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ABSTRACT
In this paper we analyze the scientific workflow match-
making problem in Grid environments and combine
workflow mapping and scheduling. Based on the char-
acteristics of Grids, a new resource model is proposed.
Motivated by the observations that not all jobs can run
on all resources and that resource-critical jobs should
be considered with their ancestor and descendant jobs
when mapping, a novel resource-critical algorithm is
designed based on a new Grid resource model. By
means of experiments, it is shown to have good per-
formance.
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1 Introduction

Grids are attracting more and more scientific applica-
tions, such as those in earthquake science, computa-
tional chemical informatics, physics, astronomy, etc.
These applications often include parallel computing
and the processing of large scale data in steps. Because
of the various requirements of jobs, the large number
of jobs and the heterogeneity of resources, mapping
large-scale collaborative workflows onto the heteroge-
neous resources in Grids is a non-trivial problem.

In the QuakeSim project [1], we are working on
mapping scientific workflows onto TeraGrid resources
for execution. There are some jobs which cannot run
on all resources. For example, a the case of a program
named GeoFEST, which can only run on IA-32 archi-
tecture and requires Pyramid library; only 3 out of 15
TeraGrid resources can satisfy its requirements. There
are already some works in the workflow scheduling field
but this kind of problem is not directly addressed.

In this paper, according to our target earthquake
workflows and execution environment, TeraGrid, we

make a few distinct assumptions. First, many works
assume that a machine can only execute one job at
the same time, i.e. it is exclusive. This holds true on
a single processor but not for batch queuing systems
in a cluster. Once two jobs have no data or logic de-
pendency, they can probably run simultaneously on a
computing resource (if not exceeding any limit). Based
on this observation, we propose a new resource model.
Second, previous works only assume that jobs can run
on every resource and that the heterogeneity of re-
sources only makes jobs’ running time different. While
in realistic Grids, due to access control policies, dif-
ferent software installation or version incompatibility,
and particular hardware required (e.g. special visual-
ization cards), etc, it’s commonly seen that some jobs
can never run on certain machines. This phenomenon
makes the workflow scheduling in Grids quite unique
and challenging. This is also why we call our workflow
mapping ”matchmaking”, since it is not only schedul-
ing the jobs onto resources, but also prior to that it
matches the jobs with the resources which satisfy their
requirements. The term ”matchmaking” is borrowed
from Condor [2], but in Condor matchmaking is only
finding resources for single jobs, while our matchmak-
ing system is aimed at finding resources for workflows.
Under this assumption, the jobs which can run on ev-
ery resource are more flexible than the resource-critical
jobs which can only run on just a few resources. For
a resource-critical job, considering the more resource-
flexible jobs before and after it as a group for map-
ping should be better than mapping them individually.
This is the key idea for our resource-critical workflow
matchmaking algorithm.

Our main contributions are as follows. First,
we propose a new resource model for cluster node in
Grids; second, we propose a resource-critical algorithm
for workflow matchmaking, which is proven to have
good performance by experiments.

The remainder of the paper is organized as fol-



lows. Section 2 describes related work. Section 3
shows the system architecture of the workflow match-
making system in Grids. The workflow matchmaking
problem in Grids is formulized, a resource model is
set up and a resource-critical algorithm is proposed in
Section 4. In Section 5, the algorithm is evaluated un-
der varying experimental settings. Finally, Section 6
concludes the paper.

2 Related Work

There is a large amount of work concerning DAG work-
flow scheduling. In recent years, much work focuses on
scientific workflow scheduling and heterogeneous en-
vironments, especially Grids. Most of them only as-
sume that jobs can run on every resource and that
the heterogeneity of resources mainly makes jobs’ run-
ning time different. While in realistic Grids, due to
access control policies, different software installation
or version incompatibility, storage limitation, etc, it
is commonly seen that some jobs can never run on
certain machines. On the other side, these works do
not consider the global effect of the current schedul-
ing decision. In [3], the authors claim that resources
should meet certain hard requirements of jobs and use
min-min heuristic for mapping, which is used as a com-
parative algorithm in our experiments. Some of them,
such as HEFT in [4] and the hybrid heuristic in [5],
are based on the assumption that no two jobs can be
executed at the same time on a resource. But in Grid
environments, the common resources are clusters, in
which multiple jobs can run concurrently. In [6], the
authors do take the storage constraint on resources
into consideration. This can be easily incorporated
into our model by stipulating that if a resource cannot
accommodate the data files needed for a job, the job
cannot run on the resource.

3 System Architecture

This work is intended to map scientific workflows
onto resources in Grids. Figure 1 shows our imple-
mentation of a workflow matchmaking system, which
reuses services from several existing projects. Since
the target execution environment is TeraGrid, which
use the Globus Toolkit to provide remote job sub-
mission and management, we select Condor DAGMan
to describe and submit workflow jobs with its sup-
port by Condor-G. That is, we use Condor-G as a
client to Globus services. Two services are used to
get resource information required by workflow match-
making. Static information, e.g. CPU number, OS,
etc, is retrieved through GPIRQuery, the web service
provided by GPIR [7]. Dynamic information, such
as network bandwidth, host load, etc, is acquired by
NWS [8]. QBETS [9] can predict the execution time

Figure 1. System architecture.

of jobs on resources. All these services are installed
and running on TeraGrid to serve queries. The input
of the workflow mapping system is a description of the
workflow. It follows the grammar of DAGMan and
Condor-G on submitting, except that it does not need
to specify the actual location information about which
resources the jobs are about to run on. The mapping
system fills out the blanks and submits the completed
submit files to DAGMan for execution.

4 A Resource-Critical Algorithm for
Workflow Matchmaking

4.1 Problem Statement

This sub-section gives the formal description of the
optimization problem.

Given a DAG (Directed Acyclic Graph) of the
workflow representation of the application, G=(V, E),
V={v1, . . ., vN} is the set of jobs in the workflow and
N is the total job number. volij denotes the volume of
data generated by i and is required by j, i, j∈V and
ij∈E.

Let the set of Grid resources be R={r1, . . ., rm}
and M is the number of resources (machines) in the
Grid. cij is the computation cost of job i on resource
j. Let C(G, R)={cij |i∈V, j∈R}. If job i cannot run
on resource j, cij is infinity.

In batch systems, after they are submitted, jobs
typically have to wait some time before actually run-
ning; wij is the waiting time for job i on resource j.
Let W(G, R)={wij |i∈V, j∈R}. Using QBETS we can
get predicted waiting times for jobs on TeraGrid re-
sources.

trkl is the transfer rate from resource k to l, k,
l∈R. tkl

ij is the communication cost between i and j,
when i is executed on k and j on l, and is volij/trkl, i,
j∈V, k, j∈R. When i and j are executed on the same
resource, the communication cost is zero. Let T(G,
R)={tkl

ij |i, j∈V, k, l∈R}.
Let parents(v) be the parent(s) of the job v and

children(v) be the child(children) of the job v, v∈V.
Here, we assume that the DAG has a single entry node



v0 which has no parent and a single exit node vN−1

which has no child; any of the other nodes has at least
one parent and one child.

Assume the function map(v): V→R is the map-
ping from the jobs to the resources.

Let EST (v, r) and EFT (v, r) be the earliest
start time and earliest finish time of job v on resource
r respectively. For the entry node, EST (v0, r) = 0,
r∈R. For the other jobs, EST (v, r) means the earliest
time at which all of v’s parent jobs have finished,
the data it requires have been transferred to resource
r and it is ready to run. Here, we assume that
the data transferring and the job waiting can be
concurrent. Thus it can be derived that EST (v, r) =
max∀u∈parents(v) (EFT (u, map(u)) + max (tmap(u),r

uv , wvr)).
Here u is a parent of v, EFT (u, map(u)) is the ear-
liest finish time of node u on resource map(u) and
max (tmap(u),r

uv , wvr) is the bigger of the transmission
time from u to v and the waiting time of v on resource
r. EFT (v, r) = EST (v, r) + cvr. The makespan,
i.e. the overall execution time of the workflow, is
the earliest finish time of the exit job, vN−1, i.e.
EFT (vN−1).

The workflow matchmaking problem is summa-
rized as follows: Given {G, R, C(G, R), W(G, R),
T(G, R)}. Select the mapping map(v) to minimize
the makespan of the workflow, EFT (vN−1).

4.2 Resource Model

In early work, resource in a heterogeneous computing
environment is modeled as a single processor on which
no two jobs can run concurrently. While in Grids, the
computing resources are mainly clusters, many but not
an infinite number of jobs can run at one time. We
propose a new resource model to describe resources in
workflow matchmaking in Grids.

Each node in a Grid has a capability number,
such as the CPU number of the cluster, and each job
has a required capability number, such as the number
of CPUs it needs. At any time, the sum of the required
capability numbers of the jobs running on a resource
cannot exceed the resource’s capability. It is true that
more jobs can run on a cluster concurrently, but the
computing time of each job will suffer due to frequent
context switching.

4.3 Mechanism and Algorithm

Since it has been proven that the workflow matchmak-
ing problem is NP-complete, we try to find a good
heuristic to solve it.

The key idea of the algorithm is to consider the
more resource-flexible jobs before and after a resource-
critical job as a group for better than mapping them
individually.

The proposed algorithm is given in Algorithm 1.
The input of the algorithm is a DAG G and two matri-
ces: W gives the execution cost of each node on each
machine and C gives the communication cost between
two nodes/jobs connected by an edge on all combina-
tions of different resources where two nodes can run;
the cost is zero if the two jobs are executed by the
same machine.

Since a job may not run on all resources, we de-
fine MR(v) as the match ratio of the number of re-
sources on which the job v can run and the number
of all resources, v ∈ V . By checking the computation
cost array, it is easy to get MR(v) by calculating the
number of cvr which is not equal to infinity, r ∈ R.

Algorithm 1 The resource-critical workflow match-
making algorithm.
1: Set the computation costs of jobs and communica-

tion costs of edges with mean values.
2: Compute the rank for all jobs by traversing DAG

upward, starting from the exit node.
3: Sort the jobs in a non-ascending order of the rank

values. { 4 - 16: Group nodes.}
4: G0 = {}; i = 0.
5: repeat
6: Get a node v in the order of nodes’ rank values.
7: if v has not been grouped then
8: Add v to Gi.
9: for all u such that u is v’s descendants do

10: if all ancestors of u have been grouped, all
nodes on the path from v to u is in Gi and
MR(u) ≤ α then

11: add u to Gi.
12: end if
13: end for
14: i++; Gi = {}.
15: end if
16: until there are no more nodes.
17: for all group Gi, in ascending order of i. do
18: Schedule the jobs in Gi.
19: Choose the schedule with the smallest EFTs for

the end nodes.
20: end for

The algorithm consists of three phases: ranking,
group creation, and scheduling a group.

In the first step, a weight is assigned to each node
and edge of the DAG, which is the mean value of all
possible values. The weight of a node is the mean
of its computation cost on all matched resources. The
weight of an edge should be the mean of the maximum
of the communication cost and the waiting time of all
possible combinations of resources.

Using this weight, upward ranking is computed
and a rank value is given to each node. The rank value,
ranki, of a node i is recursively defined as follows:
ranki = nwi+ max∀j∈children(i) (ewij + rankj), where



nwi is the weight of node i, and ewij is the weight of
the edge connecting node i and j.

In the second step, nodes are sorted in non-
ascending order of their rank values. Tie-breaking is
done randomly. Based on this order, nodes are divided
into groups. The first node (i.e. the node with the
highest rank value) is added to a group numbered 0.
Check each of its children if its ancestors are grouped
and its match ratio is below a certain valve α. If so,
add the child node into the group, mark it as grouped
and check its children further on. If no additional such
node is found, make the next ungrouped node as a new
group, and so on. The outcome of this process is a set
of ordered group, each of which consists of a node and
its descendants on the path to which the match ratios
of the nodes are all lower than the valve α.

In the third step, a group of nodes are mapped,
where any algorithm for scheduling a DAG could be
used. Since when scheduling a group, the mapping is
probably incomplete, the makespan of the whole work-
flow is not a proper metric to value different assign-
ments. Given a mapping, an end node is defined as
a node which either has no children or whose children
have not all yet been mapped. Comparing the two
mappings, the one with the smaller largest EFT of all
end nodes is preferred; if they have the same largest
EFT, the one with the second smaller EFT is better;
and so on. If all EFTs of the end nodes are the same,
choose either of them randomly. So far, we adopt an
enumerative algorithm to try all combinations of re-
sources for a group and choose the one with the best
EFTs of all end nodes.

On one side, with the valve α properly set, the
size of a group is not large; on the other side, since the
match ratios of nodes in a group, except the ancestor,
are lower than a constant α, the number of combi-
nations of resource assigning is not big. In practice,
the running time is insignificant, since there are only
low-cost operations involved in the algorithm.

4.4 Comparative Algorithm

Since we adopt a different resource model and different
assumptions, most of the existing workflow scheduling
approaches are not applicable. The minimum EFT
algorithm, which is used in [3], is simple and easy to
be extended to our resource model as well as satisfy
our assumptions.

In the minimum EFT algorithm, nodes are sorted
in non-ascending order of their rank values in the same
way as the first two steps of the resource-critical algo-
rithm, shown in Algorithm 1. Then nodes are scanned
in the order of their rank values. For each node, the
resource which makes it finish earliest is chosen.

Figure 2. The structure of a parameter sweep DAG.

5 Experimental Evaluation

This section evaluates our resource-critical workflow
matchmaking algorithm against the minimum EFT al-
gorithm. First, the settings of the experiments are
described. Then we define the metrics for evaluation.
Finally the simulation results are shown and discussed.

5.1 Settings

Many factors influence the performance of a workflow
matchmaking system in Grids.
DAG Generator: We generate parameter sweep
DAGs, whose structure is shown in Figure 2. Param-
eter sweep applications are the typical usage scenarios
in the QuakeSim and CICC project. Every DAG has
one start node and one end node. Jobs on the same
level in different branches have same resource require-
ments and similar execution time. We vary the branch
number and the depth respectively from 4 to 12 and
from 8 to 24, and correspondingly the number of node
are from 34 to 290.
Heterogeneity Model: In our model, there are 15
resources and the factors indicating their computa-
tional power are the same as they are in TeraGrid. The
base execution time of a job is chosen using a random
uniform distribution over the interval [10, 100].
Match ratio: This is a new factor introduced by con-
sidering the fact that some jobs can never run on cer-
tain resources. The match ratio for a job is the ratio of
the matched and total resource numbers. The ratios
are randomly generated among the values from 0 to 1
while a job at least has one matched resource on which
it can run.
Communication Bandwidth: The communication
bandwidth between any two resources is a random
number between 5M/s and 300M/s, which is the band-
width range we measured among resources in Tera-
Grid.
Communication-to-Computation-Ratio (CCR):
CCR of a parallel program is defined as its average
communication cost divided by its average computa-
tion cost on a given system.
Match Ratio Threshold (MRT): This value is
used by the resource-critical algorithm to decide which
nodes should be grouped together for mapping. If the



MRT is so small that no job’s match ratio below it, ev-
ery node is a group and the resource-critical algorithm
acts the same as the minimum EFT algorithm. If the
MRT is too large, the groups will expand, for example,
if MRT = 1, all nodes will form one group; to find the
best solution for a big group is time consuming. In the
experiments, we set MRT from 0.1 to 0.5.

For any given branch number and depth, we gen-
erate 200 DAGs with their own job computing times,
job-resource match ratios and resource communication
bandwidths, and each is called a case. With each com-
bination of the branch number, depth, CCR and MRT,
these two algorithms will be run on the 200 cases of
every combination.

5.2 Metrics

Two metrics are used to evaluate the algorithms.
Difference Ratio: First, we define a metric named
Normalized Schedule Length (NSL), which is the ratio
of the makespan divided by a fixed cost of the critical
path.

NSL =
L∑

nj∈CP
w(ni)

(1)

The denominator is the sum of computation costs
on the critical path and is a lower bound on the sched-
ule length. Considering communication cost, such a
lower bound is probably not possible to achieve and
the calculated schedule length should be larger than
this bound.

Our resource-critical algorithm does not always
outperform the minimum EFT algorithm. The differ-
ence ratio is the ratio of the difference of NSLs for two
algorithms and the bigger NSL of two. If a difference
ratio is below zero, the NSL of the resource-critical al-
gorithm is larger than that of the minimum EFT algo-
rithm; if above zero, the resource-critical algorithm has
a better mapping result than the minimum EFT algo-
rithm; if equal to zero, the two algorithms are deemed
to perform the same.
Average Improvement Ratio: As its name shows,
the average improvement ratio is the average of differ-
ence ratios of all cases in a certain setting.

5.3 Results

In the first set of experiments, the branch numbers and
the depth numbers of the DAGs are all set as 4 and 8
respectively. The other settings have similar results.

The influence of Match Ratio Threshold (MRT)
on difference algorithms is shown in Figure 3. Here
CCR (Communication-to-Computation-Ratio) = 1.0.
It can be noticed that in some cases, the resource-
critical algorithm performs worse than the minimum
EFT algorithm. The reason is that when mapping

a group, the resource-critical algorithm always try
to minimize the finish times of current nodes while
sometimes compromising the current finish times can
achieve better results in the long run. But in most
cases, it outperforms the minimum EFT algorithm.

In Figure 4, the average improvement ratios of
200 cases are shown. As the MRT grows, the av-
erage improvement ratio of the resource-critical algo-
rithm over the minimum algorithm grows from 6.31%
to 23.13%. Combining these two figures together, it
can be concluded that the bigger the MRT is, the bet-
ter the difference ratios are. MRT is used to control
which nodes should be grouped and mapped together:
the bigger it is, the more nodes could be grouped to-
gether, thus there is a better chance to find a better
mapping.

Figure 5 gives the difference ratios of 200 cases
under different CCR values with MRT = 0.5. For
all CCRs, in 7.5% - 8.5% cases among all 200 cases
the resource-critical algorithm performs worse than
the minimum EFT algorithm; in 13% - 19% cases
they perform the same; in 72% - 78% cases, the for-
mer outperforms the latter. In Figure 6, the average
improvement ratio increases from 11.65% to 23.69%
as the CCR increases. This shows that the resource-
critical algorithm works better where communication
cost plays a heavier role. In the extreme circumstance
in which there is no communication cost, our algorithm
will degrade to the minimum EFT algorithm.

In the second set of experiments, we discuss the
influence of the branch number, the depth and the
node number on the performance of these algorithms.
Here CCR (Communication-to-Computation-Ratio) =
1.0 and Match Ratio Threshold (MRT) = 0.5.

First, the depth of the workflows is set as 24 and
the branch number varies from 4 to 12. As Figure 7
shows, the average improvement ratio does not deviate
much from 45%. This is decided by the characteristic
of the parameter sweep applications: the branches are
independent from each other except that they share
the same start and end nodes; thus the branch number
does not much influence grouping and correspondingly
does not much influence mapping.

Second, we set the branch number of the work-
flows as 4 and vary the depth from 8 to 24. As
seen from Figure 8, the average improvement ratio
of the resource-critical algorithm over the minimum
EFT algorithm increases from 23.13% to 43.45% as
the depth increases. This is because the greater the
depth, the more chances there are that more nodes
can be grouped together to find the best mapping by
trying all possible combinations.

6 Conclusion and Future Work

In this paper, we investigate the problem of match-
making scientific workflow onto resources in Grid en-
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Figure 6. Average improvement ratio
under various CCRs with MRT=0.5.
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under various branch numbers with
CCR=1.0, MRT=0.5, depth=24.
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vironments. We combine the workflow mapping and
scheduling together and present a new resource model
to formalize the problem. By exploiting the fact that
some jobs can only run on some resources, we propose
a novel algorithm of resource-critical workflow map-
ping, which take advantage of the fact that some jobs
can only run on a small number of resources and that
mapping them together with their ancestor jobs can
achieve better mapping results. By means of model-
ing experiments, we discuss the factors affecting the
performance of the algorithm and it has been demon-
strated that the resource-critical algorithm outperform
the minimum EFT algorithm in various conditions.

This work is funded by the National Aeronau-
tics and Space Administration’s Advanced Informa-
tion Systems Technology program.
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