
 1

Management of Real-Time Streaming Data Grid Services

Geoffrey Fox, Galip Aydin, Hasan Bulut, Harshawardhan Gadgil, Shrideep Pallickara, Marlon
Pierce, and Wenjun Wu

Community Grids Laboratory
Indiana University

501 North Morton Street, Suite 224
Bloomington, IN 47404

{gcf,gaydin,hgadgil,spallick,marpierc,wewu}@indiana.edu

Abstract: We discuss our message-based approach to managing real time data streams
and building higher level services to produce and consume them. Our messaging system
acts as a substrate that can be used to provide qualities of service to various streaming
applications ranging from audio-video collaboration systems to sensor grids. The mes-
saging substrates are composed of distributed, hierarchically arranged message broker
networks. Services such as filters are deployed along the edges of the network. We dis-
cuss the role of management systems for both broker networks and filter services: broker
network topologies must be created and maintained, and distributed filters must be ar-
ranged in appropriate sequences. These managed broker networks may be applied to a
wide range of problems. We discuss applications to audio/video collaboration in some
detail and also describe applications to streaming Global Positioning System data
streams. These provide specific application filters that can transform and republish mes-
sage streams to the broker system.

1. Introduction

A growing number of applications involve real-time streams of information that need to be trans-
ported in a dynamic, high-performance, reliable, and secure fashion. Examples include sensor nets for
both science and military applications, mobile devices on ad-hoc networks, and collaborative applica-
tions. In the latter case the streams consist of a set of “change events” for a collaborative entity multi-
cast to the participating clients. They could be the frames of audio-video streams, encoded changed
pixels in a shared display, or high level semantic events such as signals of PowerPoint slide changes.
Here we describe our research into ways of managing such streams, which we think are a critical com-
ponent of applications as diverse as sensor nets and real time synchronous collaboration environ-
ments.

We develop real-time streaming technology assuming that the sources, sinks, and filters of these
streams are Web or Grid services. This allows us to share the support technology between streaming
applications and benefit from the pervasive interoperability of a service-oriented architecture. Further,
this allows a simple model of collaborative Web and Grid services gotten by “just” sharing the input
or output ports. As services expose their change by explicit messages (using what we call a message-
based Model-View-Controller architecture [1]), it is much easier to make them collaborative than
traditional desktop applications whose change is often buried in the application. We have shown how
traditional collaborative applications can be made service oriented with in particular a set of services
implementing traditional H.323 functionality and interoperating with Access Grid and Polycom sys-
tems. This required the development of an XML equivalent of the H.323 protocol [2, 3]. Our other
major motivation is the sensor networks of military, scientific and social infrastructure. These are well
suited to a service architecture as exemplified by the US Department of Defense’s Global Information
Grid with its service-based NCOW (Network Centric Operations and Warfare Architecture) [4, 5, 6,
7].

We have developed general purpose, open source software to support distributed streams, described
in Sec. 2. NaradaBrokering [8, 9] forms a distributed set of message brokers that implement a publish-

 2

subscribe software overlay network. This environment supports multiple protocols (including UDP,
TCP, and parallel TCP) and provides reliable message delivery with a scalable architecture. The infra-
structure can supply message oriented middleware support for Web services through its support of
WS-Eventing, WS-Addressing, WS-Reliable Messaging, and WS-Reliability. We note the architec-
ture links both Peer-to-Peer and Grid paradigms and has been used in either mode although the Peer-
to-Peer experience is limited.

We have used several applications that drive the development of our technology. These include col-
laboration services with audio, video, and shared display streams, as well as linkages of real-time
Global Positioning System sensors to Geographical Information Systems implemented as Web ser-
vices. Other examples include integration of hand-held devices into a Grid [10] and the linkage of
annotations to video streams showing how composite streams can be supported for real-time annota-
tion [11]. The first two applications are described in sections 4 and 5 and illustrate the need the high
level session and filter infrastructure on top of the messaging infrastructure.

There are several technical challenges to building infrastructure that is efficient and can support
time-sensitive operations such as the instant replay and annotation of sensor streams in an emergency.
One needs to archive events (such as video frames) to support replay. The location of replicated ar-
chives (for fault tolerance) and the linkage to annotation material illustrate system metadata which is
very dynamic but must be accessible to the system with low latency. This requires metadata ap-
proaches that we discuss separately [12] optimized for dynamic responsiveness in modest sized sub-
systems rather that approaches like distributed hash tables optimized for scalability.

Our architecture supports the interesting concept of hybrid streams where multiple “simple
streams” are intrinsically linked; examples are linkage of a stream of annotation white boards with
original audio/video stream [11] and the combination of lossless and lossy codec streams (using po-
tentially parallel TCP and UDP respectively) to represent a large dynamic shared display.

The messaging infrastructure supports the application services with their filters, gateways and ses-
sions reflecting both the collaborative and workflow functions. However we have found the need for a
set of services that manage the messaging itself and so control broker deployment and quality of ser-
vice. This is discussed in section 3 which describes the integration of the management of messaging
and higher-level services.

2. NaradaBrokering: a Distributed Messaging Substrate

NaradaBrokering [8, 9, 13] is a messaging infrastructure that is based on the publish/subscribe
paradigm. The system efficiently routes messages [14] from the originators to the consumers that are
interested in the message. The system places no restrictions on the size and the rate at which these
messages are issued. Consumers can express their interests (or specify subscriptions) using simple
formats such as character strings. Subscriptions may also be based on sophisticated queries involving
XPath, SQL, or regular expressions. Support for these subscription formats enables consumers to pre-
cisely narrow the type of messages that they are interested in. The substrate incorporates support for
enterprise messaging specifications such as the Java Message Service [15]. The substrate also incor-
porates support for a very wide array of transports (TCP, UDP, Multicast, SSL, HTTP and Paral-
lelTCP among others), which enable the infrastructure to be leveraged by entities in a wide variety of
settings. To cope with very large payloads the system leverages ParallelTCP at the transport level and
services such as compression and fragmentation to reduce individual message sizes. The fragments
(compressed or otherwise) are reconstituted by appropriate services (coalescing and de-compression)
prior to delivery to the application.

The most fundamental unit in NaradaBrokering is a message. A stream can be thought of as being
composed by a series of messages, each with causal and ordering correlations to previous messages in
the stream. The inter-broker latency for routing typical messages is around 1 millisecond. In a con-
trolled cluster setting a single broker was found to support up to 400 UDP-based A/V clients concur-
rently with adequate latency [16]. Among the services most relevant for collaboration within the sys-
tem are the following.
1. Support for a replay and recording services: The recording service is used to store messages relia-

bly to the archival system. The recording is done in such a way that all events issued by the re-

 3

cording entity are stored in the order that they were published. The replay service facilitates the re-
play of these previously stored messages. The replay service support replays in multiple flavors.
Entities may request replays based on sequencing information, timing information, content of the
message or based on the topics that these messages were published to. In some cases one or more of
the parameters can be combined in a single request.

2. Support for consistent global timestamps [17] through an implementation of the Network Time
Protocol (NTP). This implementation ensures that timestamps at the distributed entities are within a
few milliseconds of each other. This allows us to ensure that we can order messages based on these
global timestamps. This is especially useful during replays when we can precisely determine the
order in which messages should be released to the application.

3. Support for buffering and subsequent time-spaced release of messages to reduce jitters. The typical
lower bound for time space resolution is a millisecond. However, we have also been able to succes-
sively time-space events in the order of several microseconds. By buffering and releasing messages
we reduce the jitters that may have been introduced by the network.
More recently, we have incorporated support for Web Services within the substrate. Entities can

send SOAP messages directly to the brokers that are part of the messaging infrastructure. We have
incorporated support for Web Service specifications such as WS-Eventing [18], WS-
ReliableMessaging [19] and WS-Reliability [20]. Work on implementing the WS-Notification [21]
suite of specifications is currently underway. The implementation of these specifications also has had
to cope with other specifications such as WS-Addressing and WS-Policy that are leveraged by these
applications. In addition to the rules governing SOAP messages and the implemented protocols, rules
governing WS-Addressing are also enforced.

In our support for SOAP within NaradaBrokering we have introduced Filters and Filter-Pipelines
(Figure 1). A filter is smallest processing unit for a SOAP message. Several Filters can be cascaded
together to constitute a Filter-Pipeline. Here, the Filters within a Filter-Pipeline can be dynamically
shuffled and reorganized. The system allows a Filter-Pipeline to be registered for every role that the
node (functioning as a SOAP intermediary) intends to perform.

Figure 1 Filter pipelines are used to process SOAP messages in NaradaBrokering.

Upon receipt of a SOAP message that is targeted to multiple roles (as indicated by the SOAP 1.2

role attribute) the corresponding Filter-Pipelines are cascaded so that the appropriate functions are
performed. The SOAP message is first parsed to determine the roles that need to be performed. Next,

 4

we check to see if there are any pipelines registered for a specific role. The scheme allows developers
to develop their own Filters and Filter-Pipelines and target them for specialized roles. For e.g. in some
cases a developer may wish to develop a Filter that performs message transformations between the
competing notification specifications: WS-Eventing and WS-Notification. By providing an extensible
framework for the creation of Filters and the registration of roles sophisticated applications can be
built.

3. HPSearch: Managing Broker Networks and Service Grids

As discussed in the previous section, NaradaBrokering provides a software messaging infrastruc-
ture. In a related project, we have developed HPSearch [22] as a scripting based management console
for broker networks and their services. At one end of the spectrum are services which help manage the
messaging middleware, while at the other end are services that leverage capabilities of the middleware
(WSProxy). The management of both sets of services is handled by a scripting medium that binds
Uniform Resource Identifiers (URI) to the scripting language. By binding URI as a first-class object
we can use the scripting language to manage the resource identified by the URI. We discuss these
functions in detail below.

Management of messaging middleware: In order to deploy a distributed application that uses Na-
radaBrokering, the middleware must be setup and a broker network topology must be deployed. Bro-
ker network topology may also be changed at runtime using HPSearch by adding or deleting links
between brokers. Once the middleware is setup, we leverage the broker network to deploy the distrib-
uted application as detailed in the next section.

To fulfill this requirement we have been developing a specialized Web Service called the Broker
Service Adapter (BSA) that helps us deploy brokers on distributed nodes and setup links between
them. The BSA is a Web Service that enables management of the middleware via WS-Management
[23]. Errors and other conditions are similarly handled and notified to the management engine using
WS-Eventing [18]. We discuss this management architecture in more detail in section 3.1.

Management of Data Streams and Services: HPSearch uses NaradaBrokering to route data be-
tween components of a distributed application. This data transfer is managed transparently by the
HPSearch runtime component, the Web Service Proxy (WSProxy) [24]. Thus, each of the distributed
components is exposed as a Web Service which can be initialized and steered by simple SOAP re-
quests. WSProxy can either wrap existing applications or create new data processing and data filtering
services. WSProxy handles streaming data transfer using NaradaBrokering on behalf of the services
thus enabling streaming data transfer for any service. The streaming data is enabled using NaradaBro-
kering middleware, a distributed routing substrate. Thus there are no central bottlenecks and failure of
a broker node routes the data stream through alternate routes if available. Further, NaradaBrokering
supports reliable delivery via persistent storage [25] thus enabling guaranteed delivery for data
streams.

All interactions with the WSProxy are made using simple SOAP calls, and thus the service
wrapped by the WSProxy can be steered using any client that can talk SOAP. The WSProxy service
has been written using Apache Axis and can be deployed in any Web Service container such as
Apache Tomcat. HPSearch adds initialization and steering of WSProxy based Web Services using a
scripting interface. HPSearch creates temporary topics using the NaradaBrokering system and cor-
rectly ties up all components, thus establishing a data flow between various components of the dis-
tributed application. Reference [26] presents more details on how a distributed application can be
modeled using WSProxy and deployed and managed using the HPSearch system.

3.1. Requirement for Management

We build our management architecture on Service Oriented Architecture principles. The essential
entity requiring management is the NaradaBrokering broker. Management of a broker entails config-
uring the broker to use specific transports, start services and initialize the broker. Further, a single
broker can only effectively serve a limited number of clients. Tests [43] show that a single broker can
service 1500 simultaneous audio streams or 400 simultaneous video streams before the quality of

 5

service starts deteriorating. In order to improve the scalability of the system, one frequently employs a
network of brokers. Various network connection topologies exist, each differing in their scalability
and fault-tolerance characteristics. For instance, a fully connected network of brokers provides the
maximum fault-tolerance but incurs an overhead on the number of links between nodes. A linear to-
pology would be very less demanding in terms of resources; however it would partition the network
should a link or node fails. Thus selection of a particular topology is dependent on the application
needs, and so we provide a framework to rapidly deploy broker network topologies via WS-
Management.

3.2. WS-Management Architecture

Our initial architecture is based on the June 2005 draft of WS – Management [39]. The architecture
comprises mainly of the managed entities (brokers), the service adapter (which is a framework to al-
low processing of WS-Management messages) and the manager (an entity which requests specific
management actions). The service adapter is a wrapper over the managed entity that provides a WS-
Management interface on the outside and a managed entity specific interface on the inside. Its job is
to translate WS-Management commands to entity specific management actions.

WS-Management allows management of specific resources associated with an entity. This may be
specified using the ResourceURI header defined in WS-Management. The framework primarily
allows creation and deletion of resources using the verbs defined in the WS-Transfer [40] specifica-
tion. We allow creation of brokers and links between brokers. The Delete capability provides flexi-
bility in terms of tearing down the existing broker network and redeploying the broker network with
possibly a different configuration. Configuration of brokers can be queried and manipulated using the
Get and Set verbs respectively. WS-Management also provides the capability of enumerating con-
tents of large containers such as log files via the WS-Enumeration [41] interface. We are investigating
if this capability can be utilized for managing the broker network. WS-Management also provides the
capability of heartbeat messages to determine liveness of managed entities. Such a capability is cru-
cial to the correct functioning of architecture and we are working towards employing WS-Eventing
[42] based notifications to enable heartbeat events.

To use this basic architecture we also employ the capability of using different transports. Using
SOAP over HTTP is the norm, however this might be restrictive in cases where the service endpoint is
not directly accessible. To mitigate this situation we employ a set of bootstrap broker nodes and wrap
the SOAP messages as NaradaBrokering events. These events are then routed appropriately to the
correct endpoint. When the processing is done, the response is routed back to the service requestor. As
described above, NaradaBrokering provides support for different transports such as TCP, UDP,
NIOTCP, HTTP, SSL. This capability provides us with the ability to use multiple transports in case a
specific transport is not available. Specifically it allows us to manage brokers behind firewalls by
leveraging the HTTP tunneling capability in NaradaBrokering.

Finally, to tie up all the components (manager, service adapter, managed entity), we employ a reg-
istry that stores runtime metadata. The information maintained in this registry is usually the manage-
ment tasks to be carried and a list of available service adapters and their respective endpoint ad-
dresses.

3.3. Results

We have tested our architecture to deploy a network of 8 brokers in a linear fashion. Our tests indi-
cate that the average overhead is about 75 milliseconds per broker. This is attributed to marshalling
and unmarshalling of SOAP messages and their associated responses along with the network over-
head. This overhead may be reduced by employing faster methods [37, 38] in dealing with SOAP
messages. Ref. [44] provides detailed test results.

 6

4. Global-MMCS: Audio and Video Stream Services and Management

In the previous two sections we have outlined the core messaging software and its management sys-
tem. We now turn to applications that can be built on this substrate. Global-MMCS, as a service-
oriented multimedia collaboration system, mainly processes multimedia streams: video, audio, white-
board and so on. “Events” in video or audio are usually called video frames or audio samples. Gener-
ally speaking, there are a lot of similarities between multimedia streams and other data streams such
as sensor data. All streaming data require significant Quality of Service (QoS) constraints and dy-
namic filtering. These are both particularly demanding and well-understood for multimedia streams
for both communication and processing. Because of high bandwidth generated by raw multimedia bit-
streams, complicated codecs must be used to compress the streams and transmit them over Internet.
Further, multimedia streams are typically used collaboratively and so stress the infrastructure needed
to support the efficient software or hardware of multicasting required by the delivery of a given
stream to multiple clients. Due to the diversity of collaboration clients supported by Global-MMCs,
the services for multimedia streams need to adapt the streams to different clients. We note that many
relevant web service specifications like those for reliable messaging and notification appear not well
designed for scalable efficient multicast as needed by Global-MMCS. Thus we suggest that multime-
dia collaboration is an excellent proving ground for general streaming data grid infrastructure.

A media service or filter is a functional entity, which can receive one or multiple media streams,
perform some processing, and output one or multiple media streams. Each service is characterized by
a set of input and output stream interfaces and a processing unit. According to the number of fan-in
and fan-out of filters, they can be divided into three categories: one-in-one-out filters, multiple-in-one
out filters, and one-in-multipe-out. In addition, there is a final “sink” filter category. We discuss each
of these below.

One-in-One-Out Filters: Such a filter implements the basic transformation operation. For instance,
a filter can receive as input a video stream in YUV4:1:1 format, resize it and deliver the modified
video as output. Each filter provides a very basic adaptation on a stream in an intermediate format.
Complex stream transformations can be built by combining several basic filters and creating a filter-
ing workflow pipeline. Below are examples of one-in-one-out filters:

Decoder/Encoder transcoder filters aim at compressing/uncompressing the data into a chosen in-
termediate format (e.g. RGB24, YUV4:1:1, Linear Audio). Common codecs include H.261, H.263,
MPEG1, MPEG2, MPEG4, H.264, and RealMedia. Transcoding generates a new stream which is
encoded in the format wanted by the user. For examples, if a RealPlayer user needs to receive a video
encoded in H.261 RTP, a RealStream producer is needed to first decode the H.261 video and generate
a new RealFormat stream. Image-scaling filters resize video frames, which is useful to adapt a stream
for devices with limited display capacities. They are sometimes required to enable transcoding opera-
tions, for example MPEG videos may be transmitted in any size while H.261 videos require prede-
fined sizes such as CIF, QCIF or SQCIF. Color-space-scaling filters reduce the number of entries in
the color space, for example from 24 to 12 bits, gray-scale or black-and-white. Frame-rate filters can
reduce the frame rate in a video stream to meet low-end clients like PDA. For example, we can dis-
card B-frame or P-frame in a MPEG-4 video stream with 24 fps to create a new stream with a lower
frame rate.

Multiple-in-One-Out Filters: Mixer Filters combine multiple streams. A video mixer can create a
mixed video streams resulting from several input sources. Each element of the resulting mixed video
(typically displayed as a grid of images) results from an image-scaling adaptation of a particular
stream. An audio mixer can create a mixed audio stream by summing up several input sources. Audio
mixing is very important to those clients that can’t receive multiple RTP audio streams and mix them.
Video mixing service improves the visual collaboration especially for those limited clients, which can
only handle a single video stream. Multiplexors / Demultiplexors are used to aggregate/separate audio
and video data in a multimedia stream. For instance, an MPEG multiplexor allows merging an MP3
audio and an MPEG-1 video in a MPEG2 stream. Multiplex and demultiplex are quite useful for guar-
anteeing stream synchronization in unpredictable network environments.

One-in-Multiple-Out Filters: Duplicator filters are used to replicate an output media stream. Du-
plication is useful when a stream has different targets with different requirements. In most cases, mul-

 7

tiple simple media filters should be organized in a media filter chain. Filters can be either as simple as
bit-stream parsing, or as complicated as decoding and encoding. Composite media services are usually
acyclic computation graphs consisting of multiple filter chains.

Sink Filter Services: There is also another type of bit-stream service, called a sink service, which
doesn’t change bits in the stream. Examples of sink services include buffering and replaying services.
These can buffer real-time multimedia streams in memory caches or disk storage, and allow users to
replay or fast-forward these streams through RTSP session. Sink filters can handle single or multiple
streams. When multiple streams flow into a sink entity, all the streams can be synchronized and re-
played. Based on such a composite sink service, an annotation service can be developed. Through
annotation, users can attach text and image streams to the original video and audio stream to convey
additional meaning in collaboration. Stream annotation is discussed in [11].

4.1. GlobalMMCS Architecture

Figure 2 shows our architecture for managing streaming services and their workflow. It is built
around NaradaBrokering which offers a powerful RTP event (message) delivery, which is quite criti-
cal to multimedia streaming. We have developed XGSP [27] as the framework to specify stream
schema and offer support for sessions, end-points, filters, replay collaboration and their integration in
streaming workflow. The stream schema uses a similar syntax to SMIL [28], describing the source
(URI), the format and QoS requirement of each stream. The function of filters can be defined by
specifying the input and output stream streams for them. The whole workflow is a collection of filter
chains and the available streams.

Nar adaBr oker i ng
Br oker Net wor k

MFP: Medi a Fi l t er Pr ovi der
SSP: Sessi on Ser vi ce Pr ovi der

Si nk Ser vi ce: buf f er i ng, r epl ayi ng

Medi aSer ver 1

Sessi on Ser ver

SSP1
SSP2

SSP3

Medi a Ser vi ce
Adver t i sement

Gl obal - MMCS User s

Ser vi ce
Di scover y

Sear ch f or Medi a Fi l t er ,
Sessi on and Si nk Ser vi ces
Medi a Del i ver y & Fi l t er i ng

St or age Ser vi ces

Audi o
Mi xi ng

Vi deo
Mi xi ng

I mage
Gr abb

Si nk
Ser vi ce

Si nk
Ser vi ce

Si nk
Ser vi ce

1 2 3

4 5 6
7 8 9

* 8 #

Sessi on Ser vi ce
Adver t i sement

Si nk Ser vi ce
Cont ai ner

Figure 2. Global-MMCS Streaming Workflow Management

 Media Service and Workflow: There is substantial literature on Grid and Service-based workflow

[29, 30]. Unlike many of these systems, Global-MMCS’s streaming workflow, especially conferenc-
ing workflow, is implicit and can be determined by the system at run time based on the specified (in
XGSP) sinks and sources and their QoS. For example, when a PDA with limited network and process-

 8

ing capability wants to receive an H.261 encoded, 24 fps, CIF video stream, a customized workflow is
need to transcode the H.261 stream to a JPEG picture stream or low-bitrate RealMedia Stream. An
intelligent workflow engine can easily build a filter chain automatically based on the format descrip-
tion of the source stream and capability description of the PDA. Such an engine usually follows a
graph search algorithm and tries to find a route from the graph node representing the format of the
source stream to the destination node representing the format needed by the receiver.

No user involvement is needed for defining explicit workflow. Furthermore, in order to minimize
the traffic and delay, most of one-in-one-out filter chain should be constrained in a single service con-
tainer. One needs a distributed implementation to orchestrate multiple-in and multiple-out filters for
different clients. Therefore the key issue in Global-MMCS media service management is how to lo-
cate the best service container based on streaming QoS requirement and make the service provider
shared by participants in XGSP Sessions.

Computation and storage resources connected with NaradaBrokering brokers are service containers
that can host both media processing and session management services. The XGSP framework speci-
fies the XML scheme for describing the media processing and session management services. Each
service provider can advertise its service XML description to distributed service registries such as we
discuss in more detail in a companion paper [12].

Each broker may have a registered media service container called MediaServer, which hosts vari-
ous computationally intensive media processing services. All service providers implement the inter-
face to be able to run inside the service container. MediaServer can create, start and stop media ser-
vice instances. We are currently investigating adding support for UDDI to allow the MediaServer to
advertise these service providers and reports the status information to the distributed metadata registry
regarding the load on that machine. XGSP audiovisual session servers can locate the best container
and request a service instance to execute in the container.

4.2. Global-MMCS Metadata Management

We need to define collaborative sessions describing both the the group of people and their clients
as well as the associated media services. XGSP audiovisual sessions have five states: created, can-
celed, activated, deactivated and finished. The XGSP AV session service manages these states. An
XGSP user can initiate an audio-visual session while the session server can activate this created ses-
sion at the meeting time after the needed service instances are created. The meta-data or “context” for
the session has both static and dynamic parts.

Static Metadata: Collaboration users need to know how many active sessions are available and
their associated detailed information. The conference announcement can be implemented either in the
XGSP session protocol or through the out-of-band communication. The XGSP framework divides the
conference advertisement information into two levels: one is the collaborative conference calendar,
which describes high-level meta-data about the organization of the conference including meeting time
and topic. The other is the detailed information needed by audiovisual clients to join the conference as
for example the session identification in the system and transport addresses associated with the ses-
sion. The high-level conference calendar is implemented as a web-service running in the XGSP web
server. Each active entry in the calendar has a link to the detailed session description.

Real-Time Metadata: In addition to the static metadata described above, a XGSP session has
much real-time context. There are three important entities in a XGSP session: participants, streams
and services or filters. For each type of entity, a dynamic list has to be maintained. A participant list
should keep the ID of each joined user and its multimedia capability and preference. A service or filter
list should keep track of the activated services and their load. The stream list is more complex as it
must keep track of source streams and filtered streams such as duplicated streams, transcoded streams
and mixed streams. For buffering and annotated streams, it also keeps the description, of linkage in
hybrid streams (see Sec. 1) and how they are stored. The latter is particularly critical for real-time
replay [11].

For a real-time conferencing application, static and high-level meta-data should be organized using
standard calendar models and allows this conference calendar service to interact with other public,
group or private calendars. Since WS-Context can manage session metadata between multiple partici-

 9

pants in Web-Service interactions, real-time metadata of XGSP sessions may also be managed by
WS-Context style service and implemented in an efficient manner [12].

4.3. Global-MMCS Session and Workflow Management

NaradaBrokering can publish performance monitoring data in the form of XML on a topic which is
subscribed to by the AV Session Server. From these performance data and broker network maps, the
Session Server can estimate the delay and bandwidth between the service candidates and the request-
ing user. Based on the workload of the media service providers and estimated the performance met-
rics, the Session Server can find the best service providers and initiate a media service instance. Fur-
thermore, the AV Session Server has to monitor the health of each media service instance. Through a
specific NaradaBrokering topic, an active media service instance can publish status meta-data to no-
tify the session server. If it fails to respond within a period of time, the AV Session Server is respon-
sible to restart it or locate a new service provider and start a new instance. Note that the messaging
infrastructure supports both TCP control and UDP media streams and their reliable delivery; the ses-
sion can choose separate QoS for each type of stream.

Each session server may host limited numbers of active XGSP AV sessions. The exact number de-
pends upon the workload and the computational power of the machine. The session initiator will
firstly locate the right session provider to create a session service instance for a particular XGSP AV
session. Then, this session server will locate the necessary media service resources on demand. In the
current implementation, a default audio mixer is created to handle all the audio in the session. Private
audio mixers can be created on-demand for private sessions supporting subgroups in the session. Fur-
ther, multiple video mixers can be created by the session server on the request of the client. An im-
age grabber (thumbnail) service is created when a new video stream is detected in the session. Further,
customized transcoding services can be created when a user sends a request to access particular
streams. For example, a mobile client like PDA connected to Wi-Fi, which only has limited process-
ing power wants to choose a 24 4-CIF MPEG-4 video; then a transcoding process pipeline consisting
of frame rate adapter , video size down-sampler and color transformation, is needed to create this
stream. Another example is an H.323 terminal, which can only handle H.261 and H.263 codecs, wants
to display a MPEG-4 video: it will ask the session server to start a MPEG-4-to-H.261 transcoder.

 Sink services like buffering, archiving and replaying services can also be initiated by real-time
XGSP sessions. Buffering and archiving services store events into distributed cache and file storage
attached to NaradaBrokering overlay networks. Once stream data flow into these “sinks”, replaying
service can pull the data flow out of the sinks and send to clients based on the RTSP request of the
user. The events are accessed in an ordered fashion and resynchronized using their timestamps, which
have been unified using NaradaBrokers NTP service. The list with time-stamps of these archived and
annotated streams is kept in the WS-Context dynamic meta-data service. Through the recording man-
ager service, a component of AV session server, users can choose streams to be buffered and ar-
chived. And through replay and RTSP services, users can initiate RTSP sessions and replay those
buffered streams. After the streams are buffered, users can add annotations to the streams and archive
the new composite steams for later replay.

5. Supporting Real Time Sensor Grid Services

The basic services needed to support audio-video collaboration, such as reliable delivery, multicast-
ing and replay, can also be applied to problems in real-time delivery of sensor grid data. Sensors are
being deployed either individually or as part of sensor networks to collect fine-grain information
about various entities. The trend in sensor technologies and related research shows us that in the near
future we will see a growing need for new software architectures to integrate the sensor observations
with data assimilation tools. Here we describe such an architecture which is being developed based on
Web Services principals and summarize its application to real-time Global Positioning System data.
The architecture consists of several major components: GPS stations, distributed data processing units
called filters and publish/subscribe based messaging infrastructure.

 10

Figure 3 NaradaBrokering may be used to support filters of real-time GPS data.

In Figure 3, we depict our work to develop filters on live Global Positioning System data. The raw
position messages are collected from stations deployed alongside the active fault lines in Southern
California. Several of these GPS networks are maintained by the Scripps Orbit and Permanent Array
Center (SOPAC) [31]. The GPS station observations are collected and processed by proxies called
RTD Servers. The stations broadcast their position information at the rate of 1-2 Hertz, and the RTD
server creates a single message for the whole network for that epoch. The position messages are made
available to the clients via TCP ports in a binary format called RYO. We have developed several real-
time filters to convert and republish these binary messages into different formats such as ASCII and
Geography Markup Language (GML) encoded data.

The goal behind creating these filter chains is to make the real-time data available to scientific data
analysis tools in a streaming fashion. We categorize the filters in our architecture into two categories;
real-time and near-real time filters. The real-time filters process and re-publish the messages before
the next message. A basic filter consists of three major parts: a NaradaBrokering subscriber unit to
receive the sensor messages, a data processing unit and a NaradaBrokering publisher unit to publish
the processed message. The publisher unit is not used in some filters since not all filters need to re-
publish the processed data. Figure 3 shows some of the filters we currently use to process real-time
position messages. Other than format converter filters (ryo2ascii, ascii2gml and ascii2pos) we have
developed simple data processing filters such as Single Station Filter which is used to separate indi-
vidual station positions from the original message that contains multiple stations and more compli-
cated tools for calculating real-time displacements and RDAHMM filter. RDAHMM is a time-series
analysis application that is useful for identifying mode changes in the given data set. The latest ver-
sion of RDAHMM can be trained for a particular station and used to analyze the real-time position
messages of that station. Our RDAHMM filter accumulates certain number of position messages and
invokes the actual RDAHMM application to evaluate this data. The result of the application gives us
different modes detected in the input data which can be useful in identifying long-term deformation
on the fault line.

6. Future Work

The NaradaBrokering system has been recently augmented with the ability to create topics [34] and
discover and allow secure access to topics and the data published on it. We plan to leverage this capa-
bility to create secure access to data streams. Further, implementing broker discovery [35] will allow
us to select nearest broker when a WSProxy publishes/subscribes to data streams. Security for real-
time streams is also of course a critical challenge but the architecture supports message-based security
like WS-Security [36], and we suggest that a form of WS-SecureConversation is natural for streams.

Conventional support of SOAP messages using the verbose “angle-bracket” representation is too
slow for many applications. Thus we and others are researching [10, 37] a systematic use of “fast

 11

XML and SOAP” where services negotiate the use of efficient representations for SOAP messages.
All messages rigorously support the service WSDL but transport the SOAP Infoset using the angle
bracket form in the initial negotiation but an efficient representation where possible for streamed data.

Another interesting area is structuring the system so that it can be implemented either with stand-
alone services, message brokers and clients or in a Peer-to-Peer mode. These two implementations
have tradeoffs between performance and flexibility and both are important. The core architecture
“naturally” works in both modes but the details are non trivial and require substantial further research.

7. References

1. Xiaohong Qiu Message-based MVC Architecture for Distributed and Desktop Applications Syracuse Uni-
versity PhD March 2 2005 http://grids.ucs.indiana.edu/ptliupages/publications/qiuPhDthesis.pdf

2. Wenjun Wu, Hasan Bulut, Ahmet Uyar, Geoffrey Fox, “Adapting H.323 Terminals in a Service-Oriented
Collaboration System.” In Special "Internet Media" issue of IEEE Internet Computing July-August 2005,
Vol 9 number 4 pages 43-50 http://grids.ucs.indiana.edu/ptliupages/publications/H323GW-IC0.pdf

3. GlobalMMCS Collaboration Environment http://www.globalmmcs.org
4. Geoffrey Fox, Alex Ho, Shrideep Pallickara, Marlon Pierce, Wenjun Wu, “Grids for the GiG and Real

Time Simulations.” DS-RT 2005: 129-138
http://grids.ucs.indiana.edu/ptliupages/publications/gig/DSRTOct05.pdf

5. Ken Birman, Robert Hillman, Stefan Pleisch, “Building network-centric military applications over service
oriented architectures.” In proceedings of SPIE Conference DEFENSE TRANSFORMATION AND
NETWORK-CENTRIC SYSTEMS Orlando Florida 31 March 2005.
http://www.cs.cornell.edu/projects/quicksilver/public_pdfs/GIGonWS_final.pdf

6. NCOIC Network Centric Operations Industry Consortium http://www.ncoic.org/ and W2COG World Wide
Consortium for the Grid http://www.w2cog.org/

7. Bill Levitt, “NCOW RM Development Group Update on Target Technical View - Emerging Net-Centric
Standards - NCOW Reference Model v1.1,” The Open Group Conference January 25, 2005, San Francisco
http://www.opengroup.org/gesforum/uploads/40/6574/NCOW_TTV_V1.1_Open_Group.ppt

8. NaradaBrokering Messaging System http://www.naradabrokering.org
9. Geoffrey Fox, Shrideep Pallickara, Marlon Pierce, Harshawardhan Gadgil, “Building Messaging Substrates

for Web and Grid Applications.” In Special Issue on Scientific Applications of Grid Computing Philosophi-
cal Transactions of the Royal Society: Mathematical, Physical and Engineering Sciences. Volume 363,
Number 1833, pp 1757-1773. August 15, 2005 http://grids.ucs.indiana.edu/ptliupages/publications/RS-
CGL-ColorOnlineSubmission-Dec2004.pdf .

10. Sangyoon Oh, Hasan Bulut, Ahmet Uyar, Wenjun Wu, Geoffrey Fox, “Optimized Communication using
the SOAP Infoset For Mobile Multimedia Collaboration Applications.” In proceedings of the International
Symposium on Collaborative Technologies and Systems CTS05 May 2005, St. Louis Missouri, USA.

11. For discussion, see for example
http://grids.ucs.indiana.edu/ptliupages/presentations/DoDGridsAug25-05.ppt

12. Mehmet S. Aktas, Geoffrey C. Fox, Marlon Pierce "Information Services for Dynamically Assembled Se-
mantic Grids", Proceedings of 1st International Conference on SKG2005 Semantics, Knowledge and Grid
Beijing China November 27-29 2005
http://grids.ucs.indiana.edu/ptliupages/publications/SKG2005_Aktas.pdf.

13. Shrideep Pallickara, Geoffrey Fox: “NaradaBrokering: A Distributed Middleware Framework and Archi-
tecture for Enabling Durable Peer-to-Peer Grids.” Middleware 2003: 41-61

14. Shrideep Pallickara, Geoffrey Fox: “On the Matching of Events in Distributed Brokering Systems.” ITCC
(2) 2004: 68-76

15. Mark Happner, Rich Burridge and Rahul Sharma, “Java Message Service Specification,” Sun Microsys-
tems, 2000. http://java.sun.com/products/jms.

16. Ahmet Uyar and Geoffrey Fox. “Investigating the Performance of Audio/Video Service Architecture I:
Single Broker.” In Proceedings of the International Symposium on Collaborative Technologies and Sys-
tems CTS05 May 2005, St. Louis Missouri, USA.

17. Hasan Bulut, Shrideep Pallickara and Geoffrey Fox. “Implementing a NTP-Based Time Service within a
Distributed Brokering System.” In Proceedings of ACM International Conference on the Principles and
Practice of Programming in Java. Pp 126-134.

18. Web Services Eventing. Microsoft, IBM & BEA, http://ftpna2.bea.com/pub/downloads/WS-Eventing.pdf
19. Web Services Reliable Messaging Protocol (WS-ReliableMessaging)

ftp://www6.software.ibm.com/software/developer/library/ws-reliablemessaging200403.pdf

 12

20. Web Services Reliable Messaging TC WS-Reliability. http://www.oasis-open.org/
21. Web Services Base Notification (WS-BaseNotification). IBM, Globus, Akamai et al.

ftp://www6.software.ibm.com/software/developer/library/ws-notification/WS-BaseN.pdf
22. HPSearch project website: http://www.hpsearch.org
23. Web Service Management. Available from http://msdn.microsoft.com/library/en-us/dnglobspec/html/ws-

management1004.pdf.
24. Harshawardhan Gadgil, Jin-Yong Choi, Bernie Engel, Geoffrey Fox, Sunghoon Ko, Shrideep Pallickara,

Marlon Pierce, “Management of Data Streams for a Real Time Flood Simulation,” Community Grids Labo-
ratory Technical Report, June 2004.

25. Shrideep Pallickara, Geoffrey Fox: “A Scheme for Reliable Delivery of Events in Distributed Middleware
Systems.” ICAC 2004: 328-329.

26. Harshawardhan Gadgil, Geoffrey Fox, Shrideep Pallickara, Marlon Pierce, Robert Granat, “A Scripting
based Architecture for Management of Streams and Services in Real-time Grid Applications,” In Proceed-
ings of the IEEE/ACM Cluster Computing and Grid 2005 Conference, CCGrid 2005, Cardiff, UK.

27. Wenjun Wu, Geoffrey Fox, Hasan Bulut , Ahmet Uyar , Harun Altay, “ Design and Implementation of a
Collaboration Web-services System.” Journal of Neural, Parallel & Scientific Computations, Volume 12,
2004.

28. SMIL, http://www.w3.org/AudioVideo/
29. Grid workflow is summarized in GGF10 Berlin meeting http://www.extreme.indiana.edu/groc/ggf10-ww/

with longer papers to appear in a special issue of Concurrency&Computation: Practice&Experience at
http://www.cc-pe.net/iuhome/workflow2004index.html. Editorial is Dennis Gannon and Geoffrey Fox
Workflow in Grid Systems http://grids.ucs.indiana.edu/ptliupages/publications/Workflow-overview.pdf

30. Jia Yu, Rajkumar Buyya, “A taxonomy of scientific workflow systems for grid computing.” SIGMOD
Record 34(3): 44-49 (2005).

31. Scripps Orbit and Permanent Array Center (SOPAC): http://sopac.ucsd.edu.
32. Robert Granat, Regularized Deterministic Annealing EM for Hidden Markov Models, Doctoral Disserta-

tion, University of California Los Angeles, 2004.
33. The Open Geospatial Consortium: http://www.geospatial.org.
34. Shrideep Pallickara, Geoffrey Fox and Harshawardhan Gadgil, “On the Creation & Discovery of Topics in

Distributed Publish/Subscribe systems.” (To appear) Proceedings of the IEEE/ACM GRID 2005. Seattle,
WA.

35. Shrideep Pallickara, Harshawardhan Gadgil and Geoffrey Fox, “On the Discovery of Brokers in Distributed
Messaging Infrastructures.” (To appear) Proceedings of the IEEE Cluster 2005 Conference. Boston, MA.

36. Yan Yan, Yi Huang, Geoffrey Fox, Shrideep Pallickara, Marlon E. Pierce, Ali Kaplan, Ahmet E. Topcu:
“Implementing a Prototype of the Security Framework for Distributed Brokering Systems.” Security and
Management 2003: 212-218; Shrideep Pallickara et al. “A Security Framework for Distributed Brokering
Systems.” Community Grids Laboratory Technical Report. Available from
http://www.naradabrokering.org.

37. Kenneth Chiu, Madhusudhan Govindaraju, Randall Bramley: “Investigating the Limits of SOAP Perform-
ance for Scientific Computing.” HPDC 2002: 246-254; Madhusudhan Govindaraju, Aleksander Slominski,
Kenneth Chiu, Pu Liu, Robert van Engelen, Michael J. Lewis: “Toward Characterizing the Performance of
SOAP Toolkits.” GRID 2004: 365-372.

38. Michael R. Head, Madhusudhan Govindaraju, Aleksander Slominski, Pu Liu, Nayef Abu-Ghazaleh, Robert
van Engelen, Kenneth Chiu, Michael J. Lewis, "A Benchmark Suite for SOAP-based Communication in
Grid Web Services," In proceedings of SC|05 (Supercomputing): International Conference for High Per-
formance Computing, Networking, and Storage, Seattle WA, November 2005

39. Web Service Management (WS – Management), Sun, Microsoft, Intel, et al., June 2005. Available from
https://wiseman.dev.java.net/specs/2005/06/management.pdf

40. Web Service Transfer (WS – Transfer), Microsoft et al., September 2004. Available from
http://msdn.microsoft.com/library/en-us/dnglobspec/html/ws-transfer.pdf

41. Web Service Enumeration (WS – Enumeration), Microsoft, BEA, et al., September 2004 Available from
http://msdn.microsoft.com/library/en-us/dnglobspec/html/ws-enumeration.pdf

42. Web Services Eventing (WS – Eventing), Microsoft, IBM & BEA, August 2004. Available at
http://ftpna2.bea.com/pub/downloads/WS-Eventing.pdf

43. Ahmet Uyar, Scalable Service Oriented Architecture for Audio/Video Conferencing, Ph.D. Thesis, May
2005

44. Harshawardhan Gadgil, Geoffrey Fox, Shrideep Pallickara, Marlon Pierce “Managing Grid Messaging
Middleware”, CGL Technical Report, Feb 2006. Available from
http://www.hpsearch.org/documents/ManagingGridMessagingMiddleware.pdf

