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Abstract—Grids in their current form of deployment and
implementation have not been as successful as hoped in
engendering distributed applications. Amongst other reasons,
the level of detail that needs to be controlled for the successful
development and deployment of applications remains too high.
We argue that there is a need for higher levels of abstractions
for current Grids. By introducing the relevant terminology,
we try to understand Grids and Clouds as systems; we find
this leads to a natural role for the concept of Affinity, and
argue that this is a missing element in current Grids. Providing
these affinities and higher-level abstractions is consistent with
the common concepts of Clouds. Thus this paper establishes
how Clouds can be viewed as a logical and next higher-level
abstraction from Grids.

Index Terms—Distributed Infrastructure, Distributed Comput-
ing, Grid, Cloud, Abstractions, Interfaces, Affinity

I. INTRODUCTION

There is a level of agreement that computational Grids have
not been able to deliver on the promise of better applications
and usage scenarios. The lack of possible applications is not
completely unrelated to the significant challenges in Grid
deployment and management, the difficulty of providing inter-
operability (both system level [1] and application level [2]),
and of composing cross-Grid applications and services. Al-
though the reasons are often context dependent and resist over-
simplified explanations, if there is a single factor that stands
out above others, it is probably the complexity associated with
Grids – both from a programmatic point of view as well as
from a technology, management and deployment perspective.

Grids as currently designed and implemented are difficult
to interoperate: there have been major attempts to create Grids
that interoperate seamlessly, in particular by the ‘Grid Inter-
operation Now (GIN)’ effort within OGF [1]. Understandably,
the various Grid programming and run-time environments vary
significantly. But even if some level of homogenization could
be imposed across different Grids, managing application level
control programmatically across different virtual organization
will remain difficult. Additionally, the lack of commonly
accepted means of system support for cross-Grid applications
(e.g. co-scheduling resource across more than one VO) makes
aggregating cross-Grid resources difficult. Many of these dif-
ficulties underscore GIN’s limited impact on applications in
spite of the groups extensive and sincere efforts. It is important
to note, that we are not suggesting that Grids are not useful,
but pointing out, how it is generally agreed that the vision

of pervasiveness, ubiquity and interoperability of computing
resources and infrastructure – as promised, in the early days
of Grid computing [3], have not come to fruition.

From our own experience as both end-users and developers
of Grid infrastructure, there is a need to expose less detail
and provide functionality in a simplified way. If there is a
lesson to be learned from Grids it is that the abstractions
that Grids expose – to the end-user, to the deployers and to
application developers – are inappropriate and they need to be
higher level. As we will go on to show, Web-Services and their
multiple incarnations have interfaces that are at a level that is
too low, to enable the effective deployment of infrastructure
and application development.

Clouds are clearly related to Grids, both in goals and
implementation, but there are differences which are difficult to
discuss as both terms do not have agreed upon definitions. We
believe that Clouds as systems are not orthogonal to Grids, nor
are they necessarily complementary to Grids: in some ways,
Clouds are the evolution of Grids (and they can both in turn be
viewed as evolution of Clusters). In many ways, Clouds may
just be composed of regular, vanilla Grids with suitable ser-
vices and interfaces superimposed on them. Whether Clouds
are a somewhat fuzzily defined concept, or possibly a simple
repackaging of earlier concepts from distributed systems [4],
it is important to clarify their relationship to existing classic
Grids.

A fundamental difference between Clouds and Grids, in
our opinion, is the support for interfaces that are syntactically
simple, semantically restricted and high-level; standardized or
not is an open question. In this paper we will introduce the
notion of Usage Mode and Affinities of systems; the former
describes the high-level characterisation of the primary ways
in which applications use the system, and the latter describes
the systems’ internal properties that support these patterns. We
argue, that an emphasis on Usage Modes and Affinities is the
putative cause for the simplicity of use of Clouds and this will
be a major focus of this paper.

To the best of our knowledge this is the first systematic
attempt to characterize Clouds in relation to Grids from
the perspective of semantics and interface abstractions. The
importance of this approach is reiterated by discussions on
the next steps for existing Grid infrastructure projects – such
as the TeraGrid. For example, of the approximately 15 position
papers that were solicited and submitted as part of the Future
of the TeraGrid process, more than half mention the need for



the next generation of the TeraGrid to take cognizance of the
developments in Cloud computing – where Cloud computing is
a catch-all term for better contextualization, virtualization and
most importantly simplicity of use. Some such as Blatecky [5]
advocate stronger positions, i.e. TeraGrid should focus on an
exit strategy and give way to developments in virtualization
such as Clouds and Web 2.0.

Our approach does not analyse specific examples of Grids
and Clouds in relation to each other, but is a theoretical
analysis of these systems. So although, our approach may be
limited in its ability to describe a specific Grid or a specific
Cloud, we believe our approach has general applicability. It is
also important to mention that we do not discuss Cloud SLAs,
buisness or provisioning models, even though they are seen by
some as the distinguishing characteristics, if not the defining
properties of Clouds, and admittedly, some level of technical
details will inevitably be dependent upon the specifics. We
argue that our contribution is nevertheless useful, in that it
provides a certain well defined framework of definitions and
terminology, which may prove useful for discussing Grid and
Cloud system properties; this is topical, as some structure in
the often vague discussions and distinctions between Grids
and Clouds is required. Furthermore, we acknowledge that we
do not address issues around security – Grids or Clouds, and
only provide a limited discussion of interoperability issues.
Although these points, and others, are without doubt important,
in particular for commercial systems, we feel that a thorough
discussion is both out of scope of relevance and our expertise.

As a side note, the attention given to Clouds is partially due
to the (coincidental but) simultaneous development in interests
in green computing. Green computing may not be the most
critical architectural design point [6], but if green practices
arise naturally then that is an advantage. A natural way to
construct a Cloud is ab initio, and thus there is significant
scope to utilize green locations and green energy sources1. It
is conceivable that current social and political trends may lead
to a situation where green computing considerations play an
important role along side technical ones; we are not advocating
green computing trends or technologies – for that matter we
are not advocating Cloud computing either, but surely, the
alignment of industrial trends and academic computing cannot
be harmful for either.

The remainder of this paper is structured as follows: In the
next section we briefly outline and discuss the main recurring
concepts in this paper, followed by specific examples of
these concepts. We will then discuss Cloud Affinity as arising
from the focus on interfaces and not on implementations.
An analysis of the concepts involved leads to a strawman
architecture for Clouds; we then analyze the implications of
the proposed high-level architecture for Clouds and Grids, and
close with some outstanding questions of relevance that we
hope will be addressed by the community in the near future.

1Grids on the other hand are mostly constructed from a set of existing
resources.

II. DEFINITIONS

This section attempts to list definitions for terms frequently
encountered throughout the paper. These definitions are
working definitions, and are probably not universally
applicable nor rigorous; detailed definitions would have
been impossible with the limited scope of this paper.
We feel that these working definitions whilst simple and
basic, are enough to facilitate discussions of the issues in hand.

Resource: A physical or virtual entity of limited availability.
Physical resources are compute, storage and communication
resources, etc. Virtual resources are usually services, which
provide direct or indirect access to physical resources.

Service: An entity which provides a capability on a re-
source, or which allows actions to be performed on resources.
Services can in turn be Low Level Services – which act
primarily on physical resources, or High Level Services which
act primarily on virtual resources (i.e. on other services).
Services expose their capabilities via service interfaces.

System: A set of services and resources, which form an
integrated whole. The concept of a system is inherently
hierarchical, i.e. there are systems of systems. Higher Level
Systems are systems which make use of other systems (i.e.
Lower Level Systems), through aggregation.

Semantics (of Systems): The set of capabilities, or features,
available within a system. The semantics of a system can be
greater (more powerful) than the semantics of its individual
(lower level) systems combined.

System Interface: A set of interfaces that allow an applica-
tion (and other higher level systems) to access the capabilities
of a system. APIs provide programmatic access to these inter-
faces. Application Environments provide user level abstractions
to APIs and thus also access to service interfaces System
interfaces often expose only parts of the entire semantics of
the system.

Virtualization: An additional layer between real systems
and applications which translates concurrent access to real
systems into seemingly exclusive access to the virtual system.
The virtualization interface often hides details and differences
of the real system components.

Application: An entity making use of a system, e.g. by using
an API, or an application environment (see below).

Portals and Science Gateways: High level application
environments that are oriented towards facilitating end usage;
these access interfaces allows the description, instantiation,
deployment and management of applications – both abstract
and concrete – on a system. Application environments may
provide additional, often application specific, semantics which
is originally not available in the underlying system.

Usage Mode: A usage mode is a commonly occuring de-
ployment pattern that influences the resource and infrastructure
access for an application or a class of applications. A single
application can have multiple usage modes, and multiple ap-
plications can have similar usage modes; usage modes are not
unique to an application. For example, a Molecular Dynamics



(MD) application can be used stand-alone or as a component
that is just a part of a larger application. A stand-alone
MD application could in turn be used in different ways. For
example, identical ensembles of the same application could
be used for parameter-sweeps (decoupled) or for Replica-
Exchange (loosely-coupled) simulations. Additionally, a single
instance of the application could be used in a “long-running”
mode, or a sequential (multi-stage) mode. Finally, a single MD
application can be either used on one machine or split over
multiple machines. These are all different usage modes of a
single application, and the infrastructure used and the tools
required to support each usage mode are different.

Affinity: An inherent property of a system that describes a
relationship between two or more (real or virtual) resources.
The relationship is indicative of the types of Usage Modes that
the system supports. Affinities can be indicative of support for
data-oriented, compute intensive, or communication intensive
computing, etc.
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Fig. 1: Figure showing the relationship between the different concepts
associated with a system. Systems are composed of services, which
provide access to resources. Interfaces allow systems to be accessed
and used; APIs in turn allow applications to access interfaces.

III. EXAMPLES

We will show through concrete examples that although, the
above definitions are prima facie simple and limited, they
permit a description of real world systems. In the following
examples, we discuss the semantic properties of various enti-
ties, and provide a motivation for a later discussion of affinities
and usage modes.

A. Resources

Resources can be classified as either compute, storage or
communication, amongst other types. Some simple examples
of (physical) compute resources are dedicated clusters and idle
CPU cycles on workstations; single hard drives or large shared
file systems are examples of storage resources; the Internet in

various physical representations is an ubiquitous example of a
communication resource. Numerous other types of resources
exist, such as remote instruments, sensors, software licenses,
human experts etc.

The semantics of a resource consist of a set of core capa-
bilities specific to the resource and the ability to manage those
capabilities (provisioning, availability, QoS, security etc.) The
core capabilities are usually variable – a CPU can run many
kinds of applications; a disk can store many types of data;
a network can connect to many types of endpoints etc. The
means provided to exploit resource semantics, say via the
resource interface, are thus also often flexible (assembly for
CPUs; various file systems or driver interfaces for disks; TCP
and other low level protocols for networks, etc.). The tradeoff
is between the flexibility and complexity of these interfaces.

B. Services

Low Level Services: There are many low level services that
allow actions on resources; OS level file systems, OS process
schedulers etc. are low level services. Note that these services
limit the exposed semantic capabilities of the resources (i.e.
using a file system, a user will not be able to explicitly address
individual blocks on the disk anymore: she must adhere to the
notion of files and directories.)

In distributed environments, typical low level services are:

• job/batch schedulers: LSF, GRAM, Mauii, etc.
• file systems: Google file system, AFS, GFS, etc.
• communication: TCP streams, monitoring systems, etc.

High Level Services: High level services often build upon
multiple low level services and resources. For example, a
replica service such as the Globus RLS would exploit storage
resources (e.g., a global virtual file system), other storage
resources (e.g., a database for meta data storage), and com-
munication resources (e.g. a network for data movement). The
semantic power is often greater than that of the individual
pieces combined (a replica service may have the notion of
replication policies, which make no sense on the level of the
individual resources). On the other hand, the service interface
will often limit the exposed semantics, according to the target
use cases (e.g., the RLS API does not allow the creation of
arbitrary tables in the meta-data database).

In distributed environments, typical high level services are:

• job managers: meta-schedulers, supporting reservation
and co-allocation, registries, etc.

• file systems: replica systems, federated file systems, etc.
• communication: message passing infrastructures, compo-

nent systems, publish/subscriber systems, etc.

C. Systems

An inherent generality in the definition of the term ‘system’
permits a wide variety of examples. We limit the discussion
however, to examples which are of particular interest to this
discussion, viz., Operating Systems, Grids, and Clouds.



1) Operating Systems: Broadly defined [7], an Operating
System (OS) can be considered as the software that manages
the resources of a computer and provides programmers with
an interface used to access those resources. The focus here is
on a single computer. Although distributed operating systems
exist, one can argue that the existence of the OS implies
the existence of a single distributed computer. Interestingly, a
system interface is an intrinsic part of the (operating) system;
indeed, most systems would be useless without an interface
to use that system (possibly apart from truly autonomous
systems).

2) Grids: Grids are systems which, according to Ref [8],
have the following properties:

• Coordinate resources that are not subject to centralized
control,

• Use standard, open, general-purpose protocols and inter-
faces,

• Deliver non-trivial qualities of service.
The TeraGrid[9], for example, is a system which provides

more than 750 Teraflops of compute resources, more than
30 Petabyte of storage, and high performance network con-
nections. Resources are administrated by individual TeraGrid
sites. The infrastructure is based on open source software
which implements (at least some) open standards. TeraGrid’s
native system interface is increasingly complemented by a
number of application oriented Science Gateways – whereby
the powerful but complex native system interfaces are wrapped
and abstracted by domain specific portals, which provide a
limited, but simpler interface to the end-users.

The TeraGrid is a General Purpose Grid, as its interfaces
provide access to a wide variety of capabilities, and does not
limit the usage of the Grid resources for a specific application
domain. In contrast to general purpose Grids, Narrow Grids
(i.e. domain specific Grids) provide more focused services
and interfaces2. For example, the Cern Data Grid aims to
create a Grid with the ability to store and distribute large
amounts of data, with less emphasis on high performance
computing. A number of high-level services have been created
to provide the required functionality on top of a general
purpose Grid, effectively limiting its semantic capability, but
increasing its ease-of-use for the target domain of distributed
data management.

3) Clouds: Cloud systems (or just Clouds) are, in some
respects, narrow Grids, with a limited set of features exposed,
while still being able to serve a large fraction of the domain
specific use cases (the Cloud’s Usage Mode). For example, the
Simple Storage Service by Amazon[11] (S3, details below) is

2It is important to distinguish the use and definition of narrow Grids in this
paper from Ref [10]. In Ref [10] the Broad Grid concept was introduced as
a comprehensive term for essentially any (large-scale) distributed system that
is coordinated or managed for some goal, and would, for example encompass
Globus and general Web Services systems; Narrow Grids were defined as
software suites or infrastructure deployed as part of a larger project. Thus by
definition in Ref [10], TeraGrid and EGEE would classify as Narrow Grids,
whereas using the definition of a Narrow Grid outlined in this paper, TeraGrid
is a general-purpose Grid, whilst EGEE is a narrow Grid. For this paper,
TeraGrid will serve as a prime example of a general-purpose Grid.

a data Grid which, if compared to the Cern Data Grid, has less
exposed semantics. The exposed feature set is, however, large
enough to attract a significant user base and meet application
requirements, which is also due to the simplicity of the
exposed system interface.

Amazon S3 and EC2: These are probably some of the
best known examples of Clouds. S3 provides the ability to
outsource data – temporary store or archive with a given
tightly defined quality of service guarantee on availability,
durability and persistence of data. S3 has a simple cost model
based upon usage measured in GB/month, with a certain
cost for data transfer across S3 boundaries. Users are not
charged for transfer if they use the “cooperative” EC2 – Elastic
Compute Cloud[12], another service by Amazon, although
they are charged for the compute time. S3 in principle provides
infinite data storage, continuous availability and durability.
Similarly EC2 represents the ability to accommodate a very
large number of compute jobs (if not an infinite number in
principle), without the end-user realizing that it is a shared
resource. EC2 is a nice example of an infrastructure’s explicit
support for different usage modes (bursty, high-throughput and
parameter-sweep).

Ref [13] concluded, though not without its doubters [14],
that S3 although a useful concept, may not be suitable for
scientific projects and applications such as particle physics
experiments, due to reasons primarily related to security, cost
model and as well as performance. In any case, it is unclear if
performance (or lack thereof) will be an issue in the uptake of
these systems (S3 and EC2 specifically, but Clouds in general)
for niche high-end applications; we argue that a “sweet spot”
balancing the high-level interfaces and abstractions on the
one hand, with the need for performance requirements on the
other, will be an important consideration. Interestingly, Cloud
vendors such as IBM, are working towards composite Clouds
built from sub-Clouds, called ensembles[15].

D. System Interfaces

As defined above, interfaces expose the semantics of sys-
tems. We will elaborate on the interfaces of the systems
examples presented earlier.

1) Operating Systems: A modern Linux OS has, for exam-
ple, a number of interfaces: system calls, system tools (which
mostly use the system calls), the /proc file system, raw
devices and others. These interfaces expose different aspects
of both the OS itself, and also of the underlying resources.
Often two interfaces expose different aspects of an underlying
resource (think file system and raw disk device).

2) Grids: The interfaces exposed by general purpose Grids
are mostly programmatic interfaces, e.g. web service interfaces
plus client libraries to these web service interfaces. Addi-
tionally, tools (using a subset of the programmatic interface)
provide the most commonly used capabilities in a convenient
way to the end-user, e.g. as command line tools or GUIs.

As alluded to, one of the major reasons why Grids have
not been as successful as hoped in engendering distributed
applications has been because the exposed interfaces are too



complex, and the level of detail that needs to be controlled for
the successful development and deployment of applications
remains too high. In fact, we believe that Grid interfaces
tend to expose a maximal set of functionality of the Grid
system to the end user. High-level APIs such as SAGA and
CoG are an additional layer on top of Grids, which provide
additional system interfaces with increased simplicity and
usability, while limiting the degree of semantics exposed.
These higher level APIs are, however, neither typical nor
required by Grid systems.

In particular, the WS-* services often employed by Grid sys-
tems expose very rich distributed system semantics. There is
circumstantial evidence that this level of detail has failed large
parts of the Grid community, as (a) it is in practice often not
interoperable, as real implementations of these WS-* are rarely
faithful to the standard or just wrong[1]; and (b) it is hard
to build higher-level services, tools and applications against
these complex interfaces[2]. Maturing of these standards, their
implementations, and the continued effort to ensure pairwise
Grid system interoperability may be able to alleviate these
deficiencies over time.

3) Clouds: In contrast to Grid system interfaces, Cloud sys-
tem interfaces are minimalistic and they do not expose internal
system characteristics. Typically the exposed capability set is
usually much more limited than the set of capabilities avail-
able in the Cloud system itself. The dominant consideration
determining which parts of the system semantics are exposed
via the Cloud interface are the Cloud’s target Usage Mode.
”current Clouds seem to target one usage mode, although by
no means is this assured to hold true in the future.” I’m not
sure we can say this with sufficient confidence or empirical
evidence. Thus, we believe that Clouds characteristically ex-
pose a minimal set of system semantics required to support
the Cloud’s usage modes3.

While certainly not true of all cases, consider the following
numbers, which we believe represent the above points well: the
Globus Toolkit Version 4.2 provides, in its Java version, ap-
proximately 2,000 distinct method calls. The complete SAGA
Core API [16] provides roughly 200 distinct method calls. The
SOAP rendering of the Amazon EC2 cloud interface provides,
approximately 30 method calls (and similar for other Amazon
Cloud interfaces, such as Eucalyptus [17]). The number of
calls provided by these interfaces is no guarantee of simplicity
of use, but is a strong indicator of the extent of system
semantics exposed. For EC2, it would be difficult to decide
which call to drop without undermining the target usage mode
(VM provisioning). This is arguably not true for SAGA or
Globus: both would continue to be very useful APIs even if a
few random calls were dropped – just possibly less complete.
On the other hand, both SAGA, and much more so Globus,
would not want to limit their applicability by dropping a
number of currently provided methods. On the contrary, our
experiences with SAGA indicate a need by some users to

3”It seems that perfection is reached not when there is nothing left to add,
but when there is nothing left to take away” [Antoine de Saint Exupéry]

add further functionality! Further, we suspect that the method
set exposed by Globus is a fairly complete rendering of the
system capabilities provided by the globus middleware. We
think it would be difficult to add API methods to Globus,
without actually adding semantically new elements of Globus
middleware.

E. Virtualization

Recent virtual machine technologies such as Xen and
VMWare amongst others, provide excellent examples of virtu-
alization – the process by which a well known system interface
(the virtual machine and its OS) is provided on top of another
similar system interface (the host resource). Thus the details
of the host system are hidden and apparent exclusive access
to the system resources on the virtual machine are provided,
while actually performing concurrent resource sharing within
the system as multiple virtual machines can be run on the host
resource.

F. Application

Although it may be intuitively obvious to the reader what an
application is, we provide an explicit example here: Assume
a map-reduce based distributed application, which creates a
genome index of a genome data-set, and is running on the
Amazon EC2 compute Cloud, using data from the Amazon S3
cloud. The map-reduce components (executable) are running
on virtualized resources, which utilize physical resources,
managed by EC2’s Cloud system. For the end-user of the
genetic information, the index creation algorithm is the appli-
cation, with map-reduce being the programming model, and
EC2/S3 being the systems used to run that application. The
system interfaces utilized are the virtual machines of EC2, the
REST/HTTP based interface of S3 for data access, and the
REST/HTTP based interface for starting jobs on EC2. It is
important to stress however, that what may be an application
for one user, may be consider as a system by another: Amazons
EC2 cloud itself can well be considered an application of the
underlying service layer.

G. Portal/Science Gateway/Application Environment

The usability of a system is greatly increased if a high
level interface is provided to the end-user, which is designed
to specifically support that users native work modus4.
That can be achieved in multiple ways, depending on the
prefered work environment of that user, or on the need
to integrate with other, existing user tools. With respect
to the genetics application example discussed above: a
portal which allows the end-user to easily switch from a
data acquisitions application (genome sequencing) to a data
analysis application (the indexing described above) will
greatly facilitate the usability of a system to the geneticist.
Other styles of application environments, such as workflow
environments, or command line tools etc., may achieve
the same goal. The key here is the integration into the

4‘Work modus’ in the sense of a day-to-day sequence of actions performed
by an end-user to achieve a specific scientific, or commercial etc, goal.



prevalent working environment of the end-user in a minimally
disruptive way.

IV. USAGE MODES AND SYSTEM AFFINITIES

We stated above that Grid system interfaces, in particular
for general purpose Grids, tend to be complete – that is, they
try to expose a complete set of available system capabilities,
and that Cloud interfaces tend to be minimalistic (i.e. they
expose only a limited set of capabilities, just enough to ‘do
the job’).

It is important to understand the reason for this difference.
In our experience, general purpose Grids are mostly designed
bottom-up: existing, often heterogenous resources are feder-
ated as VOs, and their combined capabilities, plus additional
capabilities of higher-level Grid services, are offered to the
end-user. This is not generally not applicable for Clouds:
clouds are often designed around a specific functionality and
usually with a finite set of SLAs and specific business models.
look we said we were going to ignore SLAs and buisness
models, and here we are, reintroducing it via the backdoor!
true. But we are at least not doing that as defining properties,
but just as an observation. Acceptable? In other words, and
relevant for the current discussion, the design of Clouds
seems to be mostly top-down. Clouds are designed to serve
a limited, specific set of use cases and usage modes, and the
Cloud system interface is designed to typically provide specific
functionality. 5

A. Usage Modes

Specific users and user communities tend to create different
applications but with shared characteristics. For example, the
particle data community tends to focus on very loosely cou-
pled, data intensive parameter sweeps involving Monte Carlo
simulations and statistical analyzes. Although the specific
applications vary widely, many share these basic properties.
Systems used by these communities are thus designed to
support these application classes before others.

The Usage Mode defined earlier tries to catch the dominant
properties of the main application classes, insofar they are
relevant to the design of the system, and to the operational
properties of the system. For example, the usage mode ‘mas-
sively distributed, loosely coupled’ implies that the system’s
design prioritizes on compute resources (e.g. cycle scavanging,
large clusters), and to a lesser degree on communication (a
non-critical need for fast links between application instances).
In contrast, the usage mode ‘massively distributed, tighly
coupled’ would imply a critical dependence on compute
resources, on fast communication between near nodes, and on
the physical co-location of processes; these should be reflected
in the system’s design.

5These differences do not imply that Clouds are trivial to implement; in
practise, due to issues of scale and other reasons, the opposite is most likely
true. Clouds may very well build upon general purpose Grids, or narrow
Grids, and at least face the same challenges; but their system interfaces do
not expose those internal capabilities.

B. Affinities

Currently Clouds seem to be designed to mostly support one
usage mode, e.g. data storage, or high throughput computing,
or database access, etc. This does not preclude Clouds target-
ing more than one domain or usage mode, however. We define
the overarching design features and guidelines employed to
support the main target usage mode of Cloud systems, as its
affinities. In other words, affinity is the term we use to indicate
a type of computational characteristics that a Cloud supports.
That property can very often be expressed as the need to use
different aspects or elements of a system together (hence the
term ‘Affinity’, in the sense of ‘closeness’).

For example, the usage mode ‘distributed, tightly coupled’
implies that an application requires the use of multiple com-
pute resources, which need to be ‘near’ to each other, together
with fast communication links between these compute re-
sources. The system needs to have a ‘compute-communication
affinity’, and a ‘compute-compute affinity’. In another example,
a geolocation affinity may allow resources to be selected close
to the geographical location of the end user. Geolocation
affinity plus sensor-compute affinity may allow the compute
intensive evaluation of geographically local sensor data.

Affinities as used in this paper are, however, not always
mappable to ’closeness’. For example, we say that a system
that supports ’persistent storage, data replication, data inten-
sive’ usage mode, may have ’bulk storage affinity’ – in the
sense that it needs to be designed to have bulk storage proper-
ties (availability guarantees, long term consistency guarantees
etc). This example also shows that affinities are, in some sense,
related to Quality of Service (QoS) properties exposed by the
system, and thus to Service Level Agreements (SLAs) about
these qualities of service. Finally, Cloud affinity can also serve
as qualitative descriptors of more quantitative measures of
system-properties.

Cloud interoperability is interesting, insofar as it enables
the distinct affinities from different Clouds to be combined, to
allow for more complex usage modes through aggregation. For
example, a compute affine cloud, a sensor Cloud, and a storage
Cloud when combined would allow for compute intensive
sensor evaluation with historical sensor data. System-level
Cloud interoperability may thereby provide additional QoS,
such as a guaranteed response time for accessing data elements
in a storage Cloud from within a compute Clouds. This
provides a mechanism to expand the set of Cloud affinities,
without significant increase in the Clouds interface semantics
or complexity.

C. Discussion

Affinity is thus a high level characterization of the kind of
application that could be beneficially executed on a particular
Cloud implementation, without revealing the specifics of the
underlying arhitecture. In some ways, this is the “ideal abstrac-
tion” for the end-user who would like to use infrastructure as
a black-box. Some classic examples of affinity are: tightly-
coupled/MPI affinity, high-throughput affinity (capacity), fast-
turnaround affinity (capability), or bulk storage affinity. Our



observation is that Clouds have at least one affinity, a corollary
to which is that Cloud system interfaces are, designed to serve
at least one specific set of users or usage modes

One can argue that narrow Grids also expose affinity, e.g.
that a Data Grid has data affinity. That may well be true,
and we think that the term affinity may be useful for the
discussion of narrow Grids as well, but the main difference
between Clouds and Grids remains that the interfaces of
narrow Grids are still designed so as to expose the complete set
of capabilities related to the affinity of narrow Grids, whereas
Cloud system interfaces expose the minimal set of capabilities
related to its affinities. For the application developer, but more
likely the application deployer, information about the affinity
of Clouds should be complemented by SLA information, e.g.
providing replicated data in case of loss, co-scheduling at the
application level, or low latency communication. Traditionally
SLAs are, implicitly or explicitly, provided by the “service
provider” based upon infrastructure, policy, usage modes, or
negotiation. For Clouds, SLAs are an implicit part of the
system interface: the Cloud’s affinities imply a certain QoS
to be met, for every use of the system.

V. OBSERVATIONS

In this section, we list a number of high level observations
made while investigating real world systems. It would go
beyond the scope of the paper to discuss these observations in
full detail. They are, however, useful in discussing the matter
at hand.

Definitions
The discussion in the previous two sections III and IV

exposed a clear distinguishing feature between Grids and
Clouds: the amount of exposed system semantics. We use that
observation to come up with the following set of definitions:

Grid: General purpose Grids are high-level systems which
typically expose a maximal set of available semantics to the
end-user, while narrow Grids typically to focus on a specific
application domain. Narrow Grids tend to expose the complete
subset of semantics applicable in that domain.

Cloud: instead of exposing the largest possible amount of
semantics for a specific domain, Clouds tend to expose a
minimal amount of semantics to the end-user, while still being
useful for specific usage modes.

Observation 1
System interfaces expose a complete semantic feature set as

required by the set of target applications.
This observation may seem either trivial or even contradic-

tory to our earlier examples, where we claim that general-
purpose Grids, for example, expose a maximal set of se-
mantics. The resolution of the apparent contradiction emerges
when the large target application space is factored in, i.e.,
general-purpose Grids have large semantic feature sets because
they try to address a broad range of applications and usage
modes.

On the other hand, narrow Grids expose a subset of the se-
mantics exposed by broad Grids. This is wholly consistent with

the fact that narrow Grids are used by a smaller (narrower)
set of target applications. Within the target semantic space,
however, narrow Grids expose a complete set of semantics
that any single application could use. So, a corollary to the
observation above is: If the target application space of a system
is very narrow, the system interfaces tend to be narrow, too, i.e.
tend to expose only the semantics required by that application
space, ±ε.

Example: Operating systems have an extremely broad target
application space, and thus expose semantically powerful inter-
faces, which allow a range of services, distributed applications,
purely number crunching codes, graphical user interfaces and
others to be programmed. There are hardly any applications
which require richer semantics to access the underlying re-
sources, and if there were, extensions to the OS interface
will emerge shortly (e.g., many operating systems allow for
additional drivers and libraries to (ab)use the graphics card
resources for number crunching).

Observation 2

Higher-level systems tend to support more specific target
application and usage modes than lower-level systems.

Although higher-level systems, by aggregation or otherwise,
can have richer semantics than lower level systems, they
expose only a subset of that semantics via their interfaces,
specifically targeting increasingly specific applications and
application usage modes.

Example: Compared to the operating system example
above, Grids expose only a small subset of semantics internally
available: it is not possible to access resources like graphics
cards directly via their service interfaces, but only via the
underlying operating system interfaces. The reason is that
applications performing graphical rendering on these cards are
not in the target application space for Grids.

Observation 3

The narrower a system interface, the easier it is to use.
This observation has a definite subjective element, but in

spite of that, we observe that narrow interfaces, by virtue of
Observation 2, target specific usage scenarios, and are thus
easier to use for these specific scenarios.

Example: Some people may find MPI more difficult to use
than BSD sockets, although MPI is, without doubt, much
narrower than sockets. One should keep in mind that the
comparision should be done for the same application: sockets
are certainly not that easy to use if you have to implement
performance collective operations on a dynamically changing
set of processes. MPI, as a narrow system interface, makes
that specific use case simple.

VI. IMPLICATIONS

A. For System Architects

The observations above allude to order the real world
systems discussed before by the semantic expressiveness of
their interfaces. Please note that this order, as shown in fig. 2,



does not neccessarily imply a system architecture, but is really
just an ordering.

Obviously, applications can use any of the systems shown.
We want to argue, however, that applications tend to use the
highest level system possible, as that makes the appliciation
development as simple as possible (Observation 2 & 3).

Resources
Storage Network

Resources

Application Environments

Clouds

Grids

Operating System

Compute
Resources

Fig. 2: Semantic ordering of an abstract representation of the entities
discussed in this paper. The semantic complexity of entities decreases
towards higher-levels; the usability of the entities from end-users
perspective increases as the semantic complexity decreases.

Further, we think is is useful to consider the abover system
order when designing systems. In particular, we find that the
system order allows for a very generic architecture of real
systems, as shown in fig. 3: this figure shows the same system
order as above (Operating systems left out), but the annotations
connect the examples we gave in the earlier discussion very
nicely.

Assuming that this architecture is indeed able to describe
real world systems, it seems that Grids are required to expose
a number of core capabilities, required to implement scalable
Clouds. Amongst these core capabilities we would count:

• system management and monitoring
• authorization / authentication / accounting
• resource virtualization (compute, data, communication)
• scalability, fail safety, QoS, SLA
These are all capabilities which are certainly required within

a Cloud system, but are only partially (if at all) exposed to
the Cloud application layer. One should also note that these
capabilities are amongst the declared target capabilities for
current Grid systems[18]!

B. For Resource Providers

Resource providers and thus system implementers should
carefully look at their target user space. Ignoring the level
of semantic abstraction required by the application space, and
thus providing system interfaces which either expose too much

Network

Lower Level Services

General Purpose Grids

Higher Level Services

Data Grids Campus Grids

Compute CloudStorage Cloud

Domain Specific Services

Workflow
Environment

Application Domain Specific Solutions

OGC Portal

Elements

Resources (physical)

Compute Storage

Fig. 3: A concrete realization of the abstract ordering in Figure 2,
in form of a system architecture. This is a validation that although
simple, the abstract ordering and relationship between entities can be
useful to represent real systems.

semantics, or too little, will always result in interfaces which
are cumbersome to use, or not to use at all.

There are clear imperatives for high level resource providers
to adopt the Cloud model of utility computing: as Grids,
Clouds are able to leverage economies of scale, and by
supporting a limited but very common set of application
classes, Clouds are able to reach out to a large fraction of
the user base.

Given that Clouds are large, it is not obvious at the moment
whether there is a strong need for Clouds to inter-operate;
but there is possibly a need for passive inter-operation, often
referred to as seamless access, i.e. the ability to submit to NSF
or Amazon Clouds. Cloud’s high level interfaces should make
this easy, relative to current Grid interoperability efforts [1].

Further, Clouds seem to support an evolving internal in-
frastructure: it seems perfectly acceptable to keep engineering
“the base” infrastructure, as long as this high-level interface
is stable. In contrast, the detailed interfaces that Grids expose
makes a straight forward evolution very difficult. This may
pose an important advantage to resource providers, as it allows
the evolution of their internal infrastructure, without major
disruption of the service provided to the end users.

Finally, we want to shortly discuss the role of CPU virtual-
ization in Clouds: Clouds have so far emphasized the utility of



intra-CPU virtualization, as for example provided by systems
such as Xen and VMWare. This could possibly be integrated
with the inter-CPU virtualization provided by Grids, where
brokers manage the deployment of services and applications
on the most appropriate resource.

C. For Application Developers and End Users

We believe that program developers should be able to
develop applications in the environment they are most com-
fortable with, and should not have to include details of
their run-time environment into their development process
in anything but the most simple way. This is in contrast
to the approach where many applications are developed to
be explicitly aware of their run-time distributed environment.
Applications for Clouds can almost by definition be unaware
of the the distributed environment they run.

Related to the need to be unaware of runtime environment
details, is the need to provide simple interfaces, potentially
in multiple renderings, to keep the application agnostic of
the underlying system implementation. Clouds do have these
simple interfaces, which are sometimes rendered in different
technologies. As an example, the S3 interfaces is provided as
REST, SOAP, HTTP and BitTorrent renderings.

The decoupling of applications from resource mapping and
resource specific details, lead us to the notion of abstract
applications – applications that do not have run-time environ-
ment dependencies built into them. As an example, workflow
descriptions are usually abstract applications: they can be
mapped to different systems and resources, as long as the
individual components do not depend on specific resource
details.

Clouds and other high level systems, seem to support the
notion of abstract applications, and provide a mechanism to
create instances of these abstract applications, by binding them
to specific resources. An additional bonus for the application
developer is that abstract applications provide horizontal in-
teroperability, in that these applications can be instantiated
on different systems, with no or moderate porting effort,
depending on the standardization of the system interfaces. That
also avoids vendor lock-in, which may be crucial for a wider
acceptance of Cloud technologies.

D. For OGF

The observation is that the development of Grid applications
has proven difficult, as has the managment and deployment
of Grids. How should a primarily Grid oriented standards
organization such as the OGF respond to seemingly broad
industrial support for Clouds?

In general, the discussed architecture for Grids and Clouds
motivates opportunities for standards at two levels: at infras-
tructure level (core capabilities) and at the Cloud interface
level. We have already stated that primarily due to the func-
tional simplicity, the advantages of a standardized Cloud inter-
face in are questionable. When viewed from the motivation of
interoperability for applications however, the advantages are
obvious. The need for infrastructure standardization may also

be arguable (Are current Clouds built upon standards? Does
it matter?), but (a) we feel that standardization is important
for any future academic Cloud efforts, and (b) we believe that
infrastructure standardization will enable companies to offer
Cloud services on top of externally provided resources.

1) Standardization at the Interface Level: We have dis-
cussed earlier that the need for standards at the Cloud interface
level is arguable, as current Clouds interfaces are essentially
so simple, that porting an application is, consequently trivial
too. Nevertheless, we feel that for users who wish to use
interface from different Cloud systems into a thin or thick
client applications, standards will be advantageous, as it will
to enable them to interact with any Cloud service. Efforts
at standardizating such a Cloud service interface may be
premature at this time, as the Cloud usage models are not
yet fully understood or developed, but it is certainly an area
that OGF could be involved in. Obvious next steps are to
understand better the usage models.

There is currently no international group that is addressing
the standardization of interfaces to Cloud systems. The Com-
puting Community Consortium which are organizing events
to try to get parts of the Cloud community together, are
probably the closest. This is therefore a relatively green field
for the OGF, which has the expertise and mandate to show how
interfaces defined within OGF can be used to access Clouds.
OGF also has the community to define use cases and develop
core architectures and technologies.

Access to many of the services specified by OGF can be
encapsulated within APIs such as those produced from the
SAGA-WG. Applications developed using these high-level
interfaces should seamlessly migrate to Clouds.

2) Standardization at the Core Capability Level: OGF
offers a set of standards to support the compute aspects of
resource services (HPC-BP, BES, DRMAA), and an emerging
set of standards to support data resource services. To the OGF
community’s credit, impressive strides in the development
of standard interfaces which are agnostic to the underlying
architecture and infrastructure details have been made. We
believe that these standards can form an essential core when
designing and implementing Cloud systems.

Current Cloud implementations seem not to be overly
concerned about the internal use of standardized system com-
ponents (or at least do not document this). We want to remind
the reader though, that the percieved need for standardization
is usually small when a technology is new, and only increases
as both the depth and breadth of adoption of the technology
increases above a certain threshold. We predict that, if Clouds
continue to deliver to the application community, and thus
Cloud technology uptake increases in the future, then the need
for the standardization of Cloud internal system components
will also increase. As to whether these components will
ultimately be Grid-like or Grid-based, is a different question,
and may well depend as much on technical as on social and
political issues. In order to influence and maximize the chance
of involvement in Cloud system standardization, early and
open engagement of OGF and the Grid standards community



will be crucial.

E. For SAGA

SAGA6 is an application level interface that provides a
unified and consistent API to the most commonly used dis-
tributed functionality. Given possible changes in the develop-
ment landscape, a pertinent question is: what might be the
implications for SAGA? As a first step, there is clearly a
need to understand the interfaces that are typically exposed by
Clouds. However simple the native system interface, there is
a need for programmatic support for application development
and deployment via abstractions, e.g., providing abstractions
to express and address the affinity of Clouds. The SAGA group
at the OGF should try to analyze if the notion of affinity can
help by designing APIs which are oriented toward specific
application domains and usage modes.

In general, the emergence of Clouds with an emphasis on
supporting usage modes is an interesting complement to the
SAGA approach; both are top-down approaches for providing
application-oriented capabilities and/or interfaces. Currently
Clouds provide application-support, at the internal system-
level, i.e., by providing capabilities required by applications as
intrinsic features of the Cloud system. For example, support
for MapReduce by major providers such as Google and Yahoo
(via Hadoop), is just one indication of the utility and need for
programming abstractions.

VII. DISCUSSION AND OPEN ISSUES

We have barely begun to understand Clouds as a viable dis-
tributed computing architecture and there are many technical
issues, both internal and external to a Cloud that remain to be
formally addressed. A limited, random sampling of these are
given below:

• High-level interfaces have a role to play in making Clouds
and other infrastructure easy to use. There is a need to ad-
dress how utilizing distributed systems can be made easier
and more effective through abstractions, i.e., via support
for commonly occuring patterns, which could be either
programming patterns, application usage patterns and/or
infrastructure usage patterns. High-level interfaces should
make supporting programming abstractions easy, whether
it be widely known and utilized abstractions such as Map-
Reduce [19], or more recently adopted approaches such
as All-Pairs [20] for data-intensive computing.

• The model of computing that a Cloud can support needs
to be well defined, and is arguably the most important
public attribute of a Cloud; we have introduced the con-
cept of Cloud Affinity to address this important attribute.
We argue that the internal configuration should not be an
attribute that is exposed. The question however, remains:
What types of internal configuration are available to
support these? For example, can Clouds with suitable
network connectivity between compute nodes provide

6Simple API for Grid Applications, an OGF proposed recommendation.
Disclaimer: two of the authors are co-chairs of the SAGA Working Group.

affinity for capability distributed computing (i.e. multiple
modest size MPI jobs)?

• We currently find Clouds that are “homogenous” – either
just data (S3) or compute Clouds (EC2) or just very
large private (commercialized) data centers. Is that an
intrinsic property, or can future Clouds be heterogeneous?
The issue of homogeneity and heterogeneity is not just
academic: for most scientific computing needs, Clouds
that provide only data storage facilities are probably
going to be insufficient. There is thus a need to intro-
duce data-compute affinity and with it arise questions
such as, how easily can compute power be provided to
data? or possibly, how can data be moved across to the
compute (without significant costs of transfer)? Currently
S3’s business model charges for data transfer across
S3 boundaries; but with network capacity on average
doubling faster than compute capacity (though not storage
capacity) there is clearly scope for “integrated” Clouds,
at least at the logical level if not physically.

• Both Grid and Cloud systems are evolving technological
fields, and thus there are many unanswered questions,
the answers to many of which will become obvious
possibly only with hindsight:

– Is there going to be a situation where we would
want to link Clouds together either from different
providers or between different functionalities (data
Cloud to compute Cloud)?

– If interoperability is required widely (if not univer-
sally), then what will be the model of aggregation of
Cloud resources? A “Cloud of Grids”? A “Grid of
Clouds”? Will Clouds internally span cross-domain?

– Are individual institutions or groups going to want
to construct their own Clouds, as they have campus
Grids?

– Is there an underlying scheduler for the use case
where demand exceeds supply and how would this
affect externally available services?

– What can end users expect in terms of fail safety of
the Cloud system as a whole? How can users avoid
vendor lock-in?

• Clouds do not currently cross administrative domains;
this could be the reason behind simpler security models
compared to Grids, and the fact that Cloud Security has
currently not been seriously exposed to end-users. But
if and when they do cross administrative domains, will
the the security model remain simple? Either way, an
important point will be that the details of the security
model and its implementation do not show at the Cloud
interface level.

• Do Clouds have an effect on the distribution of com-
puting infrastructure, as is commonly represented by the
Branscomb Pyramid[21]? Clouds with different affinities
and support for different usage modes, would seem to
flatten the pyramid into several isolevel blocks.

Understanding these issues will be critical to a fuller appre-
ciation of how Clouds are related to Grids beyond the obvious



enhanced support for virtualization. Additionally, before any
intellectually honest conjecture that Clouds are viable, useful
systems can be made, with any level of rigour, many of these
open issues and questions will need to be placed on a firm
footing.

VIII. SOME RELATED WORK

A draft version of the present paper was circulated as an
OGF informational document [22], and received a large num-
ber of very informed and relevant comments. Several of those
pointed to alternative attempts to define Cloud Computing, and
to clarify its relation to Grid computing, and other distributed
compute paradigms, such as Software as a Service (SaaS),
Platform as a Service (PaaS), or Utility Computing. In this
section we will attempt to relate our approach to those and
many other alternatives that the community has considered at
different stages to varying extents.

A widely accepted approach employed to provide working
definition of Clouds is to tie them to an underlying prevalent
business model. For example, Per Usage Billing is sometimes
cited as a necessary property of Cloud systems; Simplicity
of Payment is also sometimes cited as pre-requisite for cloud
systems. Do we have references for these? Along similar lines,
other definitions state that On Demand Provisioning is the
distinguishing neccessary system feature, or that Policy Base
Access and SLAs. Simple references to where these are taken
from? It can be argued, that these properties are mostly al-
ternative expressions of the same principle, namely simplicity
of use or, at least clarity in how to use. The implementation
of these properties will by no means be trivial, but their
presence will significantly simplify Cloud usage for specific
user and application groups. For example, implementing a
well-defined SLA (e.g. 99.9% uptime) is non-trivial for the
Cloud provider, but enables a large set of applications which
require such stringent QoS, for in the absence of such an
SLA, it would have been significantly more complex for the
application developer and deployer to ensure such as quality-
of-service.

In Ref [23], Clouds are defined as, “... virtualized com-
puters that are dynamically provisioned and presented as
one or more unified computing resources based on service-
level agreements established through negotiation between the
service provider and consumers7.” While we are not sure
how, or if existing major Clouds fit this definition entirely,
for example EC2 does not have mechanism to negotiate
SLAs), we find the set of properties consistent with most
models of deployed Cloud systems. As indicated by the
working definition in Ref [23], another system property that
has recieved immense attention is Virtualization, and is widely
seen as a necessary prerequesite for several of the afore-
mentioned properties, such as Per Usage Billing, On Demand
Provisioning, etc. For example, Ref [24] outlines how the
combination of virtualization, a simple API and command line
interfaces/tools to Globus based Grids enables an EC2-like

7We have used bold-face to emphasis the properties

system. Here, virtualization provides the technological means
to implement dynamic provisioning, amongst other things.
Another simple approach to providing an EC2-like interface,
but arguably more versatile and extensible is the Eucalyptus
open-source software infrastructure for implementing “Cloud
Computing” on Clusters [17].

The Google Cloud-Computing group [25] also discussed a
list of defining features for Cloud systems [26], while leaving
open the question if all of these features need to be present,
or how many. It is interesting to note that the list includes
Non-trivial QoS, Cross Multiple Administrative Domains, and
Accessibility through Open Standards – a list which could
have been copied from the three-point Grid checklist [8]!
But it also includes Interoperability, Resource Metering and
Analysis, Security, Virtualization, etc. Again, it is difficult to
find existing Clouds which support all these features, but these
attributes reflect both the expectations and promises of Cloud
systems. Finally, on the Yahoo Cloud-Computing group, there
were interesting discussions regarding the perils of providing,
and limitations of using functional definitions of Cloud [27].

In general, however, any currently used single definition
of Cloud computing is unlikely to provide a comprehensive
and ultimately rigorous definition: the field is too young and
too diverse for that, and the interest around Cloud computing
makes it tempting to cluster a large number of related (and
unrelated) technologies under the same umbrella term. It is
useful to recall that Grid computing and Utility computing,
amongst others, had similar evolution trajectories and that it
took a while for coherence in definition, and a consensus
in practise to emerge; a similar transition to steady-state for
Cloud Computing should be expected as well.

IX. CONCLUSIONS

These are interesting times: Grids are clearly evolving
both due to internal and technological pressures as well as
external developments including market forces. As the efforts
to build scalable systems with standardized interfaces have
begun to yield dividends, Clouds – with the not so insignificant
commercial interest behind – have emerged as potentially
competing approach for architecting large distributed systems.

We hope this paper is able to contribute to that discussion,
(a) by providing a common terminology to build an analysis
of Grids and Clouds, including the notion of affinity; and (b)
by discussing the key differences between them: Grids on the
one hand provide a wide semantic scope to a broad target
space of distributed systems and applications; Clouds on the
other hand expose a limited, if not minimal set of semantics
to support a set of well defined usage modes.

These key differences allow us to re-evaluate a number of
observations, and further to investigate a number of impli-
cations, for system architects, resource providers, application
developers, end users, and for OGF and its SAGA effort. Fi-
nally, and not surprising, we were able to identify a significant
number of open issues which need to be addressed in order
to arrive at a considered opinion about the near term future of
large-scale distributed systems.
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