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ABSTRACT

Determination of biologically related clusters of sequences is
important  bioinformatics analyses. The similarity between
sequences is generally assessed based on their alignments with
one another. This could be used with a clustering algorithm to
determine groups of sequences, yet it is not straightforward how
to get reliable results. We present the factors affecting the quality
of clusters and how visualization aids in the refinement of results.
We also present a way to verify clusters in the presence of
consensus sequences, and represent clusters.
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1. INTRODUCTION

The work on biological sequence clustering is to identify the
similar biological sequences and to present them in a
comprehensible manner to the biologists. This involves a series of
steps starting from finding a measure of similarity between
sequences to finally presenting a three dimensional view of the
similar groups. It is important in this pipeline to capture and
preserve the inherent similarity between sequences in order to
yield reliable clusters at the end. This requires understanding the
effect of different choices available at each step in order to
minimize distortions and verifying clusters if possible with
existing consensus sequences. Also, in an engineering aspect,
implementing some of the steps requires adopting parallel
solutions to meet with demanding computational power. In this
paper we present our experience and findings over two separate,
yet similar, sequence clustering projects involving around million
sequences each.

2. SIMPLE ARCHITECTURE

The series of steps involved in sequence clustering is put in a
simple pipeline as shown in Figure 1 where numbered items are as
follows.

Processes: Data:
P1 — Pairwise distance D1 - Input sequences
calculation D2 - Distance matrix

P2 — Multi-dimensional scaling D3 — Three dimensional coordinates

P3 — Pairwise clustering
P4 — Visualization

D4 — Cluster mapping
D5 - Plot file
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Figure 1. Simple pipeline of steps

Given a set of sequences, the first step is to perform pairwise
alignment and determine the similarity between each pair of
sequences. Similarity is presented as a distance such that high
similarity means small distance and vice versa. The
multidimensional scaling program operates on the computed
distance matrix and produces a set of three dimensional
coordinates to represent sequences while preserving the distance
between them. The pairwise clustering program processes the
same distance matrix and produces a mapping of sequences to
similar groups. The set of coordinates and the cluster mapping is
processed together by the visualization program to produce the
three dimensional plot of sequences colored into groups found by
clustering program.

3. DETERMINATION OF CLUSTERS

The clusters we find are meant to capture the natural closeness of
biological sequences, strictly speaking, but there is no definitive
way to determine if one cluster mapping is biologically more
accurate over the other. Thus, our options are to understand the
different factors that influence cluster results and to tune them
such that any biological similarity present in the input sequences
may get preserved through the steps in the pipeline.

3.1 Visualization to Complement Clustering
Refinement of clusters would solely depend on a mathematically
computed goodness measure if clustering were to be performed
without visualization. The caveat is that even though the
clustering algorithm is properly written and produces good
clusters, it may still fail in discovering proper clusters.

Figure 2 shows a portion of the sequences visualized as points in
three dimensions. Colors indicate clusters found by the clustering
program. The left figure shows how the clustering program has
grouped two seemingly distinct sequence groups into one cluster.
Situations like this are common when clustering a large number of
sequences as the program would converge satisfying a condition
global to all the sequences yet suboptimal for sequences in some
clusters. The figure on right shows the effect of clustering
sequences only in these two groups. It has resulted two clusters as
one would expect.

The reverse of the above scenario, i.e. unnecessary splitting of
seemingly well-defined cluster, could also happen. Thus, it is
clear how visualization aids to identify these mishaps and correct
them by further clustering of selected sections or regrouping of
splits as necessary.

3.2 Cluster Size

The number of points in a cluster is an important factor as too
many will tend to group more than one structure as a cluster while
too little may split actual clusters. There is no deterministic
method to know this or the number of clusters in advance.
Therefore, we use a hierarchical clustering approach with
guidance from biologists on the estimated number of clusters. We
also rely on the visual structure produced with multi-dimensional
scaling.



(a) Multiple groups identified (b) Refined clusters to show proper
as one cluster split of groups
Figure 2. Cluster refinement with the aid from visualization
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Figure 3. Global vs. local sequence alignment

(c) Gap open -4, gap extension -4

Figure 4. Comparison of results for different gap penalties

For example, we look at the three-dimensional projection to
identify the number of coarse-grained clusters. Usually we could
see around 10-15 clusters in our datasets. We use this number to
drive the initial clustering. If some of the clusters appear to be a
collection of smaller clusters, we will further cluster only those.
Figure 5 for example, shows a coarse-grained cluster on left and
its refinement on right (note colors distinguish clusters). This
technique enables us to get clustering result to agree with the
geometrical structure of sequences. It is worth mentioning here
that determining if clustering results and geometrical structure
agree with actual biological structure is a separate task as
discussed in section 4.

Figure 5. Hierarchical clustering with aid from visualization

3.3 Effect of Gap Penalties

Sequence alignment may insert gaps when no non-gap character
pair could be found to yield a better score for the alignment. The
decision depends on the penalties associated with introducing and
extending gaps, which are generally known as gap penalties. It is
possible to get different alignments based on these penalties and
in turn result different distances between sequences.

We studied the effect of gap penalties with a smaller 16S rRNA
(section 6) dataset of 6822 sequences where the recommended
penalties were -16 for gap open (GO) and -4 for gap extension
(GE). We tested for the combinations of gap penalties in Error!
Reference source not found. and found the clustering to show
little or no effect compared to the reference case.

Table 1. Combinations of gap penalties

Ref.
GO -4 | -4 |-8 |-10{-16 |-16|-16|-20|-20|-20|-24|-24|-24|-24
GE 2[-4l-4]-4]-4]-8]16]-4[-816[-4]-8]16]-20

A comparison of the results for combinations -4/-4 and -10/-4
against the reference is given below in Figure 4. The number of
clusters is the same in all three cases and except for minor
differences in shapes and positions the results seem identical.
Moreover, the actual position of clusters is also irrelevant as long
as they maintain their relative distances, which happened to be
true in these tests.




Figure 6. Long thin line formation

Figure 7. Single line analysis
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Figure 8. Computed Vs. Euclidean distance

3.4 Global Vs. Local Sequence Alignment

The two best known sequence alignment algorithms are Smith-
Waterman [1] and Needleman-Wunsch [2], which perform local
and global alignment of sequences respectively. Implementation
wise both these perform a similar kind of computation. The
distinction, however, comes from the fact that Needleman-
Wunsch is constrained to find an optimal alignment from end-to-
end whereas Smith-Waterman is relaxed to find a subsection
producing an optimal alignment.

Figure 3 shows the results of global and local sequence alignment
on two sample sequences. The global alignment contains all the
characters of both sequences plus gaps giving an alignment of
length equal or greater than the length of the longest sequence.
The local alignment, in contrast, includes only those characters in
upper case (others are shown for clarity of the position).

The decision of which type of alignment to perform, as we
experienced, depends on the sequence set and the type of distance
measure. For example, the data we used had non uniform length
distributions with a range of 181 to 585 in one set and a range of
200 to 1000 in the other. Also, the majority of the smaller
sequences had most of their characters as a subset in one or more
longer sequences. This nature resulted superfluous alignments
with many gaps with Needleman-Wunsch global aligner. The
effect was visible both in clustering and visualization results, yet
being prominent in the latter as long thin lines.

The two images in Figure 6 show the overall shape resulted for
100,000 sequences of 16s rRNA when mapped into three
dimensional points where distances computed based on global
alignment. The points have formed long thin line structures,
which suggested the Euclidean distances along a line have a linear
relationship. We carried two analyses to determine if this was the
result of an anomaly or the very nature of biological similarity
present in sequences.

Figure 9. Effect of gaps on the linear formation

We isolated a line of points and selected nine points in near equal
distances along its length as shown in Figure 7. The first analysis
compared the computed distance (CD) based on alignments from
point 1 to all the other points with the corresponding Euclidean
distances (ED) as in Figure 8.

The overlap of lines CD and ED in Figure 8 indicates that the
multi-dimensional scaling program has found an accurate set of
coordinates to represent sequences, which preserves the original
distances between them. The second analysis compared
mismatches against the sequence length along the line as in Figure
9. A mismatch is when a character in one sequence is aligned with
a different character in the other sequence or a gap. The graph
shows a linear increase of the number mismatches while the
sequence lengths decrease linearly. The distance measure we
computed over alignments has a linear relationship with number
of mismatches. Thus Figure 8 and Figure 9 suggest that the linear
decrease of sequence length has caused the linear increase in
distance due to the increase number of mismatches. Moreover,
virtually all mismatches have been caused by gaps as seen in
Figure 9. In conclusion, global alignment has introduced gaps
dearly to leverage the length difference causing unreliable
distance values.

Smith-Waterman local aligner, in contrast, found better
alignments with reasonable alignment lengths leading to more
spherical shaped clusters than linear ones as shown in Figure 10.

3.5 Distance Types

The distance between two sequences is a computed value based
on their alignment that represents the biological closeness
between them. Different distance values may be computed over
the same alignment depending on the particular choice of distance
type. In our experiments we used the well-known Percent Identity
(PID) distance type due to the interest of biologists. Additionally,
we list few other types that we are currently evaluating in our
ongoing research work.



(8) Visualization of 100,000 () Zoomed-in subset of (a)
sequences
Figure 10. Multi-dimensional scaling with Smith-Waterman

local alignments

Figure 11 shows a general sequence alignment with possible end
gaps (note a local alignment will not result end gaps). We name
the region excluding end gaps as the aligned region. Pairs of
boxes with the same color indicate a match and others indicate
mismatches. Pairs with one box and one dash indicate a character
being aligned with a gap.
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Figure 11. Sequence alignment

3.5.1 Percent Identity (PID) Distance

Given the alignment between two sequences, let the number of
matching pairs in aligned region be N and the total number pairs
in the aligned region be L. The PID distance, &p;p, is then
computed according to Eq. 1.

Spip =1.0-(N/)) Eq. 1

3.5.2 Normalized Score

Both Needleman-Wunsch and Smith-Waterman algorithms find
determine the best alignment between two sequences by
maximizing a value called score, S, which is computed as in Eqg.
2.

S= Z S Eqg. 2

i=1
In Eq. 2 L is the length of the alignment (including end gaps, if
any) and s; is the score for i*" pair of aligned characters, which is
determined by the scoring matrix and gap penalties. The
characters in a sequence belong to a particular alphabet and the
scoring matrix contains a score for each possible pairs of such
characters. Thus, if i*" pair contains two characters then s; is
equal to the score in scoring matrix for that pair. If one of the
characters is a gap and the character in the (i — 1)t" pair of the
same sequence is not a gap then s; is the value of gap open
penalty. If the previous character is also a gap then s; is taken as
gap extension penalty.

Figure 12 illustrates the score computation for a hypothetical
alignment using the scoring matrix on the left and specified gap
penalties.

The score, though represent a similarity measure between the
particular two sequences, may not be used directly as a distance
measure to compare a set of sequences.
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Figure 12. Score of an alignment
However, it is logical to consider the option of using score as a
distance since the alignment algorithm finds alignments that

optimize this value. As a solution one could use normalized score
and we present five normalizations in Eq. 3,4,5,6, and 7.

—_— Eq.3
Avg(sil,:l + Sjlj!)

In Eq. 3, S;; is the score for the alignment of sequences i and
Jj.The portion of the sequence i that participates in the alignment is
denoted as i’ and S;s;s is the score for alignment of i’ with itself.
Sjr;+ is similar to S;r; and Avg is the average function.

Sy ) Eq. 4
Min(Syyr + Sjrjr) '

Eq. 4 is similar to Eq. 3 except Min represents minimum instead
of average.

e  Average Local

6Angocal =1.0- <

e  Min Local

SuminLocar = 1.0 — <

e  Max Local

Smaxrocar = 1.0 - Eg. 5

Max(Si,i, + Sj'j')
Here we take the maximum of S;;» and S;/;». The rest is as same
asin Eq.3 and Eq. 4.

e Min Global

Sminglobar = 1.0 — I — Eq. 6
In contrast to equations above, here we consider the self-aligned
score of full sequences i and j as indicated by S;; and S;;.

e  Max Global

Si;
5 =1.0-(———— Eq. 7
MaxGlobal <Max($ii +Sjj)> q
This is similar to Eq. 5 except we use maximum of self-aligned
scores instead of minimum.

Note. These equations are valid for both local and global
alignments, yet with global alignment sequences i and j coincide
with subsequences i’ and j' respectively thereby reducing Eq. 4 to
Eq. 6 and Eq. 5 to EqQ. 7. AlSO, Sapgrocar May then be termed as

5Anglobal-
We studied the difference of these distances with respect to each

other and &p;p for local alignment of Fungi [section 6] sequences.
The 8p;p serves as a reference since we could obtain reasonable



clustering results based on it. The comparison indicate that
Savgrocalr SminLocatr ANd Syaxiocar COrrelate well with each other
and &prp. Figure 13 (a) shows the correlation of §,y410cq @nd
6pip as a “heatmap”. The Syinrocar aNd Spaxiocar diStances
followed similar correlation diagrams with &p;p. The distances
based on global self-aligned scores, i.e. Eq. 6 and Eq. 7, however,
did not correlate well with each other or with ;5. Figure 13 (b)
shows the correlation of Sy axciopar @Nd Spip, aNd Syinciobal
followed the same pattern. Details of this analysis are available at

[3].
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SWG-MaxGlobal
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Figure 13. Correlation of normalized score distance versus
percent identity distance

3.5.3 Normalized Bit Score
Bit score, S', is a log scaled variant of the raw score, S, computed
in Eq. 2. It is used mainly in the popular protein sequence aligner,
BLAST [4] and is computed according to Eqg. 4.
g _ A4S —In(K) -

T T o
In Eq. 4, S is the raw score computed in Eq 2. Values 1 and K are
statically determined for the given scoring matrix and gap
penalties [5]. The bit score value, unlike raw score, is thus
comparable among different alignments. However, we apply the
same normalization as in Eq. 3 to compute the normalized bit
score distance.

3.6 Statistical Significance

Statistical significance of an alignment indicates how probable it
is for such an alignment to happen by chance [6]. For a given two
sequences x and y this could be thought of as the probability that
a particular score,s, or higher would occur when x and y are
randomly shuffled and aligned. We could, thus, improve the
distances computed previously by weighting them with the
statistical significance.

3.7 Distance Transformation
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Figure 14. Three dimensional mapping of distances

Given a distance matrix, multi-dimensional scaling would find a
set of points that preserves the pairwise distances as shown in
Figure 14. However, the distances often come from higher
dimensions and reducing them to three dimensional points may

produce “less reasonable” result where higher dimensional points
are concentrated to the edge of the surface.

As a solution, we are evaluating different mapping functions that
would reduce the dimensionality of the input distances to multi-
dimensional scaling program. These mapping functions are
monotonic and satisfy V&, 8,:8; > 85: f(6,) > f(82), where f
is the mapping function and §;,6, are input distances. The
following presents brief descriptions of mappings that we are
currently evaluating.

3.7.1 Transformation Method 10

This method performs the f(8) = 8§77, where TP is a given
power called Transformation Parameter. We are evaluating
powers 2, 4 and 6.

3.7.2 Transform Method 8
This mapping assumes a random distribution of distances in a
higher dimension, D. Then it performs an analytical derivation of
distances in dimension 4. However, since the original distances
may not be random, this could end up finding distances in a
dimension higher than 4 as well.

3.7.3 Transform Method 9

This starts with transforming distances to 4 dimensions as
mentioned in section 3.7.2 and then increases the formal
dimension by raising the 4 dimensional distances to power 0.5.

4. CLUSTER VERIFICATION

Even after taking the correct options to produce reliable clusters
as elucidated in section 3, we may want to verify the clustering
results if possible. One approach that we have been using is to
verify the clusters against a given set of consensus sequences. A
consensus sequence is usually a biologically determined sequence
to represent a group of similar sequences.

Given a M consensus sequences and N sequences we start the
pipeline with a M + N sequence set. This results in computing a
(M + N) x (M + N) distance matrix, which becomes the input
for the next steps. Once we get both clustering and multi-
dimensional scaling results we will visualize the results giving a
different color to the M points. If we find good clusters then we
will see consensus points appearing within clusters and near the
concentration of points in a cluster.

Figure 15. Cluster verification with consensus sequences

The yellow dots in Figure 15 show how consensus sequences
appeared within clusters in one of our results. These points lie
near the dense region of clusters verifying the accuracy of results.

5. CLUSTER REPRESENTATION

Once we are satisfied with the clustering results we may want to
find sequences to represent each cluster. Similar to consensus



sequences these would need to be within and near concentrated
region of clusters. We name these sequences as cluster centers and
present the methods of computing them.

5.1 Sequence Mean

Given a cluster this is the sequence that has the minimum mean
distance to other points in the same cluster. So if P is the set of
points in a cluster we will find the sequence, i € P, that minimizes
(X521 645)/C, where j € P and C is cardinality of P.

5.2 Euclidean Mean

Similar to sequence mean, this method also finds the sequence
that has a minimum mean distance to other points in a cluster.
However, distances are taken from the three dimensional
Euclidean space rather than from distances computed from
alignments.

5.3 Centroid of Cluster

This method finds the centroid point of the cluster in the
Euclidean space. Then, in the same space, it finds the point
nearest to the centroid. The sequence represented by this point is
taken as the center for the particular cluster.

5.4 Alternatives to 5.1 and 5.2

The mean distance in both 5.1 and 5.2 may be replaced with the
maximum distance as an alternative. Then they will find the
sequence that has the smallest maximum distance to other
sequences in a given cluster.

6. Description of Data

Studies presented in this paper were based on two sequence data
sets where one contains 16S ribosomal RNA and the other a set of
fungi sequences. We denote these as 16S rRNA and Fungi data
sets.

e 16S rRNA sequences

This contains a total of 1160946 sequences, which reduces to
684769 unique ones based on the actual sequence string. A
random selection of 100000 sequences of them is chosen as
sample points for interpolation purposes. Figure 16 shows the
histogram of sequence lengths for unique sequences and 100K
unique sample sequences.

16sRNA Unique Sequences Length Histograms
Left: All unique sequences
Right: Unique sample sequences
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Figure 16. Length histogram of 16S rRNA sequences

The histograms show similar shape indicating an unbiased set of
sample sequences with respect to lengths.

e  Fungi sequences

This contains a set of fungi sequences received from biologists in
Indiana University, Bloomington. It has a total of 957387
sequences where 482158 of them are unique. The biologists were
interested in analyzing sequences with lengths greater than 200,
which covered a total of 446041 unique sequences. Similar to 16S
rRNA sequences, we used a 100000 random sequence set from
this as sample sequences.

Fungi Unique Sequences Length Histograms
Left: All unique sequences
Right: Unique sample sequences
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Figure 17. Length histogram of Fungi sequences

7. SUMMARY

In this paper we presented the idea of biological sequence
clustering and series of steps involved in the clustering pipeline.
We would like to capture and preserve the intrinsic similarities
present within the input sequences through the pipeline to obtain
reliable clusters in the end. We discussed how visualization could
be used to identify ill-defined clusters, the effect of gap penalties,
the choice between global and local alignment, different types of
distance measures, and distance transformations to reduce
dimensionality of input distances to multi-dimensional scaling as
measures of ensuring reliability. Next we moved on to the details
of verifying clusters when a known set of consensus sequences are
available. Visualization aids in this too as one could overlay the
consensus sequences over the other sequences in the three
dimensional plot to verify the quality of clustering results. Finally,
we presented how to find sequences, called centers, to represent
each cluster based on intra cluster point distances.

8. REFERENCES

[1] Smith, T. F. and Waterman, M. S. Identification of common
molecular subsequences. J Mol Biol, 147, 1 (Mar 25 1981), 195-
197.

[2] Needleman, S. B. and Wunsch, C. D. A general method
applicable to the search for similarities in the amino acid sequence
of two proteins. J Mol Biol, 48, 3 (Mar 1970), 443-453.

[3] Ekanayake, S. Heatmaps of Different Distances. City, 2012.

[4] Altschul, S. F., Gish, W., Miller, W., Myers, E. W. and
Lipman, D. J. Basic local alignment search tool. J Mol Biol, 215,
3 (Oct 5 1990), 403-410.

[5] The Statistics of Sequence Similarity Scores. City.

[6] Agrawal, A., Choudhary, A. and Huang, X. Sequence-specific
sequence comparison using pairwise statistical significance.
Advances in experimental medicine and biology, 6962011), 297-
306.



