate (Amdahl’s I/O number [85, 

86]) 

 The bandwidth and connection between source of data and computing system 

 The nature of data – size and dynamic structure. Is it an instrument or sensor generating a 

time series or a repository 

A traditional computer system is often organized as shown in figure 8 below. 
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Figure 8: Computing System with a three level storage hierarchy supporting multiple clusters where "the work" gets 
done. Each computer C has its own local disk not shown. S represents a storage noted. 

Figure 8 shows a three level data hierarchy with typically temporary data stored on cluster 

nodes, a shared set of files and a backend archival storage. The shared files are shown in figure as 

either managed by computers in hosted storage or as dedicated (SAN/NAS/etc.) storage. The shared 

file system for scientific computing may support high performance distributed file systems such as 

Lustre or GPFS. This architecture is used for both data and simulation intensive work with good 

success. There are many attractive features of this architecture including separation of concerns -- 

storage and its backup are managed separately from the possibly large number of clusters 

supported, computers and storage can be separately upgraded and a single storage system (and 

single copy of a data item) supports all computing venues. There is an obvious problem in data 

intensive applications that the bandwidth between the compute and data system components may 

be too small. Note clusters typically have bisection bandwidths that are very large scaling up with 

system size. However the link between storage and compute subsections are typically provisioned 

with static number of interconnects (perhaps some number of Gigabit or 10Gigabit Ethernet 

connections). Even simulation systems see the same issues [76, 78]  at the largest scales when 

programs output data (for visualization) at volumes that overwhelm the connection to shared 

storage. Note important technologies like MPI-IO are built around this model. 

An alternative architecture shown in figure 9 addresses this issue by using “data parallel file 

systems” DPFS such as Google File System (MapReduce)[87], HDFS (Hadoop)[88], Cosmos 

(Dryad)[89-91] and Sector [92] with compute-data affinity optimized for data processing. This design 

was motivated by Internet applications but has seen little practical use outside that area. 
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Figure 9: Data Parallel File Systems showing disks attached to compute nodes with files broken into blocks and stored 
across multiple computers with replications for fault tolerance. 

Here we have a simpler architecture with a uniform array of computer nodes with (large) local 

disks. User Files are broken up into blocks, which are replicated several times and spread across 

different nodes and different clusters. This architecture allows one to support “bringing the 

computing to the data” [2, 93]. Archival storage is not necessary – all copies can be stored on 

spinning disks. The copies should be designed that some are near each other to support local 

computing whereas at least one should be “far off” to provide a safe back up. Note the disks and 

compute nodes within a cluster are linked to the scalable cluster interconnect and so good 

performance in fetching data from disk does not require computing to be on node where data 

stored but rather on a node with a high performance (cluster) interconnect to data.  

The architecture of figure 9 supports several data management systems including both databases 

and the important NOSQL developments [94, 95] constructs such as Bigtable [96], SimpleDB [97] in 

Amazon and Azure Table [98] while databases (for example SciDB and GrayWulf projects [26, 86]) 

essentially  collocate data and associated processing. NOSQL technologies emphasize distribution 

and scalability while their support of simple tables in interesting given that tables are clearly 

important in science as illustrated by the VOTable standard in astronomy [99] and the popularity of 

Excel [100]. However, there does not appear to be substantial experience in using tables outside 

clouds. It seems likely that tables will grow in importance for scientific computing, and academic 

systems could support this using two Apache projects: Hbase [101] for BigTable and CouchDB [102] 

for a document store. Another possibility is the open source SimpleDB implementation M/DB [103].  

There are research issues both in data parallel file systems themselves and in their integration 

with programming models [104] and runtimes [105] like MapReduce [106] and its Iterative 

extensions [107-109]. A key change – illustrated by the Purlieus [110] project – is that the scheduling 

problem now is one of both data and computing rather the usual approaches which just schedule 

computing tasks. Here there is an important issue about locating user files. In the architecture of 



figure 8 one only needs to place files in the shared file system to allow access for all clusters and 

applications. In figure 9, one has to be more careful and place the data on or “near” (in terms of 

scalable connectivity) the compute systems that will be allocated to users of the files. There does not 

seem any experience in supporting the architecture of figure 9 in a complicated heterogeneous 

multi-user environment. The problem is easier if one just has a few very clusters as is in fact used in 

clouds used for Internet search. Data parallel file systems on a grid of many (small) clusters seem 

difficult to use. More study is clearly needed here for multi-user environments in real data centers 

using data parallel file systems with multiple clusters. 

Although DPFS originated in the cloud (internet search) arena, commercial clouds tend to use a 

rather different object store model seen in Amazon, Azure and the open source OpenStack system. 

Here one assigns a set of nodes to be storage servers as in the top of the middle layer of figure 8 but 

rather than the full distributed file semantics of Lustre, one supports a simple object model. Objects 

have containers and metadata with operations such as get, put, update, delete, and copy objects. 

Again there is little experience with this in scientific computing arena. The Simple Cloud APIs [111] 

for file storage, document storage services, and simple queues could help in providing a common 

environment between academic and commercial clouds. There is also some interesting work [112] 

involved relating these different file systems, so one can run applications – possibly with 

performance degradations – however the data is stored.  This is closely related to data movement as 

one needs to change between storage modes and possibly use a replica system as one does for data 

grids [113]. 

A traditional approach to scientific data establishes a repository which stores the data and 

meta-data of a given experiment or set of experiments. As shown in previous sections, this has and 

will play a critical role but is often inadequate for the common case of enormous amounts of data 

requiring enormous computing as emphasized in section 4.5. We really need the data archives to be 

attached to an appropriate compute resource as it is often impractical for individual researchers to 

download their data to home compute resources.  

8. Conclusions 

Data are almost everywhere, large and growing. We have given examples of the many sources of 

data: people as in the Web or medical data scaling with the 7 billion population of the planet; Big 

Science instruments such as the Large Hadron Collider with a few experiments or other instruments 

supporting the long tail of science with a multitude of independent scientists; other examples like 

genomics lie in between. Whether it is the pleasing parallel Internet of individual web servers or the 

concentrated electronics of a giant telescope, the data deluge is only possible because of Moore’s 

law – the electronics need to gather and process data is continuing to get smaller and more 

powerful. Of course this data must be transported to be useful and so the increasing intra-planet 

communication bandwidth is an essential driver of the data deluge and the fourth paradigm of its 

analysis [2]. 



 

Figure 10: The DIKW Pipeline with Data and Sensor Grids and Clouds 

We have also emphasized that data (interpreted broadly as any component of the DIKW Data 

Information Knowledge Wisdom pipeline) comes from itself. Figure 10 show that data is passed 

through a set of (filter) services as it goes along the DIKW pipeline. As in chapter 5, the source of 

data does not need to be an instrument or sensor; it can be a supercomputer or in fact any service, 

grid or cloud. Section 6 emphasizes the importance of metadata and sustainability. In section 7, we 

emphasized the need to re-examine the architectures used to support data intensive science with 

distributed dynamic data and major compute tasks associated with the data analytics. How do we 

bring the computing to the data? 

Data has arrived; we need to learn how to use it for the benefit of society. 
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