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ABSTRACT 
Determination of biologically related clusters of sequences is 
important bioinformatics analyses. The similarity between 
sequences is generally assessed based on their alignments with 
one another. This could be used with a clustering algorithm to 
determine groups of sequences, yet it is not straightforward how 
to get reliable results. We present the factors affecting the quality 
of clusters and how visualization aids in the refinement of results. 
We also present a way to verify clusters in the presence of 
consensus sequences, and represent clusters.     
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1. INTRODUCTION 
The work on biological sequence clustering is to identify the 
similar biological sequences and to present them in a 
comprehensible manner to the biologists. This involves a series of 
steps starting from finding a measure of similarity between 
sequences to finally presenting a three dimensional view of the 
similar groups. It is important in this pipeline to capture and 
preserve the inherent similarity between sequences in order to 
yield reliable clusters at the end. This requires understanding the 
effect of different choices available at each step in order to 
minimize distortions and verifying clusters if possible with 
existing consensus sequences. Also, in an engineering aspect, 
implementing some of the steps requires adopting parallel 
solutions to meet with demanding computational power. In this 
paper we present our experience and findings over two separate, 
yet similar, sequence clustering projects involving around million 
sequences each.  

2. SIMPLE ARCHITECTURE 
The series of steps involved in sequence clustering is put in a 
simple pipeline as shown in Figure 1 where numbered items are as 
follows. 

 
Processes: 
P1 – Pairwise distance 

calculation 
P2 – Multi-dimensional scaling 
P3 – Pairwise clustering 
P4 – Visualization 

 
Data: 
D1 – Input sequences 
D2 – Distance matrix 
D3 – Three dimensional coordinates
D4 – Cluster mapping 
D5 – Plot file 

 

 
Figure 1. Simple pipeline of steps 

Given a set of sequences, the first step is to perform pairwise 
alignment and determine the similarity between each pair of 
sequences. Similarity is presented as a distance such that high 
similarity means small distance and vice versa. The 
multidimensional scaling program operates on the computed 
distance matrix and produces a set of three dimensional 
coordinates to represent sequences while preserving the distance 
between them. The pairwise clustering program processes the 
same distance matrix and produces a mapping of sequences to 
similar groups. The set of coordinates and the cluster mapping is 
processed together by the visualization program to produce the 
three dimensional plot of sequences colored into groups found by 
clustering program.  

3. DETERMINATION OF CLUSTERS 
The clusters we find are meant to capture the natural closeness of 
biological sequences, strictly speaking, but there is no definitive 
way to determine if one cluster mapping is biologically more 
accurate over the other. Thus, our options are to understand the 
different factors that influence cluster results and to tune them 
such that any biological similarity present in the input sequences 
may get preserved through the steps in the pipeline. 

3.1 Visualization to Complement Clustering 
Refinement of clusters would solely depend on a mathematically 
computed goodness measure if clustering were to be performed 
without visualization. The caveat is that even though the 
clustering algorithm is properly written and produces good 
clusters, it may still fail in discovering proper clusters.  

Figure 2 shows a portion of the sequences visualized as points in 
three dimensions.  Colors indicate clusters found by the clustering 
program. The left figure shows how the clustering program has 
grouped two seemingly distinct sequence groups into one cluster. 
Situations like this are common when clustering a large number of 
sequences as the program would converge satisfying a condition 
global to all the sequences yet suboptimal for sequences in some 
clusters. The figure on right shows the effect of clustering 
sequences only in these two groups. It has resulted two clusters as 
one would expect. 

The reverse of the above scenario, i.e. unnecessary splitting of 
seemingly well-defined cluster, could also happen. Thus, it is 
clear how visualization aids to identify these mishaps and correct 
them by further clustering of selected sections or regrouping of 
splits as necessary. 

3.2 Cluster Size 
The number of points in a cluster is an important factor as too 
many will tend to group more than one structure as a cluster while 
too little may split actual clusters. There is no deterministic 
method to know this or the number of clusters in advance. 
Therefore, we use a hierarchical clustering approach with 
guidance from biologists on the estimated number of clusters. We 
also rely on the visual structure produced with multi-dimensional 
scaling. 
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