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Abstract—Multidimensional Scaling (MDS) is a dimension Hence, MDS is really useful for data visualization of a certa
reduction method for information visualization, which is set type of data which is impossible to represent by featureorsct
up as a non-linear optimization problem. It is applicable to 1\t have pairwise dissimilarity, such as biological seqeen

many data intensive scientific problems including studiesfoDNA . .
sequences but tends to get trapped in local minima. Determistic data. MDS, of course, is also applicable to the data repteden

Annealing (DA) has been applied to many optimization problens by feature vectors as well.

to avoid local minima. We apply DA approach to MDS problem MDS is a non-linear optimization approach constructing a
in this paper and show that our proposed DA approach improves |ower dimensional mapping of high dimensional data with
the mapping quality and shows high reliability in a variety of  ognect 10 the given proximity information based on objecti

experimental results. Further its execution time is simila to -
that of the un-annealed approach. We use different data sets functions, namely STRESS [9] or SSTRESS [10]. Below

for comparing the proposed DA approach with both a well equations are the definition of STRESS (l) and SSTRESS (2)
known algorithm called SMACOF and a MDS with distance

smoothing method which aims to avoid local optima. Our o(X) = . Z Wij (dij(x)_dj)z (1)
p_roposed DA me_thod outperforms SMACOF algorithm and t_he i<J<N
distance smoothing MDS algorithm in terms of the mapping UZ(X) - Z Wij [(dij(x))Z_(aj)Z]Z 2)

quality and shows much less sensitivity with respect to inial i<=N
configurations and stopping condition. We also investigatearious ] . o )
temperature cooling parameters for our deterministic annaling where 1< i < j <N, wj is a weight value W > 0),

method within an exponential cooling scheme. dij(X) is a Euclidean distance between mapping results of
X andx;, and & is the given original pairwise dissimilarity
|. INTRODUCTION value betweerx; andxj. SSTRESS is adopted by ALSCAL

The recent explosion of publicly available biology genalgorithm (Alternating Least Squares Scaling) [10], anthgis
sequences, chemical compounds, and various scientific deqaared Euclidean distances results in simple computation.
offers an unprecedented opportunity for data mining. Amorfy more natural choice could be STRESS which is used by
many data mining algorithms, dimension reduction is a UsefdMACOF [11] and Sammon’s mapping [12].
tool for information visualization of such high-dimensan Due to non-linear property of MDS problem, an optimiza-
data to make data analysis feasible for such vast volume dimh method called iterative majorization is used to solVM@$/4
high-dimensional scientific data. It facilitates the irtigation problem [11]. However, iterative majorization method iyjpet
of unknown structures of high dimensional data in three (of Expectation-Maximization (EM) approach [13], and it is
two) dimensional visualization. well understood that EM method suffers from local minima

Among the known dimension reduction algorithms, sugbroblem although EM method is widely applied to many
as Principal Component Analysis (PCA), Multidimensionadptimization problem. In order to overcome local minima
Scaling (MDS) [1], [2], Generative Topographic Mappingssue, we have applied a robust optimization method called
(GTM) [3], and Self-Organizing Maps (SOM) [4], to nameDeterministic Annealing (DA) [14], [15] to the MDS problem.
a few, multidimensional scaling has been extensively stlidi A key feature of the DA algorithm is to endeavour to
and used in various real application area, such as biolojgy [6nd global optimum without trapping local optima tfeter-
stock market analysis [6], computational chemistry [7]d anministic way[14] instead of stochastical random approach,
breast cancer diagnosis [8]. which results in long running time, as in Simulated Anneglin

In contrast to other algorithms, like PCA, GTM, and SOM(SA) [16]. In a physics language, DA useean field approx-
which generally construct a low dimensional configuratiomation to the statistical physics integrals.
based on vector information, MDS aims to construct a newIn Section Il, we discuss briefly the background and related
mapping in target dimension on the basis of pairwise prayimiwork. Then, the proposed DA MDS algorithm is explained
(typically dissimilarity or distance) information so thiadoes in Section Ill. Section IV illustrates performance of theopr
not require feature vector information of the real applmat posed DA MDS algorithm compared to other MDS algorithms
data to acquire lower dimensional mapping of the given dafallowed by conclusion in Section V.



Il. BACKGROUND AND RELATED WORK where < H >p represents theexpected energwand .7 (P)
A. Avoiding Local Optima in MDS denotesntropyof the system with probability densif. Here,
. . . . Lo T is used as a Lagrange multiplier to control the expected
SMACOF is a quite useful algorithm, since it will mono nergy. With high temperature, the problem space is dorsihat

. o e
tonically decrease the STRESS criterion [11]. However, tléeg the entropyterm which make the problem space become

well-known problem of the gradient descent approach is to L . .
; S IR Smooth so it is easy to move further. As temperature is ggttin
trapped in a local minima due to its hill-climbing approach. )
) S . cooler, however, the problem space is gradually revealed as
Stochastic optimization approaches, such as simulategiadnn - - R
. . . the landscape of the original cost function which limits the
ing (SA) [16] and genetic algorithms (GA) [17], have been . .
o : . movement on the problem space. To avoid trapped in local
used for many optimization problems including MDS prob- . L
: . . -optima, people usually start with high temperature and lsiow
lem [18], [19] in order to avoid local optima, but stochastic ; R :
decrease temperature in the process of finding solution.

algorithms are well-known to suffer from long running time . : :
due to their Monte Carlo approach. In addition to stochast[ic SA relies on random sampling with Monte Carlo method

; . X : g 0 estimate the expected solution, e.g. expected mapping in
algorithms, distance smoothing [20] and tgnnellng mgt : [ target dimension for MDS problem, so that it suffers fromgon
for MDS problem were proposed to avoid local optima ina 27 " L .

L running time. Deterministic annealing (DA) [14], [15] cae b
deterministic way.

Recently, Ingram et al. introduced a multilevel algorithrghought of as an approximation algorithm of SA which tries to

called Glimmer [22] which is based on force-based MDS alg eep the merit of SA. DA [1.4]’ [15] method actua_tlly tr!es to

: . i . . . calculate the expected solution exactly or approximateti w

rithm with restriction, relaxation, and interpolation optors. ) o ,
. o - i . respect to the Gibbs distribution as an amendment of SA's

Glimmer shows less sensitivity to initial configurationsh

GPU-SF subsystem, which is used in Glimmer [22], due to ﬂl]%ng running time, while if{ follows computation_al annegin
multilevel nature. In Glimmer's paper [22], however, smaProcess using Eq. (5), which decreases from high to low.

; : : ; DA method is used for many optimization problems, in-
COF algorithm shows better mapping quality than Glimmer uding clustering [14], [15], pairwise clustering [24]nh

Also, the main purpose of Glimmer is to achieve speed L@fDS 251 1 fow. S it is intractable t lculat
with less cost of quality degrade rather than mapping quali [25], to name a few. Since it is intractable to calculate

" o .
improvement. In contrast, this paper focuses on optimjnati'./ Ildn Eq. (4). ex?ctly, an a:jp?rOX|rrl1&}t|on'\;%cShn|qu; calﬂgelaSA
method which improves mapping quality in deterministige approximations used for solving problem Dy

approach. Therefore, we will compare the proposed aIgnritHn f[ZE;]’ _in t(;]‘;t ?'Ebts distr_itaugorPG_t(X) is approximated by
to other optimization algorithms, i.e. SMACOF and Distanc® 'actorized distribution with density
Smoothing method, in Section IV.

N
PO(X|©) = [ ai(x|©). 7
B. Deterministic Annealing Approach (DA) (X1©) iElq.(x.| ) %

.Since. the simulated anneali_ng (SA) was introduced Ryhere O is a vector of mean field parameter af and
Kirkpatrick et al. [16], people widely accepted SA and otheg (xi|©) is a factor serves as a marginal distribution model

stochastic maximum entropy approach to solve optimizatiof the coordinates ok.. To optimize parameter®;, Klock
problems for the purpose of finding global optimum insteaghy gyhmann [25] minimized Kullback-Leibler (KL) diver-
of hill-climbing deterministic approaches. SA is a Metrtipo gence between the approximated denBftyX) and the Gibbs
algorithm [23], which accepts not only the better pmpOS%nsiw PS(X) through EM algorithm [13]. Although, DA-
solution but even the worse proposed solution than the preyjpg [25] shows the general approach of applying DA to
ous solution_ based on a certain probab_ilit)_/ which is relatqgpg problem, it is not clearly explained how to solve MDS.
to computational temperaturgT). Also, it is known that Therefore, we will introduce the alternative way to utili2é

Metropolis algorithm converges to an equilibrium prob@pil 1 othod to MDS problem in Section III.
distribution known asGibbs probability distribution If we

denote.Z’(X) as the energy (or cost) function and as a IIl. DETERMINISTIC ANNEALING SMACOF

free energythen Gibbs distribution density is following:
9y ! ISHIBUH v wing If we use STRESS (1) objective function as an expected

PG(X) _ exp<_1(%(x) _9)) 7 (3) energy (cost) fuqction in Eg. (5), then we can defi#ps
T and .7 as following:

' 1
tﬁzz—ng/exp<——ijQ)dx. ) N
T Hips =y wij(dij(X) - &) (8)
and thefree energy &), which is a suggested objective I<JsN
function of SA, is minimized by the Gibbs probability demsit = N (X — Hi)z 9)
PC. Also, free energy# can be written as following: o= i; 2
Fp=<H >p -T.7(P) (5)  where 5% corresponds to an energy function based on a

— .P X2 (X)dX T/P X) logP(X)dX 6 simple multivariate Gaussian distribution apg represents
/ () (X)dX + . (X)logP(X) © the average of the multivariate Gaussian distribution-tf



point ( = 1,...,N) in target dimensionL(-dimension). Also, Algorithm 1 DA-SMACOF algorithm

we defineP?® and.%, as following: Input: Aanda

: ComputeTp andAp = [§;] based on Eq. (18).

: Generate random initial mappin{p.

c k<=0;

: while Ty > Tnin do R

Xki1 = output of SMACOF withA\, andXy. X is used
(11) for initial mapping of the current SMACOF running.

We need to minimizeZyps(P°) =< Hps— 4 > +Fo(P°) Cool down computational Temperatufe, 1 = aTg
with respect tou;. Since— < J#% > +.%o(PP) is independent Updatelx 1 W.rt. Tiya.

Px) = exp( -1 (- 7o) ). (10)

a s wN e

Fo=-T Iog/exp(—%%) dX = —Tlog(2nT)-/2

© N

to y;, only < Jps > part is necessary to be minimized with k<k+1;
regard toy;. If we apply < xix >= u;i4; + TL to < Hps >, end while
then < Jyps > can be deployed as following: 10: X = output of SMACOF based of and X.
N 11: return: X,
< Hps > = Z Wij (< HXj—XjH>—dj)2 (12)
i<J<N

N " . - .
Z Wij (\/Hﬂi _ HszJrZTL— dj)z (13) In addition, T is a lagrange multiplier so it can be thought of

asT =T2, thenv/2TL =T V2L and we will useT instead of
T for the simple notation. Thus, Eq. (17) can be written as

N
> Wik -l +v2TL=g))*  (14) following:
i<J<N .
where||al| is Norm, of a vectora. Eq. (13) can be approxi- aj = { 8 —TV2L it 5 >_T\/Z
mated to Eq. (14), since the bigg€r the smaller||y; — ;| 0 otherwise
and the smalleT, the bigger]|; — ;]| Now, we can apply SMACOF to find expected mapping with
In [25], Klock and Buhmann tried to find an approximatioiespect to new STRESS (16) which is based on computational
of PS(X) with mean field factorization method by minimiz-temperaturer. The MDS problem space could be smoother
ing Kullback-Leibler (KL) divergence using EM approachyith higherT than with lowerT, sinceT represents the portion
The found parameters by minimizing KL-divergence betweest entropy to the free energs as in Eq. (5). Generally, DA
PS(X) and P(X) using EM approach are essentially th@pproach starts with higi and gets cool dowrT as time
expected mapping in target dimension under current problgyges on, like physical annealing process. However, ifisgrt
space with computational temperatufie).( computational temperaturdy) is very high which results in
In contrast, we try to find expected mapping, which ming|| &; become ZERO, then all points will be mapped at origin
imize Zvps(PP), directly with new objective functiond) (0). Once all mappings are at the origin, then the Guttman
which is applied DA approach to MDS problem space Witfansform is unable to construct other mapping except the
computational temperaturé by well-known EM-like MDS  mapping of all at the origin, since Guttman transform does
solution, called SMACOF [11]. Therefore, &5 varies, the multiplication iteratively with previous mapping to calate
problem space also varies, and SMACOF algorithm is usgdrrent mapping. Thus, we need to calcul&evhich makes
to find expected mapping under each problem space ahjeast oned; is bigger than ZERO, so that at least one of
correspondingT. In order to apply SMACOF algorithm to the points is not located 4.
DA method, we substitute the original STRESS equation (1) with computedT, the Ag = [&j] can be calculated, and we
with Eq. (14). Note thap; andu; are the expected mappingsare able to run SMACOF algorithm with respect to Eq. (16).
we are looking for, so we can considgm; — ;|| asdij(Xt),  After new mapping generated willy by SMACOF algorithm,
whereXr represents the embedding resultd tdimension at say X, then we will cool down the temperature in exponential
T andd;; means the Euclidean distance between mappings\,@éy' like Tys1 = aTy, and keep doing above steps urifil

i<J<N

Q

(18)

pointi and j. Thus, the new STRESS] is following: becomes too small. Finally, we s&t=0 and then run SMA-
N COF by using the latest mapping as an initial mapping with
0= 3% wj(dj(Xr)+vaTL- 5j)? (15) respect to original STRESS (1). We will assume the uniform

i<J=N weightvwi; =1 where O<i < j <N and it is easy to change

S S Ry e e e posasdebmnic

AN A gorithm, calle - , is illustrated in

with &j defined as following: IV. EXPERIMENTAL ANALYSIS

&_ _ 4j —v2TL if ;> v2TL (17) For the performance analysis of the proposed deterministic
: 0 otherwise annealing MDS algorithm, calleBA-SMACOF, we would



like following:

06044 . DA-exp90 1
B pa-expos o(X)= Z W(dij (X)—&j)? (19)
[ pA-expos i<]<N 2i<] 1j
0.003 - . DS-s100 . . .
m DS-5200 in that the normalized STRESS value denotes the relative
@ SMACOF portion of the squared distance error rates of the given data
E set without regard to scale dj.
§ 0.002 -
s A. Iris Data
2 The iris datd set is very well-known benchmarking data
0.001 - .. aype .
set for data mining and pattern recognition communitieshEa
data item consists of four different real values (a.kR.real-
valued vectdr and each value represents an attribute of each
0.000-] ‘ ‘ instance, such as length or width of sepal (or petal). There
ECH) Threshold EC-6) are three different classe&i¢ Setosa, Iris Versicolour, and

Iris Virginica) in the iris data set and each class contains 50

) ) N . instances, so there are total 150 instances in the iris @ata s
Fig. 1. The normalized STRESS comparisonirid data mapping results . . -

in 2D space. Bar graph illustrates the average of 50 runs vétrdom It IS known that one class is linearly separable from the othe

initialization and the corresponding error bar represeghis minimum and two, but the remaining two are not linearly seperable from
maximum of the normalized STRESS value of SMACOF, MDS-Dist®th each other.

with different smoothing stepss& 100 ands = 200) (OS-s100and -s200 . . .

hereafter for short), and DA-SMACOF with different coolirgarameters In Fig. 1, The mapping quality of the constructed con-
(a=0.9, 095, and 099) (DA-exp90,-exp95 and-exp99hereatfter for short). figurations of iris data by SMACOF, MDS-DistSmooth, and

The x-a%(is is the threshold value for the stopping conditibiterations (10° DA-SMACOF is Compared by the average the minimun
d 10°). _ : ; :
an ) and the maximum of normalized STRESS values among 50

randome-initial runnings. The proposed DA-SMACOF with all

like to examine DA-SMACOF’s capability of avoiding lo-tested cooling parameters, including quite fast coolingpe
cal optima in terms of objective function value (normalizeg§ter @ = 0.9), outperforms SMACOF and MDS-DistSmooth
STRESS in (19)) and the sensitivity of initial configuratiodn Fig. 1 except DS-s200 case with= 10 °. Although DS-
by comparing with original EM-like SMACOF algorithm andS200 withe = 10" is comparable to DA-SMACOF resullts,
MDS by Distance Smoothing [20MDS-DistSmooth here- DS-s200 takes almost 3 times longer than DA-exp95 with
after for short) which tries to find global optimum mappingé = 10~° which shows more consistent result than DS-s200.
We have tested above algorithms with many different dataNumerically, DA-exp95 improves mapping quality .8%
sets, including well-known benchmarking data sets from u@nd 458% of SMACOF results in terms of the average of
machine learning repositohas well as some real applicationSTRESS values witls = 10> ande = 10°, correspondingly.
data, such as chemical compound data and biological sequelR&-€xp95 shows better mapping quality about.688 and
data, in order to evaluate the proposed DA-SMACOF. 13.2% than even DS-s100, which is the algorithm to find
Since MDS-DistSmooth requires the number of smoothirgjobal optimum, withe = 10° ande = 10°°.
steps which affects to the the degree of smoothness andgooli In terms of sensitivity to initial configuration, SMACOF
parameterd) of computational temperatur@) affects the an- shows very divergent STRESS value distribution for both
nealing procedure in DA-SMACOF, we examine two differert = 10°° and € = 10°° cases in Fig. 1, which means that
number of smoothing step numbers={ 100 ands = 200) SMACOF is quite sensitive to the initial configuration (ak.
for MDS-DistSmooth and three different cooling parametegasy to be trapped idocal optimg. In addition, MDS-
(a =0.9, 0,95, and 099) for DA-SMACOF algorithm, as well. DistSmooth also shows relatively high sensitivity to thitiah
(Hereafter, MDS-DistSmooth with smoothing steps- 100 configuration with the iris data set although the degree of
ands= 200 are described bpS-s100and DS-s200respec- divergence is less than SMACOF algorithm. In contrast to
tively, and DA-SMACOF with temperature cooling parametergther algorithms, the proposed DA-SMACOF shows high
a = 0.9, 095, and 099 are represented PA-exp90, DA- consistency without regard to initial setting which we abul
exp95 andDA-exp99, correspondingly.) We also examine twanterprete as it is likely to avoid local optima. Since it igv
different thresholds for the stopping condition, iee= 10> known that the slow cooling temperature is necessary talavoi
ande = 1075, for tested algorithms. local optima, we expected that DA-exp90 might be trapped in
To compare mapping quality of the proposed DA-SMACOIocal optima as shown in Fig. 1. Although DA-exp90 cases
with SMACOF and MDS-DistSmooth, we measure the noshow some variations, DA-exp90 cases still show much better
malized STRESS which substitutes; in (1) for 1/5;.; 8% results than SMACOF and MDS-DistSmooth except DS-s200

1UCI Machine Learning Repository, http:/archive.ics.adu/ml/ 2Iris Data set, http://archive.ics.uci.edu/mi/datasess/
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Fig. 2. The 2D median output mappings of iris data with SMAC@}; DS-s100 (b), and DA-exp95 (c), whose threshold valuetHe stopping condition
is 1072, Final normalized STRESS values of (a), (b), and (c) af®P64628, (00208246, and 00114387, correspondingly.

with € = 1078 case. In fact, the standard deviation of DA-

exp95 withe = 107° result is 108 x 10-® and DA-exp99 with 0.0035 -

€ =105 and DA-exp95/exp99 witle = 106 shows ZERO = ﬁiiﬁﬁiﬁ
standard deviation in terms of STRESS values of 50 random- 000307 [ oa-expoo
initial runs. We can also note that difference of DA-SMACOF [ os-s100
results betweere = 107> and € = 1078 is negligible with o Stz
the iris data, whereas the average of SMACOF and MDS- SWACOF

0.0020 -

DistSmooth (DS-s100) witre = 10° is about 3%% and

81.6% worse than correspondirg= 10 results. 80 001s-
Fig. 2 illustrates the difference of actual mapping outputs I

among SMACOF, MDS-DistSmooth, and DA-SMACOF. All 0.0010-

of the mappings are the median results of stopping condition

I I
with 10~° threshold value. The mapping in Fig. 2a is the 2D 0.0005
mapping result of median valued SMACOF, and Fig. 2b repre-
) EC6)

Normalized STRESS

sents the median result of MDS-DistSmooth. Three mappings 00009 |
in Fig. 2 are a little bit different to one another, and cleare ECS
structure differentiation between class 1 and class 2 isvsho

at Fig. 2c which is the median STRESS valued result of D&-ig. 3

Threshold

The normalized STRESS comparisonchEmical compounddata

SMACOF. mapping results in 2D space. Bar graph illustrates the geeo 50 runs with
. random initialization and the corresponding error barespnts the minimum
B. Chemical Compound Data and maximum of the normalized STRESS value of SMACOF, D sl

The second data set is chemical compound data with 33300, and DA-exp90,DA-exp95, and DA-exp99. The x-axishis threshold
. . . value for the stopping condition of iterations (f0and 10°5).
instances represented by 155 dimensional real-valuedngect
For the given original dissimilarity/), we measure Euclidean

distance of each instance pairs based on feature vectorsllas w _ .
as the iris data set. DA-SMACOF algorithm withe = 10-° ande = 10°. Further-

F|g 3 depicts the average mapp|ng quahty of 50 ruri§ore, the minimum STRESS values of SMACOF and MDS-
for 333 chemical compounds mapping results with regard RjstSmooth experiments are larger than the average of all DA
different experimental setups as in the above. For the ate@miSMACOF results. One interesting phenomena in Fig. 3 is that
compound data set, all experimented results of the propode@ MDS-DistSmooth shows worse performance in average
DA-SMACOF (DA-exp90, DA-exp95, and DA-exp99) showwith € = 1075 stopping condition than SMACOF and DS-s100
the superior performance to SMACOF and MDS-DistSmoofifiows better than DS-s200.
with both € = 107 and € = 10°® stopping conditions. In  As similar as in Fig. 1, all SMACOF and MDS-DistSmooth
detail, the average STRESS of SMACOF iS@ and 188 experimental results show higher divergence in terms of
times larger than corresponding DA-SMACOF results witBTRESS values in Fig. 3 than the proposed DA-SMACOF.
£ =10"% and& = 10 © threshold, and the average STRES®n the other hand, DA-SMACOF shows much less divergence
of MDS-DistSmooth shows .86 and 157 times larger than with respect to STRESS values, especially DA-exp99 case.
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Fig. 4. The normalized STRESS comparisorbafast cancerdata mapping Fig. 5. The normalized STRESS comparisonyeastdata mapping results
results in 2D space. Bar graph illustrates the average ofif® with random in 2D space. Bar graph illustrates the average of 50 runs wvétidom

initialization and the corresponding error bar represehts minimum and initialization and the corresponding error bar represéh&s minimum and
maximum of the normalized STRESS value of SMACOF, DS-s100 an maximum of the normalized STRESS value of SMACOF, DS-s100 an
s200, and DA-exp90,DA-exp95, and DA-exp99. The x-axis & ttireshold s200, and DA-exp90,DA-exp95, and DA-exp99. The x-axis & ttireshold

value for the stopping condition of iterations (foand 10°6). value for the stopping condition of iterations (foand 10°9).

For the comparison between different cooling parameteg¥, SMACOF is 186% and 113% worse than corresponding
as we expected, DA-exp90 shows some divergence and a li#8-SMACOF results withe = 10~ and & = 10°° threshold,
bit higher average than DA-exp95 and DA-exp99, but mugtnd the average STRESS of MDS-DistSmooth shov@8
less average than SMACOF. Interestingly, DA-exp95 show¢orse than DA-SMACOF withe = 10> and comparable to
relatively larger divergence than DA-exp90 due to outlier®A-SMACOF withe =105
However, those outliers of DA-exp95 happened rarely amongAlthough DA-SMACOF experimental results show some
50 runs and the most of DA-exp95 running results are simildivergence in terms of STRESS values in Fig. 4, in contrast
as minimum value of corresponding test. to Fig. 1 and Fig. 3, DA-SMACOF experimental results show
less divergence of STRESS values than SMACOF and MDS-

C. Cancer Data DistSmooth in Fig. 4.

The cancer dafaset is well-known data set found in UCI
Machine Learning Repository. Each data item consists of Pl Yeast Data
columns and the first and the last column repre@number ~ The yeast dafaset is composed of 1484 entities and each
and class correspondingly, and the remaining 9 columns atity is represented by 8 real-value attributes in addito
attribute values described in integer from 1 to 10. There aif2e sequence name and class labels.
two different classesbenign and malignaitin the cancer ~ The normalized STRESS comparison of the yeast mapping
data set. Originally, it contains 699 data items, we use ori§sults by different algorithms is illustrated in Fig. 5 &rms
683 data points which have every attribute values, since @6the average mapping quality of 50 runs for 1484 points
items have some missing information. mapping. DA-SMACOF shows better performance than the
Fig. 4 depicts the average mapping quality of 50 runs f@ther two algorithms in this experiments as same as the above
683 cancer data mapping results with regard to differenéexpexperiments. SMACOF keep showing much higher divergence
imental setups as in the above. For the cancer data set,-all ‘@ther than DA-SMACOF with both stopping condition cases.
perimented results of the proposed DA-SMACOF (DA_engq?}ISO, MDS-DistSmooth shows divergent STRESS distribution
DA-exp95, and DA-exp99) show the superior performance ¥jth & = 107> stopping condition, but not witre = 10-°
SMACOF and MDS-DistSmooth witle = 105, and better Stopping condition. DA-SMACOF shows quite stable results
than SMACOF and comparable to MDS-DistSmooth wit§xcept DA-exp90 case witle = 10> stopping condition,
€ = 10°° stopping conditions. Interestingly, DA-exp99 cas@S well as better solution. In terms of best mapping (a.k.a.
shows worse results than DA-exp95 and DA-exp90 resulf§inimum normalized STRESS value), all DA-SMACOF ex-
although DA-exp99 case find most minimum mapping in tern€riments obtain better solution than SMACOF and MDS-

of normalized STRESS value. In detalil, the average STRE&tSmooth, and even best result of SMACOF is worse than
the average of the proposed DA approach.
SBreast Cancer Data set, http://archive.ics.uci.edulitakbts/Breast+
Cancer+Wisconsin+(Original) 4Yeast Data set, http://archive.ics.uci.edu/mi/datd¥esst



to MDS-DistSmooth. In this section, we would like to compare
the running time among those algorithms. Fig. 7 describes th
average running time of each test case for SMACOF, MDS-
DistSmooth, and DA-exp95 with 50 runs for the tested data.
In order to make a distinct landscape in Fig. 7, we plot the
qguadrupled runtime results @fs and cancer data.

In Fig. 7, all runnings are performed in sequential com-
puting with AMD Opteron 8356 2.3GHz CPU and 16GB
memory. As shown in Fig. 7, DA-SMACOF is a few times
slower than SMACOF but faster than MDS-DistSmooth in
all test cases. In detail, DA-SMACOF takes 2.8 to 4.2 times
longer than SMACOF but 1.3 to 4.6 times shorter than MDS-
DistSmooth withiris andcompounddata set in Fig. 7a. Also,
DA-SMACOF takes 1.3 to 2.8 times longer than SMACOF but
3.7 to 9.1 times shorter than MDS-DistSmooth wiaancer

S reshold ECO) andyeastdata set in Fig. 7b. Fanetagenomicsdata set with
30,000 points, we tested with 128 way parallelism by MPI ver-
Fig. 6. The normalized STRESS comparisonnoétagenomics sequence sion of SMACOF and DA'SMACOF [28] and DA'SMACOF_
data mapping results in 2D space. Bar graph illustrates\taeage of 10 runs takes only 1.36 and 1.12 times longer than SMACOF in
with random initialization and the corresponding error bathe normalized average. Actually, several SMACOF runs take longer than
fs()ﬁr'fessstg’;r')‘ifg"é;'\g{;gr?gf?{‘e‘:a'ﬁﬁ:‘;x?fgéggi(’;%’f's Is the trolesialue DA-SMACOF running times, although DA-SMACOF obtains
better and reliable mapping results in Fig. 6. Interestinile
less deviation is shown by DA-SMACOF than other compared
algorithms in all cases with respect to running time as well a

The last data we used for evaluation of DA-SMACORSTRESS values.
algorithm is a biological sequence data with respect to the
metagenomics study. Although it is hard to present a bickigi V. CONCLUSION
sequence in a feature vector, people can calculate a diasimi In this paper, the authors have proposed an MDS solution
ity value between two different sequences by some pairwiggth deterministic annealing (DA) approach, which utilize
sequence alignment algorithms, like Smith Waterman - Got@MACOF algorithm in each cooling step. the proposed DA
(SW-Q algorithm [26], [27] which we used in this paper. approach outperforms SMACOF and MDS-DistSmooth al-

In contrast to smaller data size as in the above testmrithms with respect to the mapping qualities with several
metagenomics data set contains 30,000 points (sequencdifferent real data sets. Furthermore, DA-SMACOF exhibits
Since MDS algorithms requireg(N?) main memory, we have the high consistency due to less sensitivity to the initial
to use much larger amount of memory than main memory @onfigurations, in contrast to SMACOF and MDS-DistSmooth
a single node for running with 30,000 points. Thus, we usehich show high sensitivity to both the initial configurat®
distributed memory version of SMACOF algorithm [28] to rurand stopping condition. With the benefit of DA method to
with this metagenomics data. avoid local optima, the proposed DA approach uses slightly

Fig. 6 is the comparison between the average of 10 randdenger or comparable running time to SMACOF and shorter
initial runs of DA-SMACOF (DA-exp95) and SMACOF with running time than MDS-DistSmooth. In addition, we also
metagenomics data set. As same as other results, SMAC@¥estigate different computational temperature coofiagam-
shows a tendency to be trapped in local optima by depictiegers in exponential cooling scheme and it turns out that it
some variation and larger STRESS values, and even #teows some deviation of mapping results when we use faster
minimum values are bigger than any results of DA-exp95. DAooling parameter than necessary (like DA-exp90 case # thi
exp95 results are actually B2 and 104% improved com- paper) but DA-exp90 shows still better than or comparable
pared to SMACOF in average with=10"° ande =10°°, to the compared algorithms in our experiments. Also, DA-
correspondingly. As shown in Fig. 6, all of the DA-exp9®xp95 results are very similar to or even better than DA-8xp9
results are very similar to each other, especially whengstap results although DA-exp95 takes shorter time than DA-exp99
condition ise = 107, In contrast to DA-SMACOF, SMACOF case. In future work, we will integrate these ideas with the
shows larger variation in both stopping conditions in Fig. 6 interpolation technology described in [29] to give a robust
approach to dimension reduction of large datasets thag¢scal

. DA-exp95

SMACOF

0.08 -

o

=

>
[

0.04 -

Normalized STRESS

0.02-

0.00-

E. Metagenomics Data

F. Running Time Comparison like ¢(N) rather @(N?) of general MDS methods.
From Section IV-A to Section IV-E, we have been analyzed
the mapping quality by comparing DA-SMACOF with SMA- ACKNOWLEDGMENT

COF and MDS-DistSmooth, and DA-SMACOF outperforms Authors appreciate Mina Rho and Haixu Tang for providing
SMACOEF in all test cases and outperforms or is comparalilee metagenomics data.
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Fig. 7. The average running time comparison between SMAG@PS-DistSmooth §= 100), and DA-SMACOF (DA-exp95) for 2D mappings with tested
data sets. The error bar represents the minimum and maximaoning time.EM-5/EM-6 represents SMACOF with 13/10°8 threshold, and>S-5/DS-6
and DA-5/DA-6 represents the runtime results of MDS-DistSmooth and DAASKAF, correspondingly, in the same way.
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