

SCALABLE ARCHITECTURE FOR INTEGRATED BATCH AND

STREAMING ANALYSIS OF BIG DATA

Xiaoming Gao

Submitted to the faculty of the University Graduate School

in partial fulfillment of the requirements

for the degree

Doctor of Philosophy

in the School of Informatics and Computing

Indiana University

January 2015

ii

Accepted by the Graduate Faculty, Indiana University, in partial fulfillment of the

requirements for the degree of Doctor of Philosophy.

Doctoral Committee

Judy Qiu, Ph.D.

Geoffrey Charles Fox, Ph.D.

Filippo Menczer, Ph.D.

Dirk Van Gucht, Ph.D.

January 21st, 2015

iii

Copyright © 2015

Xiaoming Gao

iv

Acknowledgements

First, I would like to thank Dr. Judy Qiu for being such a great advisor. She has been not only

insightful and inspiring in guiding me through the research projects, but also supportive and

encouraging when I need help in getting more resources or connecting to the right collaborators.

Let me also thank Dr. Geoffrey C. Fox for being on my research committee and offering

valuable discussions about my research. Every discussion with him is inspiring and pumps the

progress of my projects. Thanks to Dr. Fil Menczer for his tremendous help throughout our

collaboration and during my preparation for the dissertation proposal and defense, and for

putting trust in me to develop the data infrastructure for the Truthy project. Thanks also to Dr.

Dirk Van Gucht for having insightful discussions with me and guiding me through all the related

literature from the database field, which has been extremely valuable for defining the depth and

scope of this dissertation. His classes are the reason I chose database as a minor, which has

proven to be a very wise decision.

Next I would like to express my particular appreciation for the collaboration and help from my

colleagues in the SALSAHPC group: Bingjing Zhang, Stephen Wu, Yang Ruan, Andrew

Younge, Jerome Mitchell, Saliya Ekanayake, Supun Kamburugamuve, Thomas Wiggins,

Zhenghao Gu, Jaliya Ekanayake, Thilina Gunarathne, Yuduo Zhou, Fei Teng, Zhenhua Guo, and

Tao Huang. Thank you for continuously working with me on every concrete problem and giving

me all the great advice on my papers and presentations. Thanks to my early collaborators Marlon

Pierce, Yu Ma, Jun Wang, and Robert Granat for their guidance and help in developing the

QuikeSim project and writing related research papers. Thanks to the collaborators from the

Center for Complex Networks and Systems Research at Indiana University; Emilio Ferrara,

v

Clayton Davis, Mohsen JafariAsbagh, Onur Varol, Karissa McKelvey, Giovanni L. Ciampaglia,

and Alessandro Flammini, for working together on the Truthy project and providing all the help

and information that has been necessary for the progress of my research work.

I would also like to recognize Prof. Yuqing Wu for helping me accelerate my progress towards

graduation. Thanks to Koji Tanaka, Allan Streib, Rob Henderson, and Gary Miksik for their help

in configuring and solving our problems with the computing infrastructures from FutureGrid,

Madrid, and Moe. Thanks to Lynne Mikolon, Patty Reyes-Cooksey, Becky Curtis, and Christi

Pike for their help on administrative issues related to my working contracts and course

registration.

Finally, I am especially grateful to my family and friends who have always supported and

understood me, making this entire process a precious and memorable experience in my life.

vi

Xiaoming Gao

Scalable Architecture for Integrated Batch and Streaming Analysis of Big

Data

Scientific research has entered an era driven by data, and many modern data intensive

applications demonstrate special characteristics. Data exists in the form of both large historical

datasets and high-speed real-time streams, while many analysis pipelines require integrated

parallel batch processing and stream processing. In most cases, despite the large size of the

whole dataset, most analyses tend to focus on specific data subsets according to certain criteria.

Faced with all these situations, scalable solutions are essential to achieve optimal performance.

Correspondingly, integrated support for efficient queries and post- query analysis is required.

To address the system-level requirements brought by such characteristics, this dissertation

proposes a scalable architecture for supporting integrated queries, batch analysis, and streaming

analysis of Big Data in the cloud. We verify its effectiveness and efficiency with real use cases

from a representative application domain – social media data analysis – and tackle related

research challenges emerging from each module of the architecture by integrating and extending

multiple state-of-the-art Big Data storage and processing systems.

In the storage layer, we reveal that existing text indexing techniques do not work well for the

unique queries of social media data, which involve constraints on both textual and social context

such as temporal or network information. To address this issue we leverage the HBase system as

the storage substrate and extend it with a flexible indexing framework – IndexedHBase. This

allows users to define fully customizable text index structures that are not supported by current

vii

state-of-the-art text indexing systems such as distributed Solr. Such index structures can embed

the precise social context information that is necessary for efficient evaluation of the queries.

The batch analysis module demonstrates that social media data analysis workflows usually

consist of multiple algorithms with varying computation and communication patterns which are

suitable for different processing frameworks such as Hadoop, Twister, etc. In order to achieve

efficient execution of the whole workflow, we extend IndexedHBase to an integrated analysis

stack based on YARN, which can dynamically adopt different processing frameworks to

complete analysis tasks. Based on this we develop a set of analysis algorithms that are useful for

many research scenarios, and demonstrate the composition and execution of workflows by

reproducing the end-to-end analysis processes from published research projects.

Finally, in the streaming analysis module, the high-dimensional data representation of social

media streams poses special challenges to sophisticated parallel stream mining problems such as

clustering. Due to the sparsity of the high-dimensional data vectors, traditional synchronization

that directly broadcasts the centroids becomes too expensive and severely impacts the scalability

of the parallel algorithm. Our solution is to extend the Storm stream processing engine by

building a separate synchronization channel using a pub-sub messaging system, and design a

novel synchronization strategy that broadcasts the incremental changes (“deltas”) instead of the

whole centroids of the clusters.

We use real applications from the Truthy social media data observatory to evaluate our

architecture. Preliminary performance tests show that our solutions for parallel data

loading/indexing, query and analysis task execution, and stream clustering all outperform

implementations using current state-of-the-art technologies.

viii

 Judy Qiu, Ph.D.

Geoffrey Charles Fox, Ph.D.

Filippo Menczer, Ph.D.

Dirk Van Gucht, Ph.D.

ix

Table of Contents

Acknowledgements .. iv

Table of Contents ... ix

List of figures and tables ... xii

Chapter 1 ... 1

1.1 Big Data: Emerging Characteristics .. 2

1.2 Social Media Data Analysis .. 3

1.2.1 Truthy Social Media Observatory .. 5

1.2.2 Other Similar Systems .. 10

1.3 Research Challenges ... 12

1.3.1 Requirements for Novel Text Indexing Techniques .. 12

1.3.2 Efficient Execution of Analysis Workflows ... 15

1.3.3 Parallel Processing of High-Speed Stream Data ... 16

1.4 Contributions and Outline ... 17

Chapter 2 ... 21

2.1 Overview ... 22

2.2 Related Work... 26

2.3 Review of NoSQL Databases .. 29

2.3.1 Data Model ... 30

2.3.2 Data Distribution Mechanism .. 34

2.3.3 Data Replication and Consistency Management .. 37

2.3.4 Data Indexing Support.. 40

2.3.5 Distributed Data Processing Support... 45

2.3.6 Summary ... 48

2.4 Customizable Indexing Framework .. 49

2.4.1 Input Data Model.. 49

2.4.2 Abstract Index Structure ... 50

2.4.3 Interface to Client Applications .. 53

2.4.4 Implementation on HBase – IndexedHBase ... 55

2.4.5 Implementation on Other NoSQL Databases ... 58

x

2.5 Performance Evaluation .. 59

2.5.1 Table Schemas on IndexedHBase ... 59

2.5.2 Data Loading Strategies ... 61

2.5.3 Parallel Query Evaluation Strategy ... 62

2.5.4 Testing Environment Configuration ... 63

2.5.5 Configuration and Implementation on Riak ... 64

2.5.6 Data Loading Performance .. 66

2.5.7 Query Evaluation Performance .. 70

2.6 Conclusions ... 76

Chapter 3 ... 78

3.1 Overview ... 79

3.2 Analysis Algorithms .. 82

3.2.1 Related Hashtag Mining ... 82

3.2.2 Meme Daily Frequency Generation ... 84

3.2.3 Domain Name Entropy Computation ... 85

3.2.4 Graph Layout .. 87

3.2.5 Performance Analysis ... 89

3.3 Composition and Execution of Analysis Workflows .. 93

3.3.1 Analysis Workflow for Political Polarization Investigation ... 94

3.3.2 Analysis of Twitter Data from 2010 ... 95

3.3.3 Analysis of Twitter Data from 2012 ... 98

3.4 Related Work... 100

3.5 Conclusions ... 101

Chapter 4 ... 103

4.1 Background ... 104

4.2 Related Work... 109

4.3 Sequential Clustering Algorithm ... 111

4.3.1 Protomemes and Clusters ... 111

4.3.2 Sequential Clustering Algorithm .. 113

4.3.3 Opportunities and Difficulties for Parallelization ... 115

4.4 Parallel Implementation on Storm .. 116

xi

4.4.1 Storm ... 116

4.4.1 Implementation with Cluster-Delta Synchronization Strategy 118

4.4.2 Implementation with Full-Centroids Synchronization Strategy 124

4.5 Evaluation of the Parallel Algorithm .. 125

4.5.1 Correctness Verification ... 125

4.5.1 Performance Evaluation ... 127

4.6 Conclusions ... 130

Chapter 5 ... 132

5.1 Conclusions ... 133

5.2 Future Work .. 135

Bibliography ... 137

xii

List of figures and tables

Figure 1-1. Stages in a social media data analysis workflow ... 4

Figure 1-2. An example tweet in JSON format .. 6

Figure 1-3. Total number of tweets related to Occupy Wall Street between 09/2011 and 09/2012

[41] .. 9

Figure 1-4. Big Data processing tools [169] ... 12

Figure 1-5. A typical query execution plan using separate indices on meme and creation time .. 14

Figure 1-6. A customized meme index structure including time .. 15

Figure 1-7. A customized meme index structure including time and user ID 15

Figure 1-8. Integrated architecture for social media data analysis ... 18

Figure 2-1. Comparison between NoSQL databases and Parallel DBMSs 24

Figure 2-2. Limitations of Generalized Inverted Index in PostgreSQL [28] 28

Figure 2-3. An example of the BigTable data model .. 30

Figure 2-4. An example of the MongoDB document data model [84] ... 33

Figure 2-5. An example of the key/value data model in Riak .. 34

Figure 2-6. HBase architecture ... 35

Figure 2-7. Hash-based data distribution in Riak [124] .. 37

Figure 2-8. Data replication in Riak [124] .. 40

Figure 2-9. Partition by original data .. 41

Figure 2-10. Partition by index key .. 41

Figure 2-11. Varied level of indexing support among existing NoSQL databases 49

Figure 2-12. An example of the input data model to the customizable indexing framework 49

Figure 2-13. Abstract index structure ... 51

Figure 2-14. An example index configuration file .. 52

Figure 2-15. Example index structures that can be created with the customizable indexing

framework ... 54

Figure 2-16. Interface to client applications ... 54

Figure 2-17. Implementation through mapping to the data model of NoSQL databases 56

Figure 2-18. Mapping between an abstract index structure and an HBase table 57

Figure 2-19. Table schemas used in IndexedHBase for data from Truthy 60

Figure 2-20. Streaming data loading strategy ... 62

Figure 2-21. Two-phase parallel evaluation process for an example user-post-count query 63

Figure 2-22. An example of inline field (created_at) in Riak .. 65

Figure 2-23. An example query implementation on Riak ... 66

Figure 2-24. Historical data loading scalability to cluster size ... 68

Figure 2-25. Results for streaming data loading test .. 69

Figure 2-26. Query evaluation time: separate meme and time indices vs. customized index 71

Figure 2-27. Query evaluation time for meme-post-count .. 72

Figure 2-28. Query evaluation time for timestamp-count ... 73

xiii

Figure 2-29. Query evaluation time for queries requiring MapReduce on both platforms 74

Figure 2-30. Result sizes for get-tweets-with-meme and get-mention-edges 74

Figure 2-31. Extended meme index including user ID information ... 76

Figure 2-32. Query evaluation time modified meme index structure ... 76

Figure 3-1. Internal interaction between batch analysis module and storage layer 80

Figure 3-2. MapReduce algorithm for mining related hashtags ... 83

Figure 3-3. An example meme evolution timeline on the Truthy website [145] 85

Figure 3-4. Map-only job for meme daily frequency generation.. 85

Figure 3-5. MapReduce algorithm for domain name entropy generation 87

Figure 3-6. Parallel Fruchterman-Reingold algorithm using iterative MapReduce 89

Figure 3-7. Analysis algorithm performance comparison .. 91

Figure 3-8. Per-iteration execution time and speed-up of MRFR .. 93

Figure 3-9. End-to-end analysis workflow in [44].. 94

Figure 3-10. Per-iteration execution time and speed-up for MRFR for 2010 97

Figure 3-11. Final plot of the retweet network in 2010 .. 98

Figure 3-12. Final plot of the retweet network (2012) .. 100

Figure 4-1. DESPIC architecture for meme clustering and classification [63] 105

Figure 4-2. An example of growing vector size of centroids ... 109

Figure 4-3. The social media stream clustering algorithm from [85] ... 114

Figure 4-4. An example topology in Storm .. 117

Figure 4-5. Storm architecture .. 118

Figure 4-6. Storm topology for the parallel stream clustering algorithm 119

Figure 4-7. Synchronization process of the cluster-delta strategy .. 123

Figure 4-8. Total processing time of Cluster-delta vs. Full-centroids .. 128

Figure 4-9. Scalability comparison between two versions of parallel implementations 129

Table 2-1. Suggested mappings for other NoSQL databases ... 58

Table 2-2. Per-node configuration on Bravo and Alamo Clusters.. 64

Table 2-3. Historical data loading performance comparison .. 67

Table 3-1. Summary of analysis algorithms ... 82

Table 3-2. Hardware configuration of each node of the Madrid cluster 91

Table 3-3. Hardware configuration of each node of the Alamo cluster .. 92

Table 3-4. Sequential execution time (seconds) on R for Step (4) - (6) for 2010 96

Table 3-5. Related hashtags for 2012 ... 99

Table 4-1. Runtime Statistics for the Sequential Algorithm ... 115

Table 4-2. LFK-NMI Values for Correctness Verification .. 126

Table 4-3. Statistics for Full-centroids Version Parallel Algorithm ... 128

Table 4-4. Statistics for Cluster-delta Version Parallel Algorithm ... 128

Table 4-5. Per-node hardware configuration of Moe .. 130

1

Chapter 1

Introduction

2

1.1 Big Data: Emerging Characteristics

Scientific research has entered a “Big Data” era [79]. As data is growing exponentially in every

area of science, more and more discoveries are driven by the capability of collecting and

processing vast amounts of data. Therefore, in order to boost the progress of scientific research,

scalable IT infrastructures are needed to deal with the high volume, high velocity, and high

variety of Big Data. This in turn brings up research challenges and opportunities for the

distributed data processing architecture running at the backend of IT infrastructures.

As Big Data processing problems evolve, many applications demonstrate special characteristics

with regards to their data and analysis process. First of all, besides a large amount of historical

data, streaming data plays a more and more important role. For instance, earthquake monitoring

and prediction systems detect geological events based on real-time analysis of data streams

generated by GPS ground stations [117]; automated trading systems rely on the dynamic stream

of stock price values to make smart trading decisions [101], etc. Correspondingly, the data

processing architecture needs to provide scalable solutions not only for storing, querying, and

analyzing the static historical data, but also for loading and processing the streaming data in a

parallel fashion. The loading and analysis of static data and streaming data need to be handled in

an integrated way. For example, an integrated general storage substrate should be provided to

host both historical data and incremental changes coming from the streams. At the same time,

online stream analysis should be able to use the results of batch analysis over static data for

bootstrapping or checkpointing purposes.

On the other hand, despite the large size of the whole dataset, most analyses tend to focus on

specific data subsets. For example, gene sequence analysis may focus on a certain family of

3

sequences [140], and social data analysis may concentrate on data related to certain global or

local events [131]. For such research scenarios, limiting analysis computation to the exact scope

of the target subsets is important in terms of both efficiency and better resource utilization.

Therefore efficient query mechanisms for quickly locating the relevant data subsets are needed

on the data storage and analysis architecture. Furthermore, queries need to be closely integrated

with post-query analysis tasks to support efficient end-to-end analysis workflows.

1.2 Social Media Data Analysis

Social media data analysis is one specific application domain that follows the Big Data trend.

Motivated by the widespread adoption of social media platforms such as Twitter and Facebook,

investigating social activities through analysis of large scale social media datasets has been a

popular research topic in recent years. For example, many studies investigate the patterns of

information diffusion on social networks by processing historical datasets generated during real-

world social events [119][130][162]. By analyzing real-time social media data streams, more

sophisticated applications such as online event detection [10][120] and social-bots detection

[63][64] can be supported.

Social media data analysis problems also reflect the emerging characteristics of Big Data, which

bring special research challenges for developing a scalable architecture. On the one hand, the

data source contains not only a large historical dataset at TB or even PB level, but also a high-

speed stream at the rate of tens to hundreds of millions of social updates per day generated by

people all over the world. On the other hand, most analyses focus on data subsets related to

specific social events or special aspects of social activities: congressional elections [42][44],

protest events [40][41], social link creation [160], etc. With regards to query patterns, social

4

media data is unique in that it contains not only textual content, but also rich information about

the social context including time, geolocation, relationship among users on the social network,

etc. Most queries involve selection of data records following constraints over both text elements

and the social context such as temporal or geospacial information. The purpose of the queries is

to extract social information such as network connections from all the selected data records

rather than finding the top-K most relevant data records according to a set of text keywords. As a

result, traditional static text indexing techniques [170] designed for information retrieval

applications do not work well for queries over social media data. Therefore, a novel indexing

component that can help deliver the most efficient queries over social media data is a necessary

aspect of a scalable data analysis architecture.

Figure 1-1. Stages in a social media data analysis workflow

Another important feature of social data analysis is that the analysis workflow normally consists

of multiple stages, as illustrated in Figure 1-1. The query stage is normally followed by a series

of analysis tasks for processing or visualizing the query results. Therefore, integrated support for

queries and post-query analysis tasks is required on the analysis architecture.

Due to the representativeness of social media data analysis, it provides a good starting point for

investigating the general research challenges associated with the emerging characteristics of Big

Data problems. The target of this dissertation is to analyze such challenges and address them by

proposing a scalable and integrated architecture that is generally applicable to a broad scope of

5

application domains. Specifically, we study the challenges related to the queries, batch analysis,

and streaming analysis through representative and published use cases from existing social media

data analysis systems. We propose corresponding solutions in different modules of the

architecture, and use real analysis workflows and applications from these systems to evaluate the

effectiveness and efficiency of our methods. To uncover the underlined research problems, we

start from reviewing the characteristics of existing social media data analysis platforms.

1.2.1 Truthy Social Media Observatory

Truthy [102] is a public social media observatory developed by the Center for Complex

Networks and Systems Research at Indiana University. It is designed for analysis and

visualization of information diffusion on Twitter. Research performed on the data collected by

this system covers a broad spectrum of social activities, including political polarization [43][44],

congressional elections [42], protest events [40][41], and the spread of misinformation [120].

Truthy has also been instrumental in shedding light on communication dynamics such as user

attention allocation [159] and social link creation [160].

Data Characteristics

Truthy has been collecting social media data through the Twitter gardenhose stream [67] since

May of 2010, which provides a sample of approximately 10% of their public tweets. The entire

dataset consists of two parts: historical data in .json.gz files, and real-time data coming from the

Twitter streaming API [148]. Currently, the total size of historical data collected continuously by

the system since August 2010 is approximately 20 Terabytes. At the time of this writing, the data

rate of the Twitter streaming API is in the range of 45-50 million tweets per day, leading to a

growth of approximately 20GB per day in the total data size. Figure 1-2 illustrates a sample data

6

item, which is a structured JSON string containing information about a tweet and the user who

posted it. Furthermore, if the tweet is a retweet, the original tweet content is also included in a

“retweeted_status” field. For hashtags, user-mentions, and URLs contained in the text of the

tweet, an “entities” field is included to give detailed information, such as the ID of the mentioned

user and the expanded URLs.

Figure 1-2. An example tweet in JSON format

Queries

In social network analysis, the concept of “meme” is often used to represent a set of related posts

corresponding to a specific discussion topic, communication channel, or information source

shared by users on platforms such as Twitter. Memes can be identified through elements

contained in the text of tweets, like keywords, hashtags (e.g., #euro2012), user-mentions (e.g.,

@youtube), and URLs. Based on rich experience from previous research projects, Truthy

identifies a set of temporal queries that are generally applicable in many research scenarios for

extracting and generating various information about tweets, users, and memes. These queries can

7

be categorized into two subsets. The first contains basic queries for getting the ID or content of

tweets created during a given time window from their text or user information, including:

get-tweets-with-meme (memes, time_window)

get-tweets-with-text (keywords, time_window)

get-tweets-with-user (user_id, time_window)

get-retweets (tweet_id, time_window)

For the parameters, time_window is given in the form of a pair of strings marking the start and

end points of a time window, e.g., [2012-06-08T00:00:00, 2012-06-23T23:59:59]. The memes

parameter is given as a list of hashtags, user-mentions, or URLs; memes and keywords may

contain wildcards, e.g., “#occupy*” will match all tweets containing hashtags starting with

“#occupy.”

The second subset of queries need information extracted from the tweets returned by queries in

the first subset. These include:

timestamp-count (memes, time_window)

user-post-count (memes, time_window)

meme-post-count (memes, time_window)

meme-cooccurrence-count (memes, time_window)

get-retweet-edges (memes, time_window)

get-mention-edges (memes, time_window)

Here for example, user-post-count returns the number of posts about a given meme by each user.

Each “edge” has three components: a “from” user ID, a “to” user ID, and a “weight” indicating

how many times the “from” user has retweeted the tweets from the “to” user or mentioned the

“to” user in his/her tweets.

8

The most significant characteristic of these queries is that they all take a time window as a

parameter. This originates from the temporal nature of social activities. An obvious brute-force

solution is to scan the whole dataset, try to match the content and creation time of each tweet

with the query parameters, and generate the results using information contained in the matched

tweets. However, due to the drastic difference between the size of the entire dataset and the size

of the query result, this strategy is prohibitively expensive. For example, in the time window

[2012-06-01, 2012-06-20] there are over 600 million tweets, while the number of tweets

containing the most popular meme “@youtube” is less than two million, which is smaller by

more than two orders of magnitude. As will be discussed in Section 1.3, proper indexing

techniques are needed for efficient evaluation of such queries.

Analysis Workflows and Streaming Applications

Most analysis workflows completed on Truthy follow the multi-stage pattern as illustrated in

Figure 1-1. For example, in the workflow for analyzing political polarization [44], the first stage

applies the get-retweet-edges and get-mention-edges queries to retrieve the retweet network and

mention network from the tweets selected by a set of hashtags related to politics; the second

stage completes community detection analysis over the networks; finally, the third stage uses a

graph layout algorithm to visualize the polarization of communities on the social network. In

another project that investigates the digital evolution of the “Occupy Wall Street” event, the first

stage queries for tweets related to both general politics and the specific “Occupy” event based on

a manually selected set of hashtags (e.g. #p2, #tcot, and #occupy*), using a 15-month time

window that covers most of the event’s development; the second stage processes the tweets and

measures the evolution of the amount of social network traffic, the degree of user engagement,

and the intensity of information diffusion along the time dimension; the final stage visualizes

9

these patterns of evolution as time series plots. Figure 1-3 [41] shows an example plot that

illustrates the total number of tweets related to the “Occupy Wall Street” event during a one-year

time period.

Besides batch analysis over historical data, applications that complete online analysis of real-

time streams are also being developed. In particular, Bot or Not [64] is an online service that can

dynamically classify a given user ID as a human user or social bot with a certain confidence

level by analyzing a small number of sample tweets retrieved from the Twitter Streaming API

[148]. To support more sophisticated application scenarios, the problem of social media stream

clustering [85] has also been investigated. The major discovery is that by using a combination of

proper data representations and similarity metrics, it is possible to generate high-quality clusters

that can effectively group messages with similar social meaning together.

Figure 1-3. Total number of tweets related to Occupy Wall Street between 09/2011 and 09/2012 [41]

Based on the tools and algorithms used in the analysis workflows, Truthy provides a nice web

interface [145] for users to retrieve derived data such as social network information and statistics

about certain users and memes, as well as visualization generated by some previous research

projects.

10

Despite the richness and scope of research that has been covered by Truthy, most projects

complete data processing in a sequential way or only with a limited level of parallelism (e.g.

using multi-thread solutions) over the raw data. As a result, the processing speed is

unsatisfactory when measured against the volume of the whole dataset. For example, it takes as

many as 43 hours for a sequential implementation of the stream clustering algorithm in [85] to

process one hour’s worth of data collected through the Twitter gardenhose stream [67]. Most

data is stored as raw .json.gz files, which are not suitable for random access to individual social

messages. A MySQL database is used to maintain important sumarries about certain users and

memes, but is obviously not scalable enough to support fine-grained access and efficient queries

over the whole dataset. This situation forms a strong and practical motivation for the research

work of this dissertation.

1.2.2 Other Similar Systems

To the best of our knowledge, Truthy is the first complete social media observatory in terms of

functionality and interface. VisPolitics [155], TwitInfo [146], and Ripples [126] are similar

analysis systems that generate visualizations about different aspects of social media network, but

do not provide a rich set of statistics and derived data as Truthy does. Meanwhile, many query

patterns and analysis components defined by Truthy are generally useful for constructing the

functionality of these systems. For example, similar queries can be used to generate the ‘repost

network’ in Ripples, or support searching of topic keywords and URL counting in TwitInfo.

Commercial entities such as PeopleBrowsr [116], Datasift [50], and SocialFlow [133] provide

consulting services to their customers through analytics over social media data, but they don’t

expose their raw data or results to the public for research purposes. Padmanabhan et al. presented

FluMapper [112], an interactive map-based interface for flu-risk analysis using near real-time

11

processing of social updates collected from the Twitter streaming API. FluMapper applies a set

of advanced technologies, including NoSQL database (MongoDB [105]), GPU processing, and

flow mapping, to support its data collection, processing, and visualization modules.

Although these systems demonstrate a broad scope of applications involving social media data,

none of them has done an in-depth investigation about the fundamental research challenges from

the perspective of distributed systems. On the other hand, many Big Data tools have been

developed in the past, including storage systems such as Hadoop Distributed File System (HDFS)

[132] and HBase [19], and various processing tools as illustrated in Figure 1-4. Specifically,

Hadoop [19] provides an easy to use MapReduce [53] programming interface to support single-

pass parallel processing of Big Data, and automatically handles issues such as locality-aware task

scheduling, failure recovery, and intermediate data transmission at the platform level. Beyond

this, frameworks such as Twister [60] and Spark [166] are specially optimized for iterative

computation that can be described with a MapReduce model. For iterative algorithms over graph

data, frameworks such as Giraph [17] and Harp [169] can directly support data abstraction in the

form of nodes and edges in graphs. To enable efficient queries over large-scale datasets, systems

such as Power Drill [75], Pig [23], and Hive [20] were developed with original support for high-

level query languages. Finally, to support distributed parallel processing of streaming data,

stream processing engines such as S4 [108] and Storm [25] have been proposed. Despite the

richness and variaty of all these existing systems, it is still unclear what kind of extensions and

combinations of them are necessary for handling the new characteristics of Big Data problems,

as represented by social media data analysis. This dissertation tries to bridge the gap between

these two sides, and we start by studying the specific research challenges.

12

Figure 1-4. Big Data processing tools [169]

1.3 Research Challenges

Due to the special characteristics of social media data, we are facing research challenges related

to three major aspects at the distributed system level: indexing, dynamic runtime processing

frameworks, and parallel stream processing.

1.3.1 Requirements for Novel Text Indexing Techniques

First of all, as demonstrated in Section 1.2.1, most queries over social media data can be

categorized as text queries with constraints about social context. However, traditional text

indexing techniques (i.e. inverted indices [170]) supported by many existing distributed storage

systems such as distributed Solr [57], DataStax [52], and Riak [125] do not provide the most

efficient solution to such queries. One reason is that traditional inverted indices are mainly

designed for text retrieval applications where the main goal is to efficiently find the top K (with a

13

typical value of 20 or 50 for K) most relevant text documents regarding a query comprising a set

of keywords. To achieve this goal, information about the frequency and position of keywords in

the documents is stored and used for computing relevance scores between documents and

keywords during query evaluation. In contrast, social media data queries are designed for

analysis purposes, meaning that they have to process all the related tweets, instead of the top K

most relevant ones, to generate the results. This means data regarding frequency and position are

extra overhead for the storage of the index structures, and relevance scoring is unnecessary in the

query evaluation process. The query evaluation performance can be further improved by

removing these items from traditional inverted indices.

Another issue with traditional text indexing techniques is that one separate inverted index

structure is maintained for every indexed field. However, social media queries do not favor query

execution plans using such separate one-dimensional indices. For example, Figure 1-5 illustrates

a typical query execution plan for get-tweets-with-meme, using two separate indices on memes

and tweet creation time. This plan uses the meme index to locate the IDs of all tweets containing

the given memes and utilizes the time index to find the set of tweet IDs within the given time

window, finally computing the intersection of these two sets to get the results. Assuming the size

of the posting lists for the given memes to be m, and the number of tweet IDs coming from the

time index to be n, the complexity of the whole query evaluation process will be O(m + n) =

O(max(m, n)), using a merge-based or hashing-based algorithm for the intersection operation.

However, due to the characteristics of large social media and microblogging datasets, there is

normally an orders-of-magnitude difference between m and n, as discussed in Section 1.2.1. As a

result, although the size of the query result is bounded by min(m, n), a major part of query

evaluation time is actually spent on scanning and checking irrelevant entries of the time index. In

14

classic text search engines, techniques such as skipping or frequency-ordered inverted lists [170]

may be utilized to quickly return the top K most relevant results without evaluating all the related

documents. Such optimizations are not applicable to the analysis-oriented social media data

queries. Furthermore, in case of a high cost estimation for accessing the time index, the search

engine may choose to only use the meme index and generate the results by checking the content

of relevant tweets. But valuable time is still wasted in checking irrelevant tweets falling out of

the given time window. The query evaluation performance can be further improved if the

unnecessary scanning cost can be avoided.

Figure 1-5. A typical query execution plan using separate indices on meme and creation time

To avoid the above-mentioned problems, a more suitable index structure would be the one given

in Figure 1-6. It merges the meme index and time index, and replaces the frequency and position

information in the posting lists of the meme index with creation time of corresponding tweets.

Facilitated by this customized index structure, the query evaluation process for get-tweets-with-

meme can be easily implemented by going through the index entries related to the given memes

and selecting the tweet IDs associated with a creation time within the given time window. The

complexity of the new query evaluation process is O(m), which is significantly lower than

O(max(m, n)). Moreover, if we can further extend this index structure to also include the user ID

15

of each tweet, as shown in Figure 1-7, it will be possible to evaluate the advanced query user-

post-count by only accessing the index, without touching the original data at all.

Figure 1-6. A customized meme index structure including time

Figure 1-7. A customized meme index structure including time and user ID

The ideas behind these index structures are similar to the features of multi-dimensional indices

and included columns that have been supported by relational databases for non-text data.

However, they are not supported by current state-of-the-art text indexing systems, such as

Lucene [22] and distributed Solr [57]. To enable them, a fully customizable text indexing

framework is needed. Considering the special characteristics of social media data, this

framework must provide both a scalable batch indexing mechanism for the static historical data

and an efficient online indexing mechanism for the high-speed streaming data. So building such

a framework in a scalable way is a major research challenge, as is knowing how to make use of

the various customized index structures to support efficient queries and analysis tasks.

1.3.2 Efficient Execution of Analysis Workflows

As demonstrated in Figure 1-1, social media data analysis workflows normally consist of

multiple stages, and each stage may apply a diversity of algorithms to process the target data

subsets. These algorithms demonstrate a high level of complexity in their computation and

16

communication patterns, including sequential, MapReduce, iterative MapReduce, and graph

style. Different patterns are suitable for different processing frameworks such as Hadoop [18],

Twister [60], Spark [166], and Giraph [17]. Moreover, to support online stream analysis

applications, distributed stream processing engines like Storm [25] may also be used. To achieve

efficient overall execution of the workflow, the analysis architecture must be able to dynamically

adopt suitable processing frameworks to complete different steps from these stages. Achieving

this in a distributed and shared environment is another major challenge. In case of integrated

workflows involving both queries and analysis tasks, how to explore the value of indices in

supporting sophisticated analysis algorithms (beyond the scope of queries) is also an interesting

research question.

1.3.3 Parallel Processing of High-Speed Stream Data

Due to the high speed of social media data streams, parallel processing is necessary for many

stream analysis applications such as clustering and classification. To support efficient parallel

processing of streaming data, many distributed frameworks have been proposed including

Apache Storm [25] and S4 [108]. Most of these frameworks organize the parallel stream

processing workers in the form of a direct acyclic graph (DAG), which makes it difficult to

complete dynamic status synchronization among the parallel workers, a crucial step for ensuring

the correctness of the parallel analysis algorithms. This is because the synchronization step

requires the parallel workers to send their local status updates either to each other or to a global

updates collector, which will then broadcast the updated global state back to the parallel workers.

Both ways will inevitably create cycles in the communication channel, which conflicts with the

DAG model. Meanwhile, to achieve high-quality analysis results, many stream analysis

applications represent the the social messages in the stream as multiple high-dimensional vectors

17

that reflect both the textual content and the social context of the data. The high-dimensionality

and sparsity of such vectors may bring extra complexity and cost to the synchronization

mechanism, and designing proper synchronization strategies to enable efficient parallel stream

analysis algorithms is an important research issue.

1.4 Contributions and Outline

To address the research challenges discussed in Section 1.3, this dissertation proposes a scalable

and integrated analysis architecture as illustrated in Figure 1-8 to support modern scientific data

analysis pipelines in the cloud. The three stages in the pipeline demonstrate how Information,

Knowledge, and Wisdom [143] are eventually generated from Data. Correspondingly, we name

our architecture Cloud DIKW. The whole architecture comprises three modules; each module

extends and combines a set of big data storage and processing tools to tackle the corresponding

challenges.

At the bottom layer, we use NoSQL databases as the storage substrate, which can provide

scalable storage of large social media datasets and efficient random access to fine-grained social

messages. To address the requirements for novel indexing techniques, we propose a fully

customizable indexing framework that can be generally integrated with most NoSQL databases.

With this framework, users can define customized index structures that contain the exact

necessary information about the original social media data, so as to achieve efficient evaluation

of queries about interesting social events and activities. By choosing proper mappings between

the abstract index structures and the storage units provided by the underlying NoSQL database,

efficient indexing of historical and streaming data can be achieved. We realize and verify our

framework with IndexedHBase [83], a specific implementation on HBase [19].

18

Figure 1-8. Integrated architecture for social media data analysis

To achieve efficient execution of the whole analysis workflow, we extend IndexedHBase to

build an analysis architecture based on YARN (Yet Another Resource Negotiator) [154], which

is specially designed for dynamic scheduling of analysis tasks using different parallel processing

frameworks. In the batch analysis module, we develop a parallel query evaluation strategy and a

set of analysis algorithms using various parallel processing frameworks, including Hadoop

MapReduce [99], Twister [60], etc. These can be used as basic building blocks for composing

different workflows. In addition, parallel batch indexing and data loading mechanisms for

handling historical data are developed based on the functionality of the customizable indexing

framework. Moreover, we extend the usage of customized indices beyond basic queries to

sophisticated mining and analysis algorithms, and demonstrate the significant performance

improvement that can be achieved by exploring the value of indexing. We use real data, queries,

and previously published analysis workflows from Truthy to evaluate the performance of these

19

modules. Our results demonstrate that compared with implementations based on existing text

indexing techniques on a widely adopted NoSQL database (Riak [125]), our data loading

mechanism is faster by multiple times, and our query evaluation strategy can be faster by up to

two orders of magnitude. Finally, parallel analysis algorithms are tens to hundreds of times faster

than the old sequential implementation on Truthy, thus leading to much more efficient analysis

workflows.

To achieve efficient parallel processing of stream data, we use the Storm stream processing

engine as the basis of the stream analysis module, and develop a parallel stream data loading

mechanism based on the online indexing functionality of the customizable indexing framework.

Preliminary performance tests show that we are able to process a stream whose speed is five

times faster than the current Twitter gardenhose stream [67] with only 8 parallel stream loaders.

To support more sophisticated stream clustering algorithms, we create a separate synchronization

channel by using the pub-sub messaging system ActiveMQ [16], and combine its functionality

together with Storm to coordinate the synchronization process. Furthermore, to deal with the

problem caused by the high-dimensionality of the data, we propose a novel synchronization

strategy that broadcasts the dynamic changes (“deltas”) of the clusters rather than the whole

centroid vectors. Performance evaluation shows that this synchronization mechanism can help

the parallel algorithm achieve nice sub-linear scalability, and the algorithm can process the

Twitter 10% data stream (“gardenhose”) in real-time with 96-way parallelism.

The rest of this dissertation is structured as follows. Chaper 2 describes the customizable

indexing framework, the parallel data loading mechanism, and the parallel query evaluation

strategy, and compares them to solutions based on existing distributed text indexing techniques.

Chapter 3 explains the internal mechanism of the batch analysis module, and presents the

20

implementation of multiple parallel analysis algorithms based on different processing

frameworks. In addition we repeat a previously published analysis workflow [44] based on our

parallel queries and analysis algorithms, and demonstrate the significant speedup that can be

achieved for the overall execution of the whole workflow. Chapter 4 elaborates on the stream

analysis module, analyzes the research challenges related to parallel clustering of social media

data streams, and discusses our novel synchronization strategy for supporting the parallel

algorithm on Storm. We demonstrate the scalability of our algorithm by comparing it against an

implementation using the traditional synchronization strategy that directly broadcasts the whole

centroids of the clusters. Chapter 5 concludes and proposes interesting future work for every

module of the integrated architecture.

21

Chapter 2

Storage Layer - Customizable and Scalable Indexing Framework

over NoSQL Databases

22

2.1 Overview

As discussed in Section 1.3, the major research challenge to the storage layer of Cloud DIKW

roots in the scalability of the storage substrate and the efficiency of the query mechanisms for

finding interesting data subsets. This chapter makes the following contributions to resolve this

challenge:

 We compare the features of two options for constructing a scalable storage solution – parallel

relational databases and NoSQL databases, and choose the latter as the the basis of our

storage layer based on analysis of the characteristics of social media data.

 We provide a detailed review of multiple representative NoSQL database systems, and reveal

that compared with the query patterns against social media data, the level of indexing support

on current NoSQL databases is uneven and inadequate.

 To enhance the indexing support of NoSQL databases, we propose a general customizable

indexing framework that can be implemented on most NoSQL databases. This framework

allows users to define customizable text index structures that are not supported by current

distributed text indexing systems, so as to achieve the best query performance for social

media data.

 We provide one implementation of this framework, IndexedHBase, over HBase and develop

parallel data loading and query evaluation strategies on top. Performance evaluation with real

data and queries from Truthy shows that compared with solutions based on existing text

indexing techniques provided by current NoSQL databases, our data loading strategy based

on customized index structures is faster by multiple times, and our parallel query evaluation

strategy is faster by one to two orders of magnitude.

The first step towards Cloud DIKW is to provide a scalable storage substrate. Specifically, it has

to properly handle the following characteristics of social media data:

First of all, since the whole dataset is composed of both a large scale historical dataset and a

high-speed stream, the storage substrate must support both scalable batch loading for static data

23

and real-time online insertion of streaming data. Data access pattern is mostly write-once-read-

many, because historical data is rarely updated. Therefore, in cases where data is replicated,

consistency among dynamically changed replicas is not a strong requirement. And since data

processing is mostly analysis-oriented, sophisticated data manipulation through online

transcations with ACID (Atomicity, Consistency, Isolation, Durability) properties is not required

either.

Next, since data comes in the form of separate social messages, the storage substrate has to

support efficient random access to fine-grained data records. As illustrated in Figure 1-2, a social

message may be structured as a hierarchy of multiple levels that may evolve over time i.e. fields

could be dynamically deleted or added based on requirements of the application. For instance,

for tweets coming from the Twitter Streaming API [148], fields like “id_str”, “entities.symbols”,

“entities.media” are all added as the application evolves. The storage substrate should ideally be

able to handle such dynamic data schema changes in a seamless way.

Since analysis workflows normally start with queries, the storage substrate must be equipped

with necessary indexing techniques to enable the most suitable index structures for efficient

evaluation of the queries.

Finally, due to the requirement for integrated queries and analysis tasks, the storage substrate

should have a natural integration with parallel processing frameworks such as Hadoop

MapReduce to support various analysis algorithms.

Due to the strong requirements for scalability and random data access, we mainly consider two

types of systems: parallel relational databases and NoSQL databases. The advantages and

disadvantages of both sides were compared by Kyu-Young Whang in 2011 [161], as illustrated

24

in Figure 2-1 where we extend the advantages of NoSQL databases with two more features:

flexible schema and inherent integration with parallel processing frameworks.

Figure 2-1. Comparison between NoSQL databases and Parallel DBMSs

Parallel databases support the relational data model, and provide SQL for schema definition and

data manipulation. Most systems use a “shared nothing” architecture [97], where each computer

node in the system maintains a partition of the data. Sophisticated indexing and query

optimization techniques are supported, and indices built for each data partition are maintained by

the same node hosting the data partition. A query execution plan is first decomposed into a

number of “sub-plans”, which are sent to every relevant node for local execution. Then the local

results from each node are combined to generate the global final result. Since supporting

efficient online transactions is a major goal of parallel database systems, most of them do not

scale to a large number of nodes because concurrency control grows more and more complicated

as further nodes are involved. To achieve low execution latencies for transactions, they are

usually deployed on a small number of powerful machines, which are likely to be expensive.

25

Another disadvantage of parallel relational databases is they are hard to configure and maintain

[58][161].

Many new systems have been proposed since 2011 with the goal of supporting ACID

transactions at a much larger scale, represented by VoltDB [137][156] and Spanner [45].

Specifically, VoltDB relies on a new in-memory architecture, a single-threaded execution model,

and heavy use of stored procedures to eliminate the necessity of a big portion of locking.

Spanner builds a globally distributed architecture that may span across thousands of nodes, and

leverages a global time API backed by GPS and atomic clocks to achieve external consistency of

general transactions. Nonetheless, as discussed above, support for transactions is not a strong

requirement for our case of social media data analysis.

NoSQL databases, on the other hand, mainly sacrifice the ability to handle ACID transactions to

achieve high scalability over a large number (hundreds to thousands) of computer nodes. Data is

replicated across different nodes for fault tolerance, and many systems allow eventual

consistency among replicas of the same piece of data. Many NoSQL database systems are open-

source or free to download, and can be easily set up across a variety of heterogeneous

commodity machines. Flexible data schemas are usually allowed, meaning that every data record

can have a different set of fields and values. This provides a perfect fit for the evolving data

schemas of social media applications. Moreover, most NoSQL databases are inherently

integrated with parallel processing frameworks such as Hadoop MapReduce [99], which makes it

easier to support integrated queries and post-query analysis tasks.

Features required for handling the unique characteristics of social media data are marked with

blue squares in Figure 2-1. Basically we need all the advantages from the NoSQL database side,

26

plus a proper indexing mechanism for dealing with the special queries of social media data.

Since the access pattern for social media data is mostly write-once-read-many, eventual

consistency on NoSQL databases does not cause a big issue. As analyzed in Section 1.3.1, the

most suitable index structures required for handling the text queries with social context

contraints are not currently supported by the text indexing techniques from either side. Therefore,

we choose to use NoSQL databases as the storage substrate, and enhance them with a

customizable indexing framework to enable novel index structures for efficient query evaluation.

2.2 Related Work

The customized index structures we propose in this chapter aim to address the temporal

challenge in social media analytics scenarios. Derczynski et al. [54] provide a more complete list

of related work about temporal and spatial queries involving social data. In particular, Alonso et

al. [14] give a detailed discussion about the challenges in extracting temporal information from

online data and applying such information in text queries. Weikum et al. [158] further elaborate

on the open research problems in the context of longitudinal analytics on web archive data.

These papers focus on information retrieval applications, where ranking is still important. In

addition, they mainly deal with versioned documents in datasets like web archives, so similarities

and inter-connections among documents need to be considered in index structure designs. In our

case, social updates with different timestamps are independent, and the number of tweets within

a given time window is much larger than the number of versions per document. Information

retrieval queries need not analyze contents of the documents. In contrast, our queries need to

process the content of the related social updates to extract necessary information such as retweet

network, so parallel processing of data records is needed after accessing the index. Our

experience in this chapter may shed light on possible solutions for the problems discussed in

27

these papers in multiple aspects, including customizable index structures, scalable storage

platforms, and efficient index building strategies.

The customizable index structures we use share similar inspiration to composite indices used in

relational databases, but index a combination of full-text and primitive-type fields. Compared

with traditional inverted indices [170], our framework provides more flexibility about what fields

to use as keys and entries to achieve more efficient query evaluation with less storage and

computation overhead. Lin et al. [96] proposes text cubes to support multidimensional text

database analysis. Due to the requirement for efficient online indexing of high-speed stream data,

text cube is not suitable for our case.

Our online indexing mechanism for handling streaming data is comparable to early research on

online indexing and incremental index maintenance [32][33][93][94][100][130][144], but is

different in that we leverage the functionality of the underlying NoSQL databases to support

these features. By using a write ahead log (WAL), HBase helps our framework achieve

persistency of even unflushed index data in the memory, which is a missing feature in most

existing online indexing systems.

The problem of supporting extendable input data models has been a well researched topic in the

communities of object-oriented databases, nested relational databases, and object-relational

databases, represented by O2 [27], ANDA (A Nested Database Architecture) [47], and

PostgreSQL [127][135][136]. Based on a complete and clearly defined theoretical object-

oriented data model, O2 achieves many nice features. It provides well-defined semantics of

object identity, inheritance, and methods in a database context. The physical data storage and

index organization mechanisms take object sharing, class inheritance, and composition graphs

28

into consideration, and the seamless integration of programming languages and query languages

are inspiring for our case of integrated queries and analysis tasks. Similarly, the VALTREE and

RECLIST structures in ANDA are optimized to support efficient nesting and unnesting

operations. Compared with these systems, our requirements for an extendable input data model

are simpler. We don’t need to handle the complexity of class hierarchies, composition graphs, or

associated methods. Nor do we require nesting operations among subtuples. On the other hand,

we need to tackle more complicated issues in other respects, including customizable text index

structures, distributed index storage, scalable indexing performance, and dynamic load balancing.

The data model of PostgreSQL aims at supporting new abstract data types using general storage

management and index maintenance mechanisms. For example, the Generalized Search Tree

(GiST) [78] is designed to cover a wide range of tree-structured indices for data with

dynamically defined abstract data types. In comparison, our work emphasizes customizability of

the elements of index structure itself – namely what to use as index key, entry, and entry fields

(for included or computed columns). PostgreSQL extends GiST to build Generalized Inverted

Index (GIN) [28] for text data. However, as illustrated in Figure 2-2, it lacks several important

features that are needed in our queries for social media data, including multicolumn indices,

range queries, and full scans of indices.

Figure 2-2. Limitations of Generalized Inverted Index in PostgreSQL [28]

29

Hadoop++ [58], HAIL [59], and Eagle-Eyed Elephant [61] are recent systems that try to extend

Hadoop with various indexing mechanisms to facilitate MapReduce queries. Since data is

directly stored as files in HDFS [132], these systems do not support efficient random access to

fine-grained data records, and thus do not address the requirements of social media data access.

Additionally, these systems all schedule MapReduce tasks based on data blocks or splits stored

on HDFS (or at least ‘relevant’ splits), and tasks may have to scan irrelevant data records during

query evaluation. In contrast, by using NoSQL databases as the storage substrate, we aim to

support record-level indexing in our customizable indexing framework, and limit the post-query

analysis computation to only relevant data records.

Google’s Dremel [103] achieves efficient evaluation of aggregation queries on large-scale nested

datasets by using distributed columnar storage and multi-level serving trees. Power Drill [75]

explores special caching and data skipping mechanisms to provide even faster interactive query

performance for certain selected datasets. Percolator [115] replaces batch indexing system with

incremental processing for Google search. The columnar storage of table data used by both

Power Drill and Dremel are inspiring to IndexedHBase in terms of more efficient query

evaluation. Conversely, our customizable indexing strategy could also potentially help Dremel

for handling aggregation queries with highly selective operations.

2.3 Review of NoSQL Databases

This section investigates and compares four representative distributed NoSQL database systems,

namely HBase, Cassandra, MongoDB, and Riak, in terms of five dimensions: data model, data

distribution mechanism, data replication and consistency management, data indexing support,

30

and distributed data processing support. Discussions here about NoSQL databases form the basis

for the customizable indexing framework presented in the next section.

2.3.1 Data Model

Data model defines the logical organization of data that is presented to the user or client

application by a NoSQL database system.

HBase

HBase supports the BigTable data model [37] that was originally proposed by Google. Figure 2-

3 illustrates this data model. Data is stored in tables; each table contains multiple rows, and a

fixed number of column families. For each row, there can be a varied number of qualifiers

(columns) within each column family, and at the intersections of rows and qualifiers are table

cells. Cell contents are uninterpreted byte arrays. Cell values are versioned using timestamps,

and a table can be configured to maintain a certain number of versions. Rows are sorted by row

keys, which are also implemented as byte arrays. Within each column family, columns are sorted

by column names. Cell values under a column are further sorted by timestamps.

Figure 2-3. An example of the BigTable data model

31

Compared with the data model defined by “relations” in traditional relational databases, HBase

tables and columns are analogous to tables and columns in relational databases. However, there

are four significant differences:

(1) Relational databases do not have the concept of “column families”. In HBase, data from

different columns under the same column family is stored together (as one file on HDFS). In

comparison, data storage in relational databases is either row-oriented, where data in the

same row is consecutively stored on physical disks, or column-oriented, where data in the

same column is consecutively stored.

(2) In relational databases, each table must have a fixed number of columns (or “fields”); thus

every row in a given table has the same set of columns. In HBase, each row in a table can

have a different number of columns within the same column family.

(3) In HBase, cell values can be versioned with timestamps. The relational data model does not

have the concept of versions.

(4) Generally, NoSQL databases such as HBase do not enforce relationships between tables

through mechanisms such as foreign keys in the way relational databases do. User

applications have to deal with dependencies among tables through their application logics or

mechanisms such as “Coprocessors” supported by HBase [88].

Cassandra

The data model of Cassandra [89][150] is similar overall to HBase, but with several major

differences:

32

(1) In Cassandra, the concept of a table is equal to a “column family”; each table contains only

one column family. Different column families are totally separate logical structures

containing different sets of row keys. Therefore, compared with the relational data model,

Cassandra column families are analogous to tables, and columns under column families are

analogous to columns in relational tables. Consider the example in Figure 2-3. In Cassandra,

the “Student Table” will be implemented either as one “Student” column family containing

all the columns in Figure 2-3, or as two separate column families, “Student-BasicInfo” and

“Student-ClassGrades”.

(2) Beyond column families, Cassandra supports an extended concept of “super column family”,

which can contain “super columns”. A super column is comprised of a (super) column name

and an ordered map of sub-columns. The limitation of super columns is that all sub-columns

of a super column must be deserialized in order to access a single sub-column value.

(3) The order of row keys in a column family depends on the data partition strategy used for a

Cassandra cluster. By default the Random Partitioner is used, which means row keys are not

sorted within a column family and there is no way to do range scans based on row keys

without using external facilitating mechanisms such as an extra user-defined indexing

column family. Row keys are sorted when the Order Preserving Partitioner is used, but this

configuration is not recommended [113][162].

(4) Cassandra does not support explicit maintenance of multiple ‘versions’ of the column (cell)

values. Column values do have associated timestamps but they are internally used for

resolving conflicts caused by eventual consistency. Column values with obsolete

timestamps are eventually deleted as a result of conflict resolution.

33

MongoDB

MongoDB is a distributed document database that provides high performance, high availability,

and automatic scaling. It uses the concept of “collections” and “documents” to model data [104].

A collection is a grouping of MongoDB documents which normally have similar schemas. A

collection is similar to a table in relational databases and a document takes the place of a table

record. Documents are modeled as a data structure following the JSON format, which is

composed of field and value pairs. Each document is uniquely identified by a “_id” field as the

primary key. The values of fields may include embedded documents, arrays, and arrays of

documents [84]. Figure 2-4 shows an example MongoDB document. MongoDB can support

access to a sorted list of documents by performing a query with sorting on a document field

[122].

Figure 2-4. An example of the MongoDB document data model [84]

Relationships between documents can be modeled in two ways: references and embedded

documents [49].

Riak

Riak is a distributed database designed for key-value storage. Its data model follows a simple

“key/value” scheme, where the key is a unique identifier of a data object, and the value is a piece

of data that can be of various types, such as text and binary [124]. Each data object can also be

tagged with additional metadata, which can be used to build secondary indices to support query

34

of data objects [153]. A concept of “bucket” is used as a namespace for grouping key/value pairs.

Figure 2-5 illustrates an example of the Riak data model.

Figure 2-5. An example of the key/value data model in Riak

2.3.2 Data Distribution Mechanism

The data distribution mechanism determines how data operations are distributed among different

nodes in a NoSQL database cluster. Most systems use two major mechanisms: key-range-based

distribution and hash-based distribution. Key-range based distribution can easily support range

scans of sorted data, but may face the problem of unbalanced access load to different value

ranges. Hash-based distribution has the advantage of balanced access load across nodes, but does

not support range scans very well.

HBase

HBase uses a key-range-based data distribution mechanism. Each table is horizontally split into

regions, and regions are assigned to different region servers by the HBase master. Since rows are

sorted by row keys in the HBase data model, each region covers a consecutive range of row keys.

Figure 2-6 illustrates the architecture of HBase. HBase dynamically splits a region in two when

its size goes over a limit, or according to a user-specified RegionSplitPolicy. Users can also

force region splits to handle “hot” regions [134]. Since table data is stored in HDFS, region splits

35

do not involve much data movement and can be finished very quickly. Region splits happen in

the background and do not affect client applications.

Figure 2-6. HBase architecture

Cassandra

Depending on the configuration about data partitioner, a Cassandra cluster may apply either

key-range-based distribution or hash-based distribution.

When the Random Partitioner is used (which is the default configuration), nodes in the cluster

form a Distributed Hash Table (DHT). Cassandra partitions data across the cluster using

consistent hashing. The output range of a hash function is treated as a fixed circular space or

“ring" (i.e. the largest hash value wraps around to the smallest hash value). Each node in the

system is assigned a random value within this space which represents its position on the ring.

After position assignment, each node becomes responsible for the region in the ring between it

and its predecessor node [89].

To handle a data operation request, the row key of the data operation is first hashed using the

MD5 hashing algorithm, and then the operation is sent to the node that is responsible for the

corresponding hash value to process. The MD5 hashing step ensures a balanced distribution of

data and workload even in cases where the application data has an uneven distribution across the

36

row keys, because the hash values of the possibly preponderant sections of row keys will still

demonstrate an even distribution [162].

When the Order Preserving Partitioner is used, each node becomes responsible for the storage

and operations of a consecutive range of row keys. In this case, when the application data has an

uneven distribution across the row key space, the nodes will have an unbalanced workload

distribution [162].

Load skew may be further caused by two other factors. First, the random position assignment of

each node on the ring leads to non-uniform data and load distribution. Second, the basic data

distribution algorithm is oblivious to the heterogeneity in the performance of nodes. To address

these issues, Cassandra analyzes load information on the ring and moves lightly loaded nodes

on the ring to alleviate heavily loaded nodes [89]. Also, every time a new node is added,

Cassandra will assign a range of keys to that node such that it takes responsibility for half the

keys stored on the node that currently stores the most keys. In a stable cluster, data load can also

be rebalanced by careful administrative operations, such as manual assignment of key ranges or

node take-down and bring-up [162].

MongoDB

MongoDB also supports both key-range-based distribution and hash-based distribution through

configurations. The working logic is similar to Cassandra. MongoDB organizes nodes in units of

shards and partitions the key space of data collections into chunks. Chunks are then distributed

across the shards. Dynamic load balancing among shards is achieved through chunk splitting

and chunk migration [128].

Riak

37

Riak also uses a DHT to support hash-based distribution. When the client performs key/value

operations, the bucket and key combination is hashed. The resulting hash maps onto a 160-bit

integer space. Riak divides the integer space into equally-sized partitions, each managed by a

process called a virtual node (or “vnode”). Physical machines evenly divide responsibility for

vnodes. Figure 2-7 illustrates an example partition distribution of the hash value space among 4

nodes.

Figure 2-7. Hash-based data distribution in Riak [124]

2.3.3 Data Replication and Consistency Management

Almost all NoSQL database systems rely on replication to ensure high data availability in

distributed deployments. However, these systems use different strategies to manage the

consistency of multiple replicas of the same piece of data. This section only covers data-object-

level consistency, i.e. consistency among replicas of single data objects. Most NoSQL database

systems do not address transaction-level consistency, which may involve a series of updates to

multiple related data objects. Supporting transaction-level consistency will require additional

synchronization extensions [115].

38

HBase

Since HBase uses HDFS for data storage, it inherits the replication and consistency

management from HDFS. Specifically, the replication factor and replica location method is

decided by HDFS. Since HDFS enforces complete consistency – a write operation does not

return until all replicas have been updated – HBase also ensures complete consistency for its

data update operations. Upon receiving a data update operation, the HBase region server first

records this operation in a write-ahead log (WAL), and then puts it in memstore (an in-memory

data structure). When the memstore reaches its size limit, it is written to an HFile [30]. Both the

WAL file and the store file are HDFS files. Therefore, complete consistency is guaranteed for all

data updates. HDFS and HBase do not originally support deployment with data center

awareness.

Cassandra

Each data item in Cassandra is replicated at N hosts, where N is the replication factor. The node

responsible for the key of the data item is called a coordinator node. In addition to locally storing

each key within its range, the coordinator replicates these keys at the N-1 nodes in the ring.

Cassandra provides various replication policies such as “Rack Unaware", “Rack Aware"

(within a datacenter) and “Datacenter Aware". Replicas are chosen based on the replication

policy of the application. If the “Rack Unaware" replication strategy is chosen, then the non-

coordinator replicas are chosen by picking N-1 successors of the coordinator on the ring.

Cassandra allows eventual consistency among data replicas to achieve high availability,

partition tolerance and short response time for data operations. Cassandra extends the concept of

eventual consistency by offering tunable consistency. For any given read or write operation, the

39

client application decides how consistent the requested data should be. The consistency level can

be specified using values such as “ANY”, “ONE”, “QUORUM”, “ALL”, etc. Some values are

specially designed for multiple data center clusters, such as “LOCAL_QUORUM” and

“EACH_QUORUM” [3]. To understand the meaning of consistency levels, take “QUORUM”

for write as an example. This level requires that a write operation will be sent to all replica nodes,

and will only return after it is written to the commit log and memory table on a quorum of replica

nodes.

Cassandra provides a number of built-in repair features to ensure that data remains consistent

across replicas, including Read Repair, Anti-Entropy Node Repair, and Hinted Handoff [3].

MongoDB

MongoDB manages data replication in the units of shards. Each shard is a replica set, which can

contain one primary member, multiple secondary members, and one arbiter. The primary is

the only member in the replica set that receives write operations. MongoDB applies write

operations on the primary and then records the operations on the primary’s oplog. Secondary

members replicate this log and apply the operations to their data sets. All members of the replica

set can accept read operations. However, by default, an application directs its read operations to

the primary member. If the current primary becomes unavailable, an election determines the new

primary. Replica sets with an even number of members may have an arbiter to add a vote in

elections for primary [123]. Replica sets can be made data center-aware through proper

configurations [48].

Data synchronization between primary and secondaries are completed through eventual

consistency [111]. If Read Preference is set to non-primary, read operations directed to

40

secondaries may get stale data [121]. MongoDB also supports tunable consistency for each

write operation through the “Write Concern” parameter [163].

Riak

Riak allows the user to set a replication number for each bucket, which defaults to 3. When a

data object's key is mapped onto a given partition of the circular hash value space, Riak

automatically replicates the data onto the next two partitions (Figure 2-8). Riak supports multi-

data center replication through the concept of “primary cluster” and “secondary clusters” [107].

Figure 2-8. Data replication in Riak [124]

Similar to Cassandra, Riak also supports tunable consistency for each data operation [62]. It

relies on mechanisms such as Vector Clock, Hinted Handoff, and Read Repair to resolve

conflicts and ensure consistency [124].

2.3.4 Data Indexing Support

There are two major categories of indexing involved in distributed NoSQL database systems:

primary indexing and secondary indexing. In terms of distributed index storage, there are two

ways of index partitioning: partition by original data or partition by index key. “Partition by

41

original data” means that each node in the cluster only maintains the secondary index for the

portion of the original data that is locally hosted by that node. In this case, when a query

involving an indexed field is evaluated, the query must be sent to every node in the cluster. Each

node will use the local portion of secondary index to do a “partial evaluation” of the query, and

return a subset of results. The final result is generated by combining results from all the nodes.

Figure 2-9 illustrates partition by original data. “Partition by index key” means that a global

index is built for the whole data set on all the nodes, and then distributed among the nodes by

making partitions with the key of the index. To evaluate a query about an indexed field value,

only the node maintaining the index for that queried field value is contacted, and it processes all

related index entries to get the query result. Figure 2-10 illustrates partition by index key.

Figure 2-9. Partition by original data Figure 2-10. Partition by index key

Partition by original data is good for handling complicated queries involving multiple fields and

constraints, because each node can partially evaluate the query by only accessing local data.

Although the query has to be broadcast to all nodes, the total amount of communication is much

smaller than the size of the relevant part of the indices for each field. Partition by index key

42

works better when queries are simple: the major part of evaluation is the processing and

transmission of the related index entries, and only the exact related node(s) need to be contacted.

HBase

Primary indexing. HBase builds a primary index on the row keys, which is conceptually similar

to a distributed multi-level B+-tree index. HBase maintains two global catalog tables: ROOT

and META. ROOT always has only one region, and its location is stored in ZooKeeper. ROOT

keeps track of the regions of the META table, and META keeps a list of all regions in the system,

as well as which region servers are hosting them [36]. On the region server, data is read from and

written to HFiles on HDFS, and the HFile format contains information about a multi-level B+-

tree-like data structure [30]. The primary index is a clustered index because the data records are

stored directly in the index entries.

Secondary Indexing. HBase does not originally support secondary indices for cell values.

Cassandra

Primary Indexing. The DHT architecture of Cassandra basically builds a distributed primary

key hash index for the row keys of column families. This primary index is a clustered index

since data records are contained in the index entries.

Secondary Indexing. Beyond primary key index, Cassandra supports creation of secondary

indices on any column values [4]. The internal secondary index implementation depends on

whether the data type of the column values is non-text data and text data.

For non-text column values, Cassandra can create hash indices which are internally maintained

as hidden index column families [81]. This index column family stores a mapping from index

43

values to a sorted list of matching row keys. Since the index is a hash index, query results are not

sorted by the order of the indexed values. Furthermonre, range queries on indexed columns

cannot be completed by using the index, although an “equal” match in the index returns an

ordered list relevant row keys.

For text column values, the commercial version of Cassandra, DataStax, supports secondary

indices on text data through integration with Solr [51]. Moreover, the indices are stored as

Lucene index files [21], which means various query types, including equal queries, wildcard

queries, range queries, etc. can be supported.

Consistency between data and index. Data update + index update is an atomic operation, so

immediate consistency is ensured between the original data and index data.

Secondary index partition scheme. Each node maintains the secondary indices for its own local

part of original data. Therefore, secondary indices are partitioned by original data.

Limitations. Cassandra secondary indices currently have several limitations. First, they can only

index values from single columns; multidimensional indices as used in [69] are not supported.

Second, as mentioned above, indices for non-text columns cannot be used to evaluate range

queries. Finally, even if a query specifies constraints on multiple indexed columns, only one

index will be used to quickly locate the related row keys. Range constraints can be specified on

additional columns in the query, but are checked against the original data instead of using indices

[4].

MongoDB

44

Primary Indexing. MongoDB automatically forces the creation of a primary key index on the

_id field of the documents. Index entries are sorted by _id, but note that this primary key index is

not a clustered index in Database terms, meaning the index entries only contains pointers to

actual documents in the MongoDB data files. Documents are not physically stored in the order of

_id on disks.

Secondary Indexing. Beyond the primary index, MongoDB supports various secondary indices

for field values of documents, including single field index, multidimensional index, multikey

index, geospatial index, text index, and hashed index [82]. Single field, multidimensional, and

multikey indices are organized using B-tree structures. The geospatial index supports indexing

using quad trees [1] on 2-dimensional geospatial data. The official documentation does not

provide details about how the text indices are implemented, but it is known that basic features

such as stopping, stemming, and scoring are supported [139]. Text index in MongoDB is still in

beta version. The hashed index can be used to support both hash-based data distribution and

equality queries of field values in documents, but obviously cannot be used for range queries.

Consistency between data and index. Data is indexed on the fly in the same atomic operation.

Therefore, immediate consistency is ensured between the original data and index data.

Secondary index partition scheme. Each shard maintains the secondary index for its local

partition of the original data. Therefore, secondary indices are partitioned by original data.

Riak

Primary Indexing. As explained in section 2.4, Riak builds a primary key hash index for its

key/value pairs through DHT. This index is a clustered index because data objects are directly

stored together with the index keys.

45

Secondary Indexing. Riak supports secondary indices on the tagged attributes of the key/value

pairs and inverted indices for text data contained in the value. For secondary indices on tagged

attributes, exact match and range queries are supported. However, current Riak implementation

forces the limitation that one query can only use secondary index search on one indexed attribute

(field). Queries involving multiple indexed attributes have to be broken down as multiple queries;

then the results are then merged to get the final result [153]. No details are given about the

internal structures used for secondary indices in the official Riak documentation. According to

the brief mention in [6], it seems that a flat list of key/entries is used.

For inverted indices on values of text type, text data contained in the values of key/value pairs

are parsed and indexed according to a predefined index schema. Similar to DataStax, Riak also

tries to integrate with the interface of Solr, and stores indices using the Lucene file format so as

to support various types of queries on text data, such as wildcard queries and range queries [152].

Consistency between data and index. Data update + index update is an atomic operation, so

immediate consistency is ensured between the original data and index data.

Secondary index partition scheme. For secondary indices on tagged attributes, each node

maintains the indices for its local part of original data. Therefore, the indices are partitioned by

original data, while the text index is partitioned by terms (keys in inverted index). In Riak,

text index schemas are configured at the level of buckets. All the key/value pairs in a configured

bucket will be parsed and indexed according to the same given schema. A global inverted index

is created and maintained for all key/value pairs added to that bucket, then partitioned by terms

in the inverted index and distributed among all the nodes in the ring.

2.3.5 Distributed Data Processing Support

46

HBase and Cassandra

HBase and Cassandra both support parallel data processing by integration with Hadoop

MapReduce [74][77][99], which is designed for fault tolerant parallel processing of large batches

of data. It implements the full semantics of the MapReduce computing model and applies a

comprehensive initialization process for setting up the runtime environment on the worker nodes.

Hadoop MapReduce uses disks on worker nodes to save intermediate data and does grouping and

sorting before passing them to reducers. A job can be configured to use zero or multiple reducers.

MongoDB

MongoDB provides two frameworks to apply parallel processing to large document collections:

aggregation pipeline [13] and MapReduce [98].

The aggregation pipeline completes aggregate computation on a collection of documents by

applying a pipeline of data operators, such as match, project, group, etc. By using proper

operators such as match and skip at the beginning of the pipeline, the framework is able to take

advantage of existing indices to limit the scope of processing to only a related subset of

documents in the collection and thus achieve better performance. Currently MongoDB

implementation enforces several important limits on the usage of aggregation pipelines,

including input data types, final result size, and memory usage by operators [12]. This implies

that the pipeline operators work completely in memory and do not use external disk storage for

computations such as sorting and grouping.

The MapReduce framework is designed to support aggregate computations that go beyond the

limits of the aggregation pipeline, as well as extended data processing that cannot be finished by

the aggregation pipeline. MapReduce functions are written in JavaScript, and executed in

47

MongoDB daemon processes. Compared with Hadoop MapReduce, MongoDB MapReduce is

different in several aspects. In the MongoDB version, reduce is only applied to the map outputs

where a key has multiple associated values. Keys associated with single values are not processed

by reduce. Furthermore, besides map and reduce, an extra finalize phase can be applied to further

process the outputs from reduce, and a special “incremental MapReduce” mechanism is provided

to support dynamically growing collections of documents. This mechanism allows reduce to be

used for merging the results from the latest MapReduce job and previous MapReduce jobs. Also

the framework supports an option for choosing the way intermediate data is stored and

transmitted. The default mode stores intermediate data on local disks of the nodes, but the client

can specify to only use memory for intermediate data storage, in which case a limit is enforced

on the total size of key/value pairs from the map output. Finally, functions written in JavaScript

may limit the capabilities of map and reduce. For example, it is hard or even impossible to

access an outside data resource such as a database or distributed file system [95][38] to facilitate

the computation carried out in map and reduce.

Riak

Riak provides a lightweight MapReduce framework for users to query the data by defining

MapReduce functions in JavaScript or Erlang [151]. Furthermore, Riak supports MapReduce

over the search results by using secondary indices or text indices. Riak MapReduce is different

from Hadoop MapReduce in several ways. There is never more than one reducer running for

each MapReduce job. Intermediate data is transmitted directly from mappers to the reducer

without being sorted or grouped. The reducer relies on its memory stack to store the whole list of

intermediate data, and has a default timeout of only five seconds. Therefore, Riak MapReduce is

not suitable for processing large datasets.

48

2.3.6 Summary

In summary, there is no standard data model currently shared by the NoSQL database systems.

Each system may adopt models suitable for a specific type of applications, but flexible schemas

are usually allowed in most data models. Systems may adopt various data distribution and

replication mechanisms to achieve scalability and high availability. In case a hash based data

distribution is used, sorted secondary indices will be needed to do range scans of data. Most

systems provide native support for parallel data processing models such as MapReduce, but in

order to handle large datasets or query results, a sophisticated and fault-tolerant framework like

Hadoop MapReduce [99] is required. Finally, secondary indexing is an area where current

NoSQL databases are not performing well. Figure 2-11 summarizes the four representative

systems discussed above in terms of two categories of index structures that have been well

studied in the database community: multi-dimensional indices and single-dimensional indices. It

is obvious that a varied level of secondary indexing support is demonstrated by different systems.

Moreover, as is evident in Section 1.3.1, the single-field inverted indices currently supported by

some systems do not work well for the special query patterns of social media data. As such it is

necessary to extend them with a fully customizable indexing framework. It will be a great

contribution to the NoSQL world if such a framework can be generally integrated with most

NoSQL databases, as it will help equalize the ragged level of indexing support across different

systems.

49

Figure 2-11. Varied level of indexing support among existing NoSQL databases

2.4 Customizable Indexing Framework

In this section we propose a fully customizable indexing framework that can be generally

implemented over most NoSQL databases. Although our motivation derives from the lack of

customizability in existing text indexing techniques, the framework can actually be used to

define customized index structures for both text and non-text data.

2.4.1 Input Data Model

Figure 2-12. An example of the input data model to the customizable indexing framework

50

The customizable indexing framework uses the concept of data record and record set to model

the input data to be indexed. Equation (1) gives the conceptual definition of a record set. A

record set is composed of zero to multiple data records. Each can be modeled by a JSON type

of nested key-value pair list data structure uniquely identified by an “id” field, as shown in

Figure 2-12. On the one hand, this data model is consistent with many existing social media data

sources such as the Twitter Streaming API [148]. But the model of a record set and a data record

can be easily mapped to the data storage units of various NoSQL databases. For example, a

record set can be implemented as a table in HBase [19], a bucket in Riak [125], or a collection

in MongoDB [105]. Correspondingly, a data record can be implemented as a row in HBase, an

object in Riak, or a document in MongoDB.

Record set S = {<ID, field1, field2, … fieldN> | N > 0}. (1)

2.4.2 Abstract Index Structure

Equation (2) gives our conceptual definition of an index. We define index() as a function that

takes one data record r as input and generates a set of index entries as output. An index entry is

defined as a tuple <key, EID, EF1, EF2, … EFN> (N ≥ 0), where key denotes an index key, EID

denotes an entry ID, and EF1, EF2, … EFN denote a varied number of entry fields. An index I

over a record set S is defined as the union of all the sets of index entries generated by applying

index() on each data record in S.

Index I = ⋃ 𝑖𝑛𝑑𝑒𝑥(𝑟)∀𝑟∈𝑆 ; index : r → {<key, EID, EF1, EF2, … EFN> | (N ≥ 0)}. (2)

Figure 2-13 illustrates the abstract index structure used by our framework. The overall structure

is organized by a sorted list of index keys. Index entries with the same key are grouped together,

and further sorted by their entry IDs. Each entry usually corresponds to one original data record

51

that contains the index key on the indexed field. The entry fields can be used to embed additional

information about the indexed data, which could be either fields directly from the original data

record (included columns), or computation results based on them (computed columns). This

structure is similar to the posting lists used in inverted indices [170], but the major difference is

that our framework allows users to customize what to use as index keys, entry IDs, and entry

fields through an index configuration file in XML format, as illustrated in Figure 2-14. The

configuration file contains multiple “index-config” elements that hold the mapping information

between source record sets and customized index structures. Each element can flexibly define

how to generate index entries off a given data record from the source record set. For more

complicated index structures, users can implement their own index() function (UDF) and use it

by setting the “indexer-class” element.

Figure 2-13. Abstract index structure

52

Figure 2-14. An example index configuration file

By defining proper index configurations or UDFs, it is possible to create various index structures,

seen in Figure 2-15. In the simplest form, we can create sorted single-field indices by directly

using the indexed field values as the index keys, and the ID of the corresponding original data

records as the index entry ID (Figure 2-15 (a)). Beyond this, sorted composite indices can be

created by adding additional field values to either the entry ID or the entry fields (Figure 2-15

(b)). Traditional inverted indices can be created by using the tokenized text terms as the index

keys, the document IDs as the entry IDs, and the term frequency and position information as the

entry fields (Figure 2-15 (c)). Moreover, by replacing the frequency information in the entry

fields with values from other fields of the original data records, composite indices on both text

and non-text fields can be defined (Figure 2-15 (d)). Such customization is not supported by

current text indexing systems, but is exactly what is needed for evaluating the text queries with

constraints on the social context. For array values in the original data records, it is possible to

create index structures similar to the “multikey index” supported by MongoDB [82] by using a

UDF that delves into the array field, creating one index key for every unique value in the array

(Figure 2-15 (e)). Finally, inspired by research from the area of data warehouses [114], it is also

possible to create join index structures for evaluating queries involving multiple record sets

53

(Figure 2-15 (f)). For instance, suppose we have a new query get-tweets-by-user-desc(keyword,

time-window), which is supposed to return all the tweets created within the given time window

that are posted by users who have the given keyword in the personal description text of their

profiles. Assuming the tweet information and the user information are stored in two different

record sets, evaluating such a query will require a Join operation of the two record sets without a

proper index. However, by building a customized index structure that uses keywords from the

user description text as keys, tweet IDs posted by the corresponding users as entry IDs, and user

ID and tweet creation time as the entry fields, it will be possible to evaluate the query by only

accessing the index.

2.4.3 Interface to Client Applications

Figure 2-16 presents the major operations provided by our customizable indexing framework to

client applications. The client application can use a general customizable indexer to index a

data record. Upon initialization, the general customizable indexer reads the index configuration

file provided by the user. If a user-defined indexer class is specified, a corresponding indexer

instance will be created. Both general and user-defined indexers must implement the index()

method. This method takes a data record from a source record set as input, and returns a mapping

from related index names to their corresponding index entries. When index() is invoked on the

general indexer during runtime, all related “index-config” elements are used to generate index

entries, either by following the rules defined in “index-config” or by invoking a user-defined

indexer.

54

Figure 2-15. Example index structures that can be created with the customizable indexing

framework

Figure 2-16. Interface to client applications

55

Based on the general customizable indexer, two indexing mechanisms can be supported: online

indexing and batch indexing. Online indexing is implemented through the insert() method. The

client application invokes this method to insert one data record into a source record set. The

indexer will first do the insertion, then generate index entries for this data record by invoking

index() and insert them into the corresponding index structures. From the client application’s

perspective, data records are indexed “online” when they are inserted into the source record set.

Efficient online indexing is crucial for the loading of streaming data. Batch indexing assumes

original data records are already stored in the NoSQL databases as record sets, and does indexing

for the whole sets in batches. The batch indexing application scans the source record set, and

invokes the index() method for every data record. The returned index entries are inserted into the

corresponding index structures.

To complete a search using an index structure, the client application can invoke a basic index

operator provided by the framework, or a user-defined index operator. Multiple constraints

can be specified as parameters to filter the index entries by their keys, entry IDs, or entry fields.

Constraint types currently supported are value set constraint, range constraint, and regular

expression constraint. A value set constraint is specified in the form of {val1,val2,...}, and can

be used to select index keys, entry IDs, or entry fields that match any of the values in the set.

Similarly, a range constraint is expressed in the form of [lower, upper], and a regular expression

is in the form of <regular expression>. For a special class of regular expression constraints,

prefix constraints, we also support a simplified expression in the form of ~prefix*~ (multiple

characters following prefix) or ~prefix?~ (single character following prefix).

2.4.4 Implementation on HBase – IndexedHBase

56

As discussed in section 1.3.1, an actual implementation of the indexing framework needs to not

only provide customizable index structures, but also support scalable index data storage and

efficient indexing speed for high-volume streaming data. Taking these factors into consideration,

our key observation about existing distributed NoSQL databases is that they already support

scalable data storage and efficient random access to individual data records following their

respective data models. Therefore, by defining a proper mapping between the abstract index

structures and the actual storage units and data models of the underlying NoSQL databases, it is

possible to leverage their existing data distribution and load balancing mechanisms to achieve

scalable indexing for our framework. Figure 2-17 illustrates this idea.

Figure 2-17. Implementation through mapping to the data model of NoSQL databases

We have developed an implementation over HBase in our scalable analysis architecture which

we call IndexedHBase. Figure 2-18 illustrates the mapping we designed for IndexedHBase.

Specifically, we use an HBase table to implement an index structure, a row key for an index key,

a column name for an entry ID, and a column value for all the entry fields. Since HBase stores

table data under the hierarchical order of <row key, column name, timestamp>, it is easy to

support range scans over the index keys or entry IDs. Based on the region split and load

balancing mechanisms provided by HBase, we are able to achieve efficient and scalable real-

57

time indexing of streaming data. HBase supports fast atomic row-level mutations; hence the

insertion of a dynamic data record only involves random write operations to a limited number of

rows in the index tables, and does not affect operations on any other rows. Moreover, write

operations do not block read even on the same row, so the impact to concurrent query

evaluations is minimum. Updates of original data records and index entries are completed as

consecutive write operations to different tables, and eventual consistency between index and

original data can be guaranteed at the level of milliseconds. Finally, since HBase is inherently

integrated with the Hadoop software stack, we can leverage the Hadoop MapReduce framework

to effectively support integrated queries and analysis workflows of social media data.

Figure 2-18. Mapping between an abstract index structure and an HBase table

The online indexing mechanism on IndexedHBase is implemented by translating the actions in

insert() into the corresponding table operations in HBase. The batch indexing mechanism is

implemented as a “map-only” Hadoop MapReduce job using the table for the source record set

as input. The job accepts a source table and index table name as parameters and starts multiple

mappers to index data in the source table in parallel, each processing one region of the table.

Each mapper works as a client application to the general customizable indexer and creates one

indexer instance at its initialization time. The indexer is initialized using the given index table

name so that when index() is invoked, it will only generate index records for that single table.

The map() function takes a <key, value> pair as input, where “key” is a row key in the source

58

table and “value” is the corresponding row data. For each row of the source table, the mapper

uses the general customizable indexer to generate index table records and write these records as

output. All output records are handled by the table output format, which will automatically insert

them into the index table.

2.4.5 Implementation on Other NoSQL Databases

It is possible to implement our customizable indexing framework on other NoSQL databases by

designing proper mapping between the abstract index structure and the data model of the

corresponding system. Such mapping should take the practical requirements for the indexing

framework and the granularity of data access of the specific NoSQL database system into

consideration. In order to achieve range scans of index keys and entries on systems using hash-

based data distribution mechanisms, it is often necessary to leverage their native secondary

indexing support. Table 2-1 provides a list of suggested mapping for the other three

representative NoSQL databases discussed in section 2.2.

Table 2-1. Suggested mappings for other NoSQL databases

Feature needed Cassandra Riak MongoDB

Fast real time random

insertion and updates

of index entries.

Yes. Index key as row key

and entry ID as column

name, or index key + entry

ID as row key.

Yes. Index key + entry ID as

object key.

Yes. Index key + entry

ID as “_id” of document.

Fast real time random

read of index entries.

Yes. Index key as row key

and entry ID as column

name, or index key + entry

ID as row key.

Yes. Index key + entry ID as

object key.

Yes. Index key + entry

ID as “_id” of document.

Scalable storage and

access speed of index

entries.

Yes. Yes. Yes.

Efficient range scan

on index keys.

Yes with order preserving

hash function.

Doable with a secondary index

on an attribute whose value is

the object key.

Doable with Index key +

entry ID as “_id” of

document.

59

Efficient range scan

on entry IDs.

Yes with order preserving

hash function and index

entry ID as column name.

Doable with a secondary index

on an attribute whose value is

the object key.

Doable with Index key +

entry ID as “_id” of

document.

2.5 Performance Evaluation

This section evaluates the effectiveness and efficiency of our customizable indexing framework

by measuring its impact on the performance of data loading/indexing and query evaluation.

Specifically, by defining customized index structures that eliminate unnecessary information

from traditional text indices and embed useful information about the social media data, we

expect to receive scalability, faster indexing and data loading speed, as well as better query

evaluation performance. In order to verify this, we use real data and queries from Truthy, as

described in section 1.2.1. Based on IndexedHBase, we develop parallel data loading and query

evaluation strategies and compare their performance against another set of implementations on

Riak using its natively supported text indexing techniques, which is based on distributed Solr at

the backend [57].

2.5.1 Table Schemas on IndexedHBase

Working off the HBase data model, we design the table schemas in Figure 2-19 for storing the

original data from Truthy and necessary indices for query evaluation. Specifically, we maintain

the tweet and user information contained in a JSON message (Figure 1-2) in separate tables. To

achieve efficient evaluation of the queries listed in Section 1.2.1, we create multiple customized

indices with structures similar to Figure 2-15 (b) and Figure 2-15 (d). We split the whole dataset

by months, maintaining a separate set of data and index tables for every month. This method of

table management actually creates a hybrid index partition mechanism that inherits the

advantage of both partition by index key and partition by original data. For instance, since the

60

regions of every index table are maintained independently by HBase, index distribution is

decoupled from original data distribution. At the same time, for queries with time windows

covering multiple months, index access for different months can work in parallel, and the amount

of index and original data accessed during query evaluation is limited by the scope of the time

window. Another benefit is that the loading of streaming data only changes the tables relative to

the current month, and does not interfere with access to all the other tables.

Figure 2-19. Table schemas used in IndexedHBase for data from Truthy

Some details need to be clarified before proceeding further. Each table contains only one column

family, e.g. “details” or “tweets”. The user table employs a concatenation of user ID and tweet

ID as the row key, because analysis benefits from tracking changes in a tweet’s user metadata.

For example, a user can change profile information, which can give insights into their behavior.

A separate meme index table is created for indexing the hashtags, user-mentions, and URLs

contained in tweets. This is because some special cases, such as expandable URLs, cannot be

handled properly by the text index. The memes are used as row keys, each followed by a

61

different number of columns, named after the IDs of tweets containing the corresponding meme.

The timestamp of the cell value marks the tweet creation time.

2.5.2 Data Loading Strategies

We develop parallel loading strategies for both streaming data and historical data. Figure 2-20

shows the architecture of the streaming data loading strategy, where one or more distributed

loaders are running concurrently. The stream distributer connects to the external Twitter

streaming API [148] and distributes the sequence of social updates among all concurrent loaders.

It can be implemented as a simple Storm topology [25] that does data distribution in a random or

round-robin fashion. Each loader is assigned a unique ID and works as a client application to the

general customizable indexer. Upon receiving a tweet JSON string, the loader first generates

records for the tweet table and user table, then loads them into the tables by invoking the insert()

method of the general customizable indexer, which will complete online indexing and update all

the data tables as well as the relevant index tables.

The historical data loading strategy is implemented as a MapReduce program. One separate job

is launched to load the historical files for each month, and multiple jobs can be running

simultaneously. A job starts multiple mappers in parallel, each responsible for loading one file.

At running time, every line in the .json.gz file is given to the mapper as one input, which

contains the string of one tweet. The mapper first creates records for the tweet table and user

table and then invokes the general customizable indexer to get all the related index table records.

All table records are handled by the multi-table output format, which automatically inserts them

into the related tables. Finally, if the JSON string contains a “retweeted_status”, the

corresponding substring will be extracted and processed in the same way.

62

Figure 2-20. Streaming data loading strategy

2.5.3 Parallel Query Evaluation Strategy

We develop a two-phase parallel query evaluation strategy viewable in Figure 2-21. For any

given query, the first phase uses multiple threads to find the IDs of all related tweets from the

index tables and saves them in a series of files containing a fixed number (e.g., 30,000) of tweet

IDs. The second phase launches a MapReduce job to process the tweets in parallel and extract

the necessary information to complete the query. This means to evaluate user-post-count, each

mapper in the job will access the tweet table to figure out the user ID corresponding to a

particular tweet ID, count the number of tweets by each user, and output all counts when it

finishes. The output of all the mappers will be processed to finally generate the total tweet count

of each user ID.

63

Figure 2-21. Two-phase parallel evaluation process for an example user-post-count query

Two aspects of the query evaluation strategy deserve further discussion. First, as described in

Section 1.2.1, prefix queries can be constructed by using parameters such as “#occupy*”. We

provide two index operators for getting the related tweet IDs in the first phase. One is simply to

complete a sequential range scan of rows in the corresponding index tables. The other uses a

MapReduce program to complete parallel scans over the range of rows. The latter option is only

faster for parameters covering a large range spanning multiple regions of the index table.

Second, the number of tweet IDs in each file implies a tradeoff between parallelism and

scheduling overhead. When this number is set lower, more mappers will be launched in the

parallel evaluation phase, which means the amount of work done by a mapper decreases while

the total task scheduling overhead increases. The optimal number depends on the total number of

related tweets and the amount of resources available in the infrastructure. We set the default

value of this number to 30,000 and leave it configurable by the user.

2.5.4 Testing Environment Configuration

We use eight nodes on the Bravo cluster of FutureGrid to complete tests for both IndexedHBase

and Riak. The hardware configuration for all eight nodes is listed in Table 2-2. Each node runs

64

CentOS 6.4 and Java 1.7.0_21. For IndexedHBase, Hadoop 1.0.4 and HBase 0.94.2 are used.

One node hosts the HDFS headnode, Hadoop jobtracker, Zookeeper, and HBase master. The

other seven nodes are used to host HDFS datanodes, Hadoop tasktrackers, and HBase region

servers. The data replication level is set to two on HDFS. The configuration details of Riak will

be given in Section 2.4.5. In addition to Bravo, we also use the Alamo HPC cluster of FutureGrid

to test the scalability of the historical data loading strategy of IndexedHBase, since Alamo can

provide a larger number of nodes through dynamic HPC jobs. Software configuration of Alamo

is mostly the same as Bravo.

Table 2-2. Per-node configuration on Bravo and Alamo Clusters

Cluster CPU RAM Hard Disk Network

Bravo 8 * 2.40GHz (Intel Xeon E5620) 192G 2T 40Gb InfiniBand

Alamo 8 * 2.66GHz (Intel Xeon X5550) 12G 500G 40Gb InfiniBand

2.5.5 Configuration and Implementation on Riak

As mentioned in Section 2.2.4, Riak provides a “Riak Search” module that can build distributed

inverted indices on data objects for full-text search purposes. Users can assign buckets to

organize their data objects and configure indexed fields on the bucket level. Beyond the basic

inverted index structure, Riak supports a special feature called “inline fields.” If a field is

specified as an “inline” field, its value will be attached to the document IDs in the posting lists,

as illustrated in Figure 2-22.

Similar to our customized index tables in IndexedHBase, inline fields can be used to carry out an

extra filtering operation to speed up queries involving multiple fields. However, they are

different in two basic aspects. First, inline fields are an extension of traditional inverted indices,

which means overhead such as frequency information and document scoring still exist in Riak

65

Search. Second, customizable index structures are totally flexible in the sense that the structure

of each index can be independently defined to contain any subset of fields from the original data.

In contrast, if one field is defined as an inline field on Riak, its value will be attached to the

posting lists of the indices of all indexed fields, regardless of whether it is useful. As an example,

the “Sname index table” in Figure 2-19 uses the creation time of user accounts as timestamps,

while the “meme index table” uses creation time of tweets. Such flexibility is not achievable on

Riak.

Figure 2-22. An example of inline field (created_at) in Riak

In our tests, all eight nodes of Bravo are used to construct a Riak ring. The nodes run Riak 1.2.1,

using LevelDB as the storage backend. We create two different buckets to index data with

different search schemas. The data replication level is set to two on both buckets. The tweet ID

and JSON string of each tweet are directly stored into <key, value> pairs. The original JSON

string is extended with an extra “memes” field, which contains all the hashtags, user-mentions,

and URLs in the tweet, separated tab characters. Riak Search is enabled on both buckets, and the

user_id, memes, text, retweeted_status_id, user_screen_name, and created_at fields are indexed.

Specifically, created_at is defined as a separate indexed field on one bucket, and an “inline only”

field on the other bucket, meaning that it does not have a separate index but is stored together

with the indices of other fields.

Riak provides a lightweight MapReduce framework for users to query the data by defining

MapReduce functions in JavaScript. Additionally Riak supports MapReduce over the results of

66

Riak Search. We use this feature to implement queries, and Figure 2-23 shows an example

implementation. When this query is submitted, Riak will first use the index on “memes” to find

related tweet objects (as specified in the “input” field), then apply the map and reduce functions

to these tweets (as defined in the “query” field) to get the final result.

Figure 2-23. An example query implementation on Riak

2.5.6 Data Loading Performance

Historical Data Loading Performance

We use all the .json.gz files from June 2012 to test the historical data loading performance of

IndexedHBase and Riak. The total data size is 352GB. With IndexedHBase, a MapReduce job is

launched for historical data loading, with each mapper processing one file. With Riak, all 30 files

are distributed among eight nodes of the cluster, so every node ends up with three or four files.

Then an equal number of threads per node were created to load all the files concurrently to the

bucket where “created_at” is configured as an inline field. Threads continue reading the next

tweet, apply preprocessing with the “created_at” and “memes” field, and finally send the tweet to

the Riak server for indexing and insertion.

Table 2-3 summarizes the data loading time and loaded data size on both platforms. We can see

that IndexedHBase is over six times faster than Riak in loading historical data and uses

67

significantly less disk space for storage. Considering the original file size of 352GB and a

replication level of two, the storage space overhead for index data on IndexedHBase is moderate.

Table 2-3. Historical data loading performance comparison

 Loading time

(hours)

Loaded total

data size (GB)

Loaded original

data size (GB)

Loaded index

data size (GB)

Riak 294.11 3258 2591 667

IndexedHBase 45.47 1167 955 212

Riak / IndexedHBase 6.47 2.79 2.71 3.15

We analyze these performance measurements below. By storing data with tables, IndexedHBase

applies a certain degree of data model normalization, and thus avoids storing some redundant

data. For example, many tweets in the original .json.gz files contain retweeted status, and many

of them are retweeted multiple times. With IndexedHBase, even if a tweet is retweeted

repeatedly, only one record is kept for it in the tweet table. As for Riak, such a “popular” tweet

will be stored within the JSON string of every corresponding retweet. The difference in loaded

index data size clearly demonstrates the advantage of a fully customizable indexing framework.

By avoiding frequency and position information and only incorporating useful fields in the index

tables, IndexedHBase saves 455GB of disk space in storing index data, which is more than 1/3 of

the total loaded data size of 1167GB. Also note that IndexedHBase compresses table data using

Gzip, which generally provides a better compression ratio than Snappy on Riak.

The difference in loaded data size only explains part of the improvement in total loading time.

Two other reasons are:

(1) The loaders of IndexedHBase are responsible for generating both data tables and index

tables. Therefore, the JSON string of each tweet is parsed only once when it is read from

68

the .json.gz files and converted to table records. By contrast, Riak uses servers for its

indexing so each JSON string is actually parsed twice – first by the loaders for preprocessing,

and again by the server for indexing;

(2) When building inverted indices, Riak not only uses more space to store the frequency and

position information, but also spends more time collecting it.

Scalable Historical Data Loading on IndexedHBase

We test the scalability of historical data loading on IndexedHBase with the Alamo cluster of

FutureGrid. In this test we take a dataset for two months, May and June 2012, and measure the

total loading time with different cluster sizes. The results are illustrated in Figure 2-24. When the

cluster size is doubled from 16 to 32 data nodes, the total loading time drops from 142.72 hours

to 93.22 hours, which implies a sub-linear scalability due to concurrent access from mappers of

the loading jobs to HBase region servers. Nonetheless, these results clearly demonstrate that we

get more system throughput and faster data loading speed by adding more nodes to the cluster.

Figure 2-24. Historical data loading scalability to cluster size

Streaming Data Loading Performance on IndexedHBase

69

The purpose of streaming data loading tests is to verify that IndexedHBase can provide enough

throughput to accommodate the growing data speed of the Twitter streaming API. To test the

performance of IndexedHBase for handling potential data rates even faster than the current

streams, we designed a simulation test using a recent .json.gz file from July 3, 2013. We varied

the number of distributed streaming loaders and tested the corresponding system data loading

speed. For each case, the whole file was evenly split into the same number of fragments as the

loaders and then distributed across all the nodes. One loader was started to process each fragment.

The loader reads data from the stream of the local file fragment rather than from the Twitter

streaming API. So this test measures how the system performs when each loader gets an

extremely high data rate that is equal to local disk I/O speed.

Figure 2-25. Results for streaming data loading test

Figure 2-25 shows the total loading time when the number of distributed loaders increases by

powers of two from one to 16. Once again, concurrent access to HBase region servers results in a

decrease in speed-up as the number of loaders is doubled each time. The system throughput is

almost saturated when we have eight distributed loaders. For the case of eight loaders, it takes

3.85 hours to load all 45,753,194 tweets (less than 2.4ms on average to index a tweet), indicating

the number of tweets that can be processed per day on eight nodes is about six times the current

daily data rate. Therefore, IndexedHBase can easily handle a high-volume stream of social media

70

data. In the case of vastly accelerated data rates, as would be the case for the Twitter firehose (a

stream of all public tweets) [147], one could increase the system throughput by adding more

nodes.

2.5.7 Query Evaluation Performance

Separate Index Structures vs. Customized Index Structures

One major purpose of using customized index structures is to achieve lower query evaluation

complexity compared to traditional inverted indices on separate data fields. To verify this, we

use a simple get-tweets-with-meme query to compare the performance of IndexedHBase with a

solution using separate indices on the fields of memes and tweet creation time, which is

implemented through the Riak bucket where “created_at” is defined as a separately indexed

field.

In this test we load four days’ worth of data to both IndexedHBase and the Riak bucket and

measure the query evaluation time with different memes and time windows. For memes, we

choose “#usa”, “#ff”, and “@youtube”, each contained in a different subset of tweets. The “#ff”

hashtag is a popular meme for “Follow Friday.” For each meme, we use three different time

windows with a length between one and three hours. Queries in this test only return tweet IDs –

they don’t launch an extra MapReduce phase to get the content. Figure 2-26 presents the query

execution time for each indexing strategy. As shown in the plots, IndexedHBase not only

achieves a query evaluation speed that is tens to hundreds of times faster, but also demonstrates a

different pattern in query evaluation time. When separate meme index and time index are used,

the query evaluation time mainly depends on the length of time window; the meme parameter

has little impact. In contrast, using a customized meme index, the query evaluation time mainly

71

depends on the meme parameter. For the same meme, the evaluation time only increases

marginally as the time window gets longer. These observations confirm our theoretical analysis

in Section 1.3.1.

Figure 2-26. Query evaluation time: separate meme and time indices vs. customized index

Query Evaluation Performance Comparison

This set of tests is designed to compare the performance of Riak and IndexedHBase for

evaluating queries involving different numbers of tweets and different result sizes. Since using

separate indices has proven inefficient on Riak, we choose to test the query implementation

using “created_at” as an inline field. Queries are executed on both platforms against the data

loaded in the historical data loading tests. For query parameters, we choose the popular meme

“#euro2012,” along with a time window with a length varied from three hours to 16 days. The

start point of the time window is fixed at 2012-06-08T00:00:00, and the end point

correspondingly varies exponentially from 2012-06-08T02:59:59 to 2012-06-23T23:59:59. This

covers a major part of the 2012 UEFA European Football Championship. The queries can be

grouped into three categories based on the manner in which they are evaluated on Riak and

IndexedHBase.

72

(1) No MapReduce on either Riak or IndexedHBase

The meme-post-count query falls into this category. On IndexedHBase, query evaluation is done

by simply going through the rows in meme index tables for each given meme and counting the

number of qualified tweet IDs. In the case of Riak, since there is no way to directly access the

index data, this is accomplished by issuing an HTTP query for each meme to fetch the “id” field

of matched tweets. Figure 2-27 shows the query evaluation time on Riak and IndexedHBase. As

the time window gets longer, the time increases for both. However, the absolute evaluation time

is much shorter for IndexedHBase because Riak has to spend extra time to retrieve the “id” field.

Figure 2-27. Query evaluation time for meme-post-count

(2) No MapReduce on IndexedHBase; MapReduce on Riak

The timestamp-count query belongs to this category. Inferring from the schema of the meme

index table, this query can also be evaluated by only accessing the index data on IndexedHBase.

On Riak it is implemented with MapReduce over Riak search results, where the MapReduce

phase completes the timestamp counting based on the content of the related tweets. Figure 2-28

shows the query evaluation time on both platforms. Since IndexedHBase does not need to

73

analyze the content of the tweets at all, its query evaluation speed is orders of magnitude faster

than Riak.

Figure 2-28. Query evaluation time for timestamp-count

(3) MapReduce on both Riak and IndexedHBase

Most queries require a MapReduce phase on both Riak and IndexedHBase. Figure 2-29 shows

the evaluation time for several of them. An obvious trend is that Riak is faster on queries

involving a smaller number of related tweets, but IndexedHBase is significantly faster on queries

involving a larger number of related tweets and results. Figure 2-30 lists the results sizes for two

of the queries. The other queries have a similar pattern.

The main reason for the observed performance difference is the characteristics of the

MapReduce framework on these two platforms. IndexedHBase relies on Hadoop MapReduce,

which is designed for fault tolerant parallel processing of large batches of data. It implements the

full semantics of the MapReduce computing model and applies a comprehensive initialization

process for setting up the runtime environment on the worker nodes. Hadoop MapReduce uses

disks on worker nodes to save intermediate data and does grouping and sorting before passing

them to reducers. A job can be configured to use zero or multiple reducers. Since most social

74

media queries use time windows at the level of weeks or months, IndexedHBase can handle

these long time period queries well.

Figure 2-29. Query evaluation time for queries requiring MapReduce on both platforms

Figure 2-30. Result sizes for get-tweets-with-meme and get-mention-edges

75

The MapReduce framework on Riak, on the other hand, is designed for lightweight use cases

where users can write simple query logic with JavaScript and get it running on the data nodes

quickly without a complicated initialization process. There is always only one reducer running

for each MapReduce job. Intermediate data is transmitted directly from mappers to the reducer

without being sorted or grouped. The reducer relies on its memory stack to store the whole list of

intermediate data, and has a default timeout of only five seconds. Therefore, Riak MapReduce is

not suitable for processing the large datasets produced by queries corresponding to long time

periods.

Improving Query Evaluation Performance with Modified Index Structures

IndexedHBase accepts dynamic changes to the index structures for efficient query evaluation. To

verify this, we extend the meme index table to also include user IDs of tweets in the cell values,

as illustrated in Figure 2-31. Using this new index structure, IndexedHBase is able to evaluate

the user-post-count query by only accessing index data.

We use the batch indexing mechanism of IndexedHBase to rebuild the meme index table, which

takes 3.89 hours. The table size increases from 14.23GB to 18.13GB, which is 27.4% larger.

Figure 2-32 illustrates the query evaluation time comparison. The query with the new index

structure is faster by more than an order of magnitude. In cases where user-post-count is

frequently used, the query speed improvement is clearly worth the additional storage required.

As will be demonstrated in Section 3.2, the extended meme index structure is also useful for

analysis tasks.

76

Figure 2-31. Extended meme index including user ID information

Figure 2-32. Query evaluation time modified meme index structure

2.6 Conclusions

This chapter presents and evaluates the storage layer of our scalable architecture for social media

data analysis. In particular, we leverage the HBase system as the storage substrate, and extend it

with a customizable indexing framework to support novel text index structures for handling the

special queries of social media data. To the best of our knowledge, IndexedHBase is a first in

developing a fully customizable indexing framework on a distributed NoSQL database.

Performance evaluation with real data and queries from Truthy demonstrates that data loading

and query evaluation strategies based on our customized index structures are significantly more

efficient than implementations using current state-of-the-art distributed text indexing techniques.

Our experimentation with IndexedHBase leads to serveral interesting conclusions of general

significance.

77

First of all, parallelization and indexing are key factors in addressing the challenges brought by

the sheer data size and special queries of social media data analysis. In particular, parallelization

should be explored through every stage of data processing, including loading, indexing, and

query evaluation. Also index structures should be flexible and customizable, rather than static, to

effectively take advantage of the special characteristics of the data and achieve the best query

evaluation performance at the cost of less storage and computation overhead. In order to achieve

this, a general customizable indexing framework is necessary. Finally, to deal with the large size

of intermediate data and results involved in the query evaluation process, complete and reliable

parallel processing frameworks such as Hadoop MapReduce are needed. Lightweight

frameworks like Riak MapReduce are not capable of handling queries involving analysis of large

datasets.

78

Chapter 3

Batch Analysis Module – an Integrated Analysis Stack based on

YARN

79

3.1 Overview

As discussed in Section 1.3.2, a social media data analysis workflow usually consists of multiple

stages, and each stage may apply a diversity of algorithms that demonstrate different

computation and communication patterns. To achieve efficient execution of the whole integrated

workflow, two more issues beyond the queries must be addressed.

First of all, each individual algorithm needs be implemented in an efficient way using a proper

processing framework that is good at handling its computation and communication pattern. To

illustrate, for algorithms that process small intermediate datasets with a low level of

computational complexity, a sequential implementation may be enough. Algorithms that

complete a single-pass processing over a large dataset need parallelization through a framework

like Hadoop MapReduce [18]. More sophisticated algorithms that need to carry out iterative

computation and collective communication can use an iterative MapReduce framework such as

Twister [60] or Spark [166]. Finally, for algorithms designed to process high-throughput

streaming data, stream processing frameworks such as Storm [25] are the most suitable for the

parallelization.

Moreover, the analysis architecture must be able to dynamically switch to different processing

frameworks to execute different analysis algorithms and finish the end-to-end analysis workflow.

Targeting these issues, we extend IndexedHBase to an integrated analysis architecture (Figure 1-

8) based on YARN [154], which is designed for accommodating tasks from various processing

frameworks in a distributed environment with shared computing and storage resources. This

chapter describes the batch analysis module of this architecture, and Figure 3-1 illustrates the

internal interactions between the components in the batch analysis module and the storage layer.

80

The user application can define an analysis workflow in the form of a workflow driver script.

This script invokes the query-and-analyze interface of the query and analysis engine to execute

queries and analysis tasks. The engine converts these requests into jobs on different parallel

processing frameworks, and dynamically employs different frameworks to complete the queries

and analysis algorithms. During runtime, analysis algorithms may use either the data table

records selected by the queries or the index table records as input.

Figure 3-1. Internal interaction between batch analysis module and storage layer

Based on this architecture, we develop the following set of analysis algorithms that are generally

useful in the analysis workflows of many research scenarios:

A related hashtag mining algorithm using Hadoop MapReduce. For a given seed hashtag (e.g.

#ncaa), it finds all related hashtags that co-occur frequently with the seed hashtag during a

specific time window. This algorithm is useful in all scenarios where the social event of concern

81

can be identified by a set of related hashtags. It mainly relies on index tables to do mining, and

only accesses a limited number of data table records according to the seed hashtag.

A meme daily frequency generation algorithm using Hadoop MapReduce. Given a time

window, this algorithm generates the daily frequencies of all hashtags during that time. It is

useful for many research purposes, such as generation of meme evolution timelines [41] and

analysis of meme lifetime distribution [159]. It completely relies on parallel scans of index tables.

A domain name entropy computation algorithm using Hadoop MapReduce. Given a time

window, this algorithm collects the URLs posted by each user during that time, generates the

distribution of domain names in these URLs for each user, and computes the entropy of the

distribution. This algorithm is useful for projects related to analysis of user interest allocation or

comparison between social networks and search engines.

A graph layout algorithm (known as “Fruchterman-Reingold algorithm”) using the Twister

iterative MapReduce framework. Given a graph in the form of a set of nodes and edges, this

algorithm generates a nice layout of all the nodes on a canvas, so that nodes connected with

edges are positioned close to each other, and non-connected nodes tend to be apart. This

algorithm is useful in many workflows involving visualization of social network structures, such

as the one presented in [44]. Since it is computation intensive, a well-parallized implementation

can achieve near-linear scalability.

A summary of these algorithms is given in Table 3-1. In this chapter, we describe the

implementation of these algorithms and analyze their performance by comparing them to their

sequential or raw data scanning counterparts. In addition we use several of them to reproduce a

82

workflow from a previous publication about political polarization [44] and demonstrate efficient

execution of the whole workflow.

Table 3-1. Summary of analysis algorithms

Algorithm Key feature Time complexity

Related

hashtag

mining

Mostly relies on index; only

accesses a small portion of

original data.

O(H*M + N). M is the number of tweets containing the

seed hashtag in the given time window. H is the toal

number of co-occuring hashtags. N is the total number of

index entries associated with the co-occuring hashtags.

Meme daily

frequency

generation

Totally based on parallel scan of

customized index.

O(N). N is the total number of index entries associated

with all the hashtags in the given time window.

Domain name

entropy

computation

Totally based on parallel scan of

customized index.

O(N). N is the total number of index entries associated

with all the URLs in the given time window.

Graph layout First parallel implementation on

iterative MapReduce; near-linear

scalability.

O(M*N2). M is the number of iterations. N is the number

of vertices in the graph.

3.2 Analysis Algorithms

3.2.1 Related Hashtag Mining

Given a seed hashtag and a time window, the related hashtag mining algorithm finds all the

other hashtags related to the seed by using the Jaccard coefficient. For a seed hashtag s and a

target hashtag t, the Jaccard coefficient between s and t is defined as:

𝜎(𝑆, 𝑇) =
|S∩T|

|S∪T|
 (3)

Here S is the set of social updates containing s, and T is the set of social updates containing t.

When this coefficient is large enough, the two hashtags are recognized as related.

83

We implement this algorithm as a query-and-analyze process. An index operator is first applied

against the meme index table (Figure 2-19) to find the IDs of all the tweets containing the seed

hashtag s. The query and analysis engine will automatically split these tweet IDs into multiple

partitions. A Hadoop MapReduce job is then scheduled to process all the partitions in parallel

(Figure 3-2). Each mapper processes one partition, and for every tweet ID therein, the mapper

will access the corresponding row in the tweet table and output all the hashtags that co-occur

with s as intermediate results. After the shuffling phase, each reducer will receive a list of unique

target hashtags. For every target hashtag t in the list, the reducer again uses an index operator

against the meme index table to find the corresponding set of tweet IDs, T. Then the Jaccard

coefficient between s and t is calculated according to equation (3); if the value reaches a given

threshold, t will be output as a final result.

Figure 3-2. MapReduce algorithm for mining related hashtags

84

Assuming the number of tweets containing the seed hashtag is M, the initial step will use the

index operator to retrieve M entries from the meme index table. The map phase of the

MapReduce job retrieves and analyzes M tweets from the tweet table. Assuming the total

number of hashtags that co-occur with the seed hashtag in any tweet (and thus will have a

Jaccard Coefficient larger than 0) is H, then the map phase will output H candidate hashtags.

We denote these candidate hashtags as h1, h2, … hH, and the set of index entries associated with

each of them as T1, T2, … TH. Suppose |T1| + |T2| + … + |TH| = N, so the reduce phase will

retrieve H index entries from the index table. For each candidate hi, a merge-based algorithm can

be used to calculate the insersection and union of S and Ti. So the time spent on computing the

Jaccard Coefficient is (M + |T1|) + (M + |T2|) + … + (M + TH) = H*M + N. Therefore, the time

complexity of the whole algorithm is O(M) + O(H*M + N) = O(H*M + N).

3.2.2 Meme Daily Frequency Generation

Given a time window, the meme daily frequency generation algorithm generates the daily

frequencies of all hashtags during that time. This algorithm can be used in many research

projects such as generation of meme evolution timelines [41] and analysis of meme lifetime and

popularity distribution [159]. Figure 3-3 shows an example of meme timelines available on the

website of Truthy [145]. Considering the schema of meme index table in Figure 2-19, it is

obvious that this can be done by solely scanning the index without touching any original data.

The algorithm is implemented as a Hadoop MapReduce program illustrated in Figure 3-4. Each

mapper takes one region of the meme index table as input, and generates the daily frequencies

for each hashtag by going through the corresponding row and doing simple counting.

85

Figure 3-3. An example meme evolution timeline on the Truthy website [145]

Figure 3-4. Map-only job for meme daily frequency generation

The total amount of data scanned by the mappers is the total number of index entries associated

with hashtags in the index tables. It is obvious that the amount of computation spent on

generating the results is linear to the number on index entries. So the overall complexity of the

algorithm is O(N), assuming N is the total number of index entries scanned.

3.2.3 Domain Name Entropy Computation

For a given time window, the domain name entropy computation algorithm collects the URLs

posted by all users in their tweets. Then for each user, it extracts the tweeted domain names,

generates the probability distribution of these domain names, and computes the entropy value

based on the distribution. By analyzing the entropy for a large number of users, it is possible to

86

study users’ interest allocation on the social network, and compare the results against search

engines to further investigate whether social networks play a special role in shaping users’

interest online.

This algorithm can be implemented as a single MapReduce job over extended meme index tables

that incorporate user IDs as an entry field, as Figure 3-5 displays. Recall from Chapter 2 that the

meme index tables will index hashtags, user-mentions, and URLs contained in the tweets, and

we could leverage this extended index for improving the efficiency of queries like user-post-

count. Here we show its value for supporting analysis tasks. The input to the map phase of the

MapReduce job is the range of the index table that covers all the index keys for URLs. The

number of mappers launched depends on the number of regions within this range. Index entries

are passed to a mapper as a sequence of <key, value> pairs, where key is a row key of the index

table (i.e. a URL), and value contains a number of index entries associated with the URL. For

each entry, the mapper extracts the domain name from the URL and the user ID from the entry

field, then emits a pair <userID, domainName> to the output. The output of all mappers are

distributed to multiple reducers, each handling a subset of user IDs. For each user ID, the reducer

counts the frequency of each domain name that he/she has tweeted about, generates the

distribution, and computes the entropy.

The amount of data scanned by the mappers is the total number of index entries for URLs. Time

spent by the mappers on the conversion is linear to the number of input index entries. This means

the time spent by reducers for generating the domain name distribution and computing the

entropy is linear to the number of <userID, domainName> pairs, which is the same as the

number of index entries. Therefore, the overall complexity of the algorithm is O(N), assuming N

is the total number of index entries for URLs.

87

Figure 3-5. MapReduce algorithm for domain name entropy generation

3.2.4 Graph Layout

The graph layout algorithm we developed is a parallelization of the “Fruchterman-Reingold”

force-directed layout algorithm. The idea of the algorithm is to compute the layout of a graph by

simulating the behavior of a physical system where vertices of the graph are taken as atomic

particles and edges as springs. A repulsive force exists between each pair of atomic particles,

which tends to push them away from each other. An attractive force exists on each spring,

pulling the vertices at the two ends closer to each other. Both forces are defined as functions of

distances between vertices. Therefore, starting from an initial state of random layout, in each

iteration, disconnected vertices are pushed further apart, and vertices connected with edges are

pulled closer together. Over multiple iterations, the whole system eventually evolves to a ‘low-

energy’ state. Besides the forces, a “temperature” parameter is used to limit the maximum

88

displacement of vertices in each iteration. The temperature eventually ‘cools’ down as iterations

proceed.

We implement this algorithm as an iterative MapReduce job on Twister [60], which is specially

designed to support large-scale iterative computation. For simplicity, we call this algorithm

MRFR (itervative-MapReduce version of Fruchterman-Reingold). The mapper and reducer

functions used are given in Figure 3-6. Before the job starts, the graph is partitioned into multiple

sub-graphs, each containing a subset of vertices associated with their neighbors. During job

initialization time, an initial random layout of the whole graph is broadcasted to all the mappers.

Each mapper reads a sub-graph during task initialization time, then saves it in memory for usage

across all iterations. Within every iteration, each mapper receives the global layout of the whole

graph from the last iteration through its input <key, value> pair. Then for every vertex in the sub-

graph, the mapper first calculates its displacement based on the repulsive forces it receives from

every other vertex as well as the attractive forces it receives from its neighbors, and finally

decides its total displacement by taking the temperature into consideration. Then a new layout of

the sub-graph is generated based on the displacements and output as an intermediate result from

the mapper. The reducer collects the output from all mappers to generate the global layout. If the

maximum number of iterations is reached, the reducer will output the global layout as the final

result. Otherwise, the global layout is broadcasted to all mappers for the next iteration.

Within each iteration, the processing time is dominated by the computation of repulsive forces

between each pair of vertices, which is O(N2), where N denotes the total number of vertices in

the graph. Thus the overall complexity of the algorithm is O(M*N2), where M is the number of

iterations. It takes less than 100 iterations in most cases to generate an elegant layout of the input

89

graph. Since the algorithm is computation intensive, we can achieve near-linear scalability for

large graphs, as will be demonstrated in Section 3.2.5.

Figure 3-6. Parallel Fruchterman-Reingold algorithm using iterative MapReduce

3.2.5 Performance Analysis

A major advantage of the related hashtag mining, meme daily frequency generation, and

domain name entropy computation algorithms is that they mainly rely on indices to finish their

90

computation. Since the size of an index is much smaller than the original data (Table 2-3), these

algorithms are significantly more efficient than solutions that process the original data.

To demonstrate this, we compare the efficiency of these algorithms to their counterparts based

on parallel scans of the original data, which are implemented as Hadoop MapReduce jobs that

directly process the .json.gz files. We call these jobs “Hadoop-FS” versions of implementation.

Specifically, the “Hadoop-FS” version of related hashtag mining is implemented as two

consecutive map-only jobs. The first job launches multiple mappers, each processing the .json.gz

file for one day. The mapper reads each tweet from the file, and outputs a <hashtag, tweetID>

for each hashtag contained in the tweet. If the tweet contains the seed hashtag, then all hashtags

in this tweet will be written to a file containing the co-occuring hashtags. The second job reads

this file and launches multiple mappers to only process the <hashtag, tweetID> pairs for the co-

occuring hashtags, then computes the Jaccard Coefficient for them.

The “Hadoop-FS” job for daily meme frequency generation also launches multiple mappers to

process multiple .json.gz files in parallel. Each mapper reads tweets from the file and outputs

<hashtag, tweetTimestamp> pairs for every hashtag contained. The reducers will group the pairs

for the same hashtag together and generate the daily frequencies.

For the “Hadoop-FS” job for domain name entropy computation, each mapper also processes

one .json.gz file. It reads tweets from the file, then outputs <userID, domainName> pairs for

every URL contained. The reducers will group the pairs for the same user ID together, then

generate the domain distribution and compute the entropy.

Figure 3-7 illustrates the performance comparison between the “Hadoop-FS” versions and the

versions based on IndexedHBase. All tests are done on a private eight-node cluster called

91

“Madrid”. The hardware configuration of the nodes is listed in Table 3-2. Each node runs RHEL

6.5 and Java 1.7.0_45. For the deployment of YARN and IndexedHBase, Hadoop 2.2.0 and

HBase 0.96.0 are used. One node is used as the HDFS name node, YARN resource manager,

HBase master, and Zookeeper. The other seven nodes are used as HDFS data nodes and HBase

region servers.

Figure 3-7. Analysis algorithm performance comparison

Table 3-2. Hardware configuration of each node of the Madrid cluster

CPU RAM Hard Disk Network

4 * 4 Quad-Core AMD Opteron 8356 2.3G Hz 48GB 4TB HDD + 1TB SSD 1Gb Ethernet

As shown in Figure 3-7, the algorithms based on IndexedHBase are tens of times faster than the

“Hadoop-FS” versions for the case of related hashtag mining and daily meme frequency

generation. The processing time for the domain name entropy computation algorithm is longer

because 2012-10 has more data and the size of index entries for URLs is larger. Yet it is still four

times faster than its “Hadoop-FS” counterpart. Beyond the execution time, these algorithms are

also more efficient in terms of resource usage. Each MapReduce job over the index tables

92

launches seven to eight mappers, which equals the number of related regions of the tables. In

comparison, the “Hadoop-FS” jobs launch 30 to 31 mappers, because there is one .json.gz file

for each day.

We measure the scalability of the graph layout algorithm using 33 nodes of the Alamo HPC

cluster on FutureGrid [157]. The per-node hardware configuration is given in Table 1. All nodes

are installed with CentOS 5.9 and Java 1.7.0_40. One of the nodes is used to host a Broker of

ActiveMQ 5.4.2, and the other 32 nodes run daemons of Twister-Ivy. We take a retweet graph

containing 477,111 vertices and 665,599 edges as input, then measure the per-iteration execution

time of MRFR using different numbers of mappers. Figure 3-8 illustrates the results. According

to Figure 3-6, each iteration is composed of a computation stage (map) and a communication

stage (reduce and broadcast). For a graph containing more than 470,000 vertices, the execution

time of each iteration is dominated by the map phase that computes the forces between pairs of

vertices. Therefore, by parallelizing this intensive computation with multiple mappers, we are

able to achieve a near-linear scalability. Details about how the retweet graph was generated will

be described in the next section.

Table 3-3. Hardware configuration of each node of the Alamo cluster

CPU RAM Hard Disk Network

8 * 2.66GHz (Intel Xeon X5550) 12GB 500GB 40Gb InfiniBand

93

Figure 3-8. Per-iteration execution time and speed-up of MRFR

3.3 Composition and Execution of Analysis Workflows

Using the queries and analysis algorithms based on IndexedHBase, users can compose analysis

workflows for various research projects. In this section, we demonstrate the composition and

execution of workflows by reproducing the end-to-end analysis presented in a published research

project [44] using the dataset of Truthy. The project investigated how social media shapes the

networked public sphere and facilitates communication between communities with different

political orientations. More than 250,000 politically relevant tweets were extracted from the

Truthy dataset during the six weeks leading up to the 2010 U.S. congressional midterm elections.

Then the characteristics of the retweet network and mention network generated from these tweets

were examined. The results showed that the retweet network exhibited a highly modular

structure, segregating users into two homogenous communities corresponding to the political left

and right. In contrast, the mention network did not exhibit such political segregation.

We will first try to reproduce the analysis and results in [44] on Cloud DIKW using the same

dataset from 2010, after which we extend the same analysis process to another dataset collected

during the six weeks before the 2012 U.S. presidential election to verify if a similar pattern in the

94

social communication networks can be observed. Our explanation in this section focuses on

analysis of the retweet network, and implementations for the mention network are similar.

3.3.1 Analysis Workflow for Political Polarization Investigation

Figure 3-9 illustrates the major steps of the analysis workflow in [44]. The first two steps in the

workflow try to find a set of political hashtags that can be used to identify politically related

tweets from all those collected during the selected six-week time window. In Step (1), two of the

most popular political hashtags, #p2 (“Progressives 2.0”) and #tcot (“Top Conservatives on

Twitter”) are manually selected as seed hashtags. Step (2) tries to extend this initial set with

other related hashtags with the related hashtag mining algorithm, using a threshold of 0.005.

Figure 3-9. End-to-end analysis workflow in [44]

Step (3) executes the get-retweet-edges query, using all hashtags found in Step (2) as the memes

parameter and the six-week time window as the time-window parameter. It does this to get the

retweet network among users from both political orientations. The retweet edges compose a

95

graph structure, with vertices representing users and edges representing ‘retweet’ relationships

that happened during the time window.

Step (4) uses a combination of two algorithms, leading eigenvector modularity maximization

[109] and label propagation [118] to detect communities on the retweet network. Here a

“community” is defined as a set of vertices on a graph that are densely inter-connected and

sparsely connected to the other parts of the graph. After this step, vertices from different

communities are labeled with different colors for visualization in Step (6).

In order to achieve a high-quality visualization of segregated communities in the retweet network,

Step (5) uses the “Fruchterman-Reingold” algorithm [66] to generate a desirable layout of the

retweet network. Step (6) makes a final plot of the retweet network from Step (3) using the color

labels computed in Step (4) and layout information generated in Step (5).

3.3.2 Analysis of Twitter Data from 2010

We compose the workflow using our queries and analysis algorithms on the scalable architecture,

and compare them to the original implementations in [44]. The experiments are carried out on 35

nodes of the same Alamo cluster as Section 3.2.5 (Table 3-3). We use Hadoop 1.0.4, HBase

0.94.2, Twister-Ivy (together with ActiveMQ 5.4.2), and R 2.10.1 in our experiments. Among

the 35 nodes, one is used to host the Hadoop jobtracker and HDFS namenode, another hosts the

HBase master, and a third hosts Zookeeper and Active MQ broker. The other 32 nodes host

HDFS datanodes, Hadoop tasktrackers, HBase region servers, and Twister daemons.

As explained in Section 3.1, Step (1) is fixed to a manual choice of #p2 and #tcot. Step (2) is

completed by running the related hashtag mining algorithm twice, once for #p2, and again for

#tcot. Overall, it takes 109.3 seconds to find related hashtags for #p2, which involves analysis of

96

the content of 109,312 tweets with 4 map tasks. The same process for #tcot spends 128.1 seconds

in analyzing 189,840 tweets with 8 map tasks. Merging the results for both seed hashtags, we

found the same 66 related hashtags as [44].

Step (3) is completed with the get-retweet-edges query. This step takes 93.3 seconds, and returns

the same retweet network as in [44], which contains 23,766 non-isolated nodes.

Steps (4), (5), and (6) are completed by using the igraph [141] library of R in [142], which

provides a baseline benchmark with sequential implementation. Table 3-4 lists the execution

time of these three steps with R on a single node. It can be observed that Step (5) is significantly

more time consuming than the other two steps, and may potentially become a bottleneck of the

analysis workflow as we apply it to larger-scale datasets. Therefore, we use our parallel MRFR

algorithm to complete this step. To facilitate it further, we modified get-retweet-edges to get get-

retweet-adjmtx, a new query that generates the adjacency matrix of the retweet network instead

of only the edges. This query outputs a list of lines, and each line is in the form of ‘<vertex ID>

<neighbor vertex ID> <neighbor vertex ID> …’, i.e. a vertex ID followed by a list of IDs of

other vertices that are connected with this vertex by edges. This matrix representation is then

given to MRFR as input.

Table 3-4. Sequential execution time (seconds) on R for Step (4) - (6) for 2010

(4) Community Detection (5) Graph Layout (500 iterations) (6) Visualization

3.4 4508.3 1.6

Figure 3-10 illustrates the per-iteration execution time and speed-ups of MRFR under different

levels of parallelism. It is obvious that MRFR can effectively speed up the graph layout step.

Specifically, with 64 mappers on 8 nodes, MRFR runs 18 times faster than the sequential

implementation in R, completing 500 iterations within 300 seconds. However, MRFR does not

97

achieve very good scalability for the 2010 retweet network, mainly because the amount of

computation required in mappers is not large enough compared to the scheduling and

communication overhead. For example, in the case of 64 mappers, the slowest mapper finishes in

250 ms, while the total overhead stays consistent at about 350 ms across different numbers of

mappers. Figure 3-11 shows the final visualization of the retweet network using the layout

generated by MRFR. The layout is almost the same as the plot in [44], with only a slight

difference caused by a different initial random layout. As identified in [44], the red cluster is

made of 93% right leaning (conservative) users, and the blue cluster is made of 80% left leaning

(progressive) users. Since we generate the same result as [44] in each step of the analysis

workflow, our solution on IndexedHBase is validated.

Figure 3-10. Per-iteration execution time and speed-up for MRFR for 2010

98

Figure 3-11. Final plot of the retweet network in 2010

3.3.3 Analysis of Twitter Data from 2012

Here we extend the analysis workflow in Figure 3-9 to a later dataset collected during the six

weeks (09/24/2012 to 11/06/2012) before the 2012 U.S. presidential election, and verify if the

corresponding retweet network demonstrates a similar polarized pattern. The average data size

for each day in 2012 is about 6 times larger than 2010.

Step (1) still starts from #p2 and #tcot. Step (2) spends 142 seconds in mining related hashtags

for #p2, and 191 seconds for #tcot. The number of tweets analyzed is 160,934 and 364,825

respectively. In total, 66 related hashtags are found (see Table 3-5). In Step (3), 80 mappers need

150 seconds to analyze 2,360,361 politically related tweets, and the result is a retweet network

that is 20 times larger, with 477,111 vertices and 665,599 edges.

99

Table 3-5. Related hashtags for 2012

Related to #p2: #2futures #47percent #4jobs #connecttheleft #cspj #mittromney #ofa #vote #votedem

#wiright #ctl #dems #sensata #waronwomen #1u #benghazi #dem #p1 #fem2 #p2b #romnesia #tcot #dnc

#forward #lgbt #msnbc #tpot #wiunion

Related to both: #obama #resist44 #romney #teaparty #tiot #cnn #lnyhbt #mitt2012 #news #ocra #ohio

#ows #p21 #topprog #twisters #election2012 #gop #mapoli #masen #ncpol #sgp #sot #war #ccot #debate

#obama2012 #romneyryan2012 #tlot

Related to #tcot: #debates #p2 #benghazigate #dems #gop2012 #benghazi #nobama #tpp #cantafford4more

#nra #oh #prolife

Step (4) requires 2,402 seconds on R to complete community detection for this large network. In

Step (5), it takes as long as 6,044 seconds to finish only one iteration of the Fruchterman-

Reingold algorithm on R. This demonstrates that due to the fast growth of data volume,

sequential algorithms quickly become infeasible for social data analysis scenarios. In order to

address this challenge, we use more mappers in MRFR to complete Step (5), and achieve nice

speed-ups as shown in Figure 3-8. The near-linear scalability clearly demonstrates that MRFR is

especially good at handling large networks. In particular, using 256 mappers on 32 nodes, MRFR

can finish one iteration 355 times faster than the sequential implementation in R. Step (6) runs

for 32 seconds on R, and Figure 3-12 shows the final plot of the two largest communities of the

retweet network. On the one hand, we can still observe a clearly segregated political structure in

the 2012 network; on the other hand, the two sides also seem to demonstrate a ‘merging’ trend

by having more edges reaching out to each other.

100

Figure 3-12. Final plot of the retweet network (2012)

3.4 Related Work

Compared with existing relational databases [78] and NoSQL databases [52][105][125], we not

only support novel customizable text index structures, but also make innovative use of them.

Instead of hiding them behind the queries, we expose direct operator interfaces so that they can

be used in post-query analysis algorithms. Also by leveraging the inherent integration of

IndexedHBase and Hadoop MapReduce, we are able to support efficient parallel scans of the

indices. The significant performance difference between our analysis algorithms and their

“Hadoop-FS” counterparts clearly demonstrates the value of indices in supporting analysis tasks

beyond the basic queries.

101

By integrating components from Hadoop, Hive [21], and relational databases [136], HadoopDB

[5] provides a hybrid solution that can utilize the indexing techniques offered by relational

databases to achieve efficient query evaluation. Despite this, HadoopDB applies deep changes to

the Hadoop framework; thus is difficult to configure and maintain. The SQL queries supported

by HadoopDB also do not cover sophisticated iterative analysis algorithms.

By using Spark [166] as the execution engine and applying various optimizations to its in-

memory processing model, Shark [16] is able to support both efficient SQL queries and

sophisticated iterative analytics at a large scale. Compared with Shark, our architecture supports

efficient fine-grained data operations, putting an emphasis on building customizable index

structures to support both queries and analysis tasks. IndexedHBase can be integrated with Shark

to further improve the performance of analysis jobs by only loading relevant data records as

RDDs in Spark. The columnar storage of table data used by Shark is inspiring to us in terms of

more efficient iterative analysis tasks.

To the best of our knowledge, MRFR is the first iterative MapReduce implementation for the

Fruchterman-Reingold layout algorithm. There have been previous efforts on parallelizing this

algorithm with MPI [106] and GPUs [129], but for commodity cluster environments where

GPUs are not available, MRFR is the best fit and delivers near-linear scalability. We may

consider extending our solution with the usage of GPUs on each node to handle larger-scale

problems.

3.5 Conclusions

In summary, we make the following contributions in this chapter:

102

First of all, we extended IndexedHBase to a scalable architecture, which not only encapsulates

efficient indexing and query mechanisms, but can also be integrated with various parallel

processing frameworks such as Hadoop and Twister to support sophisticated analysis of the

query results.

Based on this architecture, we develop a set of analysis algorithms, including related hashtag

mining, meme daily frequency generation, domain name entropy computation, and graph layout,

which are generally useful for composing analysis workflows in many research scenarios. Our

experience with the first three algorithms demonstrates that indices are not only useful for query

evaluation, but also valuable for analysis and mining purposes. Our index-based algorithms have

proven to be significantly more efficient than the corresponding implementations based on

parallel scans of original data, in terms of both execution time and resource usage. These are

made possible by exposing proper index operator interfaces and leveraging the inherent

integration between IndexedHBase and Hadoop MapReduce. Our graph layout algorithm is the

first iterative MapReduce implementation of the Fruchterman-Reingold algorithm. It can achieve

near-linear scalability for processing large graphs in distributed environments.

Finally, based on the queries and analysis algorithms, we demonstrate the composition and

execution of analysis workflows by reproducing the end-to-end analysis process from a

published research project about political polarization [44] and further extending it to another

data subset about the 2012 U.S. presidential election. Experiments demonstrate that our solutions

on Cloud DIKW can consistently provide efficient and scalable solutions for the analysis

workflows, despite the significant data size growth over time.

103

Chapter 4

Stream Analysis Module - Parallel Clustering of High-Dimensional

Social Media Data Streams

104

4.1 Background

As introduced in Chapter 1, Cloud DIKW is designed to support scientific analysis pipelines that

require the integration of both sophisticated batch data processing algorithms and non-trivial

streaming algorithms. By “non-trivial” algorithms, we refer to the cases where parallel workers

not only process stream partitions independently, but also dynamically synchronize with the

global state from time to time. The synchronization strategy could either leverage a pub-sub

messaging system, reuse the communication mechanisms in batch algorithms, or a combination

of both.

This chapter presents our contribution in applying Cloud DIKW to support one representative

application: clustering of social media data streams. Specifically, we analyze the unique

challenges brought by high-dimensional social media data streams and propose our extensions to

current state-of-the-art stream processing frameworks, as well as an innovative synchronization

method, for addressing the challenges.

As an important data mining technique, clustering is used in many applications involving social

media stream analysis, such as meme [63][85], event [10], and social bots detection [63]. As an

example, Figure 4-1 illustrates the analysis pipeline of the DESPIC (Detecting Early Signatures

of Persuasion in Information Cascades) platform [63] that is being developed by the Center for

Complex Networks and Systems Research at Indiana University. This platform first clusters

posts collected from social streams (e.g., tweets from Twitter) into groups of homogenous

memes, according to various measures of similarity, and then uses classification methods to

detect memes generated by real users and separate them from those produced by social bots [64].

105

Figure 4-1. DESPIC architecture for meme clustering and classification [63]

Social media data streams come in the form of continuous sequences of atomic posts, e.g.

Twitter tweets or Facebook status updates. The target of the clustering process is to group

messages that carry similar meaning together, while capturing the dynamic evolution of the

streams that is closely related to social activities in the real world. For example, two tweets,

“Step up time Ram Nation. #rowdyrams” and “Lovin @SpikeLee supporting the VCU Rams!!

#havoc”, should be grouped into the same cluster because they both talk about the VCU

(Virginia Commonwealth University) basketball team. Furthermore, the appearance of

“@SpikeLee” in the cluster is an indicator of the event that the famous director Spike Lee was

wearing a VCU T-shirt while watching the VCU and UMass game courtside on Mar 16th, 2013.

In order to design a high-quality clustering algorithm, some unique characteristics of social posts

must be considered. For instance, the length of the textual content of a social message is

normally short, which makes clustering methods solely based on lexical analysis ineffective

[10][29][63]. Social messages also carry rich information about the underlying social network

(e.g. through the functionality of ‘retweet’ and ‘mention’ on Twitter), which can be valuable for

measuring the similarity among data points and clusters. In addition they may contain other

metadata such as temporal and geographical information, hashtags, URLs, etc., which can also

be leveraged to effectively guide the clustering process.

106

Domain researchers in the area of social media data analysis have recently invested a great deal

of effort toward developing proper data representations and similarity metrics to generate high-

quality clusters [10][63][29][85]. An important conclusion is that the data representation should

not only describe the textual features of the social messages, but also capture the temporal,

geographical, and social network information attached therein. For example, Aggarwal and

Subbian [10] proposed an event-detection system that uses two high-dimensional vectors to

describe each social post: one content vector that represents the textual word frequencies, and

another binary vector housing the IDs of the social message’s recipients (e.g., the followers of a

tweet’s author on Twitter). To compute the similarity between two social messages, an

independent score is first computed using each vector, and then a linear combination of the two

scores is taken as the overall similarity between the two messages. It has been demonstrated that

the quality of the resulting clusters can be significantly improved by using the combined

similarity rather than just the textual content similarity. JafariAsbagh et al. [63] proposed to first

group the social messages into ‘protomemes’ according to shared metadata such as hashtags and

URLs, and then use the protomemes as input data points to the clustering algorithm. They use

four high-dimensional vectors to describe each protomeme and define a new ‘diffusion network’

vector to replace the full followers vector used in [10], which is hardly available in a practical

streaming scenario. The authors show that a combination of these new techniques can help

generate better clustering results than previous methods when measured against a common

ground truth data set.

To achieve efficient processing of social media data streams, these special data representations

and similarity metrics are normally applied in a single-pass clustering algorithm such as online

K-Means and its variants [10][85][87]. The algorithm can be further equipped with mechanisms

107

like sliding time window [15][85], weighted data points [87][8][9][11], and outlier detection

[8][10][35][85] to deal with the dynamic evolution of the streams. However, due to the high cost

of similarity computation coming from the high-dimensional vectors, sequential implementations

of such single-pass streaming algorithms are not fast enough to match the speed of real-world

streams. For example, the fastest implementation presented in [10] can only process less than

20,000 tweets per hour, while the Twitter gardenhose stream [67] generates over 1,000,000

tweets in one hour. According to a test we carried out, it takes 43.4 hours for a sequential

implementation of the algorithm in [85] to process one hour’s worth of data collected through the

gardenhose Twitter streaming API. It is therefore clear that parallelization is a necessity in order

to handle real-time data streams.

In this chapter we describe our work in parallelizing a state-of-the-art social media data stream

clustering algorithm presented in [85], which is a variant of online K-Means incorporating

sliding time window and outlier detection mechanisms. We use Apache Storm [25] stream

processing engine in Cloud DIKW for data transmission and workload distribution, and tackle

two system-level challenges emerging from parallelization of such type of algorithms.

The first challenge concerns the fact that most stream processing engines organize the distributed

processing workers in the form of a directed acyclic graph (DAG); this makes it difficult to

dynamically synchronize the state of the parallel clustering workers without breaking the “live”

processing of the stream. The reason is that the synchronization step requires parallel workers to

send their local updates either to each other or to a global updates collector, which will then

broadcast the updated global state back to the parallel workers. Both methods inevitably create

cycles in the communication channel, which is not supported in the DAG-oriented stream

processing frameworks. To address this challenge, we create a separate synchronization channel

108

by incorporating the pub-sub messaging system ActiveMQ [16] into Cloud DIKW, and combine

its functionality with Storm to coordinate the synchronization process.

The second issue is that the sparsity of high-dimensional vectors may cause the cluster centroids

to greatly increase in size with the addition of new data points to the clusters. Figure 4-2

illustrates a cluster containing two tweets about VCU basketball as mentioned earlier. Due to the

sparsity of the content vector (assuming the hashtags and user mentions are extracted as another

separate vector) of each data point, they only overlap along one dimension: “ram”. As a result,

the length of the content vector of the centroid, which is computed as an average of the two data

points, is close to the sum total length for two separate vectors. Due to the high dimensionality of

these vectors, this trend can continue as more data points are added, and the length of the

centroid vectors increases dramatically. A sliding time window mechanism may help to limit the

total size by removing old data points, but the full centroids data remains large and difficult to

transfer over the network. Consequently, the classic synchronization strategy of directly

broadcasting the cluster centroids becomes infeasible and hampers scalability of the parallel

algorithm. To solve this problem, we propose a new strategy that broadcasts the dynamic

changes (i.e. the “deltas”) of the clusters rather than the complete centroids data. Since the size

of the delta is small, we are able to keep the synchronization cost at a low level and achieve good

scalability. For sake of simplicity, we name the traditional synchronization strategy full-centroids

strategy, and our new synchronization strategy cluster-delta strategy.

We use a real dataset collected through the Twitter streaming API 10% sample (“gardenhose”)

[67] to verify the effectiveness of our solutions and evaluate the scalability of our parallel

algorithm. The results demonstrate that we can keep up with the speed of the Twitter gardenhose

stream with 96-way parallelism. By natural improvements to Cloud DIKW, including advanced

109

collective communication techniques developed in our Harp [169] project, we will be able to

process the full Twitter data stream in real-time with 1000-way parallelism. Our use of powerful

general software subsystems will enable many other applications that need integration of

streaming and batch data analytics.

Figure 4-2. An example of growing vector size of centroids

4.2 Related Work

Data stream clustering algorithms have been an active research area for many years as witnessed

by Ding et al. review work [56]. For the problem of high-dimensional data stream clustering,

techniques such as projected/subspace clustering [8][9][138] and density-based approaches

[15][35][138] have been proposed and investigated. Due to the unique data representations

(multiple high-dimensional vectors from totally independent spaces) and similarity metrics used

for social media data streams, it seems hard to apply these existing techniques to the case of

social media streams. We listed and discussed practical limitations in a previous work [63]. Here

we inherit the high-dimensional data representation and similarity metrics that have been proven

effective, and focus on improving the efficiency of the clustering algorithm through

parallelization.

110

The algorithm presented in [10] uses sketch tables [7] to deal with the growing size of tweet

followers network information maintained for the clusters. However, sketch tables only

approximate vector values and thus may impact the accuracy of the clustering results. In the case

of our algorithm, since the size of the centroid vectors is constrained by the size of the sliding

time window, we are not forced to use sketch tables in the cost of accuracy so far. For faster data

streams or longer time windows, a sketch table-based implementation could eventually become

more efficient in terms of both space and time for computing the similarities between data points

and cluster centroids. Nonetheless, our cluster-delta synchronization strategy may still achieve

better efficiency than broadcasting the whole sketch tables in such cases since the sketch tables

have to be large enough to ensure accuracy.

A similar work to ours is the parallel implementation of the Sequential Leader Clustering [76]

algorithm presented in [164], which also leverages Storm [25] for parallel processing and data

stream distribution. The parallel clustering algorithm by Wu et al. is simplified, because it only

considers the textual content of social messages and uses Locality-Sensitive Hashing [31] to

guide the stream distribution, which avoids synchronization among the parallel clustering

workers. Yet this type of algorithms is unable to make use of the valuable social network

information contained in the data streams. Callau-Zori proposed a distributed data stream

clustering protocol based on sequential (a, b)-approximation algorithms for the K-Means

problem [34]. Although the author provides a theoretical analysis of its accuracy and efficiency,

it does not address the special case of high-dimensional data, and only considers the situation

within a single time window.

Compared with streaming databases such as Aurora [39] and Borealis [2], the functionality of

our clustering workers in Storm is more complicated than their streaming operators for

111

evaluating SQL queries. Cloud DIKW can utilize other stream processing engines such as

Apache S4 [108] and Spark Streaming [167]. We choose Storm because its pull-based data

transmission mode makes it easy to carry out controlled experiments at different levels of

parallelism. Storm gives us more flexibility to implement and test different synchronization

strategies. Interested readers may refer to [86] for a survey of major distributed stream

processing frameworks.

4.3 Sequential Clustering Algorithm

The sequential algorithm we parallelize was originally proposed in [85] for clustering memes in

the Twitter streams of tweets. In order to generate high-quality clusters, the algorithm first

groups tweets into ‘protomemes’, and then uses these protomemes as input data points for the

clustering process. We start by introducing the definition of a protomeme and its data

representation.

4.3.1 Protomemes and Clusters

A protomeme is defined as a set of tweets grouped together according to a shared entity of one of

the following types:

 Hashtags. Tweets containing the same hashtag.

 Mentions. Tweets mentioning the same user. A mention is identified by a user’s screen name

preceded by the ‘@’ symbol in the text body of a tweet.

 URLs. Tweets containing the same URL.

 Phrases. Tweets sharing the same phrase. A phrase is defined as the textual content of a tweet

that remains after removing the hashtags, mentions, URLs, and after stopping and stemming

[170].

112

We call these four types of entities markers of protomemes. Note that according to this definition,

a tweet may belong to multiple protomemes. Each protomeme is represented by its marker and

four high-dimensional vectors:

(1) A binary tid vector containing the IDs of all the tweets in this protomeme: VT = [tid1, tid2, …,

tidT];

(2) A binary uid vector containing the IDs of all the users who authored the tweets in this

protomeme: VU = [uid1, uid2, …, uidU];

(3) A content vector containing the combined textual word frequencies for all the tweets in this

protomeme: VC = [w1:f1, w2:f2, …, wC:fC];

(4) A binary vector containing the IDs of all the users in the diffusion network of this protomeme.

The diffusion network of a protomeme is defined as the union of the set of tweet authors, the set

of users mentioned by the tweets, and the set of users who have retweeted the tweets. We denote

this diffusion vector as VD = [uid1, uid2, …, uidD].

A cluster is defined as a set of protomemes grouped together according to a certain similarity

metric. Since a tweet may belong to multiple protomemes, clusters can have overlap with respect

to tweets. The centroid of each cluster is also represented by four high-dimensional vectors, which

are the averages of the corresponding vectors of all the protomemes in the cluster. We denote the

vectors of the cluster centroid as VT, VU, VC, and VD.

To compute the similarity between a protomeme and a cluster, the cosine similarity between each

vector of the protomeme and the corresponding vector of the cluster centroid is first computed.

Then the maximum value of all these cosine similarities is taken as the overall similarity between

the two. It has been demonstrated in [63] that for the purpose of generating high-quality clusters,

taking the maximum is as effective as using an optimal linear combination of all the cosine

113

similarities. There are multiple ways to define distance based on the similarity; we use the

simplest form 1 – similarity.

4.3.2 Sequential Clustering Algorithm

Figure 4-3 illustrates the sketch of the sequential clustering algorithm from [85]. The algorithm

controls its progress through a sliding time window that moves step by step. The length of a time

step in seconds and the length of the time window in steps are given as input parameters. These

are defined with respect to the timestamps of the social posts (i.e., the tweets), not the wall-clock

time for running the algorithm. Every time the sliding window advances, old protomemes falling

out of the current window are deleted from the clusters and new ones are generated using the

tweets from the latest time step. For every new protomeme, the algorithm first checks whether

others with the same marker have been previously assigned to a cluster. If so, the new

protomeme will be added to the same cluster. Otherwise, the algorithm will compute the new

protomeme’s similarity with all the existing clusters, and decide whether or not this is an outlier.

If not, the protomeme is assigned to the most similar cluster. Otherwise, a new cluster is created

and initialized with this new protomeme, then inserted into the list of all clusters by replacing

either an empty cluster or the least recently updated one. In order to determine whether the

protomeme is an outlier, the algorithm maintains the mean μ and standard deviation σ of the

similarities between all processed protomemes and the centroid of the clusters they belong to. If

the similarity between a new protomeme and its closest cluster is smaller than the mean by more

than n standard deviations, then the protomeme is identified as an outlier. μ and σ are maintained

incrementally as in [10].

114

Figure 4-3. The social media stream clustering algorithm from [85]

The quality of clusters generated by this algorithm was evaluated in [85] using a ground truth

dataset collected from the Twitter gardenhose stream [67] during a week in 2013, which includes

all the tweets containing the Twitter trending hashtags [65][150] identified for that period. A

115

variant of the Normalized Mutual Information (NMI) [46] measurement, LFK-NMI [90], which is

especially well suited for the case of overlapping clusters, was computed between the result

clusters of the algorithm and the ground truth clusters. The results in [85] show that this algorithm

can achieve better performance than previous state-of-the-art methods, including the one

presented in [10]. We use the same ground truth dataset and LFK-NMI measurement to verify the

effectiveness of our parallel implementation of the algorithm in Section 4.5.

4.3.3 Opportunities and Difficulties for Parallelization

We run the sequential algorithm on a raw dataset (without any filtering) containing six minutes

of tweets (2014-08-29 05:00:00 to 05:05:59) collected from the Twitter gardenhose stream. By

fixing the parameters K, l, and n to 120, 6, and 2, and varying the length of a time step, we

collect some important runtime statistics that are informative to the development of the parallel

version of the algorithm.

Table 4-1. Runtime Statistics for the Sequential Algorithm

Time Step Length (s)
Total Length of

Content Vector

Similarity

Compute time (s)
Centroids Update Time (s)

10 47749 33.305 0.068

20 76146 78.778 0.113

30 128521 209.013 0.213

Table 4-1 presents the results for the last time step of the whole clustering process when the time

step length is increased from 10 to 30 seconds (which means the time window length is increased

from 60 to 180 seconds). The numbers for the other time steps follow a similar pattern. The

second column measures the total length of the content vectors of all the cluster centroids at the

end of the last time step; the third column measures the time spent on computing the similarities

116

between protomemes and cluster centroids in that time step; and the fourth column measures the

time spent on updating the vectors of the cluster centroids.

Some interesting observations lead to our research of parallelizing the streaming algorithm: first,

the whole clustering process is dominated by the computation of similarities. The ratio of

similarity compute time / centroids update time in Table 4-1 increases from 490 to 981 as the

length of the time window increases. This implies the feasibility of parallelizing the similarity

computation, and processing the global updates of centroids with a central collector.

Furthermore, the longer the time window, the more we can benefit from parallelization.

We also observed that the content vector size of the centroids expands as the length of the time

window increases. In fact, the other vectors (VT, VU, VD) demonstrate the same trend. This

confirms our analysis in Section I about the infeasibility of traditional synchronization strategies.

To address this issue, we design the new cluster-delta strategy, which will be presented in

Section 4.4.

4.4 Parallel Implementation on Storm

4.4.1 Storm

Apache Storm is a stream processing engine designed to support large-scale distributed

processing of data streams. It defines a stream as an unbounded sequence of tuples, and provides

an easy-to-use event-driven programming model to upper level applications. Stream processing

applications are defined in the form of topologies in Storm, as exemplified in Figure 4-4. There

are two types of processing elements in a topology, spouts and bolts, which are organized into a

DAG through the streams connecting them. A spout is a source of streams that generates new

117

tuples and injects them into the topology. A bolt can consume any number of input streams, do

some processing to each tuple of the streams, and potentially generate and emit new tuples to the

output streams. To define a topology, the application only needs to provide implementation logics

of spouts and bolts, specify the runtime parallelism level of each type, and configure the data

distribution patterns among them. The Storm framework will automatically take care of system

management issues including data transmission, parallel spouts/bolts execution, work load

distribution, and fault tolerance.

Figure 4-4. An example topology in Storm

Figure 4-5 illustrates the standard architecture of a Storm cluster. The whole cluster consists of

two types of nodes: one master node and multiple worker nodes. The master node runs a daemon

process called Nimbus responsible for assigning spout and bolt tasks to the worker nodes and

monitoring their status for failures. Every worker node runs a Supervisor daemon process, which

manages the resources on the local node and accepts task assignments from the Nimbus. Spout

and bolt tasks are executed by parallel executor threads in worker processes. By default, one

executor thread is spawned for each task. The number of worker processes on each node is

configurable as a system parameter. The number of tasks to run for each type of spout and bolt in

a topology can be configured through the parallelism parameters. Coordination between the

Nimbus and the Supervisors is accomplished by using Zookeepers [26].

118

Figure 4-5. Storm architecture

Storm adopts the ‘pull-based’ message passing model between the processing elements. Bolts pull

messages from the upstream bolts or spouts. This ensures that bolts will never get excessive

workload that they cannot handle. Therefore, overflow can only happen at the spouts. This model

allows us to test our algorithm easily at different levels of parallelism. For example, we can

implement spouts that generate streams by reading data from a file, and control their paces based

on the number of acknowledgements received for tuples that have been processed. This will

prevent the topology from getting overwhelmed by too much data no matter how slowly the bolts

are working.

4.4.1 Implementation with Cluster-Delta Synchronization Strategy

We implement the parallel version of the algorithm in a Storm topology, as illustrated in Figure

4-6. There is one type of spout, Protomeme Generator Spout, and two types of bolts, Clustering

Bolt and Synchronization Coordinator Bolt. For simplicity, we call them protomeme generator,

cbolt, and sync coordinator. At runtime, there is one instance of the protomeme generator,

multiple instances of cbolts working in parallel, and one instance of sync coordinator. A separate

119

synchronization channel is created between the cbolts and the sync coordinator using the

ActiveMQ pub-sub messaging system [16]. ActiveMQ allows client applications to connect to

message brokers, and register themselves as publishers or subscribers to various topics.

Publishers can produce messages and publish them to a certain topic, and the message broker

will automatically deliver the messages to all the subscribers of that topic. In our topology, the

sync coordinator is registered as a publisher to a topic named “clusters.info.sync”, and all the

cbolts are registered as subscribers to this topic. The lifetime of the whole topology can be

divided into two phases, an initialization phase and a running phase. We introduce the working

mechanism of each type of spout and bolt in both phases.

Protomeme Generation

Figure 4-6. Storm topology for the parallel stream clustering algorithm

During the initialization phase, every processing element reads some information from a

bootstrap file. The protomeme generator reads the start time of the current time step, the length of

a time step in seconds, and the length of a time window in steps. After reading this information,

120

the generator can either connect to an external stream of tweets or open a file containing tweets

for generating protomemes.

Upon entering the running phase, the protomeme generator keeps reading and buffering tweets

for the “current” time step, until it identifies a tweet falling into the next time step. Then it

generates protomemes using the buffered tweets. Every protomeme is associated with a creation

timestamp and an ending timestamp, which are set based on the timestamp of the earliest and

latest tweet in the protomeme. To facilitate the construction of diffusion vectors of protomemes,

an in-memory index structure is maintained to record the mapping between each tweet ID and

the set of user IDs who have retweeted it. To construct the diffusion vector of a protomeme, the

user IDs of the tweet authors and the user IDs mentioned in its tweets are first added to the

vector. Then the index is queried for each tweet ID of the protomeme, and the corresponding

user IDs found in the index are added to the vector. The protomeme generator emits one tuple to

its output stream for every newly generated protomeme. The tuples are evenly distributed among

all the parallel cbolts based on the hash values of their markers. Therefore, protomemes

generated in different time steps but sharing the same marker will always be processed by the

same cbolt.

Protomeme Clustering

During the initialization phase, the cbolts and sync coordinator first read the same time window

parameters as the protomeme generator; then they read the input parameter n (number of

standard deviations for outlier detection), and a list of initial clusters. The initial clusters are

generated by running either a parallel batch clustering algorithm, or the sequential stream

121

clustering algorithm over a small batch of data from recent history. The initial values of μ and σ

are then generated based on the protomemes contained in the initial clusters.

During the running phase, protomemes are processed in small batches. A batch is defined as the

number of protomemes to process, which is normally configured to be much smaller than the

total number of protomemes in a single time step. Upon receiving a protomeme, the cbolt first

checks its creation timestamp to see if it starts a new time step. If so, the cbolt will first advance

the current time window by one step, and delete all the old protomemes falling out of the time

window from the clusters. Then it performs the outlier detection procedure and protomeme-

cluster assignment in the same way as in the sequential algorithm, based on the current clusters

and μ, σ values. If the protomeme is an outlier, an OUTLIER tuple containing the protomeme

will be emitted to the sync coordinator. If it can be assigned to a cluster, a PMADD tuple will be

emitted. Note that the cbolt does not immediately create a new cluster with the outlier

protomeme, because outlier protomemes detected by different cbolts may be similar to each

other and thus should be grouped into the same cluster. Such global grouping can only be done

by the sync coordinator, which collects OUTLIER tuples generated by all the cbolts. For the case

of PMADD, the centroid of the corresponding cluster is not immediately updated either. Instead,

clusters are only updated during the synchronization between two consecutive batches. This

ensures that within the same batch, different cbolts are always comparing their received

protomemes against the same set of global clusters.

Within each batch, the sync coordinator maintains a list of “cluster delta” data structures and

another list of outlier clusters. Upon receiving a PMADD, it will simply add the protomeme

contained in the tuple to the delta structure of the corresponding cluster, and change the latest

update time of the delta structure to the ending timestamp of the protomeme in case the ending

122

timestamp is larger. Since the sync coordinator collects PMADD from all parallel cbolts, the

delta structures will contain the global updates to each cluster. For an OUTLIER tuple, it will

first check whether the protomeme contained in the tuple can be assigned to any existing outlier

cluster. If so, it is simply added to that outlier cluster; otherwise a new outlier cluster is created

and appended to the list of outlier clusters. After processing each tuple, the values of μ and σ are

dynamically updated.

Synchronization

As a final step of the initialization phase, the cbolts and sync coordinator connect to an

ActiveMQ message broker and register as subscribers and the publisher. Since the cbolt tasks run

as threads in worker processes, they first go through an election step to select one

representative thread within each process. Only the representative thread will be registered as a

subscriber, and the synchronization message received will be shared among the threads in the

same process. This election step can significantly reduce the amount of data transmission caused

by synchronization.

At the running phase, a synchronization procedure is launched when the number of processed

protomemes reaches the batch size. The whole procedure consists of three steps as detailed in

Figure 4-7: SYNCINIT, SYNCREQ, and CDELTAS. The SYNCINIT step initiates the procedure

and notifies the cbolts to start synchronization. In the SYNCREQ step, each cbolt will temporarily

stop processing incoming protomemes, and emit a SYNCREQ tuple. After receiving SYNCREQ

from all the cbolts, the sync coordinator will sort the deltas of all the clusters (including the outlier

clusters) by the latest update time, and pick the top K with the highest values to construct a

CDELTAS message, which also contains latest global values of μ and σ. The message is then

123

published through ActiveMQ. Upon receiving CDELTAS, every cbolt will update their local copy

of clusters and μ, σ values to a new global state, then resume processing the protomemes for the

next batch. Note that the SYNCINIT step and the temporary stopping of the cbolts are necessary to

ensure that protomemes processed by different cbolts and received by the sync coordinator are

always handled with regards to the same global view of the clusters. Since the size of CDELTAS

is normally small and stable, the synchronization step can usually finish in a short time, as will be

demonstrated in Section 4.5.

Figure 4-7. Synchronization process of the cluster-delta strategy

In order to achieve the best performance for the whole synchronization procedure, an optimal

solution for SYNCINIT is also necessary. We tested three methods in this regard. With spout

initiation, the protomeme generator counts the number of protomemes emitted and broadcasts a

SYNCINIT tuple through Storm when the batch size is reached. With cbolt initiation, each cbolt

counts the number of protomemes processed by itself and directly emits a SYNCREQ tuple when

it reaches the expected average. This method is similar to the synchronization mechanism used in

typical iterative batch algorithms. However, due to the buffering effect of Storm and varied

processing speed among cbolts, both methods suffer from a large variance in the SYNCREQ time

observed by different cbolts. The variance can reach the level of seconds and totally eliminate

the benefits of the cluster-delta strategy. This suggests that, due to the dynamic nature of

124

streaming analysis, synchronization should be handled differently than in batch algorithms. To

address this issue, we propose sync coordinator initiation as illustrated in Figure 4-7. In this

method, the sync coordinator counts the total number of PMADD and OUTLIER received, and

publishes a SYNCINIT message using ActiveMQ if the batch size is reached. Because of the

pushing-mode of message delivery and the small size of the message, it can be received by the

cbolts within milliseconds. Therefore the large variance problem is avoided.

4.4.2 Implementation with Full-Centroids Synchronization Strategy

To verify the effectiveness of our cluster-delta synchronization strategy, we implement another

version of the parallel algorithm using the full-centroids strategy for comparison. The

protomeme generation and processing logics of the full-centroids version are mostly the same as

the cluster-delta version. There are, however, major differences in the implementation caused by

the full-centroids strategy: during the processing time of each batch, the sync coordinator will

maintain a full list of existing clusters, instead of their delta structures. During the

synchronization time, instead of the CDELTAS message, it will generate a CENTROIDS

message, which contains the whole centroid vectors of the clusters with the top K latest update

times. Upon receiving the CENTROIDS message, every cbolt will use the centroid vectors

contained in the message to replace the centroids of the old clusters.

Since the cbolt receives the centroid vectors rather than the incremental protomemes of each

cluster, it can no longer maintain a full record of all the protomemes in the clusters. Therefore,

the task of new time step detection and old protomeme deletion is moved to the sync coordinator.

The centroids update time is negligible if compared to the similarity compute time, so this has

little impact on the overall performance of the algorithm.

125

4.5 Evaluation of the Parallel Algorithm

We verify the correctness of our parallel algorithm by comparing its results with the sequential

implementation, and evaluate its efficiency and scalability through comparison with the full-

centroids synchronization strategy. Our evaluation tests are done on the same Madrid cluster as

described in Section 3.2.5. Each node runs RHEL 6.5, Java 1.7.0_45, and Apache Storm 0.9.2.

Apache ActiveMQ 5.4.2 is deployed on the same node where the Storm Nimbus runs. Each node

is configured to run at most four Storm worker processes, and the parallel instances of spouts and

bolts are launched as threads spawned by these worker processes. The maximum heap size of

each worker process is set to 11GB. Message compression with zip is enabled for ActiveMQ,

and only one message broker is used in all tests of the parallel implementations.

4.5.1 Correctness Verification

To test the correctness of our algorithm, we use the same ground truth dataset and LFK-NMI

measurement as [85]. The LFK-NMI value is a number between 0 and 1 that indicates the degree

of matching between two sets of result clusters. A value of 1 corresponds to a perfect matching,

while a value of 0 means that the two sets of clusters are completely disjointed. The ground truth

dataset was collected from the Twitter gardenhose stream [67] within the week of 2013-03-23 to

2013-03-29. It includes all the tweets containing the Twitter trending hashtags [65][149]

identified during that time.

We first define the ground truth clusters as the sets of tweets corresponding to each trending

hashtag: all tweets sharing a common trending hashtag are grouped into one separate cluster.

Note that, since a tweet may contain multiple trending hashtags, the ground truth clusters may

have overlaps. We then remove the trending hashtags from the content of all tweets, and run both

126

the sequential implementation from [85] and our parallel implementation over the remaining

dataset. As a result, protomemes corresponding to the trending hashtags will not be created and

used as input data points to the clustering process. This is done to avoid giving an unfair

advantage to protomeme-based algorithms that use hashtag information. Finally, we compute

three LFK-NMI values: results of the sequential algorithm versus the ground truth clusters,

results of the parallel algorithm versus the ground truth clusters, and results of the sequential

versus the parallel algorithm. We use the same input parameters as the experiments completed in

[85]: K = 11, t = 60 minutes, l = 6, and n = 2. For the parallel algorithm, we use two parallel

cbolts and a batch size of 40.

Table 4-2 presents the LFK-NMI scores using the final clusters generated by the two algorithms.

The high value of 0.728 in the first column indicates that the clusters generated by our parallel

implementation match very well with the results of the original sequential implementation in

[85]. Moreover, values in the second and third column suggest that, when measured against the

same ground truth clusters, our parallel implementation can achieve a degree of matching

comparable or better (we observe an improvement of around 10%) than the sequential

implementation. These scores show that our parallel implementation is correct and can generate

results that are consistent with the sequential algorithm. The value 0.169 is consistent with the

original test results in [85]. In addition, the slightly higher value of 0.185 indicates that

processing the protomemes in small batches may be helpful for improving the quality of the

clusters.

Table 4-2. LFK-NMI Values for Correctness Verification

Parallel vs. Sequential Sequential vs. ground truth Parallel vs. ground truth

0.728 0.169 0.185

127

4.5.1 Performance Evaluation

To evaluate the performance and scalability of our parallel algorithm in Cloud DIKW, we use a

raw dataset collected from the Twitter gardenhose stream without applying any type of filtering.

It contains a total number of 1,284,935 tweets generated within one hour (from 05:00:00 AM to

05:59:59 AM) on 2014-08-29. We first run the sequential algorithm over the whole dataset using

input parameters K = 240, t = 30 seconds, l = 20, and n = 2, and measure the total processing

time. Note that the time window has a length of 10 minutes and thus may contain a large number

of protomemes. Then we run the two parallel implementations at different levels of parallelism,

and measure their processing time, speedup, and other important statistics. We use the clusters

generated for the first 10 minutes of data as the bootstrap clusters, and process the following 50

minutes of data using the parallel algorithms. The average number of protomemes generated in

each time step is 19,908, and the batch size is set to 6,144.

The total processing time of the sequential algorithm is 156,340 seconds (43.43 hours), and the

time spent on processing the last 50 minutes of data is 139,950 seconds (38.87 hours). Figure 4-8

compares the total processing time of the two parallel implementations, and some important

statistics are given in Table 4-3 and 4-4. Numbers in brackets in the first column tell how many

Storm worker processes were used for hosting the cbolt threads. These correspond to the total

numbers of ActiveMQ receivers in each run. Here we list the numbers that delivered the best

overall performance. The length of the synchronization message in the last column is measured

before ActiveMQ runs any compression. Figure 4-9 compares the scalability of the two parallel

implementations (the blue line and the red line).

128

Table 4-3. Statistics for Full-centroids Version Parallel Algorithm

Number of cbolts

(worker processes)

Total processing

time (sec)

Compute time

/ sync time

Sync time per

batch (sec)

Avg. length of

sync message

3 (1) 67603 31.56 6.45 22,113,520

6 (1) 35207 15.53 6.51 21,595,499

12 (2) 19228 7.79 6.60 22,066,473

24 (4) 10970 3.95 6.76 22,319,413

48 (7) 6818 1.92 7.09 21,489,950

96 (28) 5804 0.97 8.77 21,536,799

Table 4-4. Statistics for Cluster-delta Version Parallel Algorithm

Number of cbolts

(worker processes)

Total processing

time (sec)

Compute time

/ sync time

Sync time per

batch (sec)

Avg. length of

sync message

3 (1) 50377 289.18 0.54 2,525,896

6 (1) 22888 124.62 0.56 2,529,779

12 (2) 11474 58.45 0.58 2,532,349

24 (4) 6140 27.44 0.64 2,544,095

48 (7) 3333 11.96 0.76 2,559,221

96 (28) 1999 5.95 0.89 2,590,857

Figure 4-8. Total processing time of Cluster-delta vs. Full-centroids

129

Figure 4-9. Scalability comparison between two versions of parallel implementations

Table 4-3 demonstrates that due to the large size of the cluster centroids, the full-centroids

strategy generates a large synchronization message over 20MB, and incurs a long

synchronization time in every batch. In addition, the synchronization time increases as the

number of parallel cbolts increases, because the single ActiveMQ broker needs to send a large

message to more subscribers. The total processing time for the case of 96 parallel cbolts is

dominated by synchronization. As a result, the full-centroid algorithm demonstrates poor

scalability, and stops getting faster after 48 parallel cbolts.

In comparison, the cluster-delta strategy generates a much smaller synchronization message and

thus keeps the per-batch synchronization time at a low level, as shown in Table 4-4. The zip

compression of ActiveMQ provides a compression ratio of about 1:6, so the actual message size

sent over the network is less than 500KB. As the number of parallel cbolts increases, the

computation time covers the major part of the total processing time for all cases. The parallel

implementation using the cluster-delta strategy can achieve a near-linear scalability for up to 48

130

parallel cbolts. Overall, it demonstrates sub-linear scalability. Using 96 parallel cbolts, it finishes

processing the 50 minutes’ worth of data in 1,999 seconds (33.3 minutes), thus keeping up with

and surpassing the speed of the Twitter gardenhose stream. Note that even for the case of 96

parallel cbolts, the per-batch synchronization time is still relatively low. A major reason for the

relatively low speedup of 70.0 is lack of computation, because each cbolt only processes about

64 protomemes per batch. In case of longer time steps or faster data rate, it is possible to extend

the near-linear-scalability zone to larger numbers of parallel cbolts by increasing the batch size.

To verify this, we use a dataset containing 2,258,821 tweets for 1 hour (1:00:00 PM to 2:00:00

PM) on 2014-08-29, and run the same tests on a different computer cluster called “Moe” with

better CPU and network configuration (Table 4-5). 1-2pm is the peak hour of day when

gardenhose generates the most tweets. The average number of protomemes in each time step is

35,358, and we set the batch size to 12,288. The speed-ups are illustrated by the green line in

Figure 4-9. Due to larger CDELTAS messages, the sync time per batch for 96 parallel cbolts

increases to 0.979 seconds, despite the faster network. However, since the batch size is large, we

are able to retain the near-linear scalability, and finish 50 minutes’ worth of data in 2,345

seconds (39 minutes).

Table 4-5. Per-node hardware configuration of Moe

CPU RAM Hard Disk Network

5 * Intel 8-core E5-2660v2 2.20GHz 128GB 48TB HDD + 120GB SSD 10Gb Ethernet

4.6 Conclusions

This chapter describes our contribution in the streaming analysis module of Cloud DIKW for

supporting non-trivial parallel stream processing algorithms. Our research leads to some

important conclusions.

131

Firstly, the distributed stream processing engines provide an easy way to develop and deploy

large-scale stream processing applications. However, in order to properly coordinate the dynamic

synchronization between parallel processing workers, their DAG-oriented processing models

will need to be combined with facilitating tools such as pub-sub messaging systems. Whether

such synchronization facilitating mechanisms should be directly built into the stream processing

engines, as well as how this can be done, could become an interesting research issue for the

distributed systems community.

Moreover, the parallelization and synchronization strategies may differ depending on the data

representations and similarity metrics of the application. For example, we observed that the high-

dimensionality and sparsity of the data representation in our application led to nontrivial issues

for both computation and communication. By replacing the traditional full-centroids

synchronization strategy with the new cluster-delta strategy, our parallel algorithm achieves good

scalability, and keeps up with the speed of the real-time Twitter gardenhose stream with less than

100 parallel workers.

132

Chapter 5

Conclusions and Future Directions

133

5.1 Conclusions

As Big Data processing problems evolve, many research scenarios demonstrate special

characteristics related to their data and analysis process. Social media data analysis is one such

example. In this area, the data source contains not only a large historical dataset, but also a high-

speed data stream generated by online users all over the world. Despite the large size of the

whole dataset, most analyses only focus on smaller data subsets related to specific social events

or special aspects of social activities. These characteristics raise the need for a scalable

architecture that can support queries, batch analysis, and streaming analysis of social media data

in an integrated way. In pursuit of that goal, this dissertation proposes Cloud DIKW, an

integrated architecture that combines and extends multiple state-of-the-art Big Data storage and

processing tools (Figure 1-8), and attempts to address the related research challenges in each

module. Important conclusions can be drawn from our research experience in developing this

architecture.

At the storage layer, we demonstrate that existing text indexing techniques do not work well for

the special queries of social media data, which involve constraints on both text content and social

context such as temporal or network information. To address this challenge, we leverage the

HBase system as the storage substrate, and extend it with a customizable indexing framework –

IndexedHBase. This framework allows users to define fully customizable text index structures

that embed the exact necessary social context information for efficient evaluation of the queries.

Based on this framework, we develop efficient online and batch indexing mechanisms, and a

parallel query evaluation strategy. Performance evaluation shows that compared with solutions

based on existing text indexing techniques provided by current NoSQL databases (e.g. Riak), our

134

data loading strategy based on customized index structures is faster by multiple times, and our

parallel query evaluation strategy is faster by one to two orders of magnitude.

In the batch analysis module, we extend IndexedHBase to an integrated analysis architecture

based on YARN [154]. Two important insights were gained from our experience in developing

analysis algorithms and composing analysis workflows on this architecture. First of all, indices

are not only useful for query evaluation, but also valuable for analysis and mining algorithms. To

explore such value, mechanisms for both random access and parallel scans of index entries are

necessary. Moreover, social media data analysis workflows normally consist of multiple

algorithms having different computation and communication patterns. As such, dynamically

adopting diverse processing frameworks to handle different tasks is crucial to achieve efficient

execution of the whole workflow.

In the streaming analysis module, we demonstrate that the high-dimensional data representation

of social media data and the DAG-model organization of parallel workers in stream processing

engines can pose special challenges to the problem of parallel clustering of social media data

streams. To address such challenges, it is necessary to extend the stream processing frameworks

with novel synchronization mechanisms. To this end, we leverage the ActiveMQ pub-sub

messaging system to create a separate sychronization channel, and design a new synchronization

strategy that broadcasts the dynamic changes of clusters rather than the whole centroids.

Performance evaluation shows that our methods lead to much better scalability for the parallel

stream clustering algorithm, and our algorithm can eventually catch up to the speed of real-world

data streams with less than 100 parallel workers. By incorporating, including advanced collective

communication techniques developed in our Harp project, we will be able to process the full

Twitter data stream in real-time with 1000-way parallelism.

135

5.2 Future Work

As far as future work is concerned, there are interesting directions to explore in each module of

our architecture.

For the storage layer, an important feature of our customizable indexing framework is that it

could be generally implemented on most NoSQL databases. It will be interesting to extend it to

other NoSQL databases and compare the performance with IndexedHBase. Inspired by the

columnar storage used by both Power Drill [75], Dremel [103] and Shark [165], we can consider

grouping frequently co-accessed columns in the HBase tables into separate column families to

achieve more efficient queries and analysis algorithms. The query performance may also be

further improved by taking data locality into consideration when launching the MapReduce jobs.

For the batch analysis module, it will be valuable to incorporate more parallel processing

frameworks such as Giraph [17] and Harp [169] into the architecture, and develop more analysis

algorithms that can be used in various workflows. There is on-going work attempting to extend

Pig [23] to provide a high-level language for composing analysis workflows and model the

analysis algorithms as basic operators in the language. But having more underlying analysis

algorithms as building blocks is a pre-condition for such efforts. Additionally, domain

researchers have written many legacy sequential analysis algorithms using various languages

such as Python. A general mechanism that can easily parallelize such legacy codes will be very

useful.

For the streaming analysis module, we will integrate advanced collective communication

techniques as implemented by the Iterative MapReduce Hadoop plugin Harp [169] into Cloud

DIKW, and use them to improve the synchronization performance of both batch and streaming

136

algorithms. Instead of using a “gather and broadcast” communication model, Harp can organize

the parallel workers in a communication chain, so that the local updates generated by each

worker can be transmitted through all the other workers in a pipeline. According to our earlier

attempts [69] to apply this technique in the Twister iterative MapReduce framework [60], it can

significantly reduce the synchronization time and ensure that the algorithm achieves near linear

scalability. With improved synchronization speed, we can process the data at the rate of the

whole Twitter firehose stream [147], which is about 10 times larger than gardenhose. To support

higher data speed and larger time window sizes, we may apply the sketch table technique as

described in [7] in the clustering bolts and evaluate its impact on the accuracy and efficiency of

the whole parallel program. Variations in arrival rate and jitter in event distribution exist in many

real-time data streams. Therefore, we will also make the parallel algorithm elastic to

accommodate this irregularity in event arrival.

137

Bibliography

[1] 2d Index internals. MongoDB documentation available at

http://docs.mongodb.org/manual/core/geospatial-indexes/

[2] Abadi, D. J., Ahmad, Y., Balazinska, M., Cetintemel, U., Cherniack, M., Hwang, J., et al.

The design of the Borealis stream processing engine. In Proceedings of the 2nd Biennial

Conference on Innovative Data Systems Research (CIDR 2005).

[3] About data consistency in Cassandra. Apache Cassandra 1.1 documentation. Available at

http://www.datastax.com/docs/1.1/dml/data_consistency

[4] About indexes in Cassandra. Apache Cassandra 1.1 documentation. Available at

http://www.datastax.com/docs/1.1/ddl/indexes

[5] Abouzeid, A., Bajda-Pawlikowski, K., Abadi, D., Silberschatz, A., Rasin, A. HadoopDB:

an architectural hybrid of MapReduce and DBMS technologies for analytical workloads.

In Proceedings of the 35th International Conference on Very Large Data Bases (VLDB

2009).

[6] Advanced secondary indexes. Riak documentation. Available at

http://docs.basho.com/riak/latest/dev/advanced/2i/

[7] Aggarwal, C. C. A framework for clustering massive-domain data streams. In

Proceedings of the 25th IEEE International Conference on Data Engineering (ICDE

2009).

[8] Aggarwal, C. C., Han, J., Wang, J., Yu, P. S. A framework for projected clustering of

high dimensional data streams. In Proceedings of the 30th International Conference on

Very Large Data Bases (VLDB 2004).

[9] Aggarwal, C. C., Han, J., Wang, J., Yu, P. S. On high dimension projected clustering of

uncertain data streams. Data Mining and Knowledge Discovery. 10(3): 251–273, 2009.

[10] Aggarwal, C. C., Subbian, K. Event detection in social streams. In Proceedings of SIAM

International Conference on Data Mining, 2012.

[11] Aggarwal, C. C., Yu, P. S. A framework for clustering massive text and categorical data

streams. Knowledge and Information Systems. 24(2): 171-196. August 2010.

138

[12] Aggregation pipeline limits. MongoDB documentation. Available at

http://docs.mongodb.org/manual/core/aggregation-pipeline-limits/

[13] Aggregation pipeline. MongoDB documentation. Available at

http://docs.mongodb.org/manual/core/aggregation-pipeline/

[14] Alonso, O., Strötgen, J., Baeza-Yates, R. A., Gertz. M. Temporal information retrieval:

challenges and opportunities. TWAW, volume 813 of CEUR Workshop Proceedings,

page 1-8. CEUR-WS.org 2011.

[15] Amini, A., Wah, T. Y. DENGRIS-Stream: a density-grid based clustering algorithm for

evolving data streams over sliding window. In Proceedings of the 2012 International

Conference on Data Mining and Computer Engineering (ICDMCE 2012).

[16] Apache ActiveMQ. http://activemq.apache.org/

[17] Apache Giraph. https://giraph.apache.org/

[18] Apache Hadoop. http://hadoop.apache.org/

[19] Apache HBase. http://hbase.apache.org/

[20] Apache Hive. http://hive.apache.org/

[21] Apache Lucene - index file formats. Lucene documentation. Available at

http://lucene.apache.org/core/3_5_0/fileformats.html

[22] Apache Lucene. https://lucene.apache.org/

[23] Apache Pig. http://pig.apache.org/.

[24] Apache Solr. http://lucene.apache.org/solr/

[25] Apache Storm. https://storm.incubator.apache.org/

[26] Apache ZooKeeper, http://zookeeper.apache.org/

[27] Bancilhon, F., Delobel, C., Kanellakis, P. Building an Object-Oriented Database System,

The Story of O2. Morgan Kaufmann. June 15, 1992.

[28] Bartunov, O. Sigaev, T. Generalized Inverted Index.Presentation at PostgreSQL Summit

2006. Available at http://www.sigaev.ru/gin/Gin.pdf

[29] Becker, H., Naaman, M., Gravano, L. Learning similarity metrics for event identification

in social media. In Proceedings of the 3rd ACM International Conference on Web Search

and Data Mining (WSDM 2010).

[30] Bertozzi, M. Apache HBase I/O – HFile. Blog post available at

http://blog.cloudera.com/blog/2012/06/hbase-io-hfile-input-output/. 2012.

139

[31] Broder, A. Z. On the resemblance and containment of documents. In Proceedings of the

Compression and Complexity of Sequences 1997 (SEQUENCES 1997).

[32] Büttcher, S., Clarke, C. L. A. Indexing time vs. query time: trade-offs in dynamic

information retrieval systems. In Proceedings of the 14th ACM International Conference

on Information and Knowledge Management (CIKM 2005).

[33] Büttcher, S., Clarke, C. L. A., Lushman, B. Hybrid index maintenance for growing text

collections. In Proceedings of the 29th ACM International Conference on Research and

Development in Information Retrieval (SIGIR 2006).

[34] Callau-Zori, M. INDICIa: a new distributed clustering protocol. In Proceedings of the

28th ACM Symposium On Applied Computing (SAC13).

[35] Cao, F., Ester, M., Qian, W., Zhou, A. Density-based clustering over an evolving data

stream with noise. In Proceedings of 2006 SIAM Conference on Data Mining (SDM

2006).

[36] Catalog tables. HBase documentation. Available at

http://hbase.apache.org/book/arch.catalog.html

[37] Chang, F., Dean, J., Ghemawat, S., Hsieh, W., Wallach, D., Burrows, M., Chandra, T.,

Fikes, A. and Gruber, R. Bigtable: a distributed storage system for structured data. In

Proceedings of the 7th Symposium on Operating System Design and Implementation

(OSDI 2006).

[38] Chapman, S. What Javascript can not do. Online article available at

http://javascript.about.com/od/reference/a/cannot.htm

[39] Cherniack, M., Balakrishnan, H., Balazinska, M., Carney, D., Çetintemel, U., Xing, Y.,

Zdonik, S. Scalable distributed stream processing. In Proceedings of 1st Biennial

Conference on Innovative Data Systems Research (CIDR 2003).

[40] Conover, M. D., Davis, C., Ferrara, E., McKelvey, K., Menczer, F., Flammini, A. The

geospatial characteristics of a social movement communication network. PLoS ONE,

8(3): e55957. 2013.

[41] Conover, M., Ferrara, E., Menczer, F., Flammini, A. The digital evolution of Occupy

Wall Street. PLoS ONE, 8(5), e64679. 2013.

[42] Conover, M., Gonçalves, B., Flammini, A., Menczer, F. Partisan asymmetries in online

political activity. EPJ Data Science, 1:6, 2012.

140

[43] Conover, M., Gonçalves, B., Ratkiewicz, J., Flammini, A., Menczer, Filippo. Predicting

the political alignment of twitter users. Proceedings of 3rd IEEE International Conference

on Social Computing (SocialCom 2011).

[44] Conover, M., Ratkiewicz, J., Francisco, M., Goncalves, B., Flammini, A., Menczer, F.

Political polarization on Twitter. Proceedings of the 5th International AAAI Conference

on Weblogs and Social Media, (ICWSM 2011).

[45] Corbett, J. C., Dean, J., Epstein, M., Fikes, A., Frost, C. Furman, J., et al. Spanner:

Google's Globally-Distributed Database. In Proceedings of the 10th USENIX conference

on Operating Systems Design and Implementation (OSDI 2012).

[46] Danon, L., Díaz-Guilera, A., Duch, J., Arenas, A. Comparing community structure

identification. Journal of Statistical Mechanics: Theory and Experiment, 2005(09):

P09008, 2005.

[47] Dashpande, A., Van Gucht, D. An Implementation for Nested Relational Databases. In

Proceedings of the 14th International Conference on Very Large Data Bases (VLDB

1988).

[48] Data Center Awareness. MongoDB documentation. Available at

http://docs.mongodb.org/manual/data-center-awareness/

[49] Data Modeling Introduction. MongoDB documentation. Available at

http://docs.mongodb.org/manual/core/data-modeling-introduction/

[50] Datasift. http://datasift.com

[51] DataStax Enterprise: Cassandra with Solr integration details. DataStax Enterprise 2.0

documentation. Available at http://www.datastax.com/dev/blog/datastax-enterprise-

cassandra-with-solr-integration-details

[52] DataStax. http://www.datastax.com/

[53] Dean, J., Ghemawat, S. MapReduce: simplified data processing on large clusters.

Communications of the ACM - 50th anniversary issue: 1958 – 2008. Volume 51 Issue 1,

January 2008.

[54] Derczynski, L., Yang, B., Jensen, C. Towards context-aware search and analysis on

social media data. In Proceedings of the 16th International Conference on Extending

Database Technology (EDBT 2013).

http://www.datastax.com/

141

[55] DiGrazia, J., McKelvey, K., Bollen, J., Rojas, F. More Tweets, More Votes: Social media

as a quantitative indicator of political behavior. Available at SSRN:

http://dx.doi.org/10.2139/ssrn.2235423. 2013.

[56] Ding, S., Wu, F., Qian, J., Jia, H., Jin, F. Research on data stream clustering algorithms.

Artificial Intelligence Review. January 2013.

[57] Distributed Search. Solr Documentation. Available at

https://wiki.apache.org/solr/DistributedSearch

[58] Dittrich, J., Quiané-Ruiz, J., Jindal, A., Kargin, Y., Setty, V., et al. Hadoop++: making a

yellow elephant run like a cheetah (without it even noticing). In Proceedings of the 36th

International Conference on Very Large Data Bases (VLDB 2010).

[59] Dittrich, J., Quiané-Ruiz, J., Richter, S., Schuh, S., Jindal, A., et al. Only aggressive

elephants are fast elephants. In Proceedings of the 38th International Conference on Very

Large Data Bases (VLDB 2012).

[60] Ekanayake, J., Li, H., Zhang, B., Gunarathne, T., Bae, S., Qiu, J., Fox, G. Twister: a

runtime for iterative MapReduce. In Proceedings of the 19th ACM International

Symposium on High Performance Distributed Computing (HPDC 2010).

[61] Eltabakh, M., Özcan, F., Sismanis, Y., Haas, P., Pirahesh, H., et al. Eagle-eyed elephant:

split-oriented indexing in Hadoop. In Proceedings of the 16th International Conference

on Extending Database Technology (EDBT 2013).

[62] Eventual consistency. Riak documentation. Available at

http://docs.basho.com/riak/latest/theory/concepts/Eventual-Consistency/

[63] Ferrara, E., JafariAsbagh, M., Varol, O., Qazvinian, V., Menczer, F., Flammini, A.

Clustering memes in social media. In Proceedings of the 2013 IEEE/ACM International

Conference on Advances in Social Networks Analysis and Mining (ASONAM 2013).

[64] Ferrara, E., Varol, O., Davis, C., Menczer, F., Flammini, A. The rise of social bots.

http://arxiv.org/abs/1407.5225

[65] Ferrara, E., Varol, O., Menczer, F., Flammini, A. Traveling trends: social butterflies or

frequent fliers? In Proceedings of the 1st ACM conference on online social

networks (COSN 2013).

[66] Fruchterman, T., Reingold, E. M. Graph drawing by force-directed placement. Software:

Practice and Experience. 21, 11 (Nov. 1991), pp. 1129-1164.

142

[67] Gannes, L. Twitter adopts graded approach for developer access to tweets. News article

available at http://allthingsd.com/20101110/twitter-firehose-too-intense-take-a-sip-from-

the-garden-hose-or-sample-the-spritzer/. 2010.

[68] Gao, X., Nachankar, V., Qiu. J. Experimenting Lucene index on HBase in an HPC

Environment. 2011. In Proceedings of the 1st workshop on High-Performance

Computing meets Databases at Supercomputing 2011 (HPCDB 2011).

[69] Gao, X., Qiu, J. Social media data analysis with IndexedHBase and iterative MapReduce.

In Proceedings of the 6th Workshop on Many-Task Computing on Clouds, Grids, and

Supercomputers (MTAGS 2013).

[70] George, L. HBase: the definitive guide. O’Reilly Media, Inc. September 2011.

[71] Google Cloud DataFlow. http://googlecloudplatform.blogspot.com/2014/06/sneak-peek-

google-cloud-dataflow-a-cloud-native-data-processing-service.html. 2014.

[72] Graefe, G. Query evaluation techniques for large databases. ACM Computing Surveys

(CSUR), 25(2): 73-169. 1993.

[73] Guo, R., Cheng, X., Xu, H., Wang, B. Efficient on-line index maintenance for dynamic

text collections by using dynamic balancing tree. In Proceedings of the 16th ACM

International Conference on Information and Knowledge Management (CIKM 2007).

[74] Hadoop support. Cassandra wiki page available at

http://wiki.apache.org/cassandra/HadoopSupport

[75] Hall, A., Bachmann, O., Büssow, R., Gănceanu, S., Nunkesser, M. Processing a trillion

cells per mouse click. In Proceedings of the 38th International Conference on Very Large

Data Bases (VLDB 2012).

[76] Hartigan, J. Clustering algorithms. John Wiley and Sons, New York, 1975.

[77] HBase and MapReduce. HBase documentation. Available at

http://hbase.apache.org/book/mapreduce.html

[78] Hellerstein, J. Naughton, J., Pfeffer, A. Generalized Search Trees for Database Systems.

In Proceedings of the 21th International Conference on Very Large Data Bases (VLDB

1995).

[79] Hey, T., Tansley, S., Tolle, K. The Fourth Paradigm: Data-Intensive Scientific Discovery.

Microsoft Research, Redmond, Washington, 2009.

[80] HIndex. https://github.com/Huawei-Hadoop/hindex

143

[81] How do secondary indices work? From the Cassandra users mailing group, available at

http://cassandra-user-incubator-apache-org.3065146.n2.nabble.com/Re-How-do-

secondary-indices-work-td6005345.html

[82] Index introduction. MongoDB documentation. Available at

http://docs.mongodb.org/manual/core/indexes-introduction/

[83] IndexedHBase. http://salsaproj.indiana.edu/IndexedHBase

[84] Introduction to MongoDB. MongoDB documentation. Available at

http://docs.mongodb.org/manual/core/introduction/

[85] JafariAsbagh, M., Ferrara, E., Varol, O., Menczer, F., Flammini, A. Clustering memes in

social media streams. Social Network Analysis and Mining, 2014.

[86] Kamburugamuve, S. Survey of distributed stream processing for large stream sources.

Technical report. Available at

http://grids.ucs.indiana.edu/ptliupages/publications/survey_stream_processing.pdf. 2013.

[87] King, A. Online K-Means clustering of nonstationary data. Course project report.

Available at http://coursepin.com/pin/3970. 2012.

[88] Lai, M., Koontz, E., Purtell, A. Coprocessor Introduction. Apache HBase blog post

available at http://blogs.apache.org/hbase/entry/coprocessor_introduction. 2012.

[89] Lakshman, A., Malik, P. Cassandra: a decentralized structured storage system. ACM

SIGOPS Operating Systems Review. 44(2): 35-40. 2010.

[90] Lancichinetti, A., Fortunato, S., and Kertész, J. Detecting the overlapping and

hierarchical community structure in complex networks. New Journal of Physics,

11(3):033015, 2009.

[91] Lempel, R., Mass, Y., Ofek-Koifman, S., Sheinwald, D., Petruschka, Y., Sivan, R. Just in

time indexing for up to the second search. In Proceedings of the 16th ACM International

Conference on Information and Knowledge Management (CIKM 2007).

[92] Lester, N., Moffat, A., Zobel, J. Fast on-line index construction by geometric

partitioning. In Proceedings of the 14th ACM International Conference on Information

and Knowledge Management (CIKM 2005).

[93] Lester, N., Zobel, J., Williams, H. Efficient online index maintenance for contiguous

inverted lists. Information Processing and Management: an International Journal,

42(4):916–933, 2006.

144

[94] Li, R., Chen, X., Li, C., Gu, X., Wen, K. Efficient online index maintenance for SSD-

based information retrieval systems. In Proceedings of the 9th IEEE International

Conference on High Performance Computing and Communication (HPCC 2012).

[95] Limitations with JavaScript. From online tutorial for JavaScript, available at

http://cbtsam.com/jsl1/cbtsam-jsl1-012.php

[96] Lin, C. X., Ding, B., Han, J., Zhu, F., Zhao, B. Text Cube: Computing IR Measures for

Multidimensional Text Database Analysis. In Proceedings of the 8th IEEE International

Conference on Data Mining (ICDM 2008).

[97] M. Stonebraker. The Case for Shared Nothing, IEEE Data Eng. Bulletin, Vol. 9, No.1,

pp. 4-9, 1986.

[98] Map-Reduce. MongoDB documentation. Available at

http://docs.mongodb.org/manual/core/map-reduce/#map-reduce-behavior

[99] MapReduce Tutorial. Hadoop documentation. Available at

https://hadoop.apache.org/docs/r1.2.1/mapred_tutorial.html

[100] Margaritis, G., Anastasiadis, S. V. Low-cost management of inverted files for online full-

text search. In Proceedings of the 18th ACM International Conference on Information

and Knowledge Management (CIKM 2009).

[101] Mayo, M. Hybridizing Data Stream Mining and Technical Indicators in Automated

Trading Systems. Lecture Notes in Computer Science Volume 6820, 2011, pp 79-90.

[102] McKelvey, K., Menczer, F. Design and prototyping of a social media observatory. In

Proceedings of the 22nd International Conference on World Wide Web Companion

(WWW 2013).

[103] Melnik, S., Gubarev, A., Long, J., Romer, G., Shivakumar, S., Tolton, M., Vassilakis, T.

Dremel: interactive analysis of Web-scale datasets. In Proceedings of the 36th

International Conference on Very Large Data Bases, (VLDB 2010).

[104] MongoDB Glossary. MongoDB documentation. Available at

http://docs.mongodb.org/manual/reference/glossary/#term-collection

[105] MongoDB. http://www.mongodb.org/

[106] Mueller, C., Gregor, D., Lumsdaine, A. Distributed force-directed graph layout and

visualization. In Proceedings of the 6th Eurographics Conference on Parallel Graphics

and Visualization (EGPGV 2006).

145

[107] Multi data center replication: architecture. Riak documentation. Available at

http://docs.basho.com/riakee/latest/cookbooks/Multi-Data-Center-Replication-

Architecture/

[108] Neumeyer, L., Robbins, B., Nair, A., Kesari, A. S4: distributed stream computing

platform. In Proceedings of 2010 IEEE International Conference on Data Mining

Workshops (ICDMW 2010).

[109] Newman, M. Finding community structure in networks using the eigenvectors of

matrices. Physical Review E 74, 036104 (2006).

[110] Nishimura, S., Das, S., Agrawal, D., Abbadi, A. E. MD-HBase: A scalable multi-

dimensional data infrastructure for location aware services. In Proceedings of the 16th

IEEE International Conference on Mobile Data Management (MDM 2011).

[111] On distributed consistency - Part 2 - some eventual consistency forms. MongoDB blog

available at http://blog.mongodb.org/post/498145601/on-distributed-consistency-part-2-

some-eventual. 2010.

[112] Padmanabhan, A., Wang, S., Cao, G., Hwang, M., Zhao, Y., Zhang, Z., Gao, Y.

FluMapper: an interactive CyberGIS environment for massive location-based social

media data analysis. In Proceedings of 2013 Extreme Science and Engineering Discovery

Environment: Gateway to Discovery (XSEDE 2013).

[113] Partitioners. Cassandra wiki. Available at http://wiki.apache.org/cassandra/Partitioners

[114] Patrick O’Neil, Dallan Quass. Improved Query Performance with Variant Indexes. In

Proceedings of the 1997 ACM SIGMOD International Conference on Management of

Data (SIGMOD 1997).

[115] Peng, D., Dabek, F. Large-scale incremental processing using distributed transactions and

notifications. In Proceedings of the 9th USENIX Symposium on Operating Systems

Design and Implementation (USENIX 2010).

[116] PeopleBrowsr. http://peoplebrowsr.com.

[117] Pierce, M., Gao, X., Pallickara, S., Guo, Z., Fox, G. QuakeSim Portal and Services: New

Approaches to Science Gateway Development Techniques. Concurrency & Computation:

Practice & Experience, Special Issue on Computation and Informatics in Earthquake

Science: The ACES Perspective. Vol. 22, Iss. 12, pp. 1732-1749, 2010.

146

[118] Raghavan, U., Albert, R., Kumara, S. Near linear time algorithm to detect community

structures in largescale networks. Physical Review E 76, 036106 (2007).

[119] Ratkiewicz, J. Conover, M., Meiss, M., Goncalves, B., Patil, S., Flammini, A., Menczer,

F. Truthy: mapping the spread of astroturf in microblog streams. In Proceedings of 20th

International World Wide Web Companion Conference (WWW 2011).

[120] Ratkiewicz, J., Conover, M., Meiss, M., Gonçalves, B., Flammini, A., Menczer, F.

Detecting and tracking political abuse in social media. In Proceedings of the 5th

International AAAI Conference on Weblogs and Social Media (ICWSM 2011).

[121] Read preference. MongoDB documentation. Available at

http://docs.mongodb.org/manual/core/read-preference/

[122] Reference for the “orderby” operator. MongoDB documentation. Available at

http://docs.mongodb.org/manual/reference/operator/meta/orderby/

[123] Replica set members. MongoDB documentation. Available at

http://docs.mongodb.org/manual/core/replica-set-members/

[124] Riak introduction. Riak documentation. Available at

http://docs.basho.com/riak/latest/theory/why-riak/

[125] Riak. http://basho.com/riak/.

[126] Ripples. https://plus.google.com/ripple/details?url=google.com

[127] Rowe, L. A., Stonebraker, M. The POSTGRES Data Model. In Proceedings of the 13th

International Conference on Very Large Data Bases (VLDB 1987).

[128] Sharding introduction. MongoDB documentation. Available at

http://docs.mongodb.org/manual/core/sharding-introduction/

[129] Sharma, P., Khurana, U., Shneiderman, B., Scharrenbroich, M., Locke, J. 2011. Speeding

up network layout and centrality measures for social computing goals. In Proceedings of

the 4th International Conference on Social Computing, Behavioral-cultural Modeling and

Prediction (SBP 2011).

[130] Shieh W.-Y., Chung, C.-P. A statistics-based approach to incrementally update inverted

files. Information Processing and Management: an International Journal, 41(2):275-288,

Mar. 2005.

147

[131] Shuai, X., Liu, X., Xia, T., Wu Y., Guo, C. Comparing the Pulses of Categorical Hot

Events in Twitter and Weibo. In Proceedings of the 25th ACM conference on Hypertext

and social media (HyperText 2014).

[132] Shvachko, K., Kuang, H., Radia, S., Chansler, R. The Hadoop distributed file system. In

Proceedings of the 26th IEEE Symposium on Mass Storage Systems and Technologies

(MSST 2010).

[133] SocialFlow. http://socialflow.com.

[134] Soztutar, E. Apache HBase region splitting and merging. Blog post available at

http://hortonworks.com/blog/apache-hbase-region-splitting-and-merging/

[135] Stonebraker, M. Inclusion of New Types in Relational Data Base Systems. In

Proceedings of the 2nd International Conference on Data Engineering. 1986.

[136] Stonebraker, M. The Design of the Postgres Storage System. In Proceedings of the 13th

International Conference on Very Large Data Bases (VLDB 1987).

[137] Stonebraker, M., Madden, S., Abadi, D., Harizopoulos, S., Hachem, N., Helland, P. The

end of an architectural era: (it's time for a complete rewrite). In Proceedings of the 33rd

International Conference on Very Large Data Bases (VLDB 2007).

[138] Sun, Y., Lu, Y. A grid-based subspace clustering algorithm for high-dimensional data

streams. Lecture Notes in Computer Science Volume 4256, 2006, pp 37-48.

[139] Text indexes. MongoDB documentation available at

http://docs.mongodb.org/manual/core/index-text/

[140] The Arabidopsis Genome Initiative. Analysis of the genome sequence of the flowering

plant Arabidopsis thaliana. Nature 408, 796-815 (14 December 2000).

[141] The igraph library. http://igraph.sourceforge.net/.

[142] The R project. http://www.r-project.org/.

[143] Thomson, R., Lebiere, C., Bennati, S. Human, Model and Machine: A Complementary

Approach to Big Data. In Proceedings of the 2014 Workshop on Human Centered Big

Data Research.

[144] Tomasic, A., García-Molina, H., Shoens, K. Incremental updates of inverted lists for text

document retrieval. In Proceedings of the 1994 ACM SIGMOD International Conference

on Management of Data (SIGMOD 1994).

[145] Truthy. http://truthy.indiana.edu/.

148

[146] TwitInfo. http://twitinfo.csail.mit.edu.

[147] Twitter firehose stream. https://dev.twitter.com/streaming/firehose

[148] Twitter streaming API. https://dev.twitter.com/docs/streaming-apis

[149] Twitter trends. https://mobile.twitter.com/trends

[150] Understanding the Cassandra data model. Apache Cassandra 0.8 documentation.

Available at http://www.datastax.com/docs/0.8/ddl/index

[151] Using MapReduce. Riak documentation. Available at

http://docs.basho.com/riak/latest/dev/using/mapreduce/

[152] Using Search. Riak documentation. Available at

http://docs.basho.com/riak/latest/dev/using/search/

[153] Using secondary indexes. Riak documentation. Available at

http://docs.basho.com/riak/latest/dev/using/2i/

[154] Vavilapalli, V. K., Murthy, A. C., Douglas, C., Agarwal, S., Konar, M., et al. Apache

Hadoop YARN: yet another resource negotiator. In Proceedings of the 4th ACM

Symposium on Cloud Computing (SoCC 2013).

[155] VisPolitics. http://vispolitics.com.

[156] VoltDB. http://voltdb.com/

[157] Von Laszewski, G., Fox, G., Wang, F., Younge, A., Kulshrestha, A., Pike, G. Design of

the FutureGrid experiment management framework. In Proceedings of 2010 Gateway

Computing Environments Workshop (GCE 2010).

[158] Weikum, G., Ntarmos, N., Spaniol, M., Triantafillou, P., Benczúr, A., Kirkpatrick, S.,

Rigaux, P., Williamson, M. Longitudinal analytics on web archive data: It’s about time!

In Proceedings of the 5th Biennial Conference on Innovative Data Systems Research,

(CIDR 2011).

[159] Weng, L., Flammini, A., Vespignani, A., Menczer, F. Competition among memes in a

world with limited attention. Scientific Reports, (2) 335, Nature Publishing Group 2012.

[160] Weng, L., Ratkiewicz, J., Perra, N., Gonçalves, B., Castillo, C., Bonchi, F., Schifanella,

S., Menczer, F., Flammini, F. The role of information diffusion in the evolution of social

networks. In Proceedings of the 19th ACM SIGKDD Conference on Knowledge

Discovery and Data Mining (SIGKDD 2013).

149

[161] Whang, K. NoSQL vs. Parallel DBMS for Large-scale Data Management. Presentation at

the Challenges in Managing and Mining Large, Heterogeneous Data Panel of 2011

Internaltional Conference on Database Systems for Advanced Applications (DASFAA

2011).

[162] Williams, D. Cassandra: RandomPartitioner vs OrderPreservingPartitioner. Blog post

available at http://ria101.wordpress.com/2010/02/22/cassandra-randompartitioner-vs-

orderpreservingpartitioner/. 2010.

[163] Write concern. MongoDB documentation. Available at

http://docs.mongodb.org/manual/core/write-concern/

[164] Wu, G., Boydell, O., Cunningham, P. High-throughput, Web-scale data stream slustering.

In Proceedings of the 4th Web Search Click Data workshop (WSCD 2014).

[165] Xin, R., Rosen, J., Zaharia, M., Franklin, M., Shenker, S., Stoica, I. Shark: SQL and rich

analytics at scale. In Proceedings of the 2013 ACM SIGMOD International Conference

on Management of Data (SIGMOD 2013).

[166] Zaharia, M., Chowdhury, M., Das, T., Dave, A., Ma, J., McCauley, M., Franklin, M.,

Shenker, S., Stoica, I. Resilient distributed datasets: a fault-tolerant abstraction for in-

memory cluster computing. In Proceedings of the 9th USENIX Conference on

Networked Systems Design and Implementation (NSDI 2012).

[167] Zaharia, M., Das, T., Li, H., Shenker, S., Stoica, I. Discretized streams: an efficient and

fault-tolerant model for stream processing on large clusters. In Proceedings of the 4th

USENIX Workshop on Hot Topics in Cloud Computing (HotCloud 2012).

[168] Zezeski, R. Boosting Riak search query performance with inline fields. Blog post

available at http://basho.com/boosting-riak-search-query-performance-with-inline-fields/.

2011.

[169] Zhang, B., Ruan, Y., Qiu, J. Harp: Collective Communication on Hadoop. To appear at

the Proceedings of 2015 IEEE International Conference on Cloud Engineering

(IC2E2015).

[170] Zobel, J. Moffat, A. Inverted files for text search engines. ACM Computing Surveys,

38(2) - 6. ACM New York, 2006.

	Acknowledgements
	Chapter 1
	1.1 Big Data: Emerging Characteristics
	1.2 Social Media Data Analysis
	1.2.1 Truthy Social Media Observatory
	1.2.2 Other Similar Systems

	1.3 Research Challenges
	1.3.1 Requirements for Novel Text Indexing Techniques
	1.3.2 Efficient Execution of Analysis Workflows
	1.3.3 Parallel Processing of High-Speed Stream Data

	1.4 Contributions and Outline

	Chapter 2
	2.1 Overview
	2.2 Related Work
	2.3 Review of NoSQL Databases
	2.3.1 Data Model
	2.3.2 Data Distribution Mechanism
	2.3.3 Data Replication and Consistency Management
	2.3.4 Data Indexing Support
	2.3.5 Distributed Data Processing Support
	2.3.6 Summary

	2.4 Customizable Indexing Framework
	2.4.1 Input Data Model
	2.4.2 Abstract Index Structure
	2.4.3 Interface to Client Applications
	2.4.4 Implementation on HBase – IndexedHBase
	2.4.5 Implementation on Other NoSQL Databases

	2.5 Performance Evaluation
	2.5.1 Table Schemas on IndexedHBase
	2.5.2 Data Loading Strategies
	2.5.3 Parallel Query Evaluation Strategy
	2.5.4 Testing Environment Configuration
	2.5.5 Configuration and Implementation on Riak
	2.5.6 Data Loading Performance
	2.5.7 Query Evaluation Performance

	2.6 Conclusions

	Chapter 3
	3.1 Overview
	3.2 Analysis Algorithms
	3.2.1 Related Hashtag Mining
	3.2.2 Meme Daily Frequency Generation
	3.2.3 Domain Name Entropy Computation
	3.2.4 Graph Layout
	3.2.5 Performance Analysis

	3.3 Composition and Execution of Analysis Workflows
	3.3.1 Analysis Workflow for Political Polarization Investigation
	3.3.2 Analysis of Twitter Data from 2010
	3.3.3 Analysis of Twitter Data from 2012

	3.4 Related Work
	3.5 Conclusions

	Chapter 4
	4.1 Background
	4.2 Related Work
	4.3 Sequential Clustering Algorithm
	4.3.1 Protomemes and Clusters
	4.3.2 Sequential Clustering Algorithm
	4.3.3 Opportunities and Difficulties for Parallelization

	4.4 Parallel Implementation on Storm
	4.4.1 Storm
	4.4.1 Implementation with Cluster-Delta Synchronization Strategy
	4.4.2 Implementation with Full-Centroids Synchronization Strategy

	4.5 Evaluation of the Parallel Algorithm
	4.5.1 Correctness Verification
	4.5.1 Performance Evaluation

	4.6 Conclusions

	Chapter 5
	5.1 Conclusions
	5.2 Future Work

	Bibliography

