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Xiaoming Gao 

Scalable Architecture for Integrated Batch and Streaming Analysis of Big 

Data 

Scientific research has entered an era driven by data, and many modern data intensive 

applications demonstrate special characteristics. Data exists in the form of both large historical 

datasets and high-speed real-time streams, while many analysis pipelines require integrated 

parallel batch processing and stream processing. In most cases, despite the large size of the 

whole dataset, most analyses tend to focus on specific data subsets according to certain criteria. 

Faced with all these situations, scalable solutions are essential to achieve optimal performance. 

Correspondingly, integrated support for efficient queries and post- query analysis is required. 

To address the system-level requirements brought by such characteristics, this dissertation 

proposes a scalable architecture for supporting integrated queries, batch analysis, and streaming 

analysis of Big Data in the cloud. We verify its effectiveness and efficiency with real use cases 

from a representative application domain – social media data analysis – and tackle related 

research challenges emerging from each module of the architecture by integrating and extending 

multiple state-of-the-art Big Data storage and processing systems. 

In the storage layer, we reveal that existing text indexing techniques do not work well for the 

unique queries of social media data, which involve constraints on both textual and social context 

such as temporal or network information. To address this issue we leverage the HBase system as 

the storage substrate and extend it with a flexible indexing framework – IndexedHBase. This 

allows users to define fully customizable text index structures that are not supported by current 
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state-of-the-art text indexing systems such as distributed Solr. Such index structures can embed 

the precise social context information that is necessary for efficient evaluation of the queries. 

The batch analysis module demonstrates that social media data analysis workflows usually 

consist of multiple algorithms with varying computation and communication patterns which are 

suitable for different processing frameworks such as Hadoop, Twister, etc. In order to achieve 

efficient execution of the whole workflow, we extend IndexedHBase to an integrated analysis 

stack based on YARN, which can dynamically adopt different processing frameworks to 

complete analysis tasks. Based on this we develop a set of analysis algorithms that are useful for 

many research scenarios, and demonstrate the composition and execution of workflows by 

reproducing the end-to-end analysis processes from published research projects.  

Finally, in the streaming analysis module, the high-dimensional data representation of social 

media streams poses special challenges to sophisticated parallel stream mining problems such as 

clustering. Due to the sparsity of the high-dimensional data vectors, traditional synchronization 

that directly broadcasts the centroids becomes too expensive and severely impacts the scalability 

of the parallel algorithm. Our solution is to extend the Storm stream processing engine by 

building a separate synchronization channel using a pub-sub messaging system, and design a 

novel synchronization strategy that broadcasts the incremental changes (“deltas”) instead of the 

whole centroids of the clusters. 

We use real applications from the Truthy social media data observatory to evaluate our 

architecture. Preliminary performance tests show that our solutions for parallel data 

loading/indexing, query and analysis task execution, and stream clustering all outperform 

implementations using current state-of-the-art technologies. 
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1.1 Big Data: Emerging Characteristics 

Scientific research has entered a “Big Data” era [79]. As data is growing exponentially in every 

area of science, more and more discoveries are driven by the capability of collecting and 

processing vast amounts of data. Therefore, in order to boost the progress of scientific research, 

scalable IT infrastructures are needed to deal with the high volume, high velocity, and high 

variety of Big Data. This in turn brings up research challenges and opportunities for the 

distributed data processing architecture running at the backend of IT infrastructures. 

As Big Data processing problems evolve, many applications demonstrate special characteristics 

with regards to their data and analysis process. First of all, besides a large amount of historical 

data, streaming data plays a more and more important role. For instance, earthquake monitoring 

and prediction systems detect geological events based on real-time analysis of data streams 

generated by GPS ground stations [117]; automated trading systems rely on the dynamic stream 

of stock price values to make smart trading decisions [101], etc. Correspondingly, the data 

processing architecture needs to provide scalable solutions not only for storing, querying, and 

analyzing the static historical data, but also for loading and processing the streaming data in a 

parallel fashion. The loading and analysis of static data and streaming data need to be handled in 

an integrated way. For example, an integrated general storage substrate should be provided to 

host both historical data and incremental changes coming from the streams. At the same time, 

online stream analysis should be able to use the results of batch analysis over static data for 

bootstrapping or checkpointing purposes. 

On the other hand, despite the large size of the whole dataset, most analyses tend to focus on 

specific data subsets. For example, gene sequence analysis may focus on a certain family of 
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sequences [140], and social data analysis may concentrate on data related to certain global or 

local events [131]. For such research scenarios, limiting analysis computation to the exact scope 

of the target subsets is important in terms of both efficiency and better resource utilization. 

Therefore efficient query mechanisms for quickly locating the relevant data subsets are needed 

on the data storage and analysis architecture. Furthermore, queries need to be closely integrated 

with post-query analysis tasks to support efficient end-to-end analysis workflows. 

1.2 Social Media Data Analysis 

Social media data analysis is one specific application domain that follows the Big Data trend. 

Motivated by the widespread adoption of social media platforms such as Twitter and Facebook, 

investigating social activities through analysis of large scale social media datasets has been a 

popular research topic in recent years. For example, many studies investigate the patterns of 

information diffusion on social networks by processing historical datasets generated during real-

world social events [119][130][162]. By analyzing real-time social media data streams, more 

sophisticated applications such as online event detection [10][120] and social-bots detection 

[63][64] can be supported. 

Social media data analysis problems also reflect the emerging characteristics of Big Data, which 

bring special research challenges for developing a scalable architecture. On the one hand, the 

data source contains not only a large historical dataset at TB or even PB level, but also a high-

speed stream at the rate of tens to hundreds of millions of social updates per day generated by 

people all over the world. On the other hand, most analyses focus on data subsets related to 

specific social events or special aspects of social activities: congressional elections [42][44], 

protest events [40][41], social link creation [160], etc. With regards to query patterns, social 
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media data is unique in that it contains not only textual content, but also rich information about 

the social context including time, geolocation, relationship among users on the social network, 

etc. Most queries involve selection of data records following constraints over both text elements 

and the social context such as temporal or geospacial information. The purpose of the queries is 

to extract social information such as network connections from all the selected data records 

rather than finding the top-K most relevant data records according to a set of text keywords. As a 

result, traditional static text indexing techniques [170] designed for information retrieval 

applications do not work well for queries over social media data. Therefore, a novel indexing 

component that can help deliver the most efficient queries over social media data is a necessary 

aspect of a scalable data analysis architecture. 

 

Figure 1-1. Stages in a social media data analysis workflow 

Another important feature of social data analysis is that the analysis workflow normally consists 

of multiple stages, as illustrated in Figure 1-1. The query stage is normally followed by a series 

of analysis tasks for processing or visualizing the query results. Therefore, integrated support for 

queries and post-query analysis tasks is required on the analysis architecture. 

Due to the representativeness of social media data analysis, it provides a good starting point for 

investigating the general research challenges associated with the emerging characteristics of Big 

Data problems. The target of this dissertation is to analyze such challenges and address them by 

proposing a scalable and integrated architecture that is generally applicable to a broad scope of 
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application domains. Specifically, we study the challenges related to the queries, batch analysis, 

and streaming analysis through representative and published use cases from existing social media 

data analysis systems. We propose corresponding solutions in different modules of the 

architecture, and use real analysis workflows and applications from these systems to evaluate the 

effectiveness and efficiency of our methods. To uncover the underlined research problems, we 

start from reviewing the characteristics of existing social media data analysis platforms. 

1.2.1 Truthy Social Media Observatory 

Truthy [102] is a public social media observatory developed by the Center for Complex 

Networks and Systems Research at Indiana University. It is designed for analysis and 

visualization of information diffusion on Twitter. Research performed on the data collected by 

this system covers a broad spectrum of social activities, including political polarization [43][44], 

congressional elections [42], protest events [40][41], and the spread of misinformation [120]. 

Truthy has also been instrumental in shedding light on communication dynamics such as user 

attention allocation [159] and social link creation [160]. 

Data Characteristics 

Truthy has been collecting social media data through the Twitter gardenhose stream [67] since 

May of 2010, which provides a sample of approximately 10% of their public tweets. The entire 

dataset consists of two parts: historical data in .json.gz files, and real-time data coming from the 

Twitter streaming API [148]. Currently, the total size of historical data collected continuously by 

the system since August 2010 is approximately 20 Terabytes. At the time of this writing, the data 

rate of the Twitter streaming API is in the range of 45-50 million tweets per day, leading to a 

growth of approximately 20GB per day in the total data size. Figure 1-2 illustrates a sample data 
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item, which is a structured JSON string containing information about a tweet and the user who 

posted it. Furthermore, if the tweet is a retweet, the original tweet content is also included in a 

“retweeted_status” field. For hashtags, user-mentions, and URLs contained in the text of the 

tweet, an “entities” field is included to give detailed information, such as the ID of the mentioned 

user and the expanded URLs. 

 

Figure 1-2. An example tweet in JSON format 

Queries 

In social network analysis, the concept of “meme” is often used to represent a set of related posts 

corresponding to a specific discussion topic, communication channel, or information source 

shared by users on platforms such as Twitter. Memes can be identified through elements 

contained in the text of tweets, like keywords, hashtags (e.g., #euro2012), user-mentions (e.g., 

@youtube), and URLs. Based on rich experience from previous research projects, Truthy 

identifies a set of temporal queries that are generally applicable in many research scenarios for 

extracting and generating various information about tweets, users, and memes. These queries can 
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be categorized into two subsets. The first contains basic queries for getting the ID or content of 

tweets created during a given time window from their text or user information, including: 

get-tweets-with-meme (memes, time_window) 

get-tweets-with-text (keywords, time_window) 

get-tweets-with-user (user_id, time_window) 

get-retweets (tweet_id, time_window) 

For the parameters, time_window is given in the form of a pair of strings marking the start and 

end points of a time window, e.g., [2012-06-08T00:00:00, 2012-06-23T23:59:59]. The memes 

parameter is given as a list of hashtags, user-mentions, or URLs; memes and keywords may 

contain wildcards, e.g., “#occupy*” will match all tweets containing hashtags starting with 

“#occupy.”  

The second subset of queries need information extracted from the tweets returned by queries in 

the first subset. These include: 

timestamp-count (memes, time_window) 

user-post-count (memes, time_window) 

meme-post-count (memes, time_window) 

meme-cooccurrence-count (memes, time_window) 

get-retweet-edges (memes, time_window) 

get-mention-edges (memes, time_window) 

Here for example, user-post-count returns the number of posts about a given meme by each user. 

Each “edge” has three components: a “from” user ID, a “to” user ID, and a “weight” indicating 

how many times the “from” user has retweeted the tweets from the “to” user or mentioned the 

“to” user in his/her tweets. 
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The most significant characteristic of these queries is that they all take a time window as a 

parameter. This originates from the temporal nature of social activities. An obvious brute-force 

solution is to scan the whole dataset, try to match the content and creation time of each tweet 

with the query parameters, and generate the results using information contained in the matched 

tweets. However, due to the drastic difference between the size of the entire dataset and the size 

of the query result, this strategy is prohibitively expensive. For example, in the time window 

[2012-06-01, 2012-06-20] there are over 600 million tweets, while the number of tweets 

containing the most popular meme “@youtube” is less than two million, which is smaller by 

more than two orders of magnitude. As will be discussed in Section 1.3, proper indexing 

techniques are needed for efficient evaluation of such queries. 

Analysis Workflows and Streaming Applications 

Most analysis workflows completed on Truthy follow the multi-stage pattern as illustrated in 

Figure 1-1. For example, in the workflow for analyzing political polarization [44], the first stage 

applies the get-retweet-edges and get-mention-edges queries to retrieve the retweet network and 

mention network from the tweets selected by a set of hashtags related to politics; the second 

stage completes community detection analysis over the networks; finally, the third stage uses a 

graph layout algorithm to visualize the polarization of communities on the social network. In 

another project that investigates the digital evolution of the “Occupy Wall Street” event, the first 

stage queries for tweets related to both general politics and the specific “Occupy” event based on 

a manually selected set of hashtags (e.g. #p2, #tcot, and #occupy*), using a 15-month time 

window that covers most of the event’s development; the second stage processes the tweets and 

measures the evolution of the amount of social network traffic, the degree of user engagement, 

and the intensity of information diffusion along the time dimension; the final stage visualizes 
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these patterns of evolution as time series plots. Figure 1-3 [41] shows an example plot that 

illustrates the total number of tweets related to the “Occupy Wall Street” event during a one-year 

time period. 

Besides batch analysis over historical data, applications that complete online analysis of real-

time streams are also being developed. In particular, Bot or Not [64] is an online service that can 

dynamically classify a given user ID as a human user or social bot with a certain confidence 

level by analyzing a small number of sample tweets retrieved from the Twitter Streaming API 

[148]. To support more sophisticated application scenarios, the problem of social media stream 

clustering [85] has also been investigated. The major discovery is that by using a combination of 

proper data representations and similarity metrics, it is possible to generate high-quality clusters 

that can effectively group messages with similar social meaning together. 

 

Figure 1-3. Total number of tweets related to Occupy Wall Street between 09/2011 and 09/2012 [41] 

Based on the tools and algorithms used in the analysis workflows, Truthy provides a nice web 

interface [145] for users to retrieve derived data such as social network information and statistics 

about certain users and memes, as well as visualization generated by some previous research 

projects. 
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Despite the richness and scope of research that has been covered by Truthy, most projects 

complete data processing in a sequential way or only with a limited level of parallelism (e.g. 

using multi-thread solutions) over the raw data. As a result, the processing speed is 

unsatisfactory when measured against the volume of the whole dataset. For example, it takes as 

many as 43 hours for a sequential implementation of the stream clustering algorithm in [85] to 

process one hour’s worth of data collected through the Twitter gardenhose stream [67]. Most 

data is stored as raw .json.gz files, which are not suitable for random access to individual social 

messages. A MySQL database is used to maintain important sumarries about certain users and 

memes, but is obviously not scalable enough to support fine-grained access and efficient queries 

over the whole dataset. This situation forms a strong and practical motivation for the research 

work of this dissertation. 

1.2.2 Other Similar Systems 

To the best of our knowledge, Truthy is the first complete social media observatory in terms of 

functionality and interface. VisPolitics [155], TwitInfo [146], and Ripples [126] are similar 

analysis systems that generate visualizations about different aspects of social media network, but 

do not provide a rich set of statistics and derived data as Truthy does. Meanwhile, many query 

patterns and analysis components defined by Truthy are generally useful for constructing the 

functionality of these systems. For example, similar queries can be used to generate the ‘repost 

network’ in Ripples, or support searching of topic keywords and URL counting in TwitInfo. 

Commercial entities such as PeopleBrowsr [116], Datasift [50], and SocialFlow [133] provide 

consulting services to their customers through analytics over social media data, but they don’t 

expose their raw data or results to the public for research purposes. Padmanabhan et al. presented 

FluMapper [112], an interactive map-based interface for flu-risk analysis using near real-time 
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processing of social updates collected from the Twitter streaming API. FluMapper applies a set 

of advanced technologies, including NoSQL database (MongoDB [105]), GPU processing, and 

flow mapping, to support its data collection, processing, and visualization modules. 

Although these systems demonstrate a broad scope of applications involving social media data, 

none of them has done an in-depth investigation about the fundamental research challenges from 

the perspective of distributed systems. On the other hand, many Big Data tools have been 

developed in the past, including storage systems such as Hadoop Distributed File System (HDFS) 

[132] and HBase [19], and various processing tools as illustrated in Figure 1-4. Specifically, 

Hadoop [19] provides an easy to use MapReduce [53] programming interface to support single-

pass parallel processing of Big Data, and automatically handles issues such as locality-aware task 

scheduling, failure recovery, and intermediate data transmission at the platform level. Beyond 

this, frameworks such as Twister [60] and Spark [166] are specially optimized for iterative 

computation that can be described with a MapReduce model. For iterative algorithms over graph 

data, frameworks such as Giraph [17] and Harp [169] can directly support data abstraction in the 

form of nodes and edges in graphs. To enable efficient queries over large-scale datasets, systems 

such as Power Drill [75], Pig [23], and Hive [20] were developed with original support for high-

level query languages. Finally, to support distributed parallel processing of streaming data, 

stream processing engines such as S4 [108] and Storm [25] have been proposed. Despite the 

richness and variaty of all these existing systems, it is still unclear what kind of extensions and 

combinations of them are necessary for handling the new characteristics of Big Data problems, 

as represented by social media data analysis. This dissertation tries to bridge the gap between 

these two sides, and we start by studying the specific research challenges. 
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Figure 1-4. Big Data processing tools [169] 

1.3 Research Challenges 

Due to the special characteristics of social media data, we are facing research challenges related 

to three major aspects at the distributed system level: indexing, dynamic runtime processing 

frameworks, and parallel stream processing. 

1.3.1 Requirements for Novel Text Indexing Techniques 

First of all, as demonstrated in Section 1.2.1, most queries over social media data can be 

categorized as text queries with constraints about social context. However, traditional text 

indexing techniques (i.e. inverted indices [170]) supported by many existing distributed storage 

systems such as distributed Solr [57], DataStax [52], and Riak [125] do not provide the most 

efficient solution to such queries. One reason is that traditional inverted indices are mainly 

designed for text retrieval applications where the main goal is to efficiently find the top K (with a 
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typical value of 20 or 50 for K) most relevant text documents regarding a query comprising a set 

of keywords. To achieve this goal, information about the frequency and position of keywords in 

the documents is stored and used for computing relevance scores between documents and 

keywords during query evaluation. In contrast, social media data queries are designed for 

analysis purposes, meaning that they have to process all the related tweets, instead of the top K 

most relevant ones, to generate the results. This means data regarding frequency and position are 

extra overhead for the storage of the index structures, and relevance scoring is unnecessary in the 

query evaluation process. The query evaluation performance can be further improved by 

removing these items from traditional inverted indices.  

Another issue with traditional text indexing techniques is that one separate inverted index 

structure is maintained for every indexed field. However, social media queries do not favor query 

execution plans using such separate one-dimensional indices. For example, Figure 1-5 illustrates 

a typical query execution plan for get-tweets-with-meme, using two separate indices on memes 

and tweet creation time. This plan uses the meme index to locate the IDs of all tweets containing 

the given memes and utilizes the time index to find the set of tweet IDs within the given time 

window, finally computing the intersection of these two sets to get the results. Assuming the size 

of the posting lists for the given memes to be m, and the number of tweet IDs coming from the 

time index to be n, the complexity of the whole query evaluation process will be O(m + n) = 

O(max(m, n)), using a merge-based or hashing-based algorithm for the intersection operation. 

However, due to the characteristics of large social media and microblogging datasets, there is 

normally an orders-of-magnitude difference between m and n, as discussed in Section 1.2.1. As a 

result, although the size of the query result is bounded by min(m, n), a major part of query 

evaluation time is actually spent on scanning and checking irrelevant entries of the time index. In 
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classic text search engines, techniques such as skipping or frequency-ordered inverted lists [170] 

may be utilized to quickly return the top K most relevant results without evaluating all the related 

documents. Such optimizations are not applicable to the analysis-oriented social media data 

queries. Furthermore, in case of a high cost estimation for accessing the time index, the search 

engine may choose to only use the meme index and generate the results by checking the content 

of relevant tweets. But valuable time is still wasted in checking irrelevant tweets falling out of 

the given time window. The query evaluation performance can be further improved if the 

unnecessary scanning cost can be avoided. 

 

Figure 1-5. A typical query execution plan using separate indices on meme and creation time 

To avoid the above-mentioned problems, a more suitable index structure would be the one given 

in Figure 1-6. It merges the meme index and time index, and replaces the frequency and position 

information in the posting lists of the meme index with creation time of corresponding tweets. 

Facilitated by this customized index structure, the query evaluation process for get-tweets-with-

meme can be easily implemented by going through the index entries related to the given memes 

and selecting the tweet IDs associated with a creation time within the given time window. The 

complexity of the new query evaluation process is O(m), which is significantly lower than 

O(max(m, n)). Moreover, if we can further extend this index structure to also include the user ID 
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of each tweet, as shown in Figure 1-7, it will be possible to evaluate the advanced query user-

post-count by only accessing the index, without touching the original data at all. 

 

Figure 1-6. A customized meme index structure including time 

 

Figure 1-7. A customized meme index structure including time and user ID 

The ideas behind these index structures are similar to the features of multi-dimensional indices 

and included columns that have been supported by relational databases for non-text data. 

However, they are not supported by current state-of-the-art text indexing systems, such as 

Lucene [22] and distributed Solr [57]. To enable them, a fully customizable text indexing 

framework is needed. Considering the special characteristics of social media data, this 

framework must provide both a scalable batch indexing mechanism for the static historical data 

and an efficient online indexing mechanism for the high-speed streaming data. So building such 

a framework in a scalable way is a major research challenge, as is knowing how to make use of 

the various customized index structures to support efficient queries and analysis tasks. 

1.3.2 Efficient Execution of Analysis Workflows 

As demonstrated in Figure 1-1, social media data analysis workflows normally consist of 

multiple stages, and each stage may apply a diversity of algorithms to process the target data 

subsets. These algorithms demonstrate a high level of complexity in their computation and 
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communication patterns, including sequential, MapReduce, iterative MapReduce, and graph 

style. Different patterns are suitable for different processing frameworks such as Hadoop [18], 

Twister [60], Spark [166], and Giraph [17]. Moreover, to support online stream analysis 

applications, distributed stream processing engines like Storm [25] may also be used. To achieve 

efficient overall execution of the workflow, the analysis architecture must be able to dynamically 

adopt suitable processing frameworks to complete different steps from these stages. Achieving 

this in a distributed and shared environment is another major challenge. In case of integrated 

workflows involving both queries and analysis tasks, how to explore the value of indices in 

supporting sophisticated analysis algorithms (beyond the scope of queries) is also an interesting 

research question. 

1.3.3 Parallel Processing of High-Speed Stream Data 

Due to the high speed of social media data streams, parallel processing is necessary for many 

stream analysis applications such as clustering and classification. To support efficient parallel 

processing of streaming data, many distributed frameworks have been proposed including 

Apache Storm [25] and S4 [108]. Most of these frameworks organize the parallel stream 

processing workers in the form of a direct acyclic graph (DAG), which makes it difficult to 

complete dynamic status synchronization among the parallel workers, a crucial step for ensuring 

the correctness of the parallel analysis algorithms. This is because the synchronization step 

requires the parallel workers to send their local status updates either to each other or to a global 

updates collector, which will then broadcast the updated global state back to the parallel workers. 

Both ways will inevitably create cycles in the communication channel, which conflicts with the 

DAG model. Meanwhile, to achieve high-quality analysis results, many stream analysis 

applications represent the the social messages in the stream as multiple high-dimensional vectors 
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that reflect both the textual content and the social context of the data. The high-dimensionality 

and sparsity of such vectors may bring extra complexity and cost to the synchronization 

mechanism, and designing proper synchronization strategies to enable efficient parallel stream 

analysis algorithms is an important research issue. 

1.4 Contributions and Outline 

To address the research challenges discussed in Section 1.3, this dissertation proposes a scalable 

and integrated analysis architecture as illustrated in Figure 1-8 to support modern scientific data 

analysis pipelines in the cloud. The three stages in the pipeline demonstrate how Information, 

Knowledge, and Wisdom [143] are eventually generated from Data. Correspondingly, we name 

our architecture Cloud DIKW. The whole architecture comprises three modules; each module 

extends and combines a set of big data storage and processing tools to tackle the corresponding 

challenges. 

At the bottom layer, we use NoSQL databases as the storage substrate, which can provide 

scalable storage of large social media datasets and efficient random access to fine-grained social 

messages. To address the requirements for novel indexing techniques, we propose a fully 

customizable indexing framework that can be generally integrated with most NoSQL databases. 

With this framework, users can define customized index structures that contain the exact 

necessary information about the original social media data, so as to achieve efficient evaluation 

of queries about interesting social events and activities. By choosing proper mappings between 

the abstract index structures and the storage units provided by the underlying NoSQL database, 

efficient indexing of historical and streaming data can be achieved. We realize and verify our 

framework with IndexedHBase [83], a specific implementation on HBase [19]. 
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Figure 1-8. Integrated architecture for social media data analysis 

To achieve efficient execution of the whole analysis workflow, we extend IndexedHBase to 

build an analysis architecture based on YARN (Yet Another Resource Negotiator) [154], which 

is specially designed for dynamic scheduling of analysis tasks using different parallel processing 

frameworks. In the batch analysis module, we develop a parallel query evaluation strategy and a 

set of analysis algorithms using various parallel processing frameworks, including Hadoop 

MapReduce [99], Twister [60], etc. These can be used as basic building blocks for composing 

different workflows. In addition, parallel batch indexing and data loading mechanisms for 

handling historical data are developed based on the functionality of the customizable indexing 

framework. Moreover, we extend the usage of customized indices beyond basic queries to 

sophisticated mining and analysis algorithms, and demonstrate the significant performance 

improvement that can be achieved by exploring the value of indexing. We use real data, queries, 

and previously published analysis workflows from Truthy to evaluate the performance of these 
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modules. Our results demonstrate that compared with implementations based on existing text 

indexing techniques on a widely adopted NoSQL database (Riak [125]), our data loading 

mechanism is faster by multiple times, and our query evaluation strategy can be faster by up to 

two orders of magnitude. Finally, parallel analysis algorithms are tens to hundreds of times faster 

than the old sequential implementation on Truthy, thus leading to much more efficient analysis 

workflows. 

To achieve efficient parallel processing of stream data, we use the Storm stream processing 

engine as the basis of the stream analysis module, and develop a parallel stream data loading 

mechanism based on the online indexing functionality of the customizable indexing framework. 

Preliminary performance tests show that we are able to process a stream whose speed is five 

times faster than the current Twitter gardenhose stream [67] with only 8 parallel stream loaders. 

To support more sophisticated stream clustering algorithms, we create a separate synchronization 

channel by using the pub-sub messaging system ActiveMQ [16], and combine its functionality 

together with Storm to coordinate the synchronization process. Furthermore, to deal with the 

problem caused by the high-dimensionality of the data, we propose a novel synchronization 

strategy that broadcasts the dynamic changes (“deltas”) of the clusters rather than the whole 

centroid vectors. Performance evaluation shows that this synchronization mechanism can help 

the parallel algorithm achieve nice sub-linear scalability, and the algorithm can process the 

Twitter 10% data stream (“gardenhose”) in real-time with 96-way parallelism. 

The rest of this dissertation is structured as follows. Chaper 2 describes the customizable 

indexing framework, the parallel data loading mechanism, and the parallel query evaluation 

strategy, and compares them to solutions based on existing distributed text indexing techniques. 

Chapter 3 explains the internal mechanism of the batch analysis module, and presents the 
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implementation of multiple parallel analysis algorithms based on different processing 

frameworks. In addition we repeat a previously published analysis workflow [44] based on our 

parallel queries and analysis algorithms, and demonstrate the significant speedup that can be 

achieved for the overall execution of the whole workflow. Chapter 4 elaborates on the stream 

analysis module, analyzes the research challenges related to parallel clustering of social media 

data streams, and discusses our novel synchronization strategy for supporting the parallel 

algorithm on Storm. We demonstrate the scalability of our algorithm by comparing it against an 

implementation using the traditional synchronization strategy that directly broadcasts the whole 

centroids of the clusters. Chapter 5 concludes and proposes interesting future work for every 

module of the integrated architecture. 
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Chapter 2  

Storage Layer - Customizable and Scalable Indexing Framework 

over NoSQL Databases 
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2.1 Overview 

As discussed in Section 1.3, the major research challenge to the storage layer of Cloud DIKW 

roots in the scalability of the storage substrate and the efficiency of the query mechanisms for 

finding interesting data subsets. This chapter makes the following contributions to resolve this 

challenge: 

 We compare the features of two options for constructing a scalable storage solution – parallel 

relational databases and NoSQL databases, and choose the latter as the the basis of our 

storage layer based on analysis of the characteristics of social media data. 

 We provide a detailed review of multiple representative NoSQL database systems, and reveal 

that compared with the query patterns against social media data, the level of indexing support 

on current NoSQL databases is uneven and inadequate. 

 To enhance the indexing support of NoSQL databases, we propose a general customizable 

indexing framework that can be implemented on most NoSQL databases. This framework 

allows users to define customizable text index structures that are not supported by current 

distributed text indexing systems, so as to achieve the best query performance for social 

media data. 

 We provide one implementation of this framework, IndexedHBase, over HBase and develop 

parallel data loading and query evaluation strategies on top. Performance evaluation with real 

data and queries from Truthy shows that compared with solutions based on existing text 

indexing techniques provided by current NoSQL databases, our data loading strategy based 

on customized index structures is faster by multiple times, and our parallel query evaluation 

strategy is faster by one to two orders of magnitude. 

The first step towards Cloud DIKW is to provide a scalable storage substrate. Specifically, it has 

to properly handle the following characteristics of social media data: 

First of all, since the whole dataset is composed of both a large scale historical dataset and a 

high-speed stream, the storage substrate must support both scalable batch loading for static data 
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and real-time online insertion of streaming data. Data access pattern is mostly write-once-read-

many, because historical data is rarely updated. Therefore, in cases where data is replicated, 

consistency among dynamically changed replicas is not a strong requirement. And since data 

processing is mostly analysis-oriented, sophisticated data manipulation through online 

transcations with ACID (Atomicity, Consistency, Isolation, Durability) properties is not required 

either. 

Next, since data comes in the form of separate social messages, the storage substrate has to 

support efficient random access to fine-grained data records. As illustrated in Figure 1-2, a social 

message may be structured as a hierarchy of multiple levels that may evolve over time i.e. fields 

could be dynamically deleted or added based on requirements of the application. For instance, 

for tweets coming from the Twitter Streaming API [148], fields like “id_str”, “entities.symbols”, 

“entities.media” are all added as the application evolves. The storage substrate should ideally be 

able to handle such dynamic data schema changes in a seamless way. 

Since analysis workflows normally start with queries, the storage substrate must be equipped 

with necessary indexing techniques to enable the most suitable index structures for efficient 

evaluation of the queries. 

Finally, due to the requirement for integrated queries and analysis tasks, the storage substrate 

should have a natural integration with parallel processing frameworks such as Hadoop 

MapReduce to support various analysis algorithms. 

Due to the strong requirements for scalability and random data access, we mainly consider two 

types of systems: parallel relational databases and NoSQL databases. The advantages and 

disadvantages of both sides were compared by Kyu-Young Whang in 2011 [161], as illustrated 
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in Figure 2-1 where we extend the advantages of NoSQL databases with two more features: 

flexible schema and inherent integration with parallel processing frameworks. 

 

Figure 2-1. Comparison between NoSQL databases and Parallel DBMSs 

Parallel databases support the relational data model, and provide SQL for schema definition and 

data manipulation. Most systems use a “shared nothing” architecture [97], where each computer 

node in the system maintains a partition of the data. Sophisticated indexing and query 

optimization techniques are supported, and indices built for each data partition are maintained by 

the same node hosting the data partition. A query execution plan is first decomposed into a 

number of “sub-plans”, which are sent to every relevant node for local execution. Then the local 

results from each node are combined to generate the global final result. Since supporting 

efficient online transactions is a major goal of parallel database systems, most of them do not 

scale to a large number of nodes because concurrency control grows more and more complicated 

as further nodes are involved. To achieve low execution latencies for transactions, they are 

usually deployed on a small number of powerful machines, which are likely to be expensive. 
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Another disadvantage of parallel relational databases is they are hard to configure and maintain 

[58][161]. 

Many new systems have been proposed since 2011 with the goal of supporting ACID 

transactions at a much larger scale, represented by VoltDB [137][156] and Spanner [45]. 

Specifically, VoltDB relies on a new in-memory architecture, a single-threaded execution model, 

and heavy use of stored procedures to eliminate the necessity of a big portion of locking. 

Spanner builds a globally distributed architecture that may span across thousands of nodes, and 

leverages a global time API backed by GPS and atomic clocks to achieve external consistency of 

general transactions. Nonetheless, as discussed above, support for transactions is not a strong 

requirement for our case of social media data analysis. 

NoSQL databases, on the other hand, mainly sacrifice the ability to handle ACID transactions to 

achieve high scalability over a large number (hundreds to thousands) of computer nodes. Data is 

replicated across different nodes for fault tolerance, and many systems allow eventual 

consistency among replicas of the same piece of data. Many NoSQL database systems are open-

source or free to download, and can be easily set up across a variety of heterogeneous 

commodity machines. Flexible data schemas are usually allowed, meaning that every data record 

can have a different set of fields and values. This provides a perfect fit for the evolving data 

schemas of social media applications. Moreover, most NoSQL databases are inherently 

integrated with parallel processing frameworks such as Hadoop MapReduce [99], which makes it 

easier to support integrated queries and post-query analysis tasks. 

Features required for handling the unique characteristics of social media data are marked with 

blue squares in Figure 2-1. Basically we need all the advantages from the NoSQL database side, 
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plus a proper indexing mechanism for dealing with the special queries of social media data. 

Since the access pattern for social media data is mostly write-once-read-many, eventual 

consistency on NoSQL databases does not cause a big issue. As analyzed in Section 1.3.1, the 

most suitable index structures required for handling the text queries with social context 

contraints are not currently supported by the text indexing techniques from either side. Therefore, 

we choose to use NoSQL databases as the storage substrate, and enhance them with a 

customizable indexing framework to enable novel index structures for efficient query evaluation. 

2.2 Related Work 

The customized index structures we propose in this chapter aim to address the temporal 

challenge in social media analytics scenarios. Derczynski et al. [54] provide a more complete list 

of related work about temporal and spatial queries involving social data. In particular, Alonso et 

al. [14] give a detailed discussion about the challenges in extracting temporal information from 

online data and applying such information in text queries. Weikum et al. [158] further elaborate 

on the open research problems in the context of longitudinal analytics on web archive data. 

These papers focus on information retrieval applications, where ranking is still important. In 

addition, they mainly deal with versioned documents in datasets like web archives, so similarities 

and inter-connections among documents need to be considered in index structure designs. In our 

case, social updates with different timestamps are independent, and the number of tweets within 

a given time window is much larger than the number of versions per document. Information 

retrieval queries need not analyze contents of the documents. In contrast, our queries need to 

process the content of the related social updates to extract necessary information such as retweet 

network, so parallel processing of data records is needed after accessing the index. Our 

experience in this chapter may shed light on possible solutions for the problems discussed in 
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these papers in multiple aspects, including customizable index structures, scalable storage 

platforms, and efficient index building strategies. 

The customizable index structures we use share similar inspiration to composite indices used in 

relational databases, but index a combination of full-text and primitive-type fields. Compared 

with traditional inverted indices [170], our framework provides more flexibility about what fields 

to use as keys and entries to achieve more efficient query evaluation with less storage and 

computation overhead. Lin et al. [96] proposes text cubes to support multidimensional text 

database analysis. Due to the requirement for efficient online indexing of high-speed stream data, 

text cube is not suitable for our case. 

Our online indexing mechanism for handling streaming data is comparable to early research on 

online indexing and incremental index maintenance [32][33][93][94][100][130][144], but is 

different in that we leverage the functionality of the underlying NoSQL databases to support 

these features. By using a write ahead log (WAL), HBase helps our framework achieve 

persistency of even unflushed index data in the memory, which is a missing feature in most 

existing online indexing systems. 

The problem of supporting extendable input data models has been a well researched topic in the 

communities of object-oriented databases, nested relational databases, and object-relational 

databases, represented by O2 [27], ANDA (A Nested Database Architecture) [47], and 

PostgreSQL [127][135][136]. Based on a complete and clearly defined theoretical object-

oriented data model, O2 achieves many nice features. It provides well-defined semantics of 

object identity, inheritance, and methods in a database context. The physical data storage and 

index organization mechanisms take object sharing, class inheritance, and composition graphs 
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into consideration, and the seamless integration of programming languages and query languages 

are inspiring for our case of integrated queries and analysis tasks. Similarly, the VALTREE and 

RECLIST structures in ANDA are optimized to support efficient nesting and unnesting 

operations. Compared with these systems, our requirements for an extendable input data model 

are simpler. We don’t need to handle the complexity of class hierarchies, composition graphs, or 

associated methods. Nor do we require nesting operations among subtuples. On the other hand, 

we need to tackle more complicated issues in other respects, including customizable text index 

structures, distributed index storage, scalable indexing performance, and dynamic load balancing. 

The data model of PostgreSQL aims at supporting new abstract data types using general storage 

management and index maintenance mechanisms. For example, the Generalized Search Tree 

(GiST) [78] is designed to cover a wide range of tree-structured indices for data with 

dynamically defined abstract data types. In comparison, our work emphasizes customizability of 

the elements of index structure itself – namely what to use as index key, entry, and entry fields 

(for included or computed columns). PostgreSQL extends GiST to build Generalized Inverted 

Index (GIN) [28] for text data. However, as illustrated in Figure 2-2, it lacks several important 

features that are needed in our queries for social media data, including multicolumn indices, 

range queries, and full scans of indices. 

 

Figure 2-2. Limitations of Generalized Inverted Index in PostgreSQL [28] 
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Hadoop++ [58], HAIL [59], and Eagle-Eyed Elephant [61] are recent systems that try to extend 

Hadoop with various indexing mechanisms to facilitate MapReduce queries. Since data is 

directly stored as files in HDFS [132], these systems do not support efficient random access to 

fine-grained data records, and thus do not address the requirements of social media data access. 

Additionally, these systems all schedule MapReduce tasks based on data blocks or splits stored 

on HDFS (or at least ‘relevant’ splits), and tasks may have to scan irrelevant data records during 

query evaluation. In contrast, by using NoSQL databases as the storage substrate, we aim to 

support record-level indexing in our customizable indexing framework, and limit the post-query 

analysis computation to only relevant data records. 

Google’s Dremel [103] achieves efficient evaluation of aggregation queries on large-scale nested 

datasets by using distributed columnar storage and multi-level serving trees. Power Drill [75] 

explores special caching and data skipping mechanisms to provide even faster interactive query 

performance for certain selected datasets. Percolator [115] replaces batch indexing system with 

incremental processing for Google search. The columnar storage of table data used by both 

Power Drill and Dremel are inspiring to IndexedHBase in terms of more efficient query 

evaluation. Conversely, our customizable indexing strategy could also potentially help Dremel 

for handling aggregation queries with highly selective operations. 

2.3 Review of NoSQL Databases 

This section investigates and compares four representative distributed NoSQL database systems, 

namely HBase, Cassandra, MongoDB, and Riak, in terms of five dimensions: data model, data 

distribution mechanism, data replication and consistency management, data indexing support, 
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and distributed data processing support. Discussions here about NoSQL databases form the basis 

for the customizable indexing framework presented in the next section. 

2.3.1 Data Model 

Data model defines the logical organization of data that is presented to the user or client 

application by a NoSQL database system. 

HBase 

HBase supports the BigTable data model [37] that was originally proposed by Google. Figure 2-

3 illustrates this data model. Data is stored in tables; each table contains multiple rows, and a 

fixed number of column families. For each row, there can be a varied number of qualifiers 

(columns) within each column family, and at the intersections of rows and qualifiers are table 

cells. Cell contents are uninterpreted byte arrays. Cell values are versioned using timestamps, 

and a table can be configured to maintain a certain number of versions. Rows are sorted by row 

keys, which are also implemented as byte arrays. Within each column family, columns are sorted 

by column names. Cell values under a column are further sorted by timestamps. 

 

Figure 2-3. An example of the BigTable data model 
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Compared with the data model defined by “relations” in traditional relational databases, HBase 

tables and columns are analogous to tables and columns in relational databases. However, there 

are four significant differences: 

(1) Relational databases do not have the concept of “column families”. In HBase, data from 

different columns under the same column family is stored together (as one file on HDFS). In 

comparison, data storage in relational databases is either row-oriented, where data in the 

same row is consecutively stored on physical disks, or column-oriented, where data in the 

same column is consecutively stored. 

(2) In relational databases, each table must have a fixed number of columns (or “fields”); thus 

every row in a given table has the same set of columns. In HBase, each row in a table can 

have a different number of columns within the same column family.  

(3) In HBase, cell values can be versioned with timestamps. The relational data model does not 

have the concept of versions. 

(4) Generally, NoSQL databases such as HBase do not enforce relationships between tables 

through mechanisms such as foreign keys in the way relational databases do. User 

applications have to deal with dependencies among tables through their application logics or 

mechanisms such as “Coprocessors” supported by HBase [88]. 

Cassandra 

The data model of Cassandra [89][150] is similar overall to HBase, but with several major 

differences: 
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(1) In Cassandra, the concept of a table is equal to a “column family”; each table contains only 

one column family. Different column families are totally separate logical structures 

containing different sets of row keys. Therefore, compared with the relational data model, 

Cassandra column families are analogous to tables, and columns under column families are 

analogous to columns in relational tables. Consider the example in Figure 2-3. In Cassandra, 

the “Student Table” will be implemented either as one “Student” column family containing 

all the columns in Figure 2-3, or as two separate column families, “Student-BasicInfo” and 

“Student-ClassGrades”. 

(2) Beyond column families, Cassandra supports an extended concept of “super column family”, 

which can contain “super columns”. A super column is comprised of a (super) column name 

and an ordered map of sub-columns. The limitation of super columns is that all sub-columns 

of a super column must be deserialized in order to access a single sub-column value. 

(3) The order of row keys in a column family depends on the data partition strategy used for a 

Cassandra cluster. By default the Random Partitioner is used, which means row keys are not 

sorted within a column family and there is no way to do range scans based on row keys 

without using external facilitating mechanisms such as an extra user-defined indexing 

column family. Row keys are sorted when the Order Preserving Partitioner is used, but this 

configuration is not recommended [113][162]. 

(4) Cassandra does not support explicit maintenance of multiple ‘versions’ of the column (cell) 

values. Column values do have associated timestamps but they are internally used for 

resolving conflicts caused by eventual consistency. Column values with obsolete 

timestamps are eventually deleted as a result of conflict resolution. 
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MongoDB 

MongoDB is a distributed document database that provides high performance, high availability, 

and automatic scaling. It uses the concept of “collections” and “documents” to model data [104]. 

A collection is a grouping of MongoDB documents which normally have similar schemas. A 

collection is similar to a table in relational databases and a document takes the place of a table 

record. Documents are modeled as a data structure following the JSON format, which is 

composed of field and value pairs. Each document is uniquely identified by a “_id” field as the 

primary key. The values of fields may include embedded documents, arrays, and arrays of 

documents [84]. Figure 2-4 shows an example MongoDB document. MongoDB can support 

access to a sorted list of documents by performing a query with sorting on a document field 

[122]. 

 

Figure 2-4. An example of the MongoDB document data model [84] 

Relationships between documents can be modeled in two ways: references and embedded 

documents [49]. 

Riak 

Riak is a distributed database designed for key-value storage. Its data model follows a simple 

“key/value” scheme, where the key is a unique identifier of a data object, and the value is a piece 

of data that can be of various types, such as text and binary [124]. Each data object can also be 

tagged with additional metadata, which can be used to build secondary indices to support query 
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of data objects [153]. A concept of “bucket” is used as a namespace for grouping key/value pairs. 

Figure 2-5 illustrates an example of the Riak data model. 

 

Figure 2-5. An example of the key/value data model in Riak 

2.3.2 Data Distribution Mechanism 

The data distribution mechanism determines how data operations are distributed among different 

nodes in a NoSQL database cluster. Most systems use two major mechanisms: key-range-based 

distribution and hash-based distribution. Key-range based distribution can easily support range 

scans of sorted data, but may face the problem of unbalanced access load to different value 

ranges. Hash-based distribution has the advantage of balanced access load across nodes, but does 

not support range scans very well. 

HBase 

HBase uses a key-range-based data distribution mechanism. Each table is horizontally split into 

regions, and regions are assigned to different region servers by the HBase master. Since rows are 

sorted by row keys in the HBase data model, each region covers a consecutive range of row keys. 

Figure 2-6 illustrates the architecture of HBase. HBase dynamically splits a region in two when 

its size goes over a limit, or according to a user-specified RegionSplitPolicy. Users can also 

force region splits to handle “hot” regions [134]. Since table data is stored in HDFS, region splits 
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do not involve much data movement and can be finished very quickly. Region splits happen in 

the background and do not affect client applications. 

 

Figure 2-6. HBase architecture 

Cassandra 

Depending on the configuration about data partitioner, a Cassandra cluster may apply either 

key-range-based distribution or hash-based distribution. 

When the Random Partitioner is used (which is the default configuration), nodes in the cluster 

form a Distributed Hash Table (DHT). Cassandra partitions data across the cluster using 

consistent hashing. The output range of a hash function is treated as a fixed circular space or 

“ring" (i.e. the largest hash value wraps around to the smallest hash value). Each node in the 

system is assigned a random value within this space which represents its position on the ring. 

After position assignment, each node becomes responsible for the region in the ring between it 

and its predecessor node [89]. 

To handle a data operation request, the row key of the data operation is first hashed using the 

MD5 hashing algorithm, and then the operation is sent to the node that is responsible for the 

corresponding hash value to process. The MD5 hashing step ensures a balanced distribution of 

data and workload even in cases where the application data has an uneven distribution across the 
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row keys, because the hash values of the possibly preponderant sections of row keys will still 

demonstrate an even distribution [162]. 

When the Order Preserving Partitioner is used, each node becomes responsible for the storage 

and operations of a consecutive range of row keys. In this case, when the application data has an 

uneven distribution across the row key space, the nodes will have an unbalanced workload 

distribution [162]. 

Load skew may be further caused by two other factors. First, the random position assignment of 

each node on the ring leads to non-uniform data and load distribution. Second, the basic data 

distribution algorithm is oblivious to the heterogeneity in the performance of nodes. To address 

these issues, Cassandra analyzes load information on the ring and moves lightly loaded nodes 

on the ring to alleviate heavily loaded nodes [89]. Also, every time a new node is added, 

Cassandra will assign a range of keys to that node such that it takes responsibility for half the 

keys stored on the node that currently stores the most keys. In a stable cluster, data load can also 

be rebalanced by careful administrative operations, such as manual assignment of key ranges or 

node take-down and bring-up [162]. 

MongoDB 

MongoDB also supports both key-range-based distribution and hash-based distribution through 

configurations. The working logic is similar to Cassandra. MongoDB organizes nodes in units of 

shards and partitions the key space of data collections into chunks. Chunks are then distributed 

across the shards. Dynamic load balancing among shards is achieved through chunk splitting 

and chunk migration [128]. 

Riak 



37 

 

Riak also uses a DHT to support hash-based distribution. When the client performs key/value 

operations, the bucket and key combination is hashed. The resulting hash maps onto a 160-bit 

integer space. Riak divides the integer space into equally-sized partitions, each managed by a 

process called a virtual node (or “vnode”). Physical machines evenly divide responsibility for 

vnodes. Figure 2-7 illustrates an example partition distribution of the hash value space among 4 

nodes. 

 

Figure 2-7. Hash-based data distribution in Riak [124] 

2.3.3 Data Replication and Consistency Management 

Almost all NoSQL database systems rely on replication to ensure high data availability in 

distributed deployments. However, these systems use different strategies to manage the 

consistency of multiple replicas of the same piece of data. This section only covers data-object-

level consistency, i.e. consistency among replicas of single data objects. Most NoSQL database 

systems do not address transaction-level consistency, which may involve a series of updates to 

multiple related data objects. Supporting transaction-level consistency will require additional 

synchronization extensions [115]. 
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HBase 

Since HBase uses HDFS for data storage, it inherits the replication and consistency 

management from HDFS. Specifically, the replication factor and replica location method is 

decided by HDFS. Since HDFS enforces complete consistency – a write operation does not 

return until all replicas have been updated – HBase also ensures complete consistency for its 

data update operations. Upon receiving a data update operation, the HBase region server first 

records this operation in a write-ahead log (WAL), and then puts it in memstore (an in-memory 

data structure). When the memstore reaches its size limit, it is written to an HFile [30]. Both the 

WAL file and the store file are HDFS files. Therefore, complete consistency is guaranteed for all 

data updates. HDFS and HBase do not originally support deployment with data center 

awareness. 

Cassandra 

Each data item in Cassandra is replicated at N hosts, where N is the replication factor. The node 

responsible for the key of the data item is called a coordinator node. In addition to locally storing 

each key within its range, the coordinator replicates these keys at the N-1 nodes in the ring. 

Cassandra provides various replication policies such as “Rack Unaware", “Rack Aware" 

(within a datacenter) and “Datacenter Aware". Replicas are chosen based on the replication 

policy of the application. If the “Rack Unaware" replication strategy is chosen, then the non-

coordinator replicas are chosen by picking N-1 successors of the coordinator on the ring. 

Cassandra allows eventual consistency among data replicas to achieve high availability, 

partition tolerance and short response time for data operations. Cassandra extends the concept of 

eventual consistency by offering tunable consistency. For any given read or write operation, the 
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client application decides how consistent the requested data should be. The consistency level can 

be specified using values such as “ANY”, “ONE”, “QUORUM”, “ALL”, etc. Some values are 

specially designed for multiple data center clusters, such as “LOCAL_QUORUM” and 

“EACH_QUORUM” [3]. To understand the meaning of consistency levels, take “QUORUM” 

for write as an example. This level requires that a write operation will be sent to all replica nodes, 

and will only return after it is written to the commit log and memory table on a quorum of replica 

nodes. 

Cassandra provides a number of built-in repair features to ensure that data remains consistent 

across replicas, including Read Repair, Anti-Entropy Node Repair, and Hinted Handoff [3]. 

MongoDB 

MongoDB manages data replication in the units of shards. Each shard is a replica set, which can 

contain one primary member, multiple secondary members, and one arbiter. The primary is 

the only member in the replica set that receives write operations. MongoDB applies write 

operations on the primary and then records the operations on the primary’s oplog. Secondary 

members replicate this log and apply the operations to their data sets. All members of the replica 

set can accept read operations. However, by default, an application directs its read operations to 

the primary member. If the current primary becomes unavailable, an election determines the new 

primary. Replica sets with an even number of members may have an arbiter to add a vote in 

elections for primary [123]. Replica sets can be made data center-aware through proper 

configurations [48]. 

Data synchronization between primary and secondaries are completed through eventual 

consistency [111]. If Read Preference is set to non-primary, read operations directed to 
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secondaries may get stale data [121]. MongoDB also supports tunable consistency for each 

write operation through the “Write Concern” parameter [163]. 

Riak 

Riak allows the user to set a replication number for each bucket, which defaults to 3. When a 

data object's key is mapped onto a given partition of the circular hash value space, Riak 

automatically replicates the data onto the next two partitions (Figure 2-8). Riak supports multi-

data center replication through the concept of “primary cluster” and “secondary clusters”  [107]. 

 

Figure 2-8. Data replication in Riak [124] 

Similar to Cassandra, Riak also supports tunable consistency for each data operation [62]. It 

relies on mechanisms such as Vector Clock, Hinted Handoff, and Read Repair to resolve 

conflicts and ensure consistency [124]. 

2.3.4 Data Indexing Support 

There are two major categories of indexing involved in distributed NoSQL database systems: 

primary indexing and secondary indexing. In terms of distributed index storage, there are two 

ways of index partitioning: partition by original data or partition by index key. “Partition by 
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original data” means that each node in the cluster only maintains the secondary index for the 

portion of the original data that is locally hosted by that node. In this case, when a query 

involving an indexed field is evaluated, the query must be sent to every node in the cluster. Each 

node will use the local portion of secondary index to do a “partial evaluation” of the query, and 

return a subset of results. The final result is generated by combining results from all the nodes. 

Figure 2-9 illustrates partition by original data. “Partition by index key” means that a global 

index is built for the whole data set on all the nodes, and then distributed among the nodes by 

making partitions with the key of the index. To evaluate a query about an indexed field value, 

only the node maintaining the index for that queried field value is contacted, and it processes all 

related index entries to get the query result. Figure 2-10 illustrates partition by index key. 

  

Figure 2-9. Partition by original data Figure 2-10. Partition by index key 

Partition by original data is good for handling complicated queries involving multiple fields and 

constraints, because each node can partially evaluate the query by only accessing local data. 

Although the query has to be broadcast to all nodes, the total amount of communication is much 

smaller than the size of the relevant part of the indices for each field. Partition by index key 
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works better when queries are simple: the major part of evaluation is the processing and 

transmission of the related index entries, and only the exact related node(s) need to be contacted. 

HBase 

Primary indexing. HBase builds a primary index on the row keys, which is conceptually similar 

to a distributed multi-level B+-tree index. HBase maintains two global catalog tables: ROOT 

and META. ROOT always has only one region, and its location is stored in ZooKeeper. ROOT 

keeps track of the regions of the META table, and META keeps a list of all regions in the system, 

as well as which region servers are hosting them [36]. On the region server, data is read from and 

written to HFiles on HDFS, and the HFile format contains information about a multi-level B+-

tree-like data structure [30]. The primary index is a clustered index because the data records are 

stored directly in the index entries. 

Secondary Indexing. HBase does not originally support secondary indices for cell values. 

Cassandra 

Primary Indexing. The DHT architecture of Cassandra basically builds a distributed primary 

key hash index for the row keys of column families. This primary index is a clustered index 

since data records are contained in the index entries. 

Secondary Indexing. Beyond primary key index, Cassandra supports creation of secondary 

indices on any column values [4]. The internal secondary index implementation depends on 

whether the data type of the column values is non-text data and text data. 

For non-text column values, Cassandra can create hash indices which are internally maintained 

as hidden index column families [81]. This index column family stores a mapping from index 
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values to a sorted list of matching row keys. Since the index is a hash index, query results are not 

sorted by the order of the indexed values. Furthermonre, range queries on indexed columns 

cannot be completed by using the index, although an “equal” match in the index returns an 

ordered list relevant row keys. 

For text column values, the commercial version of Cassandra, DataStax, supports secondary 

indices on text data through integration with Solr [51]. Moreover, the indices are stored as 

Lucene index files [21], which means various query types, including equal queries, wildcard 

queries, range queries, etc. can be supported. 

Consistency between data and index. Data update + index update is an atomic operation, so 

immediate consistency is ensured between the original data and index data.  

Secondary index partition scheme. Each node maintains the secondary indices for its own local 

part of original data. Therefore, secondary indices are partitioned by original data. 

Limitations. Cassandra secondary indices currently have several limitations. First, they can only 

index values from single columns; multidimensional indices as used in [69] are not supported. 

Second, as mentioned above, indices for non-text columns cannot be used to evaluate range 

queries. Finally, even if a query specifies constraints on multiple indexed columns, only one 

index will be used to quickly locate the related row keys. Range constraints can be specified on 

additional columns in the query, but are checked against the original data instead of using indices 

[4]. 

MongoDB 
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Primary Indexing. MongoDB automatically forces the creation of a primary key index on the 

_id field of the documents. Index entries are sorted by _id, but note that this primary key index is 

not a clustered index in Database terms, meaning the index entries only contains pointers to 

actual documents in the MongoDB data files. Documents are not physically stored in the order of 

_id on disks. 

Secondary Indexing. Beyond the primary index, MongoDB supports various secondary indices 

for field values of documents, including single field index, multidimensional index, multikey 

index, geospatial index, text index, and hashed index [82]. Single field, multidimensional, and 

multikey indices are organized using B-tree structures. The geospatial index supports indexing 

using quad trees [1] on 2-dimensional geospatial data. The official documentation does not 

provide details about how the text indices are implemented, but it is known that basic features 

such as stopping, stemming, and scoring are supported [139]. Text index in MongoDB is still in 

beta version. The hashed index can be used to support both hash-based data distribution and 

equality queries of field values in documents, but obviously cannot be used for range queries. 

Consistency between data and index. Data is indexed on the fly in the same atomic operation. 

Therefore, immediate consistency is ensured between the original data and index data. 

Secondary index partition scheme. Each shard maintains the secondary index for its local 

partition of the original data. Therefore, secondary indices are partitioned by original data. 

Riak 

Primary Indexing. As explained in section 2.4, Riak builds a primary key hash index for its 

key/value pairs through DHT. This index is a clustered index because data objects are directly 

stored together with the index keys. 
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Secondary Indexing. Riak supports secondary indices on the tagged attributes of the key/value 

pairs and inverted indices for text data contained in the value. For secondary indices on tagged 

attributes, exact match and range queries are supported. However, current Riak implementation 

forces the limitation that one query can only use secondary index search on one indexed attribute 

(field). Queries involving multiple indexed attributes have to be broken down as multiple queries; 

then the results are then merged to get the final result [153]. No details are given about the 

internal structures used for secondary indices in the official Riak documentation. According to 

the brief mention in [6], it seems that a flat list of key/entries is used.  

For inverted indices on values of text type, text data contained in the values of key/value pairs 

are parsed and indexed according to a predefined index schema. Similar to DataStax, Riak also 

tries to integrate with the interface of Solr, and stores indices using the Lucene file format so as 

to support various types of queries on text data, such as wildcard queries and range queries [152]. 

Consistency between data and index. Data update + index update is an atomic operation, so 

immediate consistency is ensured between the original data and index data. 

Secondary index partition scheme. For secondary indices on tagged attributes, each node 

maintains the indices for its local part of original data. Therefore, the indices are partitioned by 

original data, while the text index is partitioned by terms (keys in inverted index). In Riak, 

text index schemas are configured at the level of buckets. All the key/value pairs in a configured 

bucket will be parsed and indexed according to the same given schema. A global inverted index 

is created and maintained for all key/value pairs added to that bucket, then partitioned by terms 

in the inverted index and distributed among all the nodes in the ring. 

2.3.5 Distributed Data Processing Support 
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HBase and Cassandra 

HBase and Cassandra both support parallel data processing by integration with Hadoop 

MapReduce [74][77][99], which is designed for fault tolerant parallel processing of large batches 

of data. It implements the full semantics of the MapReduce computing model and applies a 

comprehensive initialization process for setting up the runtime environment on the worker nodes. 

Hadoop MapReduce uses disks on worker nodes to save intermediate data and does grouping and 

sorting before passing them to reducers. A job can be configured to use zero or multiple reducers. 

MongoDB 

MongoDB provides two frameworks to apply parallel processing to large document collections: 

aggregation pipeline [13] and MapReduce [98]. 

The aggregation pipeline completes aggregate computation on a collection of documents by 

applying a pipeline of data operators, such as match, project, group, etc. By using proper 

operators such as match and skip at the beginning of the pipeline, the framework is able to take 

advantage of existing indices to limit the scope of processing to only a related subset of 

documents in the collection and thus achieve better performance. Currently MongoDB 

implementation enforces several important limits on the usage of aggregation pipelines, 

including input data types, final result size, and memory usage by operators [12]. This implies 

that the pipeline operators work completely in memory and do not use external disk storage for 

computations such as sorting and grouping. 

The MapReduce framework is designed to support aggregate computations that go beyond the 

limits of the aggregation pipeline, as well as extended data processing that cannot be finished by 

the aggregation pipeline. MapReduce functions are written in JavaScript, and executed in 
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MongoDB daemon processes. Compared with Hadoop MapReduce, MongoDB MapReduce is 

different in several aspects. In the MongoDB version, reduce is only applied to the map outputs 

where a key has multiple associated values. Keys associated with single values are not processed 

by reduce. Furthermore, besides map and reduce, an extra finalize phase can be applied to further 

process the outputs from reduce, and a special “incremental MapReduce” mechanism is provided 

to support dynamically growing collections of documents. This mechanism allows reduce to be 

used for merging the results from the latest MapReduce job and previous MapReduce jobs. Also 

the framework supports an option for choosing the way intermediate data is stored and 

transmitted. The default mode stores intermediate data on local disks of the nodes, but the client 

can specify to only use memory for intermediate data storage, in which case a limit is enforced 

on the total size of key/value pairs from the map output. Finally, functions written in JavaScript 

may limit the capabilities of map and reduce. For example, it is hard or even impossible to 

access an outside data resource such as a database or distributed file system [95][38] to facilitate 

the computation carried out in map and reduce. 

Riak 

Riak provides a lightweight MapReduce framework for users to query the data by defining 

MapReduce functions in JavaScript or Erlang [151]. Furthermore, Riak supports MapReduce 

over the search results by using secondary indices or text indices. Riak MapReduce is different 

from Hadoop MapReduce in several ways. There is never more than one reducer running for 

each MapReduce job. Intermediate data is transmitted directly from mappers to the reducer 

without being sorted or grouped. The reducer relies on its memory stack to store the whole list of 

intermediate data, and has a default timeout of only five seconds. Therefore, Riak MapReduce is 

not suitable for processing large datasets. 
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2.3.6 Summary 

In summary, there is no standard data model currently shared by the NoSQL database systems. 

Each system may adopt models suitable for a specific type of applications, but flexible schemas 

are usually allowed in most data models. Systems may adopt various data distribution and 

replication mechanisms to achieve scalability and high availability. In case a hash based data 

distribution is used, sorted secondary indices will be needed to do range scans of data. Most 

systems provide native support for parallel data processing models such as MapReduce, but in 

order to handle large datasets or query results, a sophisticated and fault-tolerant framework like 

Hadoop MapReduce [99] is required. Finally, secondary indexing is an area where current 

NoSQL databases are not performing well. Figure 2-11 summarizes the four representative 

systems discussed above in terms of two categories of index structures that have been well 

studied in the database community: multi-dimensional indices and single-dimensional indices. It 

is obvious that a varied level of secondary indexing support is demonstrated by different systems. 

Moreover, as is evident in Section 1.3.1, the single-field inverted indices currently supported by 

some systems do not work well for the special query patterns of social media data. As such it is 

necessary to extend them with a fully customizable indexing framework. It will be a great 

contribution to the NoSQL world if such a framework can be generally integrated with most 

NoSQL databases, as it will help equalize the ragged level of indexing support across different 

systems. 
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Figure 2-11. Varied level of indexing support among existing NoSQL databases 

2.4 Customizable Indexing Framework 

In this section we propose a fully customizable indexing framework that can be generally 

implemented over most NoSQL databases. Although our motivation derives from the lack of 

customizability in existing text indexing techniques, the framework can actually be used to 

define customized index structures for both text and non-text data. 

2.4.1 Input Data Model 

 

Figure 2-12. An example of the input data model to the customizable indexing framework 
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The customizable indexing framework uses the concept of data record and record set to model 

the input data to be indexed. Equation (1) gives the conceptual definition of a record set. A 

record set is composed of zero to multiple data records. Each can be modeled by a JSON type 

of nested key-value pair list data structure uniquely identified by an “id” field, as shown in 

Figure 2-12. On the one hand, this data model is consistent with many existing social media data 

sources such as the Twitter Streaming API [148]. But the model of a record set and a data record 

can be easily mapped to the data storage units of various NoSQL databases. For example, a 

record set can be implemented as a table in HBase [19], a bucket in Riak [125], or a collection 

in MongoDB [105]. Correspondingly, a data record can be implemented as a row in HBase, an 

object in Riak, or a document in MongoDB. 

Record set S = {<ID, field1, field2, … fieldN> | N > 0}.           (1) 

2.4.2 Abstract Index Structure 

Equation (2) gives our conceptual definition of an index. We define index() as a function that 

takes one data record r as input and generates a set of index entries as output. An index entry is 

defined as a tuple <key, EID, EF1, EF2, … EFN> (N ≥ 0), where key denotes an index key, EID 

denotes an entry ID, and EF1, EF2, … EFN denote a varied number of entry fields. An index I 

over a record set S is defined as the union of all the sets of index entries generated by applying 

index() on each data record in S. 

Index I = ⋃ 𝑖𝑛𝑑𝑒𝑥(𝑟)∀𝑟∈𝑆 ; index : r → {<key, EID, EF1, EF2, … EFN> | (N ≥ 0)}.         (2) 

Figure 2-13 illustrates the abstract index structure used by our framework. The overall structure 

is organized by a sorted list of index keys. Index entries with the same key are grouped together, 

and further sorted by their entry IDs. Each entry usually corresponds to one original data record 
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that contains the index key on the indexed field. The entry fields can be used to embed additional 

information about the indexed data, which could be either fields directly from the original data 

record (included columns), or computation results based on them (computed columns). This 

structure is similar to the posting lists used in inverted indices [170], but the major difference is 

that our framework allows users to customize what to use as index keys, entry IDs, and entry 

fields through an index configuration file in XML format, as illustrated in Figure 2-14. The 

configuration file contains multiple “index-config” elements that hold the mapping information 

between source record sets and customized index structures. Each element can flexibly define 

how to generate index entries off a given data record from the source record set. For more 

complicated index structures, users can implement their own index() function (UDF) and use it 

by setting the “indexer-class” element. 

 

Figure 2-13. Abstract index structure 
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Figure 2-14. An example index configuration file 

By defining proper index configurations or UDFs, it is possible to create various index structures, 

seen in Figure 2-15. In the simplest form, we can create sorted single-field indices by directly 

using the indexed field values as the index keys, and the ID of the corresponding original data 

records as the index entry ID (Figure 2-15 (a)). Beyond this, sorted composite indices can be 

created by adding additional field values to either the entry ID or the entry fields (Figure 2-15 

(b)). Traditional inverted indices can be created by using the tokenized text terms as the index 

keys, the document IDs as the entry IDs, and the term frequency and position information as the 

entry fields (Figure 2-15 (c)). Moreover, by replacing the frequency information in the entry 

fields with values from other fields of the original data records, composite indices on both text 

and non-text fields can be defined (Figure 2-15 (d)). Such customization is not supported by 

current text indexing systems, but is exactly what is needed for evaluating the text queries with 

constraints on the social context. For array values in the original data records, it is possible to 

create index structures similar to the “multikey index” supported by MongoDB [82] by using a 

UDF that delves into the array field, creating one index key for every unique value in the array 

(Figure 2-15 (e)). Finally, inspired by research from the area of data warehouses [114], it is also 

possible to create join index structures for evaluating queries involving multiple record sets 
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(Figure 2-15 (f)). For instance, suppose we have a new query get-tweets-by-user-desc(keyword, 

time-window), which is supposed to return all the tweets created within the given time window 

that are posted by users who have the given keyword in the personal description text of their 

profiles. Assuming the tweet information and the user information are stored in two different 

record sets, evaluating such a query will require a Join operation of the two record sets without a 

proper index. However, by building a customized index structure that uses keywords from the 

user description text as keys, tweet IDs posted by the corresponding users as entry IDs, and user 

ID and tweet creation time as the entry fields, it will be possible to evaluate the query by only 

accessing the index. 

2.4.3 Interface to Client Applications 

Figure 2-16 presents the major operations provided by our customizable indexing framework to 

client applications. The client application can use a general customizable indexer to index a 

data record. Upon initialization, the general customizable indexer reads the index configuration 

file provided by the user. If a user-defined indexer class is specified, a corresponding indexer 

instance will be created. Both general and user-defined indexers must implement the index() 

method. This method takes a data record from a source record set as input, and returns a mapping 

from related index names to their corresponding index entries. When index() is invoked on the 

general indexer during runtime, all related “index-config” elements are used to generate index 

entries, either by following the rules defined in “index-config” or by invoking a user-defined 

indexer. 
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Figure 2-15. Example index structures that can be created with the customizable indexing 

framework 

 

Figure 2-16. Interface to client applications 
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Based on the general customizable indexer, two indexing mechanisms can be supported: online 

indexing and batch indexing. Online indexing is implemented through the insert() method. The 

client application invokes this method to insert one data record into a source record set. The 

indexer will first do the insertion, then generate index entries for this data record by invoking 

index() and insert them into the corresponding index structures. From the client application’s 

perspective, data records are indexed “online” when they are inserted into the source record set. 

Efficient online indexing is crucial for the loading of streaming data. Batch indexing assumes 

original data records are already stored in the NoSQL databases as record sets, and does indexing 

for the whole sets in batches. The batch indexing application scans the source record set, and 

invokes the index() method for every data record. The returned index entries are inserted into the 

corresponding index structures. 

To complete a search using an index structure, the client application can invoke a basic index 

operator provided by the framework, or a user-defined index operator. Multiple constraints 

can be specified as parameters to filter the index entries by their keys, entry IDs, or entry fields. 

Constraint types currently supported are value set constraint, range constraint, and regular 

expression constraint. A value set constraint is specified in the form of {val1,val2,...}, and can 

be used to select index keys, entry IDs, or entry fields that match any of the values in the set. 

Similarly, a range constraint is expressed in the form of [lower, upper], and a regular expression 

is in the form of <regular expression>. For a special class of regular expression constraints, 

prefix constraints, we also support a simplified expression in the form of ~prefix*~ (multiple 

characters following prefix) or ~prefix?~ (single character following prefix). 

2.4.4 Implementation on HBase – IndexedHBase 
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As discussed in section 1.3.1, an actual implementation of the indexing framework needs to not 

only provide customizable index structures, but also support scalable index data storage and 

efficient indexing speed for high-volume streaming data. Taking these factors into consideration, 

our key observation about existing distributed NoSQL databases is that they already support 

scalable data storage and efficient random access to individual data records following their 

respective data models. Therefore, by defining a proper mapping between the abstract index 

structures and the actual storage units and data models of the underlying NoSQL databases, it is 

possible to leverage their existing data distribution and load balancing mechanisms to achieve 

scalable indexing for our framework. Figure 2-17 illustrates this idea. 

 

Figure 2-17. Implementation through mapping to the data model of NoSQL databases 

We have developed an implementation over HBase in our scalable analysis architecture which 

we call IndexedHBase. Figure 2-18 illustrates the mapping we designed for IndexedHBase. 

Specifically, we use an HBase table to implement an index structure, a row key for an index key, 

a column name for an entry ID, and a column value for all the entry fields. Since HBase stores 

table data under the hierarchical order of <row key, column name, timestamp>, it is easy to 

support range scans over the index keys or entry IDs. Based on the region split and load 

balancing mechanisms provided by HBase, we are able to achieve efficient and scalable real-
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time indexing of streaming data. HBase supports fast atomic row-level mutations; hence the 

insertion of a dynamic data record only involves random write operations to a limited number of 

rows in the index tables, and does not affect operations on any other rows. Moreover, write 

operations do not block read even on the same row, so the impact to concurrent query 

evaluations is minimum. Updates of original data records and index entries are completed as 

consecutive write operations to different tables, and eventual consistency between index and 

original data can be guaranteed at the level of milliseconds. Finally, since HBase is inherently 

integrated with the Hadoop software stack, we can leverage the Hadoop MapReduce framework 

to effectively support integrated queries and analysis workflows of social media data. 

 

Figure 2-18. Mapping between an abstract index structure and an HBase table 

The online indexing mechanism on IndexedHBase is implemented by translating the actions in 

insert() into the corresponding table operations in HBase. The batch indexing mechanism is 

implemented as a “map-only” Hadoop MapReduce job using the table for the source record set 

as input. The job accepts a source table and index table name as parameters and starts multiple 

mappers to index data in the source table in parallel, each processing one region of the table. 

Each mapper works as a client application to the general customizable indexer and creates one 

indexer instance at its initialization time. The indexer is initialized using the given index table 

name so that when index() is invoked, it will only generate index records for that single table. 

The map() function takes a <key, value> pair as input, where “key” is a row key in the source 
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table and “value” is the corresponding row data. For each row of the source table, the mapper 

uses the general customizable indexer to generate index table records and write these records as 

output. All output records are handled by the table output format, which will automatically insert 

them into the index table. 

2.4.5 Implementation on Other NoSQL Databases 

It is possible to implement our customizable indexing framework on other NoSQL databases by 

designing proper mapping between the abstract index structure and the data model of the 

corresponding system. Such mapping should take the practical requirements for the indexing 

framework and the granularity of data access of the specific NoSQL database system into 

consideration. In order to achieve range scans of index keys and entries on systems using hash-

based data distribution mechanisms, it is often necessary to leverage their native secondary 

indexing support. Table 2-1 provides a list of suggested mapping for the other three 

representative NoSQL databases discussed in section 2.2. 

Table 2-1. Suggested mappings for other NoSQL databases 

Feature needed Cassandra Riak MongoDB 

Fast real time random 

insertion and updates 

of index entries. 

Yes. Index key as row key 

and entry ID as column 

name, or index key + entry 

ID as row key. 

Yes. Index key + entry ID as 

object key. 

Yes. Index key + entry 

ID as “_id” of document. 

Fast real time random 

read of index entries. 

Yes. Index key as row key 

and entry ID as column 

name, or index key + entry 

ID as row key. 

Yes. Index key + entry ID as 

object key. 

Yes. Index key + entry 

ID as “_id” of document. 

Scalable storage and 

access speed of index 

entries. 

Yes. Yes. Yes. 

Efficient range scan 

on index keys. 

Yes with order preserving 

hash function. 

Doable with a secondary index 

on an attribute whose value is 

the object key. 

Doable with Index key + 

entry ID as “_id” of 

document. 
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Efficient range scan 

on entry IDs. 

Yes with order preserving 

hash function and index 

entry ID as column name. 

Doable with a secondary index 

on an attribute whose value is 

the object key. 

Doable with Index key + 

entry ID as “_id” of 

document. 

2.5 Performance Evaluation 

This section evaluates the effectiveness and efficiency of our customizable indexing framework 

by measuring its impact on the performance of data loading/indexing and query evaluation. 

Specifically, by defining customized index structures that eliminate unnecessary information 

from traditional text indices and embed useful information about the social media data, we 

expect to receive scalability, faster indexing and data loading speed, as well as better query 

evaluation performance. In order to verify this, we use real data and queries from Truthy, as 

described in section 1.2.1. Based on IndexedHBase, we develop parallel data loading and query 

evaluation strategies and compare their performance against another set of implementations on 

Riak using its natively supported text indexing techniques, which is based on distributed Solr at 

the backend [57]. 

2.5.1 Table Schemas on IndexedHBase 

Working off the HBase data model, we design the table schemas in Figure 2-19 for storing the 

original data from Truthy and necessary indices for query evaluation. Specifically, we maintain 

the tweet and user information contained in a JSON message (Figure 1-2) in separate tables. To 

achieve efficient evaluation of the queries listed in Section 1.2.1, we create multiple customized 

indices with structures similar to Figure 2-15 (b) and Figure 2-15 (d). We split the whole dataset 

by months, maintaining a separate set of data and index tables for every month. This method of 

table management actually creates a hybrid index partition mechanism that inherits the 

advantage of both partition by index key and partition by original data. For instance, since the 
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regions of every index table are maintained independently by HBase, index distribution is 

decoupled from original data distribution. At the same time, for queries with time windows 

covering multiple months, index access for different months can work in parallel, and the amount 

of index and original data accessed during query evaluation is limited by the scope of the time 

window. Another benefit is that the loading of streaming data only changes the tables relative to 

the current month, and does not interfere with access to all the other tables. 

 

Figure 2-19. Table schemas used in IndexedHBase for data from Truthy 

Some details need to be clarified before proceeding further. Each table contains only one column 

family, e.g. “details” or “tweets”. The user table employs a concatenation of user ID and tweet 

ID as the row key, because analysis benefits from tracking changes in a tweet’s user metadata. 

For example, a user can change profile information, which can give insights into their behavior. 

A separate meme index table is created for indexing the hashtags, user-mentions, and URLs 

contained in tweets. This is because some special cases, such as expandable URLs, cannot be 

handled properly by the text index. The memes are used as row keys, each followed by a 
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different number of columns, named after the IDs of tweets containing the corresponding meme. 

The timestamp of the cell value marks the tweet creation time. 

2.5.2 Data Loading Strategies 

We develop parallel loading strategies for both streaming data and historical data. Figure 2-20 

shows the architecture of the streaming data loading strategy, where one or more distributed 

loaders are running concurrently. The stream distributer connects to the external Twitter 

streaming API [148] and distributes the sequence of social updates among all concurrent loaders. 

It can be implemented as a simple Storm topology [25] that does data distribution in a random or 

round-robin fashion. Each loader is assigned a unique ID and works as a client application to the 

general customizable indexer. Upon receiving a tweet JSON string, the loader first generates 

records for the tweet table and user table, then loads them into the tables by invoking the insert() 

method of the general customizable indexer, which will complete online indexing and update all 

the data tables as well as the relevant index tables. 

The historical data loading strategy is implemented as a MapReduce program. One separate job 

is launched to load the historical files for each month, and multiple jobs can be running 

simultaneously. A job starts multiple mappers in parallel, each responsible for loading one file. 

At running time, every line in the .json.gz file is given to the mapper as one input, which 

contains the string of one tweet. The mapper first creates records for the tweet table and user 

table and then invokes the general customizable indexer to get all the related index table records. 

All table records are handled by the multi-table output format, which automatically inserts them 

into the related tables. Finally, if the JSON string contains a “retweeted_status”, the 

corresponding substring will be extracted and processed in the same way. 
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Figure 2-20. Streaming data loading strategy 

2.5.3 Parallel Query Evaluation Strategy 

We develop a two-phase parallel query evaluation strategy viewable in Figure 2-21. For any 

given query, the first phase uses multiple threads to find the IDs of all related tweets from the 

index tables and saves them in a series of files containing a fixed number (e.g., 30,000) of tweet 

IDs. The second phase launches a MapReduce job to process the tweets in parallel and extract 

the necessary information to complete the query. This means to evaluate user-post-count, each 

mapper in the job will access the tweet table to figure out the user ID corresponding to a 

particular tweet ID, count the number of tweets by each user, and output all counts when it 

finishes. The output of all the mappers will be processed to finally generate the total tweet count 

of each user ID. 
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Figure 2-21. Two-phase parallel evaluation process for an example user-post-count query 

Two aspects of the query evaluation strategy deserve further discussion. First, as described in 

Section 1.2.1, prefix queries can be constructed by using parameters such as “#occupy*”. We 

provide two index operators for getting the related tweet IDs in the first phase. One is simply to 

complete a sequential range scan of rows in the corresponding index tables. The other uses a 

MapReduce program to complete parallel scans over the range of rows. The latter option is only 

faster for parameters covering a large range spanning multiple regions of the index table. 

Second, the number of tweet IDs in each file implies a tradeoff between parallelism and 

scheduling overhead. When this number is set lower, more mappers will be launched in the 

parallel evaluation phase, which means the amount of work done by a mapper decreases while 

the total task scheduling overhead increases. The optimal number depends on the total number of 

related tweets and the amount of resources available in the infrastructure. We set the default 

value of this number to 30,000 and leave it configurable by the user. 

2.5.4 Testing Environment Configuration 

We use eight nodes on the Bravo cluster of FutureGrid to complete tests for both IndexedHBase 

and Riak. The hardware configuration for all eight nodes is listed in Table 2-2. Each node runs 
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CentOS 6.4 and Java 1.7.0_21. For IndexedHBase, Hadoop 1.0.4 and HBase 0.94.2 are used. 

One node hosts the HDFS headnode, Hadoop jobtracker, Zookeeper, and HBase master. The 

other seven nodes are used to host HDFS datanodes, Hadoop tasktrackers, and HBase region 

servers. The data replication level is set to two on HDFS. The configuration details of Riak will 

be given in Section 2.4.5. In addition to Bravo, we also use the Alamo HPC cluster of FutureGrid 

to test the scalability of the historical data loading strategy of IndexedHBase, since Alamo can 

provide a larger number of nodes through dynamic HPC jobs. Software configuration of Alamo 

is mostly the same as Bravo. 

Table 2-2. Per-node configuration on Bravo and Alamo Clusters 

Cluster CPU RAM Hard Disk Network 

Bravo 8 * 2.40GHz (Intel Xeon E5620) 192G 2T 40Gb InfiniBand 

Alamo 8 * 2.66GHz (Intel Xeon X5550) 12G 500G 40Gb InfiniBand 

2.5.5 Configuration and Implementation on Riak  

As mentioned in Section 2.2.4, Riak provides a “Riak Search” module that can build distributed 

inverted indices on data objects for full-text search purposes. Users can assign buckets to 

organize their data objects and configure indexed fields on the bucket level. Beyond the basic 

inverted index structure, Riak supports a special feature called “inline fields.” If a field is 

specified as an “inline” field, its value will be attached to the document IDs in the posting lists, 

as illustrated in Figure 2-22. 

Similar to our customized index tables in IndexedHBase, inline fields can be used to carry out an 

extra filtering operation to speed up queries involving multiple fields. However, they are 

different in two basic aspects. First, inline fields are an extension of traditional inverted indices, 

which means overhead such as frequency information and document scoring still exist in Riak 
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Search. Second, customizable index structures are totally flexible in the sense that the structure 

of each index can be independently defined to contain any subset of fields from the original data. 

In contrast, if one field is defined as an inline field on Riak, its value will be attached to the 

posting lists of the indices of all indexed fields, regardless of whether it is useful. As an example, 

the “Sname index table” in Figure 2-19 uses the creation time of user accounts as timestamps, 

while the “meme index table” uses creation time of tweets. Such flexibility is not achievable on 

Riak. 

 

Figure 2-22. An example of inline field (created_at) in Riak 

In our tests, all eight nodes of Bravo are used to construct a Riak ring. The nodes run Riak 1.2.1, 

using LevelDB as the storage backend. We create two different buckets to index data with 

different search schemas. The data replication level is set to two on both buckets. The tweet ID 

and JSON string of each tweet are directly stored into <key, value> pairs. The original JSON 

string is extended with an extra “memes” field, which contains all the hashtags, user-mentions, 

and URLs in the tweet, separated tab characters. Riak Search is enabled on both buckets, and the 

user_id, memes, text, retweeted_status_id, user_screen_name, and created_at fields are indexed. 

Specifically, created_at is defined as a separate indexed field on one bucket, and an “inline only” 

field on the other bucket, meaning that it does not have a separate index but is stored together 

with the indices of other fields. 

Riak provides a lightweight MapReduce framework for users to query the data by defining 

MapReduce functions in JavaScript. Additionally Riak supports MapReduce over the results of 
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Riak Search. We use this feature to implement queries, and Figure 2-23 shows an example 

implementation. When this query is submitted, Riak will first use the index on “memes” to find 

related tweet objects (as specified in the “input” field), then apply the map and reduce functions 

to these tweets (as defined in the “query” field) to get the final result. 

 

Figure 2-23. An example query implementation on Riak 

2.5.6 Data Loading Performance  

Historical Data Loading Performance 

We use all the .json.gz files from June 2012 to test the historical data loading performance of 

IndexedHBase and Riak. The total data size is 352GB. With IndexedHBase, a MapReduce job is 

launched for historical data loading, with each mapper processing one file. With Riak, all 30 files 

are distributed among eight nodes of the cluster, so every node ends up with three or four files. 

Then an equal number of threads per node were created to load all the files concurrently to the 

bucket where “created_at” is configured as an inline field. Threads continue reading the next 

tweet, apply preprocessing with the “created_at” and “memes” field, and finally send the tweet to 

the Riak server for indexing and insertion. 

Table 2-3 summarizes the data loading time and loaded data size on both platforms. We can see 

that IndexedHBase is over six times faster than Riak in loading historical data and uses 
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significantly less disk space for storage. Considering the original file size of 352GB and a 

replication level of two, the storage space overhead for index data on IndexedHBase is moderate. 

Table 2-3. Historical data loading performance comparison 

 Loading time 

(hours) 

Loaded total 

data size (GB) 

Loaded original 

data size (GB) 

Loaded index 

data size (GB) 

Riak 294.11 3258 2591 667 

IndexedHBase 45.47 1167 955 212 

Riak / IndexedHBase 6.47 2.79 2.71 3.15 

We analyze these performance measurements below. By storing data with tables, IndexedHBase 

applies a certain degree of data model normalization, and thus avoids storing some redundant 

data. For example, many tweets in the original .json.gz files contain retweeted status, and many 

of them are retweeted multiple times. With IndexedHBase, even if a tweet is retweeted 

repeatedly, only one record is kept for it in the tweet table. As for Riak, such a “popular” tweet 

will be stored within the JSON string of every corresponding retweet. The difference in loaded 

index data size clearly demonstrates the advantage of a fully customizable indexing framework. 

By avoiding frequency and position information and only incorporating useful fields in the index 

tables, IndexedHBase saves 455GB of disk space in storing index data, which is more than 1/3 of 

the total loaded data size of 1167GB. Also note that IndexedHBase compresses table data using 

Gzip, which generally provides a better compression ratio than Snappy on Riak. 

The difference in loaded data size only explains part of the improvement in total loading time. 

Two other reasons are: 

(1) The loaders of IndexedHBase are responsible for generating both data tables and index 

tables. Therefore, the JSON string of each tweet is parsed only once when it is read from 
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the .json.gz files and converted to table records. By contrast, Riak uses servers for its 

indexing so each JSON string is actually parsed twice – first by the loaders for preprocessing, 

and again by the server for indexing; 

(2) When building inverted indices, Riak not only uses more space to store the frequency and 

position information, but also spends more time collecting it. 

Scalable Historical Data Loading on IndexedHBase 

We test the scalability of historical data loading on IndexedHBase with the Alamo cluster of 

FutureGrid. In this test we take a dataset for two months, May and June 2012, and measure the 

total loading time with different cluster sizes. The results are illustrated in Figure 2-24. When the 

cluster size is doubled from 16 to 32 data nodes, the total loading time drops from 142.72 hours 

to 93.22 hours, which implies a sub-linear scalability due to concurrent access from mappers of 

the loading jobs to HBase region servers. Nonetheless, these results clearly demonstrate that we 

get more system throughput and faster data loading speed by adding more nodes to the cluster. 

 

Figure 2-24. Historical data loading scalability to cluster size 

Streaming Data Loading Performance on IndexedHBase 
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The purpose of streaming data loading tests is to verify that IndexedHBase can provide enough 

throughput to accommodate the growing data speed of the Twitter streaming API. To test the 

performance of IndexedHBase for handling potential data rates even faster than the current 

streams, we designed a simulation test using a recent .json.gz file from July 3, 2013. We varied 

the number of distributed streaming loaders and tested the corresponding system data loading 

speed. For each case, the whole file was evenly split into the same number of fragments as the 

loaders and then distributed across all the nodes. One loader was started to process each fragment. 

The loader reads data from the stream of the local file fragment rather than from the Twitter 

streaming API. So this test measures how the system performs when each loader gets an 

extremely high data rate that is equal to local disk I/O speed. 

 

Figure 2-25. Results for streaming data loading test 

Figure 2-25 shows the total loading time when the number of distributed loaders increases by 

powers of two from one to 16. Once again, concurrent access to HBase region servers results in a 

decrease in speed-up as the number of loaders is doubled each time. The system throughput is 

almost saturated when we have eight distributed loaders. For the case of eight loaders, it takes 

3.85 hours to load all 45,753,194 tweets (less than 2.4ms on average to index a tweet), indicating 

the number of tweets that can be processed per day on eight nodes is about six times the current 

daily data rate. Therefore, IndexedHBase can easily handle a high-volume stream of social media 
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data. In the case of vastly accelerated data rates, as would be the case for the Twitter firehose (a 

stream of all public tweets) [147], one could increase the system throughput by adding more 

nodes. 

2.5.7 Query Evaluation Performance 

Separate Index Structures vs. Customized Index Structures 

One major purpose of using customized index structures is to achieve lower query evaluation 

complexity compared to traditional inverted indices on separate data fields. To verify this, we 

use a simple get-tweets-with-meme query to compare the performance of IndexedHBase with a 

solution using separate indices on the fields of memes and tweet creation time, which is 

implemented through the Riak bucket where “created_at” is defined as a separately indexed 

field. 

In this test we load four days’ worth of data to both IndexedHBase and the Riak bucket and 

measure the query evaluation time with different memes and time windows. For memes, we 

choose “#usa”, “#ff”, and “@youtube”, each contained in a different subset of tweets. The “#ff” 

hashtag is a popular meme for “Follow Friday.” For each meme, we use three different time 

windows with a length between one and three hours. Queries in this test only return tweet IDs – 

they don’t launch an extra MapReduce phase to get the content. Figure 2-26 presents the query 

execution time for each indexing strategy. As shown in the plots, IndexedHBase not only 

achieves a query evaluation speed that is tens to hundreds of times faster, but also demonstrates a 

different pattern in query evaluation time. When separate meme index and time index are used, 

the query evaluation time mainly depends on the length of time window; the meme parameter 

has little impact. In contrast, using a customized meme index, the query evaluation time mainly 
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depends on the meme parameter. For the same meme, the evaluation time only increases 

marginally as the time window gets longer. These observations confirm our theoretical analysis 

in Section 1.3.1. 

 

Figure 2-26. Query evaluation time: separate meme and time indices vs. customized index 

Query Evaluation Performance Comparison 

This set of tests is designed to compare the performance of Riak and IndexedHBase for 

evaluating queries involving different numbers of tweets and different result sizes. Since using 

separate indices has proven inefficient on Riak, we choose to test the query implementation 

using “created_at” as an inline field. Queries are executed on both platforms against the data 

loaded in the historical data loading tests. For query parameters, we choose the popular meme 

“#euro2012,” along with a time window with a length varied from three hours to 16 days. The 

start point of the time window is fixed at 2012-06-08T00:00:00, and the end point 

correspondingly varies exponentially from 2012-06-08T02:59:59 to 2012-06-23T23:59:59. This 

covers a major part of the 2012 UEFA European Football Championship. The queries can be 

grouped into three categories based on the manner in which they are evaluated on Riak and 

IndexedHBase. 
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(1) No MapReduce on either Riak or IndexedHBase 

The meme-post-count query falls into this category. On IndexedHBase, query evaluation is done 

by simply going through the rows in meme index tables for each given meme and counting the 

number of qualified tweet IDs. In the case of Riak, since there is no way to directly access the 

index data, this is accomplished by issuing an HTTP query for each meme to fetch the “id” field 

of matched tweets. Figure 2-27 shows the query evaluation time on Riak and IndexedHBase. As 

the time window gets longer, the time increases for both. However, the absolute evaluation time 

is much shorter for IndexedHBase because Riak has to spend extra time to retrieve the “id” field. 

 

 

Figure 2-27. Query evaluation time for meme-post-count 

(2) No MapReduce on IndexedHBase; MapReduce on Riak 

The timestamp-count query belongs to this category. Inferring from the schema of the meme 

index table, this query can also be evaluated by only accessing the index data on IndexedHBase. 

On Riak it is implemented with MapReduce over Riak search results, where the MapReduce 

phase completes the timestamp counting based on the content of the related tweets. Figure 2-28 

shows the query evaluation time on both platforms. Since IndexedHBase does not need to 
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analyze the content of the tweets at all, its query evaluation speed is orders of magnitude faster 

than Riak. 

 

 

Figure 2-28. Query evaluation time for timestamp-count 

(3) MapReduce on both Riak and IndexedHBase 

Most queries require a MapReduce phase on both Riak and IndexedHBase. Figure 2-29 shows 

the evaluation time for several of them. An obvious trend is that Riak is faster on queries 

involving a smaller number of related tweets, but IndexedHBase is significantly faster on queries 

involving a larger number of related tweets and results. Figure 2-30 lists the results sizes for two 

of the queries. The other queries have a similar pattern. 

The main reason for the observed performance difference is the characteristics of the 

MapReduce framework on these two platforms. IndexedHBase relies on Hadoop MapReduce, 

which is designed for fault tolerant parallel processing of large batches of data. It implements the 

full semantics of the MapReduce computing model and applies a comprehensive initialization 

process for setting up the runtime environment on the worker nodes. Hadoop MapReduce uses 

disks on worker nodes to save intermediate data and does grouping and sorting before passing 

them to reducers. A job can be configured to use zero or multiple reducers. Since most social 
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media queries use time windows at the level of weeks or months, IndexedHBase can handle 

these long time period queries well. 

 

Figure 2-29. Query evaluation time for queries requiring MapReduce on both platforms 

 

Figure 2-30. Result sizes for get-tweets-with-meme and get-mention-edges 
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The MapReduce framework on Riak, on the other hand, is designed for lightweight use cases 

where users can write simple query logic with JavaScript and get it running on the data nodes 

quickly without a complicated initialization process. There is always only one reducer running 

for each MapReduce job. Intermediate data is transmitted directly from mappers to the reducer 

without being sorted or grouped. The reducer relies on its memory stack to store the whole list of 

intermediate data, and has a default timeout of only five seconds. Therefore, Riak MapReduce is 

not suitable for processing the large datasets produced by queries corresponding to long time 

periods. 

Improving Query Evaluation Performance with Modified Index Structures 

IndexedHBase accepts dynamic changes to the index structures for efficient query evaluation. To 

verify this, we extend the meme index table to also include user IDs of tweets in the cell values, 

as illustrated in Figure 2-31. Using this new index structure, IndexedHBase is able to evaluate 

the user-post-count query by only accessing index data. 

We use the batch indexing mechanism of IndexedHBase to rebuild the meme index table, which 

takes 3.89 hours. The table size increases from 14.23GB to 18.13GB, which is 27.4% larger. 

Figure 2-32 illustrates the query evaluation time comparison. The query with the new index 

structure is faster by more than an order of magnitude. In cases where user-post-count is 

frequently used, the query speed improvement is clearly worth the additional storage required. 

As will be demonstrated in Section 3.2, the extended meme index structure is also useful for 

analysis tasks.  
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Figure 2-31. Extended meme index including user ID information 

 

Figure 2-32. Query evaluation time modified meme index structure 

2.6 Conclusions 

This chapter presents and evaluates the storage layer of our scalable architecture for social media 

data analysis. In particular, we leverage the HBase system as the storage substrate, and extend it 

with a customizable indexing framework to support novel text index structures for handling the 

special queries of social media data. To the best of our knowledge, IndexedHBase is a first in 

developing a fully customizable indexing framework on a distributed NoSQL database. 

Performance evaluation with real data and queries from Truthy demonstrates that data loading 

and query evaluation strategies based on our customized index structures are significantly more 

efficient than implementations using current state-of-the-art distributed text indexing techniques. 

Our experimentation with IndexedHBase leads to serveral interesting conclusions of general 

significance. 
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First of all, parallelization and indexing are key factors in addressing the challenges brought by 

the sheer data size and special queries of social media data analysis. In particular, parallelization 

should be explored through every stage of data processing, including loading, indexing, and 

query evaluation. Also index structures should be flexible and customizable, rather than static, to 

effectively take advantage of the special characteristics of the data and achieve the best query 

evaluation performance at the cost of less storage and computation overhead. In order to achieve 

this, a general customizable indexing framework is necessary. Finally, to deal with the large size 

of intermediate data and results involved in the query evaluation process, complete and reliable 

parallel processing frameworks such as Hadoop MapReduce are needed. Lightweight 

frameworks like Riak MapReduce are not capable of handling queries involving analysis of large 

datasets. 
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Chapter 3  

Batch Analysis Module – an Integrated Analysis Stack based on 

YARN 

 

 

 

 

 

   

 



79 

 

3.1 Overview 

As discussed in Section 1.3.2, a social media data analysis workflow usually consists of multiple 

stages, and each stage may apply a diversity of algorithms that demonstrate different 

computation and communication patterns. To achieve efficient execution of the whole integrated 

workflow, two more issues beyond the queries must be addressed.  

First of all, each individual algorithm needs be implemented in an efficient way using a proper 

processing framework that is good at handling its computation and communication pattern. To 

illustrate, for algorithms that process small intermediate datasets with a low level of 

computational complexity, a sequential implementation may be enough. Algorithms that 

complete a single-pass processing over a large dataset need parallelization through a framework 

like Hadoop MapReduce [18]. More sophisticated algorithms that need to carry out iterative 

computation and collective communication can use an iterative MapReduce framework such as 

Twister [60] or Spark [166]. Finally, for algorithms designed to process high-throughput 

streaming data, stream processing frameworks such as Storm [25] are the most suitable for the 

parallelization. 

Moreover, the analysis architecture must be able to dynamically switch to different processing 

frameworks to execute different analysis algorithms and finish the end-to-end analysis workflow. 

Targeting these issues, we extend IndexedHBase to an integrated analysis architecture (Figure 1-

8) based on YARN [154], which is designed for accommodating tasks from various processing 

frameworks in a distributed environment with shared computing and storage resources. This 

chapter describes the batch analysis module of this architecture, and Figure 3-1 illustrates the 

internal interactions between the components in the batch analysis module and the storage layer. 
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The user application can define an analysis workflow in the form of a workflow driver script. 

This script invokes the query-and-analyze interface of the query and analysis engine to execute 

queries and analysis tasks. The engine converts these requests into jobs on different parallel 

processing frameworks, and dynamically employs different frameworks to complete the queries 

and analysis algorithms. During runtime, analysis algorithms may use either the data table 

records selected by the queries or the index table records as input. 

 

Figure 3-1. Internal interaction between batch analysis module and storage layer 

Based on this architecture, we develop the following set of analysis algorithms that are generally 

useful in the analysis workflows of many research scenarios: 

A related hashtag mining algorithm using Hadoop MapReduce. For a given seed hashtag (e.g. 

#ncaa), it finds all related hashtags that co-occur frequently with the seed hashtag during a 

specific time window. This algorithm is useful in all scenarios where the social event of concern 



81 

 

can be identified by a set of related hashtags. It mainly relies on index tables to do mining, and 

only accesses a limited number of data table records according to the seed hashtag. 

A meme daily frequency generation algorithm using Hadoop MapReduce. Given a time 

window, this algorithm generates the daily frequencies of all hashtags during that time. It is 

useful for many research purposes, such as generation of meme evolution timelines [41] and 

analysis of meme lifetime distribution [159]. It completely relies on parallel scans of index tables. 

A domain name entropy computation algorithm using Hadoop MapReduce. Given a time 

window, this algorithm collects the URLs posted by each user during that time, generates the 

distribution of domain names in these URLs for each user, and computes the entropy of the 

distribution. This algorithm is useful for projects related to analysis of user interest allocation or 

comparison between social networks and search engines. 

A graph layout algorithm (known as “Fruchterman-Reingold algorithm”) using the Twister 

iterative MapReduce framework. Given a graph in the form of a set of nodes and edges, this 

algorithm generates a nice layout of all the nodes on a canvas, so that nodes connected with 

edges are positioned close to each other, and non-connected nodes tend to be apart. This 

algorithm is useful in many workflows involving visualization of social network structures, such 

as the one presented in [44]. Since it is computation intensive, a well-parallized implementation 

can achieve near-linear scalability. 

A summary of these algorithms is given in Table 3-1. In this chapter, we describe the 

implementation of these algorithms and analyze their performance by comparing them to their 

sequential or raw data scanning counterparts. In addition we use several of them to reproduce a 
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workflow from a previous publication about political polarization [44] and demonstrate efficient 

execution of the whole workflow. 

Table 3-1. Summary of analysis algorithms 

Algorithm Key feature Time complexity 

Related 

hashtag 

mining 

Mostly relies on index; only 

accesses a small portion of 

original data. 

O(H*M + N). M is the number of tweets containing the 

seed hashtag in the given time window. H is the toal 

number of co-occuring hashtags. N is the total number of 

index entries associated with the co-occuring hashtags. 

Meme daily 

frequency 

generation 

Totally based on parallel scan of 

customized index. 

O(N). N is the total number of index entries associated 

with all the hashtags in the given time window. 

Domain name 

entropy 

computation 

Totally based on parallel scan of 

customized index. 

O(N). N is the total number of index entries associated 

with all the URLs in the given time window. 

Graph layout First parallel implementation on 

iterative MapReduce; near-linear 

scalability. 

O(M*N2). M is the number of iterations. N is the number 

of vertices in the graph. 

3.2 Analysis Algorithms 

3.2.1 Related Hashtag Mining 

Given a seed hashtag and a time window, the related hashtag mining algorithm finds all the 

other hashtags related to the seed by using the Jaccard coefficient. For a seed hashtag s and a 

target hashtag t, the Jaccard coefficient between s and t is defined as: 

𝜎(𝑆, 𝑇) =
|S∩T|

|S∪T|
         (3) 

Here S is the set of social updates containing s, and T is the set of social updates containing t. 

When this coefficient is large enough, the two hashtags are recognized as related. 
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We implement this algorithm as a query-and-analyze process. An index operator is first applied 

against the meme index table (Figure 2-19) to find the IDs of all the tweets containing the seed 

hashtag s. The query and analysis engine will automatically split these tweet IDs into multiple 

partitions. A Hadoop MapReduce job is then scheduled to process all the partitions in parallel 

(Figure 3-2). Each mapper processes one partition, and for every tweet ID therein, the mapper 

will access the corresponding row in the tweet table and output all the hashtags that co-occur 

with s as intermediate results. After the shuffling phase, each reducer will receive a list of unique 

target hashtags. For every target hashtag t in the list, the reducer again uses an index operator 

against the meme index table to find the corresponding set of tweet IDs, T. Then the Jaccard 

coefficient between s and t is calculated according to equation (3); if the value reaches a given 

threshold, t will be output as a final result. 

 

Figure 3-2. MapReduce algorithm for mining related hashtags 
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Assuming the number of tweets containing the seed hashtag is M, the initial step will use the 

index operator to retrieve M entries from the meme index table. The map phase of the 

MapReduce job retrieves and analyzes M tweets from the tweet table. Assuming the total 

number of hashtags that co-occur with the seed hashtag in any tweet (and thus will have a 

Jaccard Coefficient larger than 0) is H, then the map phase will output H candidate hashtags. 

We denote these candidate hashtags as h1, h2, … hH, and the set of index entries associated with 

each of them as T1, T2, … TH. Suppose |T1| + |T2| + … + |TH| = N, so the reduce phase will 

retrieve H index entries from the index table. For each candidate hi, a merge-based algorithm can 

be used to calculate the insersection and union of S and Ti. So the time spent on computing the 

Jaccard Coefficient is (M + |T1|) + (M + |T2|) + … + (M + TH) = H*M + N. Therefore, the time 

complexity of the whole algorithm is O(M) + O(H*M + N) = O(H*M + N). 

3.2.2 Meme Daily Frequency Generation 

Given a time window, the meme daily frequency generation algorithm generates the daily 

frequencies of all hashtags during that time. This algorithm can be used in many research 

projects such as generation of meme evolution timelines [41] and analysis of meme lifetime and 

popularity distribution [159]. Figure 3-3 shows an example of meme timelines available on the 

website of Truthy [145]. Considering the schema of meme index table in Figure 2-19, it is 

obvious that this can be done by solely scanning the index without touching any original data. 

The algorithm is implemented as a Hadoop MapReduce program illustrated in Figure 3-4. Each 

mapper takes one region of the meme index table as input, and generates the daily frequencies 

for each hashtag by going through the corresponding row and doing simple counting. 



85 

 

 

Figure 3-3. An example meme evolution timeline on the Truthy website [145] 

 

Figure 3-4. Map-only job for meme daily frequency generation 

The total amount of data scanned by the mappers is the total number of index entries associated 

with hashtags in the index tables. It is obvious that the amount of computation spent on 

generating the results is linear to the number on index entries. So the overall complexity of the 

algorithm is O(N), assuming N is the total number of index entries scanned. 

3.2.3 Domain Name Entropy Computation 

For a given time window, the domain name entropy computation algorithm collects the URLs 

posted by all users in their tweets. Then for each user, it extracts the tweeted domain names, 

generates the probability distribution of these domain names, and computes the entropy value 

based on the distribution. By analyzing the entropy for a large number of users, it is possible to 
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study users’ interest allocation on the social network, and compare the results against search 

engines to further investigate whether social networks play a special role in shaping users’ 

interest online. 

This algorithm can be implemented as a single MapReduce job over extended meme index tables 

that incorporate user IDs as an entry field, as Figure 3-5 displays. Recall from Chapter 2 that the 

meme index tables will index hashtags, user-mentions, and URLs contained in the tweets, and 

we could leverage this extended index for improving the efficiency of queries like user-post-

count. Here we show its value for supporting analysis tasks. The input to the map phase of the 

MapReduce job is the range of the index table that covers all the index keys for URLs. The 

number of mappers launched depends on the number of regions within this range. Index entries 

are passed to a mapper as a sequence of <key, value> pairs, where key is a row key of the index 

table (i.e. a URL), and value contains a number of index entries associated with the URL. For 

each entry, the mapper extracts the domain name from the URL and the user ID from the entry 

field, then emits a pair <userID, domainName> to the output. The output of all mappers are 

distributed to multiple reducers, each handling a subset of user IDs. For each user ID, the reducer 

counts the frequency of each domain name that he/she has tweeted about, generates the 

distribution, and computes the entropy. 

The amount of data scanned by the mappers is the total number of index entries for URLs. Time 

spent by the mappers on the conversion is linear to the number of input index entries. This means 

the time spent by reducers for generating the domain name distribution and computing the 

entropy is linear to the number of <userID, domainName> pairs, which is the same as the 

number of index entries. Therefore, the overall complexity of the algorithm is O(N), assuming N 

is the total number of index entries for URLs. 
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Figure 3-5. MapReduce algorithm for domain name entropy generation 

3.2.4 Graph Layout 

The graph layout algorithm we developed is a parallelization of the “Fruchterman-Reingold” 

force-directed layout algorithm. The idea of the algorithm is to compute the layout of a graph by 

simulating the behavior of a physical system where vertices of the graph are taken as atomic 

particles and edges as springs. A repulsive force exists between each pair of atomic particles, 

which tends to push them away from each other. An attractive force exists on each spring, 

pulling the vertices at the two ends closer to each other. Both forces are defined as functions of 

distances between vertices. Therefore, starting from an initial state of random layout, in each 

iteration, disconnected vertices are pushed further apart, and vertices connected with edges are 

pulled closer together. Over multiple iterations, the whole system eventually evolves to a ‘low-

energy’ state. Besides the forces, a “temperature” parameter is used to limit the maximum 
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displacement of vertices in each iteration. The temperature eventually ‘cools’ down as iterations 

proceed.  

We implement this algorithm as an iterative MapReduce job on Twister [60], which is specially 

designed to support large-scale iterative computation. For simplicity, we call this algorithm 

MRFR (itervative-MapReduce version of Fruchterman-Reingold). The mapper and reducer 

functions used are given in Figure 3-6. Before the job starts, the graph is partitioned into multiple 

sub-graphs, each containing a subset of vertices associated with their neighbors. During job 

initialization time, an initial random layout of the whole graph is broadcasted to all the mappers. 

Each mapper reads a sub-graph during task initialization time, then saves it in memory for usage 

across all iterations. Within every iteration, each mapper receives the global layout of the whole 

graph from the last iteration through its input <key, value> pair. Then for every vertex in the sub-

graph, the mapper first calculates its displacement based on the repulsive forces it receives from 

every other vertex as well as the attractive forces it receives from its neighbors, and finally 

decides its total displacement by taking the temperature into consideration. Then a new layout of 

the sub-graph is generated based on the displacements and output as an intermediate result from 

the mapper. The reducer collects the output from all mappers to generate the global layout. If the 

maximum number of iterations is reached, the reducer will output the global layout as the final 

result. Otherwise, the global layout is broadcasted to all mappers for the next iteration. 

Within each iteration, the processing time is dominated by the computation of repulsive forces 

between each pair of vertices, which is O(N2), where N denotes the total number of vertices in 

the graph. Thus the overall complexity of the algorithm is O(M*N2), where M is the number of 

iterations. It takes less than 100 iterations in most cases to generate an elegant layout of the input 
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graph. Since the algorithm is computation intensive, we can achieve near-linear scalability for 

large graphs, as will be demonstrated in Section 3.2.5. 

 

Figure 3-6. Parallel Fruchterman-Reingold algorithm using iterative MapReduce 

3.2.5 Performance Analysis 

A major advantage of the related hashtag mining, meme daily frequency generation, and 

domain name entropy computation algorithms is that they mainly rely on indices to finish their 
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computation. Since the size of an index is much smaller than the original data (Table 2-3), these 

algorithms are significantly more efficient than solutions that process the original data. 

To demonstrate this, we compare the efficiency of these algorithms to their counterparts based 

on parallel scans of the original data, which are implemented as Hadoop MapReduce jobs that 

directly process the .json.gz files. We call these jobs “Hadoop-FS” versions of implementation.  

Specifically, the “Hadoop-FS” version of related hashtag mining is implemented as two 

consecutive map-only jobs. The first job launches multiple mappers, each processing the .json.gz 

file for one day. The mapper reads each tweet from the file, and outputs a <hashtag, tweetID> 

for each hashtag contained in the tweet. If the tweet contains the seed hashtag, then all hashtags 

in this tweet will be written to a file containing the co-occuring hashtags. The second job reads 

this file and launches multiple mappers to only process the <hashtag, tweetID> pairs for the co-

occuring hashtags, then computes the Jaccard Coefficient for them. 

The “Hadoop-FS” job for daily meme frequency generation also launches multiple mappers to 

process multiple .json.gz files in parallel. Each mapper reads tweets from the file and outputs 

<hashtag, tweetTimestamp> pairs for every hashtag contained. The reducers will group the pairs 

for the same hashtag together and generate the daily frequencies. 

For the “Hadoop-FS” job for domain name entropy computation, each mapper also processes 

one .json.gz file. It reads tweets from the file, then outputs <userID, domainName> pairs for 

every URL contained. The reducers will group the pairs for the same user ID together, then 

generate the domain distribution and compute the entropy. 

Figure 3-7 illustrates the performance comparison between the “Hadoop-FS” versions and the 

versions based on IndexedHBase. All tests are done on a private eight-node cluster called 



91 

 

“Madrid”. The hardware configuration of the nodes is listed in Table 3-2. Each node runs RHEL 

6.5 and Java 1.7.0_45. For the deployment of YARN and IndexedHBase, Hadoop 2.2.0 and 

HBase 0.96.0 are used. One node is used as the HDFS name node, YARN resource manager, 

HBase master, and Zookeeper. The other seven nodes are used as HDFS data nodes and HBase 

region servers. 

 

Figure 3-7. Analysis algorithm performance comparison 

Table 3-2. Hardware configuration of each node of the Madrid cluster 

CPU RAM Hard Disk Network 

4 * 4 Quad-Core AMD Opteron 8356 2.3G Hz 48GB 4TB HDD + 1TB SSD 1Gb Ethernet 

 

As shown in Figure 3-7, the algorithms based on IndexedHBase are tens of times faster than the 

“Hadoop-FS” versions for the case of related hashtag mining and daily meme frequency 

generation. The processing time for the domain name entropy computation algorithm is longer 

because 2012-10 has more data and the size of index entries for URLs is larger. Yet it is still four 

times faster than its “Hadoop-FS” counterpart. Beyond the execution time, these algorithms are 

also more efficient in terms of resource usage. Each MapReduce job over the index tables 
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launches seven to eight mappers, which equals the number of related regions of the tables. In 

comparison, the “Hadoop-FS” jobs launch 30 to 31 mappers, because there is one .json.gz file 

for each day. 

We measure the scalability of the graph layout algorithm using 33 nodes of the Alamo HPC 

cluster on FutureGrid [157]. The per-node hardware configuration is given in Table 1. All nodes 

are installed with CentOS 5.9 and Java 1.7.0_40. One of the nodes is used to host a Broker of 

ActiveMQ 5.4.2, and the other 32 nodes run daemons of Twister-Ivy. We take a retweet graph 

containing 477,111 vertices and 665,599 edges as input, then measure the per-iteration execution 

time of MRFR using different numbers of mappers. Figure 3-8 illustrates the results. According 

to Figure 3-6, each iteration is composed of a computation stage (map) and a communication 

stage (reduce and broadcast). For a graph containing more than 470,000 vertices, the execution 

time of each iteration is dominated by the map phase that computes the forces between pairs of 

vertices. Therefore, by parallelizing this intensive computation with multiple mappers, we are 

able to achieve a near-linear scalability. Details about how the retweet graph was generated will 

be described in the next section. 

Table 3-3. Hardware configuration of each node of the Alamo cluster 

CPU RAM Hard Disk Network 

8 * 2.66GHz (Intel Xeon X5550) 12GB 500GB 40Gb InfiniBand 
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Figure 3-8. Per-iteration execution time and speed-up of MRFR 

3.3 Composition and Execution of Analysis Workflows 

Using the queries and analysis algorithms based on IndexedHBase, users can compose analysis 

workflows for various research projects. In this section, we demonstrate the composition and 

execution of workflows by reproducing the end-to-end analysis presented in a published research 

project [44] using the dataset of Truthy. The project investigated how social media shapes the 

networked public sphere and facilitates communication between communities with different 

political orientations. More than 250,000 politically relevant tweets were extracted from the 

Truthy dataset during the six weeks leading up to the 2010 U.S. congressional midterm elections. 

Then the characteristics of the retweet network and mention network generated from these tweets 

were examined. The results showed that the retweet network exhibited a highly modular 

structure, segregating users into two homogenous communities corresponding to the political left 

and right. In contrast, the mention network did not exhibit such political segregation. 

We will first try to reproduce the analysis and results in [44] on Cloud DIKW using the same 

dataset from 2010, after which we extend the same analysis process to another dataset collected 

during the six weeks before the 2012 U.S. presidential election to verify if a similar pattern in the 
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social communication networks can be observed. Our explanation in this section focuses on 

analysis of the retweet network, and implementations for the mention network are similar. 

3.3.1 Analysis Workflow for Political Polarization Investigation 

Figure 3-9 illustrates the major steps of the analysis workflow in [44]. The first two steps in the 

workflow try to find a set of political hashtags that can be used to identify politically related 

tweets from all those collected during the selected six-week time window. In Step (1), two of the 

most popular political hashtags, #p2 (“Progressives 2.0”) and #tcot (“Top Conservatives on 

Twitter”) are manually selected as seed hashtags. Step (2) tries to extend this initial set with 

other related hashtags with the related hashtag mining algorithm, using a threshold of 0.005. 

 

Figure 3-9. End-to-end analysis workflow in [44] 

Step (3) executes the get-retweet-edges query, using all hashtags found in Step (2) as the memes 

parameter and the six-week time window as the time-window parameter. It does this to get the 

retweet network among users from both political orientations. The retweet edges compose a 
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graph structure, with vertices representing users and edges representing ‘retweet’ relationships 

that happened during the time window. 

Step (4) uses a combination of two algorithms, leading eigenvector modularity maximization 

[109] and label propagation [118] to detect communities on the retweet network. Here a 

“community” is defined as a set of vertices on a graph that are densely inter-connected and 

sparsely connected to the other parts of the graph. After this step, vertices from different 

communities are labeled with different colors for visualization in Step (6). 

In order to achieve a high-quality visualization of segregated communities in the retweet network, 

Step (5) uses the “Fruchterman-Reingold” algorithm [66] to generate a desirable layout of the 

retweet network. Step (6) makes a final plot of the retweet network from Step (3) using the color 

labels computed in Step (4) and layout information generated in Step (5). 

3.3.2 Analysis of Twitter Data from 2010 

We compose the workflow using our queries and analysis algorithms on the scalable architecture, 

and compare them to the original implementations in [44]. The experiments are carried out on 35 

nodes of the same Alamo cluster as Section 3.2.5 (Table 3-3). We use Hadoop 1.0.4, HBase 

0.94.2, Twister-Ivy (together with ActiveMQ 5.4.2), and R 2.10.1 in our experiments. Among 

the 35 nodes, one is used to host the Hadoop jobtracker and HDFS namenode, another hosts the 

HBase master, and a third hosts Zookeeper and Active MQ broker. The other 32 nodes host 

HDFS datanodes, Hadoop tasktrackers, HBase region servers, and Twister daemons. 

As explained in Section 3.1, Step (1) is fixed to a manual choice of #p2 and #tcot. Step (2) is 

completed by running the related hashtag mining algorithm twice, once for #p2, and again for 

#tcot. Overall, it takes 109.3 seconds to find related hashtags for #p2, which involves analysis of 
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the content of 109,312 tweets with 4 map tasks. The same process for #tcot spends 128.1 seconds 

in analyzing 189,840 tweets with 8 map tasks. Merging the results for both seed hashtags, we 

found the same 66 related hashtags as [44]. 

Step (3) is completed with the get-retweet-edges query. This step takes 93.3 seconds, and returns 

the same retweet network as in [44], which contains 23,766 non-isolated nodes. 

Steps (4), (5), and (6) are completed by using the igraph [141] library of R in [142], which 

provides a baseline benchmark with sequential implementation. Table 3-4 lists the execution 

time of these three steps with R on a single node. It can be observed that Step (5) is significantly 

more time consuming than the other two steps, and may potentially become a bottleneck of the 

analysis workflow as we apply it to larger-scale datasets. Therefore, we use our parallel MRFR 

algorithm to complete this step. To facilitate it further, we modified get-retweet-edges to get get-

retweet-adjmtx, a new query that generates the adjacency matrix of the retweet network instead 

of only the edges. This query outputs a list of lines, and each line is in the form of ‘<vertex ID> 

<neighbor vertex ID> <neighbor vertex ID> …’, i.e. a vertex ID followed by a list of IDs of 

other vertices that are connected with this vertex by edges. This matrix representation is then 

given to MRFR as input. 

Table 3-4. Sequential execution time (seconds) on R for Step (4) - (6) for 2010 

(4) Community Detection (5) Graph Layout (500 iterations) (6) Visualization 

3.4 4508.3 1.6 

Figure 3-10 illustrates the per-iteration execution time and speed-ups of MRFR under different 

levels of parallelism. It is obvious that MRFR can effectively speed up the graph layout step. 

Specifically, with 64 mappers on 8 nodes, MRFR runs 18 times faster than the sequential 

implementation in R, completing 500 iterations within 300 seconds. However, MRFR does not 
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achieve very good scalability for the 2010 retweet network, mainly because the amount of 

computation required in mappers is not large enough compared to the scheduling and 

communication overhead. For example, in the case of 64 mappers, the slowest mapper finishes in 

250 ms, while the total overhead stays consistent at about 350 ms across different numbers of 

mappers. Figure 3-11 shows the final visualization of the retweet network using the layout 

generated by MRFR. The layout is almost the same as the plot in [44], with only a slight 

difference caused by a different initial random layout. As identified in [44], the red cluster is 

made of 93% right leaning (conservative) users, and the blue cluster is made of 80% left leaning 

(progressive) users. Since we generate the same result as [44] in each step of the analysis 

workflow, our solution on IndexedHBase is validated. 

 

Figure 3-10. Per-iteration execution time and speed-up for MRFR for 2010 
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Figure 3-11. Final plot of the retweet network in 2010 

3.3.3 Analysis of Twitter Data from 2012 

Here we extend the analysis workflow in Figure 3-9 to a later dataset collected during the six 

weeks (09/24/2012 to 11/06/2012) before the 2012 U.S. presidential election, and verify if the 

corresponding retweet network demonstrates a similar polarized pattern. The average data size 

for each day in 2012 is about 6 times larger than 2010.  

Step (1) still starts from #p2 and #tcot. Step (2) spends 142 seconds in mining related hashtags 

for #p2, and 191 seconds for #tcot. The number of tweets analyzed is 160,934 and 364,825 

respectively. In total, 66 related hashtags are found (see Table 3-5). In Step (3), 80 mappers need 

150 seconds to analyze 2,360,361 politically related tweets, and the result is a retweet network 

that is 20 times larger, with 477,111 vertices and 665,599 edges. 
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Table 3-5. Related hashtags for 2012 

Related to #p2: #2futures #47percent #4jobs #connecttheleft #cspj #mittromney #ofa #vote #votedem 

#wiright #ctl #dems #sensata #waronwomen #1u #benghazi #dem #p1 #fem2 #p2b #romnesia #tcot #dnc 

#forward #lgbt #msnbc #tpot #wiunion 

Related to both: #obama #resist44 #romney #teaparty #tiot #cnn #lnyhbt #mitt2012 #news #ocra #ohio 

#ows #p21 #topprog #twisters #election2012 #gop #mapoli #masen #ncpol #sgp #sot #war #ccot #debate 

#obama2012 #romneyryan2012 #tlot 

Related to #tcot: #debates #p2 #benghazigate #dems #gop2012  #benghazi #nobama #tpp #cantafford4more 

#nra #oh #prolife  

Step (4) requires 2,402 seconds on R to complete community detection for this large network. In 

Step (5), it takes as long as 6,044 seconds to finish only one iteration of the Fruchterman-

Reingold algorithm on R. This demonstrates that due to the fast growth of data volume, 

sequential algorithms quickly become infeasible for social data analysis scenarios. In order to 

address this challenge, we use more mappers in MRFR to complete Step (5), and achieve nice 

speed-ups as shown in Figure 3-8. The near-linear scalability clearly demonstrates that MRFR is 

especially good at handling large networks. In particular, using 256 mappers on 32 nodes, MRFR 

can finish one iteration 355 times faster than the sequential implementation in R. Step (6) runs 

for 32 seconds on R, and Figure 3-12 shows the final plot of the two largest communities of the 

retweet network. On the one hand, we can still observe a clearly segregated political structure in 

the 2012 network; on the other hand, the two sides also seem to demonstrate a ‘merging’ trend 

by having more edges reaching out to each other. 
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Figure 3-12. Final plot of the retweet network (2012) 

3.4 Related Work 

Compared with existing relational databases [78] and NoSQL databases [52][105][125], we not 

only support novel customizable text index structures, but also make innovative use of them. 

Instead of hiding them behind the queries, we expose direct operator interfaces so that they can 

be used in post-query analysis algorithms. Also by leveraging the inherent integration of 

IndexedHBase and Hadoop MapReduce, we are able to support efficient parallel scans of the 

indices. The significant performance difference between our analysis algorithms and their 

“Hadoop-FS” counterparts clearly demonstrates the value of indices in supporting analysis tasks 

beyond the basic queries. 
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By integrating components from Hadoop, Hive [21], and relational databases [136], HadoopDB 

[5] provides a hybrid solution that can utilize the indexing techniques offered by relational 

databases to achieve efficient query evaluation. Despite this, HadoopDB applies deep changes to 

the Hadoop framework; thus is difficult to configure and maintain. The SQL queries supported 

by HadoopDB also do not cover sophisticated iterative analysis algorithms. 

By using Spark [166] as the execution engine and applying various optimizations to its in-

memory processing model, Shark [16] is able to support both efficient SQL queries and 

sophisticated iterative analytics at a large scale. Compared with Shark, our architecture supports 

efficient fine-grained data operations, putting an emphasis on building customizable index 

structures to support both queries and analysis tasks. IndexedHBase can be integrated with Shark 

to further improve the performance of analysis jobs by only loading relevant data records as 

RDDs in Spark. The columnar storage of table data used by Shark is inspiring to us in terms of 

more efficient iterative analysis tasks. 

To the best of our knowledge, MRFR is the first iterative MapReduce implementation for the 

Fruchterman-Reingold layout algorithm. There have been previous efforts on parallelizing this 

algorithm with MPI [106] and GPUs [129], but for commodity cluster environments where 

GPUs are not available, MRFR is the best fit and delivers near-linear scalability. We may 

consider extending our solution with the usage of GPUs on each node to handle larger-scale 

problems. 

3.5 Conclusions 

In summary, we make the following contributions in this chapter: 
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First of all, we extended IndexedHBase to a scalable architecture, which not only encapsulates 

efficient indexing and query mechanisms, but can also be integrated with various parallel 

processing frameworks such as Hadoop and Twister to support sophisticated analysis of the 

query results. 

Based on this architecture, we develop a set of analysis algorithms, including related hashtag 

mining, meme daily frequency generation, domain name entropy computation, and graph layout, 

which are generally useful for composing analysis workflows in many research scenarios. Our 

experience with the first three algorithms demonstrates that indices are not only useful for query 

evaluation, but also valuable for analysis and mining purposes. Our index-based algorithms have 

proven to be significantly more efficient than the corresponding implementations based on 

parallel scans of original data, in terms of both execution time and resource usage. These are 

made possible by exposing proper index operator interfaces and leveraging the inherent 

integration between IndexedHBase and Hadoop MapReduce. Our graph layout algorithm is the 

first iterative MapReduce implementation of the Fruchterman-Reingold algorithm. It can achieve 

near-linear scalability for processing large graphs in distributed environments. 

Finally, based on the queries and analysis algorithms, we demonstrate the composition and 

execution of analysis workflows by reproducing the end-to-end analysis process from a 

published research project about political polarization [44] and further extending it to another 

data subset about the 2012 U.S. presidential election. Experiments demonstrate that our solutions 

on Cloud DIKW can consistently provide efficient and scalable solutions for the analysis 

workflows, despite the significant data size growth over time. 
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Chapter 4  

Stream Analysis Module - Parallel Clustering of High-Dimensional 

Social Media Data Streams 
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4.1 Background 

As introduced in Chapter 1, Cloud DIKW is designed to support scientific analysis pipelines that 

require the integration of both sophisticated batch data processing algorithms and non-trivial 

streaming algorithms. By “non-trivial” algorithms, we refer to the cases where parallel workers 

not only process stream partitions independently, but also dynamically synchronize with the 

global state from time to time. The synchronization strategy could either leverage a pub-sub 

messaging system, reuse the communication mechanisms in batch algorithms, or a combination 

of both. 

This chapter presents our contribution in applying Cloud DIKW to support one representative 

application: clustering of social media data streams. Specifically, we analyze the unique 

challenges brought by high-dimensional social media data streams and propose our extensions to 

current state-of-the-art stream processing frameworks, as well as an innovative synchronization 

method, for addressing the challenges. 

As an important data mining technique, clustering is used in many applications involving social 

media stream analysis, such as meme [63][85], event [10], and social bots detection [63]. As an 

example, Figure 4-1 illustrates the analysis pipeline of the DESPIC (Detecting Early Signatures 

of Persuasion in Information Cascades) platform [63] that is being developed by the Center for 

Complex Networks and Systems Research at Indiana University. This platform first clusters 

posts collected from social streams (e.g., tweets from Twitter) into groups of homogenous 

memes, according to various measures of similarity, and then uses classification methods to 

detect memes generated by real users and separate them from those produced by social bots [64]. 
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Figure 4-1. DESPIC architecture for meme clustering and classification [63] 

Social media data streams come in the form of continuous sequences of atomic posts, e.g. 

Twitter tweets or Facebook status updates. The target of the clustering process is to group 

messages that carry similar meaning together, while capturing the dynamic evolution of the 

streams that is closely related to social activities in the real world. For example, two tweets, 

“Step up time Ram Nation. #rowdyrams” and “Lovin @SpikeLee supporting the VCU Rams!! 

#havoc”, should be grouped into the same cluster because they both talk about the VCU 

(Virginia Commonwealth University) basketball team. Furthermore, the appearance of 

“@SpikeLee” in the cluster is an indicator of the event that the famous director Spike Lee was 

wearing a VCU T-shirt while watching the VCU and UMass game courtside on Mar 16th, 2013. 

In order to design a high-quality clustering algorithm, some unique characteristics of social posts 

must be considered. For instance, the length of the textual content of a social message is 

normally short, which makes clustering methods solely based on lexical analysis ineffective 

[10][29][63]. Social messages also carry rich information about the underlying social network 

(e.g. through the functionality of ‘retweet’ and ‘mention’ on Twitter), which can be valuable for 

measuring the similarity among data points and clusters. In addition they may contain other 

metadata such as temporal and geographical information, hashtags, URLs, etc., which can also 

be leveraged to effectively guide the clustering process. 



106 

 

Domain researchers in the area of social media data analysis have recently invested a great deal 

of effort toward developing proper data representations and similarity metrics to generate high-

quality clusters [10][63][29][85]. An important conclusion is that the data representation should 

not only describe the textual features of the social messages, but also capture the temporal, 

geographical, and social network information attached therein. For example, Aggarwal and 

Subbian [10] proposed an event-detection system that uses two high-dimensional vectors to 

describe each social post: one content vector that represents the textual word frequencies, and 

another binary vector housing the IDs of the social message’s recipients (e.g., the followers of a 

tweet’s author on Twitter). To compute the similarity between two social messages, an 

independent score is first computed using each vector, and then a linear combination of the two 

scores is taken as the overall similarity between the two messages. It has been demonstrated that 

the quality of the resulting clusters can be significantly improved by using the combined 

similarity rather than just the textual content similarity. JafariAsbagh et al. [63] proposed to first 

group the social messages into ‘protomemes’ according to shared metadata such as hashtags and 

URLs, and then use the protomemes as input data points to the clustering algorithm. They use 

four high-dimensional vectors to describe each protomeme and define a new ‘diffusion network’ 

vector to replace the full followers vector used in [10], which is hardly available in a practical 

streaming scenario. The authors show that a combination of these new techniques can help 

generate better clustering results than previous methods when measured against a common 

ground truth data set. 

To achieve efficient processing of social media data streams, these special data representations 

and similarity metrics are normally applied in a single-pass clustering algorithm such as online 

K-Means and its variants [10][85][87]. The algorithm can be further equipped with mechanisms 
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like sliding time window [15][85], weighted data points [87][8][9][11], and outlier detection 

[8][10][35][85] to deal with the dynamic evolution of the streams. However, due to the high cost 

of similarity computation coming from the high-dimensional vectors, sequential implementations 

of such single-pass streaming algorithms are not fast enough to match the speed of real-world 

streams. For example, the fastest implementation presented in [10] can only process less than 

20,000 tweets per hour, while the Twitter gardenhose stream [67] generates over 1,000,000 

tweets in one hour. According to a test we carried out, it takes 43.4 hours for a sequential 

implementation of the algorithm in [85] to process one hour’s worth of data collected through the 

gardenhose Twitter streaming API. It is therefore clear that parallelization is a necessity in order 

to handle real-time data streams. 

In this chapter we describe our work in parallelizing a state-of-the-art social media data stream 

clustering algorithm presented in [85], which is a variant of online K-Means incorporating 

sliding time window and outlier detection mechanisms. We use Apache Storm [25] stream 

processing engine in Cloud DIKW for data transmission and workload distribution, and tackle 

two system-level challenges emerging from parallelization of such type of algorithms. 

The first challenge concerns the fact that most stream processing engines organize the distributed 

processing workers in the form of a directed acyclic graph (DAG); this makes it difficult to 

dynamically synchronize the state of the parallel clustering workers without breaking the “live” 

processing of the stream. The reason is that the synchronization step requires parallel workers to 

send their local updates either to each other or to a global updates collector, which will then 

broadcast the updated global state back to the parallel workers. Both methods inevitably create 

cycles in the communication channel, which is not supported in the DAG-oriented stream 

processing frameworks. To address this challenge, we create a separate synchronization channel 
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by incorporating the pub-sub messaging system ActiveMQ [16] into Cloud DIKW, and combine 

its functionality with Storm to coordinate the synchronization process. 

The second issue is that the sparsity of high-dimensional vectors may cause the cluster centroids 

to greatly increase in size with the addition of new data points to the clusters. Figure 4-2 

illustrates a cluster containing two tweets about VCU basketball as mentioned earlier. Due to the 

sparsity of the content vector (assuming the hashtags and user mentions are extracted as another 

separate vector) of each data point, they only overlap along one dimension: “ram”. As a result, 

the length of the content vector of the centroid, which is computed as an average of the two data 

points, is close to the sum total length for two separate vectors. Due to the high dimensionality of 

these vectors, this trend can continue as more data points are added, and the length of the 

centroid vectors increases dramatically. A sliding time window mechanism may help to limit the 

total size by removing old data points, but the full centroids data remains large and difficult to 

transfer over the network. Consequently, the classic synchronization strategy of directly 

broadcasting the cluster centroids becomes infeasible and hampers scalability of the parallel 

algorithm. To solve this problem, we propose a new strategy that broadcasts the dynamic 

changes (i.e. the “deltas”) of the clusters rather than the complete centroids data. Since the size 

of the delta is small, we are able to keep the synchronization cost at a low level and achieve good 

scalability. For sake of simplicity, we name the traditional synchronization strategy full-centroids 

strategy, and our new synchronization strategy cluster-delta strategy. 

We use a real dataset collected through the Twitter streaming API 10% sample (“gardenhose”) 

[67] to verify the effectiveness of our solutions and evaluate the scalability of our parallel 

algorithm. The results demonstrate that we can keep up with the speed of the Twitter gardenhose 

stream with 96-way parallelism. By natural improvements to Cloud DIKW, including advanced 
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collective communication techniques developed in our Harp [169] project, we will be able to 

process the full Twitter data stream in real-time with 1000-way parallelism. Our use of powerful 

general software subsystems will enable many other applications that need integration of 

streaming and batch data analytics. 

 

Figure 4-2. An example of growing vector size of centroids 

4.2 Related Work 

Data stream clustering algorithms have been an active research area for many years as witnessed 

by Ding et al. review work [56]. For the problem of high-dimensional data stream clustering, 

techniques such as projected/subspace clustering [8][9][138] and density-based approaches 

[15][35][138] have been proposed and investigated. Due to the unique data representations 

(multiple high-dimensional vectors from totally independent spaces) and similarity metrics used 

for social media data streams, it seems hard to apply these existing techniques to the case of 

social media streams. We listed and discussed practical limitations in a previous work [63]. Here 

we inherit the high-dimensional data representation and similarity metrics that have been proven 

effective, and focus on improving the efficiency of the clustering algorithm through 

parallelization. 
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The algorithm presented in [10] uses sketch tables [7] to deal with the growing size of tweet 

followers network information maintained for the clusters. However, sketch tables only 

approximate vector values and thus may impact the accuracy of the clustering results. In the case 

of our algorithm, since the size of the centroid vectors is constrained by the size of the sliding 

time window, we are not forced to use sketch tables in the cost of accuracy so far. For faster data 

streams or longer time windows, a sketch table-based implementation could eventually become 

more efficient in terms of both space and time for computing the similarities between data points 

and cluster centroids. Nonetheless, our cluster-delta synchronization strategy may still achieve 

better efficiency than broadcasting the whole sketch tables in such cases since the sketch tables 

have to be large enough to ensure accuracy. 

A similar work to ours is the parallel implementation of the Sequential Leader Clustering [76] 

algorithm presented in [164], which also leverages Storm [25] for parallel processing and data 

stream distribution. The parallel clustering algorithm by Wu et al. is simplified, because it only 

considers the textual content of social messages and uses Locality-Sensitive Hashing [31] to 

guide the stream distribution, which avoids synchronization among the parallel clustering 

workers. Yet this type of algorithms is unable to make use of the valuable social network 

information contained in the data streams. Callau-Zori proposed a distributed data stream 

clustering protocol based on sequential (a, b)-approximation algorithms for the K-Means 

problem [34]. Although the author provides a theoretical analysis of its accuracy and efficiency, 

it does not address the special case of high-dimensional data, and only considers the situation 

within a single time window. 

Compared with streaming databases such as Aurora [39] and Borealis [2], the functionality of 

our clustering workers in Storm is more complicated than their streaming operators for 
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evaluating SQL queries. Cloud DIKW can utilize other stream processing engines such as 

Apache S4 [108] and Spark Streaming [167]. We choose Storm because its pull-based data 

transmission mode makes it easy to carry out controlled experiments at different levels of 

parallelism.  Storm gives us more flexibility to implement and test different synchronization 

strategies. Interested readers may refer to [86] for a survey of major distributed stream 

processing frameworks. 

4.3 Sequential Clustering Algorithm 

The sequential algorithm we parallelize was originally proposed in [85] for clustering memes in 

the Twitter streams of tweets. In order to generate high-quality clusters, the algorithm first 

groups tweets into ‘protomemes’, and then uses these protomemes as input data points for the 

clustering process. We start by introducing the definition of a protomeme and its data 

representation. 

4.3.1 Protomemes and Clusters 

A protomeme is defined as a set of tweets grouped together according to a shared entity of one of 

the following types: 

 Hashtags. Tweets containing the same hashtag. 

 Mentions. Tweets mentioning the same user. A mention is identified by a user’s screen name 

preceded by the ‘@’ symbol in the text body of a tweet. 

 URLs. Tweets containing the same URL. 

 Phrases. Tweets sharing the same phrase. A phrase is defined as the textual content of a tweet 

that remains after removing the hashtags, mentions, URLs, and after stopping and stemming 

[170]. 
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We call these four types of entities markers of protomemes. Note that according to this definition, 

a tweet may belong to multiple protomemes. Each protomeme is represented by its marker and 

four high-dimensional vectors: 

(1)  A binary tid vector containing the IDs of all the tweets in this protomeme: VT = [tid1, tid2, …, 

tidT]; 

(2)  A binary uid vector containing the IDs of all the users who authored the tweets in this 

protomeme: VU = [uid1, uid2, …, uidU]; 

(3)  A content vector containing the combined textual word frequencies for all the tweets in this 

protomeme: VC = [w1:f1, w2:f2, …, wC:fC]; 

(4)  A binary vector containing the IDs of all the users in the diffusion network of this protomeme. 

The diffusion network of a protomeme is defined as the union of the set of tweet authors, the set 

of users mentioned by the tweets, and the set of users who have retweeted the tweets. We denote 

this diffusion vector as VD = [uid1, uid2, …, uidD]. 

A cluster is defined as a set of protomemes grouped together according to a certain similarity 

metric. Since a tweet may belong to multiple protomemes, clusters can have overlap with respect 

to tweets. The centroid of each cluster is also represented by four high-dimensional vectors, which 

are the averages of the corresponding vectors of all the protomemes in the cluster. We denote the 

vectors of the cluster centroid as VT, VU, VC, and VD. 

To compute the similarity between a protomeme and a cluster, the cosine similarity between each 

vector of the protomeme and the corresponding vector of the cluster centroid is first computed. 

Then the maximum value of all these cosine similarities is taken as the overall similarity between 

the two. It has been demonstrated in [63] that for the purpose of generating high-quality clusters, 

taking the maximum is as effective as using an optimal linear combination of all the cosine 
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similarities. There are multiple ways to define distance based on the similarity; we use the 

simplest form 1 – similarity. 

4.3.2 Sequential Clustering Algorithm 

Figure 4-3 illustrates the sketch of the sequential clustering algorithm from [85]. The algorithm 

controls its progress through a sliding time window that moves step by step. The length of a time 

step in seconds and the length of the time window in steps are given as input parameters. These 

are defined with respect to the timestamps of the social posts (i.e., the tweets), not the wall-clock 

time for running the algorithm. Every time the sliding window advances, old protomemes falling 

out of the current window are deleted from the clusters and new ones are generated using the 

tweets from the latest time step. For every new protomeme, the algorithm first checks whether 

others with the same marker have been previously assigned to a cluster. If so, the new 

protomeme will be added to the same cluster. Otherwise, the algorithm will compute the new 

protomeme’s similarity with all the existing clusters, and decide whether or not this is an outlier. 

If not, the protomeme is assigned to the most similar cluster. Otherwise, a new cluster is created 

and initialized with this new protomeme, then inserted into the list of all clusters by replacing 

either an empty cluster or the least recently updated one. In order to determine whether the 

protomeme is an outlier, the algorithm maintains the mean μ and standard deviation σ of the 

similarities between all processed protomemes and the centroid of the clusters they belong to. If 

the similarity between a new protomeme and its closest cluster is smaller than the mean by more 

than n standard deviations, then the protomeme is identified as an outlier. μ and σ are maintained 

incrementally as in [10]. 
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Figure 4-3. The social media stream clustering algorithm from [85] 

The quality of clusters generated by this algorithm was evaluated in [85] using a ground truth 

dataset collected from the Twitter gardenhose stream [67] during a week in 2013, which includes 

all the tweets containing the Twitter trending hashtags [65][150] identified for that period. A 
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variant of the Normalized Mutual Information (NMI) [46] measurement, LFK-NMI [90], which is 

especially well suited for the case of overlapping clusters, was computed between the result 

clusters of the algorithm and the ground truth clusters. The results in [85] show that this algorithm 

can achieve better performance than previous state-of-the-art methods, including the one 

presented in [10]. We use the same ground truth dataset and LFK-NMI measurement to verify the 

effectiveness of our parallel implementation of the algorithm in Section 4.5. 

4.3.3 Opportunities and Difficulties for Parallelization 

We run the sequential algorithm on a raw dataset (without any filtering) containing six minutes 

of tweets (2014-08-29 05:00:00 to 05:05:59) collected from the Twitter gardenhose stream. By 

fixing the parameters K, l, and n to 120, 6, and 2, and varying the length of a time step, we 

collect some important runtime statistics that are informative to the development of the parallel 

version of the algorithm. 

Table 4-1. Runtime Statistics for the Sequential Algorithm 

Time Step Length (s) 
Total Length of 

Content Vector 

Similarity 

Compute time (s) 
Centroids Update Time (s) 

10 47749 33.305 0.068 

20 76146 78.778 0.113 

30 128521 209.013 0.213 

Table 4-1 presents the results for the last time step of the whole clustering process when the time 

step length is increased from 10 to 30 seconds (which means the time window length is increased 

from 60 to 180 seconds). The numbers for the other time steps follow a similar pattern. The 

second column measures the total length of the content vectors of all the cluster centroids at the 

end of the last time step; the third column measures the time spent on computing the similarities 
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between protomemes and cluster centroids in that time step; and the fourth column measures the 

time spent on updating the vectors of the cluster centroids. 

Some interesting observations lead to our research of parallelizing the streaming algorithm: first, 

the whole clustering process is dominated by the computation of similarities. The ratio of 

similarity compute time / centroids update time in Table 4-1 increases from 490 to 981 as the 

length of the time window increases. This implies the feasibility of parallelizing the similarity 

computation, and processing the global updates of centroids with a central collector. 

Furthermore, the longer the time window, the more we can benefit from parallelization. 

We also observed that the content vector size of the centroids expands as the length of the time 

window increases. In fact, the other vectors (VT, VU, VD) demonstrate the same trend. This 

confirms our analysis in Section I about the infeasibility of traditional synchronization strategies. 

To address this issue, we design the new cluster-delta strategy, which will be presented in 

Section 4.4. 

4.4 Parallel Implementation on Storm 

4.4.1 Storm 

Apache Storm is a stream processing engine designed to support large-scale distributed 

processing of data streams. It defines a stream as an unbounded sequence of tuples, and provides 

an easy-to-use event-driven programming model to upper level applications. Stream processing 

applications are defined in the form of topologies in Storm, as exemplified in Figure 4-4. There 

are two types of processing elements in a topology, spouts and bolts, which are organized into a 

DAG through the streams connecting them. A spout is a source of streams that generates new 
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tuples and injects them into the topology. A bolt can consume any number of input streams, do 

some processing to each tuple of the streams, and potentially generate and emit new tuples to the 

output streams. To define a topology, the application only needs to provide implementation logics 

of spouts and bolts, specify the runtime parallelism level of each type, and configure the data 

distribution patterns among them. The Storm framework will automatically take care of system 

management issues including data transmission, parallel spouts/bolts execution, work load 

distribution, and fault tolerance. 

 

Figure 4-4. An example topology in Storm 

Figure 4-5 illustrates the standard architecture of a Storm cluster. The whole cluster consists of 

two types of nodes: one master node and multiple worker nodes. The master node runs a daemon 

process called Nimbus responsible for assigning spout and bolt tasks to the worker nodes and 

monitoring their status for failures. Every worker node runs a Supervisor daemon process, which 

manages the resources on the local node and accepts task assignments from the Nimbus. Spout 

and bolt tasks are executed by parallel executor threads in worker processes. By default, one 

executor thread is spawned for each task. The number of worker processes on each node is 

configurable as a system parameter. The number of tasks to run for each type of spout and bolt in 

a topology can be configured through the parallelism parameters. Coordination between the 

Nimbus and the Supervisors is accomplished by using Zookeepers [26]. 
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Figure 4-5. Storm architecture 

Storm adopts the ‘pull-based’ message passing model between the processing elements. Bolts pull 

messages from the upstream bolts or spouts. This ensures that bolts will never get excessive 

workload that they cannot handle. Therefore, overflow can only happen at the spouts. This model 

allows us to test our algorithm easily at different levels of parallelism. For example, we can 

implement spouts that generate streams by reading data from a file, and control their paces based 

on the number of acknowledgements received for tuples that have been processed. This will 

prevent the topology from getting overwhelmed by too much data no matter how slowly the bolts 

are working. 

4.4.1 Implementation with Cluster-Delta Synchronization Strategy 

We implement the parallel version of the algorithm in a Storm topology, as illustrated in Figure 

4-6. There is one type of spout, Protomeme Generator Spout, and two types of bolts, Clustering 

Bolt and Synchronization Coordinator Bolt. For simplicity, we call them protomeme generator, 

cbolt, and sync coordinator. At runtime, there is one instance of the protomeme generator, 

multiple instances of cbolts working in parallel, and one instance of sync coordinator. A separate 
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synchronization channel is created between the cbolts and the sync coordinator using the 

ActiveMQ pub-sub messaging system [16]. ActiveMQ allows client applications to connect to 

message brokers, and register themselves as publishers or subscribers to various topics. 

Publishers can produce messages and publish them to a certain topic, and the message broker 

will automatically deliver the messages to all the subscribers of that topic. In our topology, the 

sync coordinator is registered as a publisher to a topic named “clusters.info.sync”, and all the 

cbolts are registered as subscribers to this topic. The lifetime of the whole topology can be 

divided into two phases, an initialization phase and a running phase. We introduce the working 

mechanism of each type of spout and bolt in both phases. 

Protomeme Generation 

 

Figure 4-6. Storm topology for the parallel stream clustering algorithm 

During the initialization phase, every processing element reads some information from a 

bootstrap file. The protomeme generator reads the start time of the current time step, the length of 

a time step in seconds, and the length of a time window in steps. After reading this information, 
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the generator can either connect to an external stream of tweets or open a file containing tweets 

for generating protomemes. 

Upon entering the running phase, the protomeme generator keeps reading and buffering tweets 

for the “current” time step, until it identifies a tweet falling into the next time step. Then it 

generates protomemes using the buffered tweets. Every protomeme is associated with a creation 

timestamp and an ending timestamp, which are set based on the timestamp of the earliest and 

latest tweet in the protomeme. To facilitate the construction of diffusion vectors of protomemes, 

an in-memory index structure is maintained to record the mapping between each tweet ID and 

the set of user IDs who have retweeted it. To construct the diffusion vector of a protomeme, the 

user IDs of the tweet authors and the user IDs mentioned in its tweets are first added to the 

vector. Then the index is queried for each tweet ID of the protomeme, and the corresponding 

user IDs found in the index are added to the vector. The protomeme generator emits one tuple to 

its output stream for every newly generated protomeme. The tuples are evenly distributed among 

all the parallel cbolts based on the hash values of their markers. Therefore, protomemes 

generated in different time steps but sharing the same marker will always be processed by the 

same cbolt. 

Protomeme Clustering 

During the initialization phase, the cbolts and sync coordinator first read the same time window 

parameters as the protomeme generator; then they read the input parameter n (number of 

standard deviations for outlier detection), and a list of initial clusters. The initial clusters are 

generated by running either a parallel batch clustering algorithm, or the sequential stream 
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clustering algorithm over a small batch of data from recent history. The initial values of μ and σ 

are then generated based on the protomemes contained in the initial clusters. 

During the running phase, protomemes are processed in small batches. A batch is defined as the 

number of protomemes to process, which is normally configured to be much smaller than the 

total number of protomemes in a single time step. Upon receiving a protomeme, the cbolt first 

checks its creation timestamp to see if it starts a new time step. If so, the cbolt will first advance 

the current time window by one step, and delete all the old protomemes falling out of the time 

window from the clusters. Then it performs the outlier detection procedure and protomeme-

cluster assignment in the same way as in the sequential algorithm, based on the current clusters 

and μ, σ values. If the protomeme is an outlier, an OUTLIER tuple containing the protomeme 

will be emitted to the sync coordinator. If it can be assigned to a cluster, a PMADD tuple will be 

emitted. Note that the cbolt does not immediately create a new cluster with the outlier 

protomeme, because outlier protomemes detected by different cbolts may be similar to each 

other and thus should be grouped into the same cluster. Such global grouping can only be done 

by the sync coordinator, which collects OUTLIER tuples generated by all the cbolts. For the case 

of PMADD, the centroid of the corresponding cluster is not immediately updated either. Instead, 

clusters are only updated during the synchronization between two consecutive batches. This 

ensures that within the same batch, different cbolts are always comparing their received 

protomemes against the same set of global clusters. 

Within each batch, the sync coordinator maintains a list of “cluster delta” data structures and 

another list of outlier clusters. Upon receiving a PMADD, it will simply add the protomeme 

contained in the tuple to the delta structure of the corresponding cluster, and change the latest 

update time of the delta structure to the ending timestamp of the protomeme in case the ending 
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timestamp is larger. Since the sync coordinator collects PMADD from all parallel cbolts, the 

delta structures will contain the global updates to each cluster. For an OUTLIER tuple, it will 

first check whether the protomeme contained in the tuple can be assigned to any existing outlier 

cluster. If so, it is simply added to that outlier cluster; otherwise a new outlier cluster is created 

and appended to the list of outlier clusters. After processing each tuple, the values of μ and σ are 

dynamically updated. 

Synchronization 

As a final step of the initialization phase, the cbolts and sync coordinator connect to an 

ActiveMQ message broker and register as subscribers and the publisher. Since the cbolt tasks run 

as threads in worker processes, they first go through an election step to select one 

representative thread within each process. Only the representative thread will be registered as a 

subscriber, and the synchronization message received will be shared among the threads in the 

same process. This election step can significantly reduce the amount of data transmission caused 

by synchronization. 

At the running phase, a synchronization procedure is launched when the number of processed 

protomemes reaches the batch size. The whole procedure consists of three steps as detailed in 

Figure 4-7: SYNCINIT, SYNCREQ, and CDELTAS. The SYNCINIT step initiates the procedure 

and notifies the cbolts to start synchronization. In the SYNCREQ step, each cbolt will temporarily 

stop processing incoming protomemes, and emit a SYNCREQ tuple. After receiving SYNCREQ 

from all the cbolts, the sync coordinator will sort the deltas of all the clusters (including the outlier 

clusters) by the latest update time, and pick the top K with the highest values to construct a 

CDELTAS message, which also contains latest global values of μ and σ. The message is then 
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published through ActiveMQ. Upon receiving CDELTAS, every cbolt will update their local copy 

of clusters and μ, σ values to a new global state, then resume processing the protomemes for the 

next batch. Note that the SYNCINIT step and the temporary stopping of the cbolts are necessary to 

ensure that protomemes processed by different cbolts and received by the sync coordinator are 

always handled with regards to the same global view of the clusters. Since the size of CDELTAS 

is normally small and stable, the synchronization step can usually finish in a short time, as will be 

demonstrated in Section 4.5. 

 

Figure 4-7. Synchronization process of the cluster-delta strategy 

In order to achieve the best performance for the whole synchronization procedure, an optimal 

solution for SYNCINIT is also necessary. We tested three methods in this regard. With spout 

initiation, the protomeme generator counts the number of protomemes emitted and broadcasts a 

SYNCINIT tuple through Storm when the batch size is reached. With cbolt initiation, each cbolt 

counts the number of protomemes processed by itself and directly emits a SYNCREQ tuple when 

it reaches the expected average. This method is similar to the synchronization mechanism used in 

typical iterative batch algorithms. However, due to the buffering effect of Storm and varied 

processing speed among cbolts, both methods suffer from a large variance in the SYNCREQ time 

observed by different cbolts. The variance can reach the level of seconds and totally eliminate 

the benefits of the cluster-delta strategy. This suggests that, due to the dynamic nature of 
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streaming analysis, synchronization should be handled differently than in batch algorithms. To 

address this issue, we propose sync coordinator initiation as illustrated in Figure 4-7. In this 

method, the sync coordinator counts the total number of PMADD and OUTLIER received, and 

publishes a SYNCINIT message using ActiveMQ if the batch size is reached. Because of the 

pushing-mode of message delivery and the small size of the message, it can be received by the 

cbolts within milliseconds. Therefore the large variance problem is avoided. 

4.4.2 Implementation with Full-Centroids Synchronization Strategy 

To verify the effectiveness of our cluster-delta synchronization strategy, we implement another 

version of the parallel algorithm using the full-centroids strategy for comparison. The 

protomeme generation and processing logics of the full-centroids version are mostly the same as 

the cluster-delta version. There are, however, major differences in the implementation caused by 

the full-centroids strategy: during the processing time of each batch, the sync coordinator will 

maintain a full list of existing clusters, instead of their delta structures. During the 

synchronization time, instead of the CDELTAS message, it will generate a CENTROIDS 

message, which contains the whole centroid vectors of the clusters with the top K latest update 

times. Upon receiving the CENTROIDS message, every cbolt will use the centroid vectors 

contained in the message to replace the centroids of the old clusters. 

Since the cbolt receives the centroid vectors rather than the incremental protomemes of each 

cluster, it can no longer maintain a full record of all the protomemes in the clusters. Therefore, 

the task of new time step detection and old protomeme deletion is moved to the sync coordinator. 

The centroids update time is negligible if compared to the similarity compute time, so this has 

little impact on the overall performance of the algorithm. 
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4.5 Evaluation of the Parallel Algorithm 

We verify the correctness of our parallel algorithm by comparing its results with the sequential 

implementation, and evaluate its efficiency and scalability through comparison with the full-

centroids synchronization strategy. Our evaluation tests are done on the same Madrid cluster as 

described in Section 3.2.5. Each node runs RHEL 6.5, Java 1.7.0_45, and Apache Storm 0.9.2. 

Apache ActiveMQ 5.4.2 is deployed on the same node where the Storm Nimbus runs. Each node 

is configured to run at most four Storm worker processes, and the parallel instances of spouts and 

bolts are launched as threads spawned by these worker processes. The maximum heap size of 

each worker process is set to 11GB. Message compression with zip is enabled for ActiveMQ, 

and only one message broker is used in all tests of the parallel implementations. 

4.5.1 Correctness Verification 

To test the correctness of our algorithm, we use the same ground truth dataset and LFK-NMI 

measurement as [85]. The LFK-NMI value is a number between 0 and 1 that indicates the degree 

of matching between two sets of result clusters. A value of 1 corresponds to a perfect matching, 

while a value of 0 means that the two sets of clusters are completely disjointed. The ground truth 

dataset was collected from the Twitter gardenhose stream [67] within the week of 2013-03-23 to 

2013-03-29. It includes all the tweets containing the Twitter trending hashtags [65][149] 

identified during that time. 

We first define the ground truth clusters as the sets of tweets corresponding to each trending 

hashtag: all tweets sharing a common trending hashtag are grouped into one separate cluster. 

Note that, since a tweet may contain multiple trending hashtags, the ground truth clusters may 

have overlaps. We then remove the trending hashtags from the content of all tweets, and run both 
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the sequential implementation from [85] and our parallel implementation over the remaining 

dataset. As a result, protomemes corresponding to the trending hashtags will not be created and 

used as input data points to the clustering process. This is done to avoid giving an unfair 

advantage to protomeme-based algorithms that use hashtag information. Finally, we compute 

three LFK-NMI values: results of the sequential algorithm versus the ground truth clusters, 

results of the parallel algorithm versus the ground truth clusters, and results of the sequential 

versus the parallel algorithm. We use the same input parameters as the experiments completed in 

[85]: K = 11, t = 60 minutes, l = 6, and n = 2. For the parallel algorithm, we use two parallel 

cbolts and a batch size of 40. 

Table 4-2 presents the LFK-NMI scores using the final clusters generated by the two algorithms. 

The high value of 0.728 in the first column indicates that the clusters generated by our parallel 

implementation match very well with the results of the original sequential implementation in 

[85]. Moreover, values in the second and third column suggest that, when measured against the 

same ground truth clusters, our parallel implementation can achieve a degree of matching 

comparable or better (we observe an improvement of around 10%) than the sequential 

implementation. These scores show that our parallel implementation is correct and can generate 

results that are consistent with the sequential algorithm. The value 0.169 is consistent with the 

original test results in [85]. In addition, the slightly higher value of 0.185 indicates that 

processing the protomemes in small batches may be helpful for improving the quality of the 

clusters. 

Table 4-2. LFK-NMI Values for Correctness Verification 

Parallel vs. Sequential Sequential vs. ground truth Parallel vs. ground truth 

0.728 0.169 0.185 
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4.5.1 Performance Evaluation  

To evaluate the performance and scalability of our parallel algorithm in Cloud DIKW, we use a 

raw dataset collected from the Twitter gardenhose stream without applying any type of filtering. 

It contains a total number of 1,284,935 tweets generated within one hour (from 05:00:00 AM to 

05:59:59 AM) on 2014-08-29. We first run the sequential algorithm over the whole dataset using 

input parameters K = 240, t = 30 seconds, l = 20, and n = 2, and measure the total processing 

time. Note that the time window has a length of 10 minutes and thus may contain a large number 

of protomemes. Then we run the two parallel implementations at different levels of parallelism, 

and measure their processing time, speedup, and other important statistics. We use the clusters 

generated for the first 10 minutes of data as the bootstrap clusters, and process the following 50 

minutes of data using the parallel algorithms. The average number of protomemes generated in 

each time step is 19,908, and the batch size is set to 6,144. 

The total processing time of the sequential algorithm is 156,340 seconds (43.43 hours), and the 

time spent on processing the last 50 minutes of data is 139,950 seconds (38.87 hours). Figure 4-8 

compares the total processing time of the two parallel implementations, and some important 

statistics are given in Table 4-3 and 4-4. Numbers in brackets in the first column tell how many 

Storm worker processes were used for hosting the cbolt threads. These correspond to the total 

numbers of ActiveMQ receivers in each run. Here we list the numbers that delivered the best 

overall performance. The length of the synchronization message in the last column is measured 

before ActiveMQ runs any compression. Figure 4-9 compares the scalability of the two parallel 

implementations (the blue line and the red line). 
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Table 4-3. Statistics for Full-centroids Version Parallel Algorithm 

Number of cbolts 

(worker processes) 

Total processing 

time (sec) 

Compute time 

/ sync time 

Sync time per 

batch (sec) 

Avg. length of 

sync message 

3         (1) 67603 31.56 6.45 22,113,520 

6         (1) 35207 15.53 6.51 21,595,499 

12       (2) 19228 7.79 6.60 22,066,473 

24       (4) 10970 3.95 6.76 22,319,413 

48       (7) 6818 1.92 7.09 21,489,950 

96       (28) 5804 0.97 8.77 21,536,799 

Table 4-4. Statistics for Cluster-delta Version Parallel Algorithm 

Number of cbolts 

(worker processes) 

Total processing 

time (sec) 

Compute time 

/ sync time 

Sync time per 

batch (sec) 

Avg. length of 

sync message 

3         (1) 50377 289.18 0.54 2,525,896 

6         (1) 22888 124.62 0.56 2,529,779 

12       (2) 11474 58.45 0.58 2,532,349 

24       (4) 6140 27.44 0.64 2,544,095 

48       (7) 3333 11.96 0.76 2,559,221 

96       (28) 1999 5.95 0.89 2,590,857 

 

Figure 4-8. Total processing time of Cluster-delta vs. Full-centroids 
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Figure 4-9. Scalability comparison between two versions of parallel implementations 

Table 4-3 demonstrates that due to the large size of the cluster centroids, the full-centroids 

strategy generates a large synchronization message over 20MB, and incurs a long 

synchronization time in every batch. In addition, the synchronization time increases as the 

number of parallel cbolts increases, because the single ActiveMQ broker needs to send a large 

message to more subscribers. The total processing time for the case of 96 parallel cbolts is 

dominated by synchronization. As a result, the full-centroid algorithm demonstrates poor 

scalability, and stops getting faster after 48 parallel cbolts. 

In comparison, the cluster-delta strategy generates a much smaller synchronization message and 

thus keeps the per-batch synchronization time at a low level, as shown in Table 4-4. The zip 

compression of ActiveMQ provides a compression ratio of about 1:6, so the actual message size 

sent over the network is less than 500KB. As the number of parallel cbolts increases, the 

computation time covers the major part of the total processing time for all cases. The parallel 

implementation using the cluster-delta strategy can achieve a near-linear scalability for up to 48 
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parallel cbolts. Overall, it demonstrates sub-linear scalability. Using 96 parallel cbolts, it finishes 

processing the 50 minutes’ worth of data in 1,999 seconds (33.3 minutes), thus keeping up with 

and surpassing the speed of the Twitter gardenhose stream. Note that even for the case of 96 

parallel cbolts, the per-batch synchronization time is still relatively low. A major reason for the 

relatively low speedup of 70.0 is lack of computation, because each cbolt only processes about 

64 protomemes per batch. In case of longer time steps or faster data rate, it is possible to extend 

the near-linear-scalability zone to larger numbers of parallel cbolts by increasing the batch size. 

To verify this, we use a dataset containing 2,258,821 tweets for 1 hour (1:00:00 PM to 2:00:00 

PM) on 2014-08-29, and run the same tests on a different computer cluster called “Moe” with 

better CPU and network configuration (Table 4-5). 1-2pm is the peak hour of day when 

gardenhose generates the most tweets. The average number of protomemes in each time step is 

35,358, and we set the batch size to 12,288. The speed-ups are illustrated by the green line in 

Figure 4-9. Due to larger CDELTAS messages, the sync time per batch for 96 parallel cbolts 

increases to 0.979 seconds, despite the faster network. However, since the batch size is large, we 

are able to retain the near-linear scalability, and finish 50 minutes’ worth of data in 2,345 

seconds (39 minutes). 

Table 4-5. Per-node hardware configuration of Moe 

CPU RAM Hard Disk Network 

5 * Intel 8-core E5-2660v2 2.20GHz 128GB 48TB HDD + 120GB SSD 10Gb Ethernet 

4.6 Conclusions 

This chapter describes our contribution in the streaming analysis module of Cloud DIKW for 

supporting non-trivial parallel stream processing algorithms. Our research leads to some 

important conclusions. 
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Firstly, the distributed stream processing engines provide an easy way to develop and deploy 

large-scale stream processing applications. However, in order to properly coordinate the dynamic 

synchronization between parallel processing workers, their DAG-oriented processing models 

will need to be combined with facilitating tools such as pub-sub messaging systems. Whether 

such synchronization facilitating mechanisms should be directly built into the stream processing 

engines, as well as how this can be done, could become an interesting research issue for the 

distributed systems community. 

Moreover, the parallelization and synchronization strategies may differ depending on the data 

representations and similarity metrics of the application. For example, we observed that the high-

dimensionality and sparsity of the data representation in our application led to nontrivial issues 

for both computation and communication. By replacing the traditional full-centroids 

synchronization strategy with the new cluster-delta strategy, our parallel algorithm achieves good 

scalability, and keeps up with the speed of the real-time Twitter gardenhose stream with less than 

100 parallel workers. 
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Chapter 5  

Conclusions and Future Directions 
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5.1 Conclusions 

As Big Data processing problems evolve, many research scenarios demonstrate special 

characteristics related to their data and analysis process. Social media data analysis is one such 

example. In this area, the data source contains not only a large historical dataset, but also a high-

speed data stream generated by online users all over the world. Despite the large size of the 

whole dataset, most analyses only focus on smaller data subsets related to specific social events 

or special aspects of social activities. These characteristics raise the need for a scalable 

architecture that can support queries, batch analysis, and streaming analysis of social media data 

in an integrated way. In pursuit of that goal, this dissertation proposes Cloud DIKW, an 

integrated architecture that combines and extends multiple state-of-the-art Big Data storage and 

processing tools (Figure 1-8), and attempts to address the related research challenges in each 

module. Important conclusions can be drawn from our research experience in developing this 

architecture. 

At the storage layer, we demonstrate that existing text indexing techniques do not work well for 

the special queries of social media data, which involve constraints on both text content and social 

context such as temporal or network information. To address this challenge, we leverage the 

HBase system as the storage substrate, and extend it with a customizable indexing framework –

IndexedHBase. This framework allows users to define fully customizable text index structures 

that embed the exact necessary social context information for efficient evaluation of the queries. 

Based on this framework, we develop efficient online and batch indexing mechanisms, and a 

parallel query evaluation strategy. Performance evaluation shows that compared with solutions 

based on existing text indexing techniques provided by current NoSQL databases (e.g. Riak), our 
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data loading strategy based on customized index structures is faster by multiple times, and our 

parallel query evaluation strategy is faster by one to two orders of magnitude. 

In the batch analysis module, we extend IndexedHBase to an integrated analysis architecture 

based on YARN [154]. Two important insights were gained from our experience in developing 

analysis algorithms and composing analysis workflows on this architecture. First of all, indices 

are not only useful for query evaluation, but also valuable for analysis and mining algorithms. To 

explore such value, mechanisms for both random access and parallel scans of index entries are 

necessary. Moreover, social media data analysis workflows normally consist of multiple 

algorithms having different computation and communication patterns. As such, dynamically 

adopting diverse processing frameworks to handle different tasks is crucial to achieve efficient 

execution of the whole workflow. 

In the streaming analysis module, we demonstrate that the high-dimensional data representation 

of social media data and the DAG-model organization of parallel workers in stream processing 

engines can pose special challenges to the problem of parallel clustering of social media data 

streams. To address such challenges, it is necessary to extend the stream processing frameworks 

with novel synchronization mechanisms. To this end, we leverage the ActiveMQ pub-sub 

messaging system to create a separate sychronization channel, and design a new synchronization 

strategy that broadcasts the dynamic changes of clusters rather than the whole centroids. 

Performance evaluation shows that our methods lead to much better scalability for the parallel 

stream clustering algorithm, and our algorithm can eventually catch up to the speed of real-world 

data streams with less than 100 parallel workers. By incorporating, including advanced collective 

communication techniques developed in our Harp project, we will be able to process the full 

Twitter data stream in real-time with 1000-way parallelism. 
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5.2 Future Work 

As far as future work is concerned, there are interesting directions to explore in each module of 

our architecture. 

For the storage layer, an important feature of our customizable indexing framework is that it 

could be generally implemented on most NoSQL databases. It will be interesting to extend it to 

other NoSQL databases and compare the performance with IndexedHBase. Inspired by the 

columnar storage used by both Power Drill [75], Dremel [103] and Shark [165], we can consider 

grouping frequently co-accessed columns in the HBase tables into separate column families to 

achieve more efficient queries and analysis algorithms. The query performance may also be 

further improved by taking data locality into consideration when launching the MapReduce jobs. 

For the batch analysis module, it will be valuable to incorporate more parallel processing 

frameworks such as Giraph [17] and Harp [169] into the architecture, and develop more analysis 

algorithms that can be used in various workflows. There is on-going work attempting to extend 

Pig [23] to provide a high-level language for composing analysis workflows and model the 

analysis algorithms as basic operators in the language. But having more underlying analysis 

algorithms as building blocks is a pre-condition for such efforts. Additionally, domain 

researchers have written many legacy sequential analysis algorithms using various languages 

such as Python. A general mechanism that can easily parallelize such legacy codes will be very 

useful. 

For the streaming analysis module, we will integrate advanced collective communication 

techniques as implemented by the Iterative MapReduce Hadoop plugin Harp [169] into Cloud 

DIKW, and use them to improve the synchronization performance of both batch and streaming 
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algorithms. Instead of using a “gather and broadcast” communication model, Harp can organize 

the parallel workers in a communication chain, so that the local updates generated by each 

worker can be transmitted through all the other workers in a pipeline. According to our earlier 

attempts [69] to apply this technique in the Twister iterative MapReduce framework [60], it can 

significantly reduce the synchronization time and ensure that the algorithm achieves near linear 

scalability. With improved synchronization speed, we can process the data at the rate of the 

whole Twitter firehose stream [147], which is about 10 times larger than gardenhose. To support 

higher data speed and larger time window sizes, we may apply the sketch table technique as 

described in [7] in the clustering bolts and evaluate its impact on the accuracy and efficiency of 

the whole parallel program. Variations in arrival rate and jitter in event distribution exist in many 

real-time data streams. Therefore, we will also make the parallel algorithm elastic to 

accommodate this irregularity in event arrival. 
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