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Abstract: We discuss our message-based approach to managing real time data streams 
and building higher level services to produce and consume them.  Our messaging system 
acts as a substrate that can be used to provide qualities of service to various streaming 
applications ranging from audio-video collaboration systems to sensor grids. The mes-
saging substrates are composed of distributed, hierarchically arranged message broker 
networks.  Services such as filters are deployed along the edges of the network.  We dis-
cuss the role of management systems for both broker networks and filter services:  broker 
network topologies must be created and maintained, and distributed filters must be ar-
ranged in appropriate sequences. These managed broker networks may be applied to a 
wide range of problems.  We discuss applications to audio/video collaboration in some 
detail and also describe applications to streaming Global Positioning System data 
streams.  These provide specific application filters that can transform and republish mes-
sage streams to the broker system.     

1. Introduction 

A growing number of applications involve real-time streams of information that need to be trans-
ported in a dynamic, high-performance, reliable, and secure fashion. Examples include sensor nets for 
both science and military applications, mobile devices on ad-hoc networks, and collaborative applica-
tions. In the latter case the streams consist of a set of “change events” for a collaborative entity multi-
cast to the participating clients. They could be the frames of audio-video streams, encoded changed 
pixels in a shared display, or high level semantic events such as signals of PowerPoint slide changes. 
Here we describe our research into ways of managing such streams, which we think are a critical com-
ponent of applications as diverse as sensor nets and real time synchronous collaboration environ-
ments. 

We develop real-time streaming technology assuming that the sources, sinks, and filters of these 
streams are Web or Grid services. This allows us to share the support technology between streaming 
applications and benefit from the pervasive interoperability of a service-oriented architecture. Further, 
this allows a simple model of collaborative Web and Grid services gotten by “just” sharing the input 
or output ports. As services expose their change by explicit messages (using what we call a message-
based Model-View-Controller architecture [1]), it is much easier to make them collaborative than 
traditional desktop applications whose change is often buried in the application. We have shown how 
traditional collaborative applications can be made service oriented with in particular a set of services 
implementing traditional H.323 functionality and interoperating with Access Grid and Polycom sys-
tems. This required the development of an XML equivalent of the H.323 protocol [2, 3]. Our other 
major motivation is the sensor networks of military, scientific and social infrastructure. These are well 
suited to a service architecture as exemplified by the US Department of Defense’s Global Information 
Grid with its service-based NCOW (Network Centric Operations and Warfare Architecture) [4, 5, 6, 
7]. 

We have developed general purpose, open source software to support distributed streams, described 
in Sec. 2. NaradaBrokering [8, 9] forms a distributed set of message brokers that implement a publish-
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subscribe software overlay network. This environment supports multiple protocols (including UDP, 
TCP, and parallel TCP) and provides reliable message delivery with a scalable architecture. The infra-
structure can supply message oriented middleware support for Web services through its support of 
WS-Eventing, WS-Addressing, WS-Reliable Messaging, and WS-Reliability. We note the architec-
ture links both Peer-to-Peer and Grid paradigms and has been used in either mode although the Peer-
to-Peer experience is limited. 

We have used several applications that drive the development of our technology. These include col-
laboration services with audio, video, and shared display streams, as well as linkages of real-time 
Global Positioning System sensors to Geographical Information Systems implemented as Web ser-
vices. Other examples include integration of hand-held devices into a Grid [10] and the linkage of 
annotations to video streams showing how composite streams can be supported for real-time annota-
tion [11].  The first two applications are described in sections 4 and 5 and illustrate the need the high 
level session and filter infrastructure on top of the messaging infrastructure. 

There are several technical challenges to building infrastructure that is efficient and can support 
time-sensitive operations such as the instant replay and annotation of sensor streams in an emergency. 
One needs to archive events (such as video frames) to support replay. The location of replicated ar-
chives (for fault tolerance) and the linkage to annotation material illustrate system metadata which is 
very dynamic but must be accessible to the system with low latency. This requires metadata ap-
proaches that we discuss separately [12] optimized for dynamic responsiveness in modest sized sub-
systems rather that approaches like distributed hash tables optimized for scalability.  

Our architecture supports the interesting concept of hybrid streams where multiple “simple 
streams” are intrinsically linked; examples are linkage of a stream of annotation white boards with 
original audio/video stream [11] and the combination of lossless and lossy codec streams (using po-
tentially parallel TCP and UDP respectively) to represent a large dynamic shared display.  

The messaging infrastructure supports the application services with their filters, gateways and ses-
sions reflecting both the collaborative and workflow functions. However we have found the need for a 
set of services that manage the messaging itself and so control broker deployment and quality of ser-
vice. This is discussed in section 3 which describes the integration of the management of messaging 
and higher-level services. 

2. NaradaBrokering: a Distributed Messaging Substrate 

NaradaBrokering [8, 9, 13] is a messaging infrastructure that is based on the publish/subscribe 
paradigm. The system efficiently routes messages [14] from the originators to the consumers that are 
interested in the message. The system places no restrictions on the size and the rate at which these 
messages are issued. Consumers can express their interests (or specify subscriptions) using simple 
formats such as character strings. Subscriptions may also be based on sophisticated queries involving 
XPath, SQL, or regular expressions. Support for these subscription formats enables consumers to pre-
cisely narrow the type of messages that they are interested in. The substrate incorporates support for 
enterprise messaging specifications such as the Java Message Service [15]. The substrate also incor-
porates support for a very wide array of transports (TCP, UDP, Multicast, SSL, HTTP and Paral-
lelTCP among others), which enable the infrastructure to be leveraged by entities in a wide variety of 
settings. To cope with very large payloads the system leverages ParallelTCP at the transport level and 
services such as compression and fragmentation to reduce individual message sizes. The fragments 
(compressed or otherwise) are reconstituted by appropriate services (coalescing and de-compression) 
prior to delivery to the application.  

The most fundamental unit in NaradaBrokering is a message. A stream can be thought of as being 
composed by a series of messages, each with causal and ordering correlations to previous messages in 
the stream. The inter-broker latency for routing typical messages is around 1 millisecond. In a con-
trolled cluster setting a single broker was found to support up to 400 UDP-based A/V clients concur-
rently with adequate latency [16]. Among the services most relevant for collaboration within the sys-
tem are the following. 
1. Support for a replay and recording services: The recording service is used to store messages relia-

bly to the archival system. The recording is done in such a way that all events issued by the re-
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cording entity are stored in the order that they were published. The replay service facilitates the re-
play of these previously stored messages. The replay service support replays in multiple flavors. 
Entities may request replays based on sequencing information, timing information, content of the 
message or based on the topics that these messages were published to. In some cases one or more of 
the parameters can be combined in a single request. 

2.  Support for consistent global timestamps [17] through an implementation of the Network Time 
Protocol (NTP). This implementation ensures that timestamps at the distributed entities are within a 
few milliseconds of each other. This allows us to ensure that we can order messages based on these 
global timestamps. This is especially useful during replays when we can precisely determine the 
order in which messages should be released to the application. 

3. Support for buffering and subsequent time-spaced release of messages to reduce jitters. The typical 
lower bound for time space resolution is a millisecond. However, we have also been able to succes-
sively time-space events in the order of several microseconds. By buffering and releasing messages 
we reduce the jitters that may have been introduced by the network. 
More recently, we have incorporated support for Web Services within the substrate. Entities can 

send SOAP messages directly to the brokers that are part of the messaging infrastructure. We have 
incorporated support for Web Service specifications such as WS-Eventing [18], WS-
ReliableMessaging [19] and WS-Reliability [20]. Work on implementing the WS-Notification [21] 
suite of specifications is currently underway. The implementation of these specifications also has had 
to cope with other specifications such as WS-Addressing and WS-Policy that are leveraged by these 
applications. In addition to the rules governing SOAP messages and the implemented protocols, rules 
governing WS-Addressing are also enforced. 

In our support for SOAP within NaradaBrokering we have introduced Filters and Filter-Pipelines 
(Figure 1). A filter is smallest processing unit for a SOAP message. Several Filters can be cascaded 
together to constitute a Filter-Pipeline. Here, the Filters within a Filter-Pipeline can be dynamically 
shuffled and reorganized. The system allows a Filter-Pipeline to be registered for every role that the 
node (functioning as a SOAP intermediary) intends to perform.  

 

 
Figure 1 Filter pipelines are used to process SOAP messages in NaradaBrokering. 

 
Upon receipt of a SOAP message that is targeted to multiple roles (as indicated by the SOAP 1.2 

role attribute) the corresponding Filter-Pipelines are cascaded so that the appropriate functions are 
performed. The SOAP message is first parsed to determine the roles that need to be performed. Next, 
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we check to see if there are any pipelines registered for a specific role. The scheme allows developers 
to develop their own Filters and Filter-Pipelines and target them for specialized roles. For e.g. in some 
cases a developer may wish to develop a Filter that performs message transformations between the 
competing notification specifications: WS-Eventing and WS-Notification. By providing an extensible 
framework for the creation of Filters and the registration of roles sophisticated applications can be 
built. 

3. HPSearch: Managing Broker Networks and Service Grids 

As discussed in the previous section, NaradaBrokering provides a software messaging infrastruc-
ture.  In a related project, we have developed HPSearch [22] as a scripting based management console 
for broker networks and their services. At one end of the spectrum are services which help manage the 
messaging middleware, while at the other end are services that leverage capabilities of the middleware 
(WSProxy). The management of both sets of services is handled by a scripting medium that binds 
Uniform Resource Identifiers (URI) to the scripting language. By binding URI as a first-class object 
we can use the scripting language to manage the resource identified by the URI. We discuss these 
functions in detail below. 

Management of messaging middleware: In order to deploy a distributed application that uses Na-
radaBrokering, the middleware must be setup and a broker network topology must be deployed. Bro-
ker network topology may also be changed at runtime using HPSearch by adding or deleting links 
between brokers. Once the middleware is setup, we leverage the broker network to deploy the distrib-
uted application as detailed in the next section.  

To fulfill this requirement we have been developing a specialized Web Service called the Broker 
Service Adapter (BSA) that helps us deploy brokers on distributed nodes and setup links between 
them. The BSA is a Web Service that enables management of the middleware via WS-Management 
[23]. Errors and other conditions are similarly handled and notified to the management engine using 
WS-Eventing [18]. We discuss this management architecture in more detail in section 3.1. 

Management of Data Streams and Services: HPSearch uses NaradaBrokering to route data be-
tween components of a distributed application. This data transfer is managed transparently by the 
HPSearch runtime component, the Web Service Proxy (WSProxy) [24]. Thus, each of the distributed 
components is exposed as a Web Service which can be initialized and steered by simple SOAP re-
quests. WSProxy can either wrap existing applications or create new data processing and data filtering 
services. WSProxy handles streaming data transfer using NaradaBrokering on behalf of the services 
thus enabling streaming data transfer for any service. The streaming data is enabled using NaradaBro-
kering middleware, a distributed routing substrate. Thus there are no central bottlenecks and failure of 
a broker node routes the data stream through alternate routes if available. Further, NaradaBrokering 
supports reliable delivery via persistent storage [25] thus enabling guaranteed delivery for data 
streams. 

All interactions with the WSProxy are made using simple SOAP calls, and thus the service 
wrapped by the WSProxy can be steered using any client that can talk SOAP. The WSProxy service 
has been written using Apache Axis and can be deployed in any Web Service container such as 
Apache Tomcat. HPSearch adds initialization and steering of WSProxy based Web Services using a 
scripting interface. HPSearch creates temporary topics using the NaradaBrokering system and cor-
rectly ties up all components, thus establishing a data flow between various components of the dis-
tributed application. Reference [26] presents more details on how a distributed application can be 
modeled using WSProxy and deployed and managed using the HPSearch system.  

3.1. Requirement for Management 

We build our management architecture on Service Oriented Architecture principles. The essential 
entity requiring management is the NaradaBrokering broker. Management of a broker entails config-
uring the broker to use specific transports, start services and initialize the broker. Further, a single 
broker can only effectively serve a limited number of clients. Tests [43] show that a single broker can 
service 1500 simultaneous audio streams or 400 simultaneous video streams before the quality of 
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service starts deteriorating. In order to improve the scalability of the system, one frequently employs a 
network of brokers. Various network connection topologies exist, each differing in their scalability 
and fault-tolerance characteristics. For instance, a fully connected network of brokers provides the 
maximum fault-tolerance but incurs an overhead on the number of links between nodes. A linear to-
pology would be very less demanding in terms of resources; however it would partition the network 
should a link or node fails. Thus selection of a particular topology is dependent on the application 
needs, and so we provide a framework to rapidly deploy broker network topologies via WS-
Management. 

3.2. WS-Management Architecture 

Our initial architecture is based on the June 2005 draft of WS – Management [39]. The architecture 
comprises mainly of the managed entities (brokers), the service adapter (which is a framework to al-
low processing of WS-Management messages) and the manager (an entity which requests specific 
management actions). The service adapter is a wrapper over the managed entity that provides a WS-
Management interface on the outside and a managed entity specific interface on the inside. Its job is 
to translate WS-Management commands to entity specific management actions. 

WS-Management allows management of specific resources associated with an entity. This may be 
specified using the ResourceURI header defined in WS-Management. The framework primarily 
allows creation and deletion of resources using the verbs defined in the WS-Transfer [40] specifica-
tion. We allow creation of brokers and links between brokers. The Delete capability provides flexi-
bility in terms of tearing down the existing broker network and redeploying the broker network with 
possibly a different configuration. Configuration of brokers can be queried and manipulated using the 
Get and Set verbs respectively. WS-Management also provides the capability of enumerating con-
tents of large containers such as log files via the WS-Enumeration [41] interface. We are investigating 
if this capability can be utilized for managing the broker network. WS-Management also provides the 
capability of heartbeat messages to determine liveness of managed entities. Such a capability is cru-
cial to the correct functioning of architecture and we are working towards employing WS-Eventing 
[42] based notifications to enable heartbeat events.  

To use this basic architecture we also employ the capability of using different transports. Using 
SOAP over HTTP is the norm, however this might be restrictive in cases where the service endpoint is 
not directly accessible. To mitigate this situation we employ a set of bootstrap broker nodes and wrap 
the SOAP messages as NaradaBrokering events. These events are then routed appropriately to the 
correct endpoint. When the processing is done, the response is routed back to the service requestor. As 
described above, NaradaBrokering provides support for different transports such as TCP, UDP, 
NIOTCP, HTTP, SSL. This capability provides us with the ability to use multiple transports in case a 
specific transport is not available. Specifically it allows us to manage brokers behind firewalls by 
leveraging the HTTP tunneling capability in NaradaBrokering. 

Finally, to tie up all the components (manager, service adapter, managed entity), we employ a reg-
istry that stores runtime metadata. The information maintained in this registry is usually the manage-
ment tasks to be carried and a list of available service adapters and their respective endpoint ad-
dresses. 

3.3. Results 

We have tested our architecture to deploy a network of 8 brokers in a linear fashion. Our tests indi-
cate that the average overhead is about 75 milliseconds per broker. This is attributed to marshalling 
and unmarshalling of SOAP messages and their associated responses along with the network over-
head. This overhead may be reduced by employing faster methods [37, 38] in dealing with SOAP 
messages. Ref. [44] provides detailed test results. 
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4. Global-MMCS: Audio and Video Stream Services and Management 

In the previous two sections we have outlined the core messaging software and its management sys-
tem.  We now turn to applications that can be built on this substrate.  Global-MMCS, as a service-
oriented multimedia collaboration system, mainly processes multimedia streams: video, audio, white-
board and so on. “Events” in video or audio are usually called video frames or audio samples. Gener-
ally speaking, there are a lot of similarities between multimedia streams and other data streams such 
as sensor data. All streaming data require significant Quality of Service (QoS) constraints and dy-
namic filtering. These are both particularly demanding and well-understood for multimedia streams 
for both communication and processing. Because of high bandwidth generated by raw multimedia bit-
streams, complicated codecs must be used to compress the streams and transmit them over Internet.  
Further, multimedia streams are typically used collaboratively and so stress the infrastructure needed 
to support the efficient software or hardware of multicasting required by the delivery of a given 
stream to multiple clients. Due to the diversity of collaboration clients supported by Global-MMCs, 
the services for multimedia streams need to adapt the streams to different clients. We note that many 
relevant web service specifications like those for reliable messaging and notification appear not well 
designed for scalable efficient multicast as needed by Global-MMCS. Thus we suggest that multime-
dia collaboration is an excellent proving ground for general streaming data grid infrastructure. 

A media service or filter is a functional entity, which can receive one or multiple media streams, 
perform some processing, and output one or multiple media streams.  Each service is characterized by 
a set of input and output stream interfaces and a processing unit. According to the number of fan-in 
and fan-out of filters, they can be divided into three categories: one-in-one-out filters, multiple-in-one 
out filters, and one-in-multipe-out.  In addition, there is a final “sink” filter category.  We discuss each 
of these below.   

One-in-One-Out Filters: Such a filter implements the basic transformation operation. For instance, 
a filter can receive as input a video stream in YUV4:1:1 format, resize it and deliver the modified 
video as output. Each filter provides a very basic adaptation on a stream in an intermediate format. 
Complex stream transformations can be built by combining several basic filters and creating a filter-
ing workflow pipeline. Below are examples of one-in-one-out filters:  

Decoder/Encoder transcoder filters aim at compressing/uncompressing the data into a chosen in-
termediate format (e.g. RGB24, YUV4:1:1, Linear Audio).  Common codecs include H.261, H.263, 
MPEG1, MPEG2, MPEG4, H.264, and RealMedia. Transcoding generates a new stream which is 
encoded in the format wanted by the user. For examples, if a RealPlayer user needs to receive a video 
encoded in H.261 RTP, a RealStream producer is needed to first decode the H.261 video and generate 
a new RealFormat stream. Image-scaling filters resize video frames, which is useful to adapt a stream 
for devices with limited display capacities. They are sometimes required to enable transcoding opera-
tions, for example MPEG videos may be transmitted in any size while H.261 videos require prede-
fined sizes such as CIF, QCIF or SQCIF. Color-space-scaling filters reduce the number of entries in 
the color space, for example from 24 to 12 bits, gray-scale or black-and-white. Frame-rate filters can 
reduce the frame rate in a video stream to meet low-end clients like PDA. For example, we can dis-
card B-frame or P-frame in a MPEG-4 video stream with 24 fps to create a new stream with a lower 
frame rate. 

Multiple-in-One-Out Filters: Mixer Filters combine multiple streams.  A video mixer can create a 
mixed video streams resulting from several input sources. Each element of the resulting mixed video 
(typically displayed as a grid of images) results from an image-scaling adaptation of a particular 
stream. An audio mixer can create a mixed audio stream by summing up several input sources. Audio 
mixing is very important to those clients that can’t receive multiple RTP audio streams and mix them. 
Video mixing service improves the visual collaboration especially for those limited clients, which can 
only handle a single video stream.  Multiplexors / Demultiplexors are used to aggregate/separate audio 
and video data in a multimedia stream. For instance, an MPEG multiplexor allows merging an MP3 
audio and an MPEG-1 video in a MPEG2 stream. Multiplex and demultiplex are quite useful for guar-
anteeing stream synchronization in unpredictable network environments.  

One-in-Multiple-Out Filters: Duplicator filters are used to replicate an output media stream. Du-
plication is useful when a stream has different targets with different requirements. In most cases, mul-
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tiple simple media filters should be organized in a media filter chain. Filters can be either as simple as 
bit-stream parsing, or as complicated as decoding and encoding. Composite media services are usually 
acyclic computation graphs consisting of multiple filter chains.  

Sink Filter Services: There is also another type of bit-stream service, called a sink service, which 
doesn’t change bits in the stream. Examples of sink services include buffering and replaying services.  
These can buffer real-time multimedia streams in memory caches or disk storage, and allow users to 
replay or fast-forward these streams through RTSP session. Sink filters can handle single or multiple 
streams. When multiple streams flow into a sink entity, all the streams can be synchronized and re-
played. Based on such a composite sink service, an annotation service can be developed. Through 
annotation, users can attach text and image streams to the original video and audio stream to convey 
additional meaning in collaboration.  Stream annotation is discussed in [11]. 

4.1. GlobalMMCS Architecture 

Figure 2 shows our architecture for managing streaming services and their workflow. It is built 
around NaradaBrokering which offers a powerful RTP event (message) delivery, which is quite criti-
cal to multimedia streaming. We have developed XGSP [27] as the framework to specify stream 
schema and offer support for sessions, end-points, filters, replay collaboration and their integration in 
streaming workflow. The stream schema uses a similar syntax to SMIL [28], describing the source 
(URI), the format and QoS requirement of each stream. The function of filters can be defined by 
specifying the input and output stream streams for them. The whole workflow is a collection of filter 
chains and the available streams.  
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Figure 2. Global-MMCS Streaming Workflow Management 

 
 Media Service and Workflow: There is substantial literature on Grid and Service-based workflow 

[29, 30].  Unlike many of these systems, Global-MMCS’s streaming workflow, especially conferenc-
ing workflow, is implicit and can be determined by the system at run time based on the specified (in 
XGSP) sinks and sources and their QoS. For example, when a PDA with limited network and process-



 8

ing capability wants to receive an H.261 encoded, 24 fps, CIF video stream, a customized workflow is 
need to transcode the H.261 stream to a JPEG picture stream or low-bitrate RealMedia Stream. An 
intelligent workflow engine can easily build a filter chain automatically based on the format descrip-
tion of the source stream and capability description of the PDA. Such an engine usually follows a 
graph search algorithm and tries to find a route from the graph node representing the format of the 
source stream to the destination node representing the format needed by the receiver. 

No user involvement is needed for defining explicit workflow. Furthermore, in order to minimize 
the traffic and delay, most of one-in-one-out filter chain should be constrained in a single service con-
tainer. One needs a distributed implementation to orchestrate multiple-in and multiple-out filters for 
different clients. Therefore the key issue in Global-MMCS media service management is how to lo-
cate the best service container based on streaming QoS requirement and make the service provider 
shared by participants in XGSP Sessions. 

Computation and storage resources connected with NaradaBrokering brokers are service containers 
that can host both media processing and session management services. The XGSP framework speci-
fies the XML scheme for describing the media processing and session management services. Each 
service provider can advertise its service XML description to distributed service registries such as we 
discuss in more detail in a companion paper [12]. 

Each broker may have a registered media service container called MediaServer, which hosts vari-
ous computationally intensive media processing services. All service providers implement the inter-
face to be able to run inside the service container. MediaServer can create, start and stop media ser-
vice instances. We are currently investigating adding support for UDDI to allow the MediaServer to 
advertise these service providers and reports the status information to the distributed metadata registry 
regarding the load on that machine.  XGSP audiovisual session servers can locate the best container 
and request a service instance to execute in the container.   

4.2. Global-MMCS Metadata Management 

We need to define collaborative sessions describing both the the group of people and their clients 
as well as the associated media services. XGSP audiovisual sessions have five states: created, can-
celed, activated, deactivated and finished. The XGSP AV session service manages these states. An 
XGSP user can initiate an audio-visual session while the session server can activate this created ses-
sion at the meeting time after the needed service instances are created. The meta-data or “context” for 
the session has both static and dynamic parts. 

Static Metadata: Collaboration users need to know how many active sessions are available and 
their associated detailed information. The conference announcement can be implemented either in the 
XGSP session protocol or through the out-of-band communication. The XGSP framework divides the 
conference advertisement information into two levels: one is the collaborative conference calendar, 
which describes high-level meta-data about the organization of the conference including meeting time 
and topic. The other is the detailed information needed by audiovisual clients to join the conference as 
for example the session identification in the system and transport addresses associated with the ses-
sion. The high-level conference calendar is implemented as a web-service running in the XGSP web 
server. Each active entry in the calendar has a link to the detailed session description.  

Real-Time Metadata: In addition to the static metadata described above, a XGSP session has 
much real-time context. There are three important entities in a XGSP session: participants, streams 
and services or filters. For each type of entity, a dynamic list has to be maintained. A participant list 
should keep the ID of each joined user and its multimedia capability and preference. A service or filter 
list should keep track of the activated services and their load. The stream list is more complex as it 
must keep track of source streams and filtered streams such as duplicated streams, transcoded streams 
and mixed streams. For buffering and annotated streams, it also keeps the description, of linkage in 
hybrid streams (see Sec. 1) and how they are stored. The latter is particularly critical for real-time 
replay [11].  

For a real-time conferencing application, static and high-level meta-data should be organized using 
standard calendar models and allows this conference calendar service to interact with other public, 
group or private calendars. Since WS-Context can manage session metadata between multiple partici-
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pants in Web-Service interactions, real-time metadata of XGSP sessions may also be managed by 
WS-Context style service and implemented in an efficient manner [12].  

4.3. Global-MMCS Session and Workflow Management 

NaradaBrokering can publish performance monitoring data in the form of XML on a topic which is 
subscribed to by the AV Session Server. From these performance data and broker network maps, the 
Session Server can estimate the delay and bandwidth between the service candidates and the request-
ing user. Based on the workload of the media service providers and estimated the performance met-
rics, the Session Server can find the best service providers and initiate a media service instance. Fur-
thermore, the AV Session Server has to monitor the health of each media service instance. Through a 
specific NaradaBrokering topic, an active media service instance can publish status meta-data to no-
tify the session server. If it fails to respond within a period of time, the AV Session Server is respon-
sible to restart it or locate a new service provider and start a new instance. Note that the messaging 
infrastructure supports both TCP control and UDP media streams and their reliable delivery; the ses-
sion can choose separate QoS for each type of stream. 

Each session server may host limited numbers of active XGSP AV sessions. The exact number de-
pends upon the workload and the computational power of the machine. The session initiator will 
firstly locate the right session provider to create a session service instance for a particular XGSP AV 
session. Then, this session server will locate the necessary media service resources on demand. In the 
current implementation, a default audio mixer is created to handle all the audio in the session. Private 
audio mixers can be created on-demand for private sessions supporting subgroups in the session. Fur-
ther, multiple video mixers can be created by the session server on the request of the client.   An im-
age grabber (thumbnail) service is created when a new video stream is detected in the session. Further, 
customized transcoding services can be created when a user sends a request to access particular 
streams. For example, a mobile client like PDA connected to Wi-Fi, which only has limited process-
ing power wants to choose a 24 4-CIF MPEG-4 video; then a transcoding process pipeline consisting 
of frame rate adapter , video size down-sampler and color transformation, is needed to create this 
stream. Another example is an H.323 terminal, which can only handle H.261 and H.263 codecs, wants 
to display a MPEG-4 video: it will ask the session server to start a MPEG-4-to-H.261 transcoder. 

 Sink services like buffering, archiving and replaying services can also be initiated by real-time 
XGSP sessions. Buffering and archiving services store events into distributed cache and file storage 
attached to NaradaBrokering overlay networks. Once stream data flow into these “sinks”, replaying 
service can pull the data flow out of the sinks and send to clients based on the RTSP request of the 
user. The events are accessed in an ordered fashion and resynchronized using their timestamps, which 
have been unified using NaradaBrokers NTP service. The list with time-stamps of these archived and 
annotated streams is kept in the WS-Context dynamic meta-data service. Through the recording man-
ager service, a component of AV session server, users can choose streams to be buffered and ar-
chived. And through replay and RTSP services, users can initiate RTSP sessions and replay those 
buffered streams. After the streams are buffered, users can add annotations to the streams and archive 
the new composite steams for later replay. 

5. Supporting Real Time Sensor Grid Services 

The basic services needed to support audio-video collaboration, such as reliable delivery, multicast-
ing and replay, can also be applied to problems in real-time delivery of sensor grid data. Sensors are 
being deployed either individually or as part of sensor networks to collect fine-grain information 
about various entities. The trend in sensor technologies and related research shows us that in the near 
future we will see a growing need for new software architectures to integrate the sensor observations 
with data assimilation tools. Here we describe such an architecture which is being developed based on 
Web Services principals and summarize its application to real-time Global Positioning System data. 
The architecture consists of several major components: GPS stations, distributed data processing units 
called filters and publish/subscribe based messaging infrastructure.  
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Figure 3 NaradaBrokering may be used to support filters of real-time GPS data. 

In Figure 3, we depict our work to develop filters on live Global Positioning System data. The raw 
position messages are collected from stations deployed alongside the active fault lines in Southern 
California. Several of these GPS networks are maintained by the Scripps Orbit and Permanent Array 
Center (SOPAC) [31].  The GPS station observations are collected and processed by proxies called 
RTD Servers. The stations broadcast their position information at the rate of 1-2 Hertz, and the RTD 
server creates a single message for the whole network for that epoch. The position messages are made 
available to the clients via TCP ports in a binary format called RYO. We have developed several real-
time filters to convert and republish these binary messages into different formats such as ASCII and 
Geography Markup Language (GML) encoded data.  

The goal behind creating these filter chains is to make the real-time data available to scientific data 
analysis tools in a streaming fashion. We categorize the filters in our architecture into two categories; 
real-time and near-real time filters. The real-time filters process and re-publish the messages before 
the next message. A basic filter consists of three major parts: a NaradaBrokering subscriber unit to 
receive the sensor messages, a data processing unit and a NaradaBrokering publisher unit to publish 
the processed message. The publisher unit is not used in some filters since not all filters need to re-
publish the processed data. Figure 3 shows some of the filters we currently use to process real-time 
position messages. Other than format converter filters (ryo2ascii, ascii2gml and ascii2pos) we have 
developed simple data processing filters such as Single Station Filter which is used to separate indi-
vidual station positions from the original message that contains multiple stations and more compli-
cated tools for calculating real-time displacements and RDAHMM filter. RDAHMM is a time-series 
analysis application that is useful for identifying mode changes in the given data set. The latest ver-
sion of RDAHMM can be trained for a particular station and used to analyze the real-time position 
messages of that station. Our RDAHMM filter accumulates certain number of position messages and 
invokes the actual RDAHMM application to evaluate this data. The result of the application gives us 
different modes detected in the input data which can be useful in identifying long-term deformation 
on the fault line. 

6. Future Work 

The NaradaBrokering system has been recently augmented with the ability to create topics [34] and 
discover and allow secure access to topics and the data published on it. We plan to leverage this capa-
bility to create secure access to data streams. Further, implementing broker discovery [35] will allow 
us to select nearest broker when a WSProxy publishes/subscribes to data streams. Security for real-
time streams is also of course a critical challenge but the architecture supports message-based security 
like WS-Security [36], and we suggest that a form of WS-SecureConversation is natural for streams. 

Conventional support of SOAP messages using the verbose “angle-bracket” representation is too 
slow for many applications. Thus we and others are researching [10, 37] a systematic use of “fast 
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XML and SOAP” where services negotiate the use of efficient representations for SOAP messages. 
All messages rigorously support the service WSDL but transport the SOAP Infoset using the angle 
bracket form in the initial negotiation but an efficient representation where possible for streamed data. 

Another interesting area is structuring the system so that it can be implemented either with stand-
alone services, message brokers and clients or in a Peer-to-Peer mode. These two implementations 
have tradeoffs between performance and flexibility and both are important. The core architecture 
“naturally” works in both modes but the details are non trivial and require substantial further research. 
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