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CHAPTER 1

Introduction

Most theoretical treatments of the dynamics of strongly
interacting particles confine themselves to spinless particles
and assume that the introduction of spin into the problem

brings only ine:

ential complications. Indeed in most cases
spin acts simply as an extra label and mey be token into account
by a multichannel formulation. However one must first choose
which of the mony possible emplitudes, differing by trans-
formations on the spin indices, one will use. As shown in

many papers, en unwise choice of emplitude can lead to long
calculations and mokes a simple generalization appear very
complicated. This is particularly so when invariant amplitudes
are used without considering whether the information thereby
expressed is relevant to the problem at hand.

Recently Hara and Nang have suggested a new way of studying
the analyticity of scattering amplitudes for particles with
4pin. The most important feature of their method is the
observation that kinematic singularities arise from the sing-
ularities of the Lorentz transformations generating the chosen

states. By relating our chosen amplitudes to those generated

by Lorentz without these sing , onie

can expose the kinematic singularities. The Trueman-ifick



2
crossing relation is o particular case of such a transformation.

It is characteristic of this method that it only exposes the
sularities locally, and not

as can be done
through 2 suitable choice of invariant amplitudes.

However
this is ususlly sufficient as will be seen from the examples
considered in this thesis.

In Chapter 2 we give the theory of this method and compare
it to the spprosch via invarient amplitudes. This will
concentrate on the full amplitude, while in Chapter 3 we apply
the theory to the residues of (fixed) poles in scattering
auplitudes, partisl wave amplitudes ond form factors.

This is extended in Chapter 4 to a treatment of Regge
poles. This necessitotes a discussion of daughters and

conspirators, but they are only considered in enough detail

prelimi

%0 cnable one to spply the theory to the experimental situation.
y results on some fits to the production of P ,
~*(1236), K*(890) at mediun and high energy are presented.
Throughout this work ve shall meke the nontrivial restri-
ction to non-zero mass particles and in the Regge section
exclude the exchange of ferionic trajectories,
Finelly in Chapter 5, which has no connection with the

previous vork, we consider two practical problems in combining
and strong

. These are Dashen's
calculation of the proton-neutron mass difference and the



extraction of from

date on elastic scattering at high energies.



CHAPTER 2

of Scatterin Litudes for

Particles with Spin

The,

2.1 General principles

In this chapter, the theoretical background to the work
of chapters 3 and 4 will be described.

First in Section 2.2, we will give a derivation of the
Trueman-Wick (hereafter called TW) crossing relation which is
sufficiently complete to obtain the unknown phase in their
To make this worthwhile, requires a rather careful

formula.

definition of the states and amplitudes to be used. This h
been given by stapp®') and Taylor™) and 1 base my notation
on their work. In the appendix to this chapter I have collected
all definitions and conventions used in this thesis. Here, for

instance, M functions and helicity amplitudes are defined.
The study of the analyticity of scattering amplitudes for

and kinematic

particles with spin may be based on the principle
(P) M functions are anslytic functions of momenta
singularities occur through the choice of their arguments

i=1...4 to obtain a function of s and t.

52) (e

by = pyest)
From the relation (2.A.7), given in the appendix, between
we may dertve

helicity omplitudes and M functions

alternative form of (P) ...
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(') me netsetey ampiieuaes KN () fe g wei, yee}
where x is énersy and y is momentua transfer, are for fixed x,
analytic functions of y, except at the physical resion boundary
where they behave like

A dgidh 1-cose,; AN 1 1scose 1A
W oc| ) - 2.1
x

This latter benaviour may for instance be derived from
(2.A.7), and the corresponding behaviour for the s-channel c.i.
M functions (by this we mean the M function with as arguments
the

~channel c.m. momenta) which is given by

com. k| asbeced
M ) o< [.m e (2.1.2)
abca s s

(2.1.2) may ve proved as follows:

The principle (P) enables us to determine the behaviour of
M) at the points s = (a; + m,)® by transforming to a frame
without this singularity. The singularity at the physical resion
boundary is however present in all frames but as sin O, —y0 the

c.m. vectors become invariant under rotations about the z-direc-

tion. So using the Lorentz transformation law (2,A.6) plus the
principle (P) to enable us to expand M in powers of the x and y
components of particles 3 and 4, immediately gives the result
(2.1.2),



Using the principle (P'), the Trueman-iick crossing relation

(2.2.8) enables us to expose the nature of the singularity of
Hg ot s = (m 2 m)® in the ot macrices, since H, has no such
singularity. By this means, Hara and Wang have derived simple
Linear combinations of Hy which are everywhere nonsingular.
Compensating this advantage of simplicity, these amplitudes suffer
the disadvantage of containing kinematic zeros. Thus their
analyticity, proved from the TW crossing relation (2.2.8), is
insufficient to enable us to invert (2.2.8) and prove the input
information that H, is non-singular at s-thresholds. We will
meet this in chapter 4 when we consider partial wave residues.
The analogous method to that of Hara and iang will, for instance,
sy correctly that D waves are analytic functions of s at thresh-
olds, but not that they vanich like s - (m + m)?.

In Section 2.3, we show how Hara and Wang's argunents way
be extended to derive linear combinations without singularities
or zeros (but more complicatedly related to ). Unfortunately
this argument only works directly if but one particle has spin -
when only one angle X appears in the TW crossing relation. An
extension to more than one spinning particle has only proved
possible by the use of M functions. Thus if only particle 1 has
spin; H, is essentially identical to the M function with particle
1 at rest and particle 2 along the z-axis, while Ky is sinilarly

related to the M function with particle 3 along the z-axis. As




can be seen from (2.A.6), all particles transform with the same
rotation, so' the extension to greater then one spinning particles
only requires the C.G. series when using M functions. The
invarient amplitudes obtained in Section 2.3 are identical with
those given earlier by Hepp™?) ang willians"?). Thus this section
15 not inteided to be directly useful, but is included to
illustrate the complete equivalence of the approach based on
(P') and that on invariant amplitudes. The requirement of parity
conservation is not simply expressible in terms of M functions,
as is fomiliar from the 4 components necessary in the Dirac
formalism to describe a parity conserving spin j theory. e
conclude Section 2.3 with a brief discussion of how one may try
to overcome this difficulty.

Finally in Section 2.4, we present a selection of the
various types of amplituies one can choose from when tackling
a particular problen. lere we compare the analyticity structure
of M functions; Wigner asplitudes; Ordinary, parity-conserving
and perpenaicular®) nelicity amplitudes. Also we introduce a
few new ones to compare the behaviour at s = (m - my)® with

that at (m + my)?.

2.2 perivation of the Trueman-iick Crossing Relation

The purpose of this section is to derive the results of
Y

Muzinich™) and Truenan and wick™) with surficient sttention

to detall to obtain the phasc in their relation. This is



largely acedemic except in the case of elastic reactions where
crossing leads to the same reaction and the conventional phases
cancel out.

The most elegant derivation s that of Trueman and Wick,
Who state that amplitudes that transform in the same way under
a general Lorentz transformation are identical up to @ phase.
To be pedantic this is not true as, for instance, an amplitude
and its parity conjugate transform in the same way but are not
Indeed in a rather careless application of

this method Bislas and Svensson®!) ‘prove" hermitean

Such a method is presumably unable to determine

necessarily equal.

manage to

analyticity.

the phase. Muzinich, by using the M function formalism, has

however introduced a method which is sufficient for our purpose
here.

The calculation is rather tedious and so we simply outline
the main steps and give the final result in (2.2.8).

We wish to determine the relation between the analytic
From (2.A.3)

continuation of H, and H in the t physical region.

and (2.A.7) we have the relation

B L A
s

(2.2.1)

M ) d‘*m %6 Mopspihah 0



c.m.
H, s sinilarly expressed in teras of M (p, .

and M, are essentially the same and the required factors in

thei relation is given in (2.A.8).

If we con find a Lorentz transformation A such that

c.n. c.m.
Lty

c.n. c.m.

R

- 2 (2.2.3)
S A

c.m. c.m.

P AR

then we have

P [h-ch.m. >
o Npt 4

c.m. .
JAb(p,
25 24

v

(2.2.4)

ettt
c

where q,, contains the conventional crossing phases, "particle

24 phases”)

"nc =

and ‘particle re-ardering phases. It Ls thererore
SR
. 4%

S

5Fsteut

(2.2.5)
«(=1)



The rotations in (2.2,3) are (almost) Wigner rotations
and it is clearly desirable to use the geometric method
introduced by wick"™) to evaluate them. In order to obtain
the destred preciston we first reduce A to a real Lorentz
transformation, after which we may use geometry with a greater
hope of getting the correct sign. We will treat particles 1
and 2 first and consider 3 and 4 later.

A is a complex Lorentz transformation. e write A = AjA,,
where A, is a trivial combination of a complex boost in the
2-direction with parameter C'= 3 1T/ and rotations through T
about the y and z sxes. The exact value of A, depends on the
continuation adopted for By in travelling from the s to t
physical region. A is a fixed real Lorentz transformation

such that ApS;™ 15 the set of vectors

qi= (0,0, gomieny, S
2] 2[5

- (0,0, Sem-m , &

* TR s

(2.2.6)
) S co
=] 2y 255
qom (- Sasinil, 0 cson, S, cosnlnl)
2l 25 2Fs

Q= (S Snin, 0, Semmy , S, o)

where cosh[9 | = - cos O, 1is

1



This is the set of vectors we would naturally have
introduced if we had considered decomposing the scattering
amplitude wir.t. the 2 + 1 Lorentz group for s <O, as opposed
to the 3 dimansional rotation group sppropriate in the s-
channel physical region. As is necessary for a negative mass
squared representation the little vector gqy - Gy = q; = Gy
15 oc (0, 0, 1, 0).

We split up the rotations in (2.2.4) as, for instance,

L oem e e o c.n
doo™e " we = dloeIapla ayApe )
2 2 2 =

Now both A, and A have simple Wigner rotations for
particles 1 and

i that of A) may be evaluated geometrically
1 W3)
to give the d *(X,) (see figure 2.1 and Wick") for the rules)
and that of A, algebraically. We have now evaluated half of
the expression (2.2.4).
To consider particles 3 and 4 we use a frame similar to
(2.2.6) but with 34 rather than 12 along the z-axis. Thus we

write

(2.2.7)

where X g | is @ boost in the x-direction with perameter [0,

siven after (2.2.6). In figure 1, X\o | A takes us from Cy
o X', while X'X represents the pure Lorentz transformation



Figure 2.1: Momentum dxmrm"”:
X are defined in (2.A.14); C, 1s the t-channel centre of
mass frame; X is the frame (2.2.6); X' is the sinilar frame

with 34 replacing 12; X and X' lie, as drawn, between the

particie vectors for 8 < - max [[uf - u2] ] .

) 175 - =i



Figure 2.1 is accurate for s,t large and near u = 0,

°,
s|
and by going to the physical region boundary the phases in

relations such as (2.2.7) may be evaluated.
The 4"4(0,), in the s-chamnel boosts b(p§;7;), cancels
with the X7 | to ensure that Az}(-[z | has a simple Wigner
r:v.luon \‘nl‘.) and 4, while as before XPEI A give us the
a X
Thereby one obtains the T.W. crossing relation with a
phase that depends on the route taken from the s to the ¢
channel. Rather than give the gencral case we state the answer

for the continuation used in Regge theory.

’
7R S chanaal

Eigure 2.2: Route used for iy in TW crossing relation. H, is
defined at R, continued at fixed s to P, and then continued at

fixed large t to Q.
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In the continustion, singularities are met at both the
s and t physical region boundaries, and s = (m & m,)?, ond
2
(my 2 mp)2
The route adopted around the physical region boundaries
is such that fron R 3P $% 5 1 [$|% and rrom 9 q
% %, w +m)?
[#% » - 1]B[%, white the route around s = (m + m)? 1s

Lconpan s ot

and similarly for s = (mg z m)%

These conventions are consistent when in equal mass cases
the singularities coincide.
Then finally the TW crossing relation is

LSRR

= GnGeta N AL
(2.2.8)

dy 00 x, (
e, ) 4, 0

e (nen v pepepaep) W, retpp

The result for other routes of continuation may be derived

from this, -



2.3 sertvation of Taveriant Ampit sudes
@) We take the TW crossing relation for a single particle
(no.1) with spin. As pointed out in Section 2.1, the helicity
Cuncetons, wieh paricle 1 se rast.and, respeceively, particies
2 and 3 along the s-axis. In fact, independenciy af the TN
crossing relation, it is obvious from figure 2.1 "'“'"'Xx’
We can trivialiy extens he trescasnt to any mmber of
spinning particles by using the C.G. series. Let (j,m) label

an irreducible state so formed. e have

(j,m) rest
M ® ) = (-1)
s

m (j,p) rest
PRI} @50
3 pm
in the ¢ physical region for the route of continuation such
% %
N TR
As described in Section 2.1 our statement of analyticity
Via the principle (P) implies that:
(1) At the physical region boundary M(pJ°sF ,) is proportional
to $41% tines a runction regular chere.
(11) While the other singularities in this case are: M(pL®*®)

1s singular at s;, = 0; M(pg®®*) is singular at T 5 = 0.

We will now try to find some nonsingular linear combinations

of M(ELE®Y),

. which are not only analytic at §), = O but whose

analyticity there enables one to deduce that M(p{®"%) is
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one to prove the physical region boundary behaviour of  and
anow that NGEE®Y) is snelyeic o Ty = o

b)
e we conssder ene cqumcions for any © and ) = 3 3

3
)
LA (X)

Then for

1

Operate on both sides of (2.3.2) with

-0
Yy, & e
(1] L) s 0x,
and write the resulting equation
Jm v 3
[P A e )
We have
im e e
(TR P
and
-0 Imi<
Now form

Zn’l" @ M (prey %a‘t" m e (oo

This problem is fortunately soluble in triangular fashion.

W@ e qadln® = {8 ex) @} o,

(2.3.3)

(2.3.4)

(2.3.5)



where £ runs from 0 to j. Then from (2.3.4) we have a
triangular structure with linear combinations of M(p5est)
(of one less in humber each time) equal to linear combinations
of M(P®®*) (of one more in number each time).

We must now multiply by some factors to remove the

singularities, and so we form the invariant amplitudes:

I - > " (..)"{m"' (5™ » 0™ m"""‘(‘:,’"‘)} (2.3.6)
e
(x % if meo)
(sw'x) st mS

These are proved analytic at Ty; = 0 from (2.3.6), and
at's), = O froa the expression (2.3.5) in terms of M([**),
and at $ = 0 from either (2.3.5) or (2.3.6).

But as they are triangular these relations may be inverted.
Toking for example the )3 = O singularity we start at m= € = §
and work downwards in m, inverting to find N(0® (I5E) sn
terms of 1) (£ m). At each stage the new wldm) prest)
hes a simple coefficient in Ij_, proportional to (sin X},
the )5 = O singularity of which is cancelled by the division
factors in (2.3.6). Thus we may prove M(pL°%) analytic at
Tyy = 0. We can consider 5, and $ = O sinilarly and hence

find that I} are the desired singulority free amplitudes.
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1)) gives the remaining J invarisnt amplitudes.

This time we operate on both sides of (2.3.2) with

TetnlUy e
T T ey

-1
“Heoto)  sin?

o= X

for L mdg

and write the resulting equation
gn Lgv o 3.
) Y e, (Xp @.3.7)

where
dm_ (oq)dm gim 2.3.8!
LS S Gl (2.5.8)

Then, similorly to the previous method, we find the

invariant amplitudes

< sim W ) g e e

T{ = 2 A o {mO ) - e U 1} s
sadx, S my

€) We can now compare these results with those from other

methods, Firstly the method of Hara and Wang would form

HWa (9 = M9 e o ep® MY (i) fur myo
53 P"‘ (2.3.10)

W) = OO (o) - M G e e
ST ¢
.;
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whieh are indeed nonsinguler. We start off with I o< #W}(s),
but in an endeavour to avoid kinematic zeros, we are forced
to take 1n 1]_, @ Lincar conbination of Hivj(s) and Hi)_(s)
and 80 on, eventually ending in Ij, which contatns a1l Hw(s)
and 4 in fact identical to Hi(c).

Secondly in our paper!) we have shown that the invoriant
amplitudes Ij, I{ are identical to those given earlier by
Hepp"?) and willians™). ve do not give the details here as
1t requires an excess of definitions and they do not appear to
be very useful in the problems of interest in this thesis.

Thus the Lorentz transfornation law (2.A.6) of the M functions
is the same whatever the number of spinning particles involved,

but the int of parity

for instance, the masses of the particles, In

dependence on,
particular, it does not preserve the C.G. series that we
constructed at the beginning of this section. Thus, in general,
conservation of parity implies

M) = ©q, D [==] wew @500
or, restricting ourselves to the case when only two particles
have epin,

ap ) @, My, @)

where P is the parity conjugate M function defined by following



(2.3.11) with a rotation through w about the y axis to take

- p back to p.

2,0
2 (2.3.12)

508,77
1752
() = (1)
SN

ma ¢ 2o e el , where o and o are defined in the
appendix.

We may apply the principle (P) to Py Just as to M and
thereby derive a new set of invariant amplitudes, which are the
same linear combinations of P as I and T were of M. We must
now choose a linearly independent subset of the new invariant
amplitudes plus T and T for which parity takes a simple form.
Fortunately this may also be done trisngularly (I am only able
to invert such matrices to show no singularities have been
introduced!) and the results are given in our papertl). For
this special case - namely when only two particles have spin -
Willians and Guertin have also derived invarient amplitudes.
These seem more elegant and also achieve the discrete symnetry
of particle identity if s) = 5, which 1s not done by my method .
However if s # §, my method seems easier to invert. Thus
although the general problem of obtaining parity-conserving
invariant amplitudes for arbitrary spins has not been solved,
in any problem of practical interest the initial writing down
of @ parity-conserving set is not difficult. The major portion

of the work lies in obtaining both formulae for Ky in terms of



invariant smplitudes and inversely the inveriant amplitudes
in terms of K,. Either direction is easy but having chosen
one the other is difficult.

We end this section with two disconnected comments.
Firstly Hepp") nas shown that the non-singularity of the
transformation (2.3.11) implies that it may always be diagon-
alized to find a singularity-free set of parity-conserving
amplitudes. S0 our quest above o find their explicit form
was not doomed to fallure from the start. Secondly we have
tried to apply the triangular method used in the beginning of
this section to the full TW crossing with more than one angle.
It produced an elegant set of invarient amplitudes for the
case sy =8y =1, s3= 5, =0 ©q, =1 (which is soluble
by classical methods anyway) but failed in the case of the
same spins but © = = 1 (even though this has fewer
independent anplitudes, L.e. four, against five in the former

case).

2.4 Comparison of the various AmplitudeSused for Spinning
Particles
We describe and compare the propertics of various type:
of amplitude that are found to be useful when considering

particles with spin.



1) M functions

These are functions of moacnta whereas the physical
scattering amplitudes ore properly regarded as functions of the
boosts. They are therefore used in field theory, where
integrals over all momenta occur. If we substitute for the
argunent p = pS*™, we find a function which is singular ac

5 =05 5= (m 3my)% when 1 and 2 are along the z axi,

ana
on the physical region boundary as given in (2.1.2). The M
functions behave in the same way st s = (m, - m))® as they do
at s = (m +m,)® because the momenta have similar behaviour
at those two points. This contrasts with the helicity and
Wigner amplitudes which will be considered later. The singularity
is easily exposed by rotating the vectors to
put 3 and 4 along the z axis.

at s = (my 2 my)?

If parity is conserved, the
singularity at s = (my # m,)® is such that it may be removed

by an overall factor in the manner of Hara and Wang. I

my # my, the singularity at s = O Ls exhibited by toking particle
1 to rest.

i) Wigner Anplitudes

These may, for instance, be found in Goldberger and

watson®) who justly clain them to be valid relativistically.
Taking those corresponding to 1 and 2 along the z axis, they
are related to helicity amplitudes by



Psvairenl % 53 MAsiTvapL
aa = dyion, O) 475 (00) By (2.4.1)

They are singular st the physical region boundary, where
they are proportional to [sin 0, " I (1 (wnere
Vi =¥y 4Py Vo= Py+p). The other singularities are
at s = 0, which is not easily dealt with, and at the three
thresholds s = () + my)? and s = (my - m)%. If parity is
conserved these latter singularities may be removed by an overell
factor. wigner amplitudes behave nonrelativistically like M

functions. Thus comparing (2.2.1) and (2.4.1) we see the
only essential difference between M(pS™™) and Wy, (j,) lies in
the boosts €”1. These tend to 1 at s = (my + m,)?, but at
2 s,
s = (mg - m)%, for instance, she§ >0
This mass dependence and

but che§ > 1 or - 1

ifmg > or ¢ m, respectively.
asrrerence between (a5 - m,)* and (j +
of physical scattering amplitudes, as it is a singularity of
associated with M functions

m)? is characteristic

the boost not the momenta, The e
sive them the same benaviour at s = (my 3m,)” but destroy the

parity transformation law. This is another general feature:
the tedious calculations associated with form factors have little

effect except schieving the correct behaviour at both s = (my

Wigner amplitudes are usually expanded in terms of orbital



angular momenta states,

pop) ClsasaSgivapa)

>

. (2.4.2
Z(um (2o C(g ST tpimpg, i) )

[} .

e Tegs Y
C(tisi Too,p) Tl“; 4 pso (O

ram whscn ve ring gs usuat 1y oc o tny + mp?] U0
[ - (my +m? "' but that this benaviour s not in
general achieved st s = (m, - m)%. To discuss the behaviour

there we define.

111) W' and W' Anplitudes

As discussed in i1) the only difference in behaviour of
helicity amplitudes at (m; - m)* and at (m; + m)* lies in
the e factors in (2.2.1). We thus define quantities to be
identical with these factors at (m, - m;)® rather thon at

(mg + m)%. Namely put

M

‘ .
« g~ Migeer) SN

where, for instance, A = A, where k is the lighter

1
Lighter
particle of 1 and 2.

Jisgs)
similarly define ' and Ty, (il by (2.4.1) end (2.4.2)

with prines added to all quantities, The Ty, are in general
e



completely different from T3 and behave e
2748 bty M

[s- @ - mp ] x [s- (ng - m,) ] . IF parity
1s conserved one can however say that the singularity at the
lower thresholds in -ri p, "8 be removed by an overall fector.
Notice that for the prined states the effective gority of the
Lighter particle of 1 and 2 is changed by (-1) 1ighter,
This has to be borne in mind when colculating the allowed
Values of L', It is illustrated in Chapter 4 when we consider
the NF” vertex.

Notice, as a particular case of the difference between
primed and unprimed states, that the total spin s is not equal
to s{, showing there is no significance of s away from the

physical region. Thus acting on H or W, s; states are formed

from
sy, 5pt )

45 P v
v ¥

states from

ol T
L o egs st pypy) D) .
¥s'ratte
This alsp occurs at s = O in equal mass cases and has been
remarked upon by Freedman and Wangn’.

iv) Helicity Amplitules J1

These are the most generally useful amplitudes, whose



analyticity has been given in the principle (P'). They are
also singulor at all the thresholds and this may be exposed,
either by the TW crossing relation, or more casily by the
relation (2.2.1) to M functions, with either 12 or 34 alons the
%axis. If my # my and mg £ my, they are nonsingular at s = O,

However the

which is useful advantage over M or W function
latter are simpler at the thresholds.

v)  Parity-conserving Welicity Anplitudes

1)

Hara™) and wong™) rorm

FREYEWY Aghgidgh A=t Agh
ﬂvv,ff;f,z ta,e) = B (5,6) + g0 B (s,8) (2.4.4)

where
By
L P VR
p M
and the physical region boundary function is given by

R0 !

It is fmportant to note that "parity-conserving

B =Nl

(2.4.5)

cos e,]
z

s not
used in the same sense as in our Section 2.3 on invariant

amplitudes and here means that a Regge pole of definite TP
contributes to the ampiitude. (T = signature occurs because

plain parity would require z - z). The singularities of
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these amplitudes may.be removed by overall factors as described
by wang™), whose results are correct except in the Boson-
Fernion case, where she takes the fermion heavier than the
boson. (see 2.4 (11) and (111) for this mass dependence).
These results are not obviously useful because of the kinematic
zeros both at thresholds and at s = 0, where the original
helicity amplitudes were nonsingular. They are certainly not
useful for Regge theory as it is much easier and more accurate
to study the partial wave residues rather than the full amplitude.
The kinematic zeros at thresholds may be removed by the
use of perpendicular helicity amplitudes.
vi) Pperpendicular Helicity (or Wigner) Amplitudes
These were introduced by Kotanski’!) and correspond to
quantizing the spin along the y not the z axis. They are

related to ordinary helicity amplitudes by:

P3P, P Ay A
4 s, - () 8,74 (0
%) Xy, %) (2.4.6)

where X(0) is a rotation through © about the x axis and X(74)
carries the y into the z axis.

The TW crossing felation becomes diagonal when expressed
in terms of these amplitudes. This means the non-singularity

ot s thresholds of P, is easily expressed without kinematic



zeros in terms of P,.

Unfortunately this is countered by the grave disadvantage
that Py and P, are both singular at the physical region
boundary. Thus it seems that they are only useful locally for
expressing the threshold conditions on Ky in terms of simpler
Linear combinations than the original TW crossing relation and
Hy gave.

We finish by listing the behaviour of P, ot the thresholds
in more detail. This requires a separate discussion for the
three mass types. In Leader's notation, these are denoted,

m oA omy, omg Aom, VU

= m,omy Aom, B (2.4.7)

a) Uu

We will need o phase to describe the route taken round
the physical region boundary singularity to reach the thresholds,
and swpose tan 9, > 1 X, X =21 et thresholds. Then

at the top thresholds s = (m + my)?

P3P, PP X(py +py) _Xlpy+ o,
3°47P2P) 1t P2 5
Py ~ sy, S5, (2.4.8a)

while at the bottom thresholds the result is the same, except

the index of the lighter particle in each pair (12), (34) is



reversed in sign.
At s =0, P, is nonsingular,

P B
e results at (my x m)? and (my + my)? are as tn (a).

At s =0 we have

Gy - py)
17 P2 (2.4.80)

P3040
P4 TEL 5

where the new phase € is defined by

% > m @-m te as 50

¢ EE

The result at the top thresholds is as in (a). s =0
is now a physical region boundary and Py are no longer well-
behaved there. However the TH crossing angles % T, ond
50 one can use d (m/,) rather than X (n/,) to express conditions
on iy, L.e. we have (independent of the route of continuation

of Hy)

MNidah

o) % 0, %) e g7 Oayp, ()

]p‘ TP P2 F)‘ (2.4.8¢)

~



fAppendix: _Notation T2), S1

Particles are labelled { = 1 ... 4 and have mass m, and

0
spin 5, "

Mandelstan invariants are defined as usual

5=y +p)% t=(p)-py? u=(p -p)?
1) Rotations are labelled by Buler angles <, p, ¥ and

written r(«, §,¥). Their matrix elements D3 (r(«, p,¥))
) ana o3 (0) =

are defined as in Jacob and Wick
™" from the definition

)1(r(0,0,0)).  This dirfers by (-1)
used in the useful reference?!) for complex j. We thus define
our second type functions el (z) to be (-1)™™ times those
in Gunson and AndrewlM)A

Pure Lorentz transfomations from rest up to p are
written h(p), and b(p) is a general boost up to p.

Vector components are written in the order (x, y, z, t).

111) The kinematic definitions are™)

82, 5= mpemp?] L [s - oy 2] 1) = 02 or 50 (2ae)



The c-m frames are defined as usual (see section (v) of
the appendix), and the s-channel c.m, vectors are denoted
oyt aea

. 4 and e take pI°" to be the systen generaced

to rest.

The c.m. scattering angle is given by

2 2y (a2 - w2
8y 834 c08 O = s(t - n)vv (llll - mz) (ll} - u‘) (2.A.1b)
S, Sy, Sin® = 275 q&‘ dafinas ¢
The boost parameters are defined by
s s
ch ol = E/m (2.A.1¢)
where &2 are the c.n. enersies.

The TH crossing angles are defined by

8,5y 5 €0sX, = (semf-nd) (tsni-nd) + 2 A
89Ty €08X, = - (svni-nd) (eomi-ng) + 205 & . ,
2.A.10
S5Ty3 08Xy = = (sonfeml) (esnl-n]) + 205 &
2.2 2.2 2
S5,Tpq €08X, = (swmend) (esnf-nl) + 20 &

where

1iv) single particle States
particles are described by invarisntly nomed states



o A >, which have Lorents transformation 1aw

U [ 43 A X > Dy, (uwiag)

for A € SLQ,€) where the Wigner rotation
w (A, p) = v (A Abp) (2.A.2)

Here the boost b(p) is  Lorentz transformation taking
us from rest to momentum p. Different choices of blp)

correspond to the different type of spin amplitudes, For

Helicity states: blp) = h(p) (¥, 6, -¢)

(2.8.3)
= r(ps 0 =) iy 2)

Wigner States:  b(p) = h(p) (2.A.4)

where p 1s in direction (9,9).
Spinor states are obtained by extending D to be a represen-
tation of the homogencous Lorentz group and splitting (2.A.2)

into its constituent parts

We will only need lower spinor

states defined by

x> = DTS o, €©fe) (2.A.5)
* <

which is independent of b. Thus we have simplified the Lorentz
transformation law at the Cost of a non-unitary transformation.
Here

c - [ “] €S0 .



v)  scattering Anplitudes
As usual, define the T matrix by

Sey = 8 gy v 1wt e - p) Ty

We can take matrix elements of the T matrix between any
of the above type of states. Choosing spinor states, we find

M functions which have the Lorentz transformation law
M) = 8 d(A) M(ATp) (2.4.6)

This can be simplified by use of the C.C. series, thereby
reducing the study of the M function describing many particles
to that describing one.

The relation between M functions and physical scattering
amplitudes is
Wy = © b ep e PO 2.A7)
outgoing incoming

where b are given by (2.A.3), (2.A.4) for Wigner or helicity

amplitudes. It is also customary’l)

to insert an extra factor
02772 ()™ % (0 (2.A.7) when dealing with helicity
amplitudes.

In (2.A.7) we substitute the usual c.m., momenta for the
arguments of M and T. In this thesis we shall always take

the c.m. frome of ca|T |abD to be that with the positive



y axts along & x ¢, and with 0§ 0, . | &,

We define the s-channel as 34 |T | 21> and the t-
channel as 34 |T, |31 > , where the ordering of labels
defines both the momenta as obove and the order of creation

operators.

We witl cait wigner smptitudes WP ang nericiey
amplitudes H % O 2 adding a subscript s, t, 4 to distinguish
the various channels.

Msowe put A, = A - Ay

cm 2y -

vi) Crossing

In terms of M functions this means we must add a label

s, t, u to M in (2.A.7) and introduce a crossing phase X.
so that |=> 4 A, <3| on crossing, where & is the anti-
particle of a.,

Y

o COrresponds to the relative phase of the perticle
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annihilation operator o,

and anti-particle creation operator
b,

% in the field theory spproach of Weinberg™) ana Carrutners®)

For example

Xo w o| £p (ag et o x vhoett)

an?) 2p,
Where « is a spinor index. This is useful 1f one wishes to
use Clrrucher‘sc” 8U, crossing relations.

Then, taking account of the change in the ordering of

states, we have, on crossing 2 and 3,
M (p10pgipyipg) = €p3 €50 €4y Ny A My(p)1mpys-p,py) (2.A.8)

where €, =+ 1, unless 1,] are both fermions when Lt is

When we leave the subscript s, t, u off M, we will mean
M.
vi1) The Crossing phase X

Let qp qc Qg be the phase factors in the transformations
of the single particle states under the discrete transformations
of parity, charge conjugation and time reversal respectively.

That 15, for Wigner states:
Plery = 95 |-e))>
TieAY = g lmeX) dy, @
clay =oge 13>



Ten X, = Ag, end the PCT theoren says

M= Qpc e for bosons

= 1qpqc(r for fernions

ignoring possible superselection rules, The i occurs for
fermions because the physical PCT symmetry differs from the
by a complete

crossing relation known as the "PCT theores
reversal in the order of all states in the scattering amplitude.

Finally we note thet we will take fp = 1 in this thesis.



CHAPTER 3

Partial Wave Amplitudes,

Pole Residues and Form Factors

3.1 Introduction
In this chapter we describe some applications of the
previous chapter to partial wave amplitudes for physical j.

Section 3.2 is devoted to a discussion of the kinematic

of partial wove ampli This is necessary
if, for instance, one wishes to include the Nj,5c in an N/D
celculation, end from the spinless case we know how importent
1t is to enforce threshold behaviour to obtain successful
results in spproximate calculations.

Section 3.3 is devoted to pole residues, It is well

known™) that to evaluate one-particle exchange diagrams,
instead of using a specific Lagranglan, it is sufficient to
put a pole in the crossed partial wave series. We spell this
out showing how one may cope with the three pieces of inform-
ation we think are contained in a phenomenological Lagrangian.
These are analyticity, crossing for the 2 & 1 amplitudes and
positive definite haniltonian, These are. all easily expressed
in an helfcity formalism.

Finally in our last physical § spplication we discuss form

factors and the solution they offer for the behaviour at s = O,
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We also evaluate the helicity amplitudes for some well known
form ractors’2),
Chepter % on Regge theory will be an extension of Section

3.4 and the work in Section 3.2 on threshold condition:

3.2 Ppartial Wave Anplitudes
We define our helicity partial waves by

A3hidgh

1
3 1 J 1
Ty, (&) =3 d(cos 0) a (9 i, (s,t) (3.2.1)
PRIV I, aae s

Kinematic singularities occur at thresholds and at s = O
and we deal with the two cases separately.
(1) The Thresholds

This is the easier case, and we have already shown in
Chapter 2 how one can define orbital sngular momentum states
in terms of which there is an exact statement of the behaviour
)2

at s = (g +m)?. Ve also defined primed states that behave

stmilorly at (mg - m;)%. Namely:

’ Tis s " .

TUE = Gyed” (a0 >
ut Gy R (.2.2)
ClYy s Tion) COSHTioN)

3
€ Usy sy 500, -0) CO8 8y 500 N, =N Taheh
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51
while T4l 1s given by the same equation witn the extra
phase n - r
A Odigncer = Aligneer) |
(see (2.4.3) for notation), end
Jisgs, 40, 58,
b s - (mgm)d " - (mymy)? "t
ey < [k R RN z’]
Sisis! 4t ¥
o 4% %Y
Ty e [s- (mz-np] [- - (m‘-uzl]

A

one can take "| g" linear
conbinations in the manner of Hara ond Wang.
Thus form
o . - .23
A"L:Alxl X.’XL:XZ)‘] 7 A) o

Then at s = (m) + my)? if

-5, - inimum ev
1) "’7.'1:1-"[;~«-.l.mz)’]”""'" e

atninun
sorire- (nym2] 5 AT 00 &

where B, runs fron the min[0,0-8,-5,] to I3 45,

Some kinematic zeros can easily be removed by forming
total spin linear combinations.



3
3 ety il
= Asheidh

for wnsen €, runs ip from minfo, 7 - 5,] -
; 2
At s = (n’ + m‘) we have similar results with 1 £ 7

oy .
At s = (ml - mz) ‘we should replace ') by 7(-1) .

amplitude as a function of [3. In the results for [ = =|msm)| ,

as from the argunent leading to primed states, we pick up phase
siw -
factors e X from the e * in (2.2.1) whenever chey = - 1.

For example, if m > m,

U5 compax Pana
o e, e
Al eet ey W e che et
wal w5

The correct behaviour for [§ < 0 may also be obtained
from the Macowell symmetry relation™s) ™),

only in simple cases such os N » WN is it possible to

tisfy all these conditions simultaneously without introducing

kinematic zeros. A possible approach is to take ordinary orbital
angular momentum states to ensure the correct behaviour at the
top thresholds, removing the singularity at the bottom threshold

with an overall factor, thereby introducing the usual kinematic

zeros.



An alternative method is suggested by Regge theory and
is rather surprisingly applicable.to physical j, with an
important proviso to be mentioned later. If one expands

asymptotically the Trueman-Wick crossing relation, one finds,

Gravewp = ® don ) (3.2.4)
AN T _[x ]’
ij.x,..) B0y x,n)[“_\.k‘ DR R Y

15 nonsingular at s-thresholds. Here XT is given by (2.A.1d)

With ¢ taken to e , e.g.

2.2
SomZ-n ) [
o 1
cosXT = —2 2 sinX]
17T, LY

The [ functions come from the asymptotic coefficient of
the o) runction. .

It 1s perhaps not obvious that this is the full kinematic
condition, but this may be proved by using the method of
Kotanski¥t) to write (3.2.4)

IhY I
12

34 (3.2.5)

~ sy
1314,1 {%ad

As usual the index of lighter particle is reversed at the lower

3
o (3.2.6)
g AP Ag N (to be continued)

threshold, and

3
Py
(R AN
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on, ) "-Jx AR NN EW ARSIl

Koy ) (3.2.6 continued)

We can now e

ily prove the equivalence of the orbital angular
momentun conditions and (3.2.5) by acting the C.G. coefficients
in (3.2.2) on the rotations by 7/, about the x axis in (3.2.6).

(3.2.4) are splendid states except that for § <max(s) + 5,
55+ 8,) the "nonsense conditions" imply that not all the states
are linearly independent. There seems no easy way round this,
and we will comment on it later in Regge theory, where these
conditions occur when the trajectory passes through physical
values of § and not for all s.

We end by remorking that in our analysis at s = (m,

we excluded the case - which occurs in elastic (e.g. wN)
scattering - where the threshold condition is spbilt by a
singularity u = (ny + m;)* entering the region of integration.
If this happens it is best to split the amplitudes into two
parts - the major part without the singulority to which our
theory applies, and a small portion treated separately.

(1) s=0

* Finally we discuss the behaviour at s =

According to

Freednan and Wang">)*F4), this is dominated by the leading

Regge pole and one should remove a factor s . We do not
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believe this is always the correct spproach to N/b equations.

Writing a fixed s dispersion relation for H,o ¢ 21 namely

IVTWY . (RN
~:5 “ (s, = n M, ){ j f n:,’x" b

IR WY
+ 4 J I ‘} .2.7)

Areh
where B,T% 15 defined in (2.4.5), we write 0 in Froissart-

Gribov form

RTAENY
3NN g . .
- "i,&:xle = J—DL' st a2 ()
(5.2.8)
I+ BRI XPWY
™ J—v:.’& 2% e;:_)‘r(i’(u‘)) dz,(u')

- u') in the second integral while

where 3, (u') ==z (Tnf -
erd i ‘(x) and ¢’ is defined in the appendix to
MAr x,x, B
chapter 2.
We must now remove a function of s from TV so that its
left-hand cut discontinuity comes from the cut of e' for
206 [-11] rather than kinemstic singularieies of g1 o -
For the case of UU scattering (see (2.4.7) for this

notation) the structure of the physical region near s = 0 is



2 .2) (222
(nF-n3) (3-n}) > 0

B o

L= physical

region boundary

A §-function contribution to Dy at ¢ = n gives rise to,
@mong other things, a left hand cut in 19 between A and B. In
particular if we take the discontinuity arising from a Regse
pole for large t (and integrate up to t = ), we will find
ah 5™ behaviour near s = 0. Hence, to enforce this behaviour
is both unnecessary and an inferior approximation, s it replaces
the cut from A €0 B by one from s = - = to B.

In the case of spin, the Resge contribution Ls not alvays
the most Lmportant near s = 0. We deal with the three mass

types separately.



(a) Thus in the UU case the Regge contribution to T

proportional to the residue B of the leading Regge pole,
where the constant may be evaluated in the same way asF3)
using the Bateman mn\uscnpt.nn and the hypergeometric form
of ¢ o (@A),

ng € = sign (nf - n2)(n] - m3), P must

tes
[REw - =)

~7F and 4f factorization holds it
IEEPY «

~nhltl i &%) (see chopter 4).

Meanwhile a general contribution from a finite part of

the discontinuity t = n?

~ s cintee o510 a0 (5.2.98)
T o B *

It is this last form which ensbles one to determine the
factor (/3 1717¢ ) that mciplics 7, and ensures
that the left hand cut comes only from e’ (2).

(b) In the Ugs, case we are faced with a kinematic zero

difficulty. In terms of the amplitudes of (3.2.3) we have

[
J:(q) Teh A+
N *1‘*1’1"’ S ar gt Y Yoy
> : G.2.90)
- - Torehe
o r,s‘xr,](-n'”‘)"

It is possible to do better than this by defining yet

another type of orbital angular momentum state, by teking (2.2.1)
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and replacing the boosts for particles 1 and 2 by their values

L/,
2™ ang gives

at s = 0. Unfortunately this produces an e
difficulty with parity, so I will not pursue it here.

(c) In the EE case it s well known from the NN example®?)

that the conditions (2.4.8¢) on Hy require relations between

the partial weve amplitudes of different J. The relation
(2.4.8¢) separates on forming total spin ' states (section 2.4),
and in the NN case we have:

= 0 : no condition

. 900 -
B L AT

However 1f

{ =1 all amplitudes are constant at s = 0
but satisty

CFTTH A . e T8 4 a3a. (87.C7
Ao A (39 [T -87) e <)

(€D

SFES AT @[T~ s

o0 o
N J 1 J
B O RG] (5.2.10)
1 J J
1aom sy

1in more usual (and better!) notation.



In general one must satisfy

B Meihg si pepy|
Lo et ey i o () ~ R G.2.11)
o oen T s e, 2
where
e ) s
PP WETRTI i S SPY IR S

K AN hgap TS

I will content myself by noting a method of generating

relations such as (3.2.10) in general. It will take no account

of the special form of (3.2.11) and simply consists in finding

a set of functions r" + independent of ) and A, in terms

of which v may expand &1, . This is o generalization of the

method used 1n%2), and o suitable set of ¥ 1s

«) + A even
= x.w

where  x = (s] +8})/2 it 8]+ s) even

or x = (s]+sp-1)/2 if s +spodd

L

Sxn0 ) Lexsyne

st o, ’
where  x = (s{ +sp-2)/2 AT s} + s} even

X = (s{+sp-1/2  Af s+ s odd
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This may be proved by repeated use of the C.G. series
ond gives relations like (3.2,10) inyolving in general 2x + 1
values of j.

5.3 pole Residues

We consider in decreasing order of importance and

complication: enelyticity, crossing and the conditions following
from a positive definite Haniltonian.
W) mayuely

1 19, as defined by (3.2.1), has a pole at s = m?, then

near there .
n~ 231yt ? ol (0 (3.3.1)
Ty Yoy B O O

The residue at the pole in Ky is uniquely (and simply)
specified, but as usual there is an ambiguity in the off-mass
shell continuation. In a dispersion approach this means there
1s no such thing as the continuation of a pole to an amplitude
as it depends on the direction dispersed in and the assuned
behaviour at infinity. One could put the pole in invarient
amplitudes but s T do not know a generally useful form for
these, I will only describe the method of Hara and Wang, which
is sufficient as long ss one only disperses in one direction
at a time. This method hos already been described by Trueman
T4),01) for treating superconvergence relations and os this is

an elegant application I will review his work.
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Here we write a dispersion relation at fixed t, and so

we can invoke the principle (P') to say

Ll

3 «
has no singularities in s\ = A <k, AE = A, -
conventence I have multiplied by o factor

VRPN
]

(€ = signl (m] - m3)(n - m;) J ) to ensure that in the UU

ase f, s analytic in t at t = O,

< TRIE
el speet s Masion

S0 we can define residues by (3.3.1) for any poles that
are present, and evaluate their residue in f, from the TH

crossing relation (2.2.8) at s = m’. This is written dowi

for large s, and one must analytically continue (2.2.8) in s
for poles which lie below the s-thresholds. (Notice we have
reversed s and t compared with Chapter 2). A similar procedure
works for poles in H,.

The advantage of this application is that it is clearly
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superior to invariant amplitudes, in that to write down super-
convergence relations we need to know the behaviour as s % oo

of f,. In Regge theory this is very simple, being

« ) -A
f~ s <leading

where A =max ([AE] . |AF| ).

We can then decide whether the superconvergence relations
of the form [ s" Fmf, ds converge. As usual, if
1Y ¢ =4 (1", Resge poles of signature T do not
contribute to this relation in leading order. (v = O except
for boson-fermion reactions in the t-channel when it is %).
Also as t 40 1f there 15 no conspiracy, the contribution of

N RN IV Y

which will help the convergence of some relations.

(i1) crossing
weiting
N = Jae1 N (3.3.2)
¥ AEYN

the relation (3.3.1) becomes
~3 3 .
H, ~Z(¥*‘,j “x,.\ (R‘)) . el (3.3.3)

. (gx:,x, “:x._ (‘\\))
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where we have SpLItw Voig o = Ry! Ry, where R and Rp
are rotations relating the initial and final states,
respectively, to some standard set of axes.

W can taentiry
[ RIS = o (R, ¥ 23
e = oy R0V L G50

a5 the helicity amplitude for the resction 1 + 2 > 5, putting
3= agemam e In particuler ¥4, corresponds to o
transition fron a state with 1 and 2 along the z axis to parcicle
5 at rest, with A=A =A<,

We can now define an M function as in (2.A.7) and then
cross particle 5 with 1 or 2 getting a very simple result.

To be definite, take all particles stable so_that for

2

instance (my + m)? > mZ > (my = m)% Then ¥y y has to

be continued past the threshold s = (m + my)? from s> (my+m,)*
Where it is real (see part (11i) of this section). Let all

amplitudes be continued above the top threshold, i.e.

b

(aond

Then on crossing 2 snd 5

(Vi 17 (s,485) ~3
2'%5) b oo
Yo =° 959295 725 ‘ﬁsh (3.3.5)



where 5 = €55 A,\5 in terms of the quantities in the
appendix to Chapter 2 (here N is a crossing phase, not an
helicity!).

(3.3.5) enables one to express conditions on ¥ if some
of the particles are the same or if they are different, simply
to relate poles in different resctions. In this latter case
it 1s usually sufficient to know that the phase in (3.3.5) is
independent of helicitie

If one of the particles is unstable, say porticle 2, we
are in @ aileans s (3.3.5) relates o qusntity with s = nZ <
(my - my)? to one with s = m3 » (m + mg)?, and it would imply
that the former has a dynamical cut at s = (m - m,)% to
correspond to the latters unitarity cut at s = (m + -.512.
(111) Positive pefinite Hamiltonian

The real analyticity of the full scottering amplitude
sives a definice prediction as to the reality of the product of
wo ¥

. However the reality of the ¥7's themselves is
still undetermined up to a possible factor i. From field theory
Wwe can obtain this factor and thereby give a definite sign to
the Tesidue of poles in elastic scattering amplitudes. In order
to translate this result into the helicity formalism, we temp-
orarily place particle 5 of section (ii) on a Regge trajectory
Which we suppose to be the leading one. Then taking s above
threshold we can make the "narrow resonance approximation” to

2-particle unitarity and assume unitarity is saturated by this
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one Regge pole. This gives at once the desired sign and shows
that for my definitions ¥ ) ) is real above threshold (in
accordance with the approximation the small dynamical imaginary
part 1s neglectea). But our residues accur st s = n below
threshold, and we say that the reality conditions can be token
below threshold by expressing them in terms of states, e.g. of
orbital angular momentum, which are nonsingular at s = (mjsm,)%.
This then says for (m - m)? < nZ < (my + m))?
¥l is real it of 02 o2 = 1
LY 1792 95
ts pure tmoginary 46 0 qF g5 = -1

It moy be proved algebraically, in case the above argument is
unconvincing, that this is identical to the prediction obtained
from Weinberg's Feynman rules"),

3.4 Form Fectors

This may be regarded as an introduction to our work on
Regge theory. In Section 5.2 we considered the smalyticity of
partial wave amplitudes. The analysis of form factors is
precisely the same at the thresholds s = (m, + m)? as that
siven carlier where the conditions are factorizable, and so it
is immediately spplicable to ¥, | . Therefore, in this section,

we will only consider the behaviour at s = O and give some



examples.
) s=0 .

As in section 3.3(11), we introduce the 3-particle M

function. written explicitly we have

- 5= oS _peS ~ 7
ST TR W (.41

"ivats 231

Where 8wl by +p, o ps = O and M hes argumencs
P, = m(0, 0, snef, chof)
by = my(0, 0, =she 3, chof)
Ps = n|5(0. 0, 0, 1)
In field theory we would assume that M obeys the principle
(P). This was a satisfactory sssumption before, and contoined
the same information whatever spinor states were used. Thus

lower-dotted spinor state is given in terms of the lower states,

that we have previously used, by:
Vet = gty Dy (¢ pe ) (5.4.2)

Normally the D matrix gives a polynomial in B:% and the
principle (P) (analyticity in p) is valid for all spinor states
together. Unfortunately in our 3-particle case s = O corresponds

to mg = 0 and a singularity in (3.4.2). Thus we will find



atfFerent predictions s to the behaviour at & = O of
3,0 corvemontins to the nfinite nmber of representitions
of Inb hoackensous Larents grow 1n hich vs muy place particls

5.
‘analyticity of the full amplitude calculated os
8 (3.4.3)
QLML) = (b imity> Cl’.‘;
i oK imi )
We will consider first the predictions of the lower M
function. When my # m, we have
¥ Sedy
sz\] -~ (3.4.4)
2_ .2
where € = sign (m? - n2).
But parity relates A to - A ond o0 we end up with
. |
N I
~ (3.4.5)
i

The contradiction with parity (and time-reversal) of
(3.4.4) could have been expected as the condition of parity
conservation (2.3.11) has a 1/ng in it.

In Regge theory we need only guarantee the analyticity of
the ‘amplitude to leading orders as we llow daughters to take
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care of the nonasymptotic behaviour. Then we find the behaviour

Al
M
2 (5.4.6)

&I
Yo, ~

and as expected the form factor predicts a far more dramatic

venishing at s = 0.

In the case m) = m,, we get results like (3.4.4) but with
rotations by T/2 acting on the indices (see (4.2.9b) ). As
mentioned at the end of Section 3.2, we may introduce some
U say:

new orbital angular momentun states,

IEEN PRAN

S =3
CAMED IR (-
DI

C U85 5% ¢ M=) €T sp U e =ax)

which behave like /5 . Notice we have the familiar totsl

spin s' linear combinations (Section 2.4).

the principle (P) gives, if m) # my,
o7
¥ ~ BN
M o (3.4.7)

~ A=r1
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We see that the behoviour of the spin-flip and spin non-
flip contributions have been exactly reversed, as compared
With the prediction (3.4.5) of the lower M-function. Comparing
With the Regge prediction (3.4.6), they are the same for the
Spin-flip but the non-rlip has an extra vanishing in (3.4.7).

If m ='m, o similar reversal of flip and non-flip behaviour
occurs, when expressed in terms of amplitudes rotated by the
usual equal-mass T/2 w.r.t. ¥y | . This has obvious relevance
for the photon preferring to populate states of helicity one,
and presunably one can prove a similar theorem to Weinbers's"?)
on the physically acceptable Lorentz representations for the
photon.

When doing form factor calculations of p exchange, it is
customary to use an Ay field for the p and invoke the p -
photon analogy to pick out a particular form of coupling. In
fact only this choice (G = G, at s = 0 see part (1i) for
notation) guarantees the analyticity of the amplitufe! MHe will
comnent further on this when dealing with the reaction TN »
w&" in Chapter 4.

(11) Examples

Here we catcutate ¥} Ay for som of the form factors used
in Jackson and Pilkuhn’?), whose notation is used. (see a1sa®>)
for some userul information).

This will be useful when comparing their coupling canstants

and those obtained in Resge theory where ¥agy, is parancterized.
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¥oo =
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ey

Vo » - Ty = Yo = % {5. - fmemi ..;]}
e (vemd)
Yy - Yooy = /e e
T G mem) oo - 3] i
[N)
Y ==V = fmmd e G

Our crossing relation (3.3.5) enables one to extend these

results to cases found by permuting any of the three particles.



CHAPTER 4

Regge Theory of Resonance Production

4.1 Introduction

In the previous chapters we have studied the inter-relation
of the vorious formalisms that can be used in studving higher

spin particles. In this chapter we apply our techniques to the

Regge theory of resonance production and moke a direct comparison
of our calculations with experimental results. The general
methods that we have presented for dealing with higher spin can
also be applicd within the framework of other theories and

problems. These include, for example, the use of the Mandelstam

in the strip

. Another possible
application is given by the attempt to calculate the neutron-
proton mass difference by perturbing a multichannel N over D
system of equations in which the proton is represented as a
N and wN" bound state. Some aspects of the latter problem
are considered in Chapter 5.

We begin this application of Regge theory by giving some

essential formalism. In Section 4.2, we work to leading order

and consider conspiracy briefly. In Section 4.3 we present a

very limited treatment of daughters and nonasymptotic corrections.
Then we turn to the problem of fitting experiment. In Section
4.4 we make some general comments on the experimental situation
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and 1ist some technicel points on the fitting procedure. After
in Section 4.5,

this we deal with some particular reaction
. . .
TN % TN}, 56 and KN % KNp,3¢, in Section 4.6, TN 3 pN
400 K 2 Kiog while 1n Section 4.7 ve briefly consider dowble
resonance production, (KN K'N').
This part of the work has been developed Jointly with

T. W. Rogers, who has considered the last case in more detail
o* .
W > ON], 50 and BN 3 RN, T am grateful

and also wN - 1%
to C. Froggatt for discussions on Section 4.6.
The diagrems and a table of the date used are given at the

end of the chapter. Here I have indicated the number of data
points available and estimated the number of events so that one

can gauge the statistical accuracy.

4.2 Regge Theory in Leading Order

In order to consider the analyticity of the residue functions
int (in this chapter t is momentun transfer and V3 is enersy),
we asymptotically expand a suitable full amplitude. Taking
the lesding order, and assuming the presence of only one (or more
if we have conspiracy) pole at j = % , gives conditions on
the residue functions. These conditions occur at t = O and
ts gt -J)’. We must then see if the full amplitude has
the required analyticity to all orders in s. As in the spinless
case the contribution of a single pole gives this correct

analyticity at the thresholds, but at t = O we will need
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daughters in order to render the nonasymptotic terms consistent
with analyticity.

In this section we will be solely concerned with the
Leading order contribution. There are two possible spproaches.
The leading order contribution of o single pole at § = < to

H, is very stmple and may be written

M) A - e =1m/2(M\=A)
ML Ty e

Tetmee (s/69)" 2.1

AshY]
Yasn¥in
where (a) we have specialized at once to Boson-Boson or Fermion-
Fernion resctions in the t-channel,

(b) our Regge pole has signoture T and scale factor sg,

() H, has been continued from the t-channel by the same
Foute as in (2.2.8) (with s and t swopped),

(d) partial wave amplitudes are defined by (3.2.8) for
complex j and have residue factored as ¥

Badgiagy My
g Finely v beve put
)

«
Yx',x.‘ [ wfaen =] %, (.2.2)
£ leaned Blaned [Ty

Asymptotically the result is in fact equally simple in

terms of #,7>), and in order give a trestment which is indep~
endent of the masses we first consider the amalyticity of

¥y ustng Hy.
Agh, veins Mg



(1) Direct Channel Approsch ()

Recently it has become spparent that the interpretation
s scattering requires some care

of Regge theory for unequal m
due to the singularity of the mepping (s,t) (s, cos 0,) as
0. There have been two main spproaches to this problen.
The fArxtr” assumes the amplitude has a smooth asymptotic
behaviour in a pair of variables, such as (s,t) themselves,
Which are not afflicted by this singular mapping. The second
L1)404) yrices a dispersion relation in t, at fixed s, for the
Regse tern cxpressing it as an integral over its discontinuity
for t > 4m. The integrand is then asymptotically expanded in
s and the integral over the leading order term done explicitly.
Ignoring the possibility of fixed poles in the T plane which
are suggested by the second method (these may be regarded a:

a spectal case of moving daughter poles) both methods lead to
the same conclusionf®) and to the existence of subsidtary (i.e.
daughter) trajectories, intercepting for t = 0 at « - 1, &~ 2
~.. (these will be considered in Section 4.3).

In the case of spin sn appropriste generalization is to
make the same assumptions about an smplitude which has no
Kinemotic singulerities or zeros in t. So & sultsble candidate
1s i, Into which we put 3 smooth (in t) asymptotic behavigur.
This gives in leading order for the customsry route of contin-

uation,
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T A O R S R A P
Notia Bt Bu S-doamd of st

¢
where the Resge pole has parity P and as in (3.2.4) T 7 =4
3T AT | ess
= e (-1) H
st £ sy
a3 X ol XD .2.4)
‘ Asbs 3 Ny 1 S
ana
g Lrsion L esoch
cos - cos X7 = -
! T 3 T3

are the Trueman-wick crossing angles with s taken to

Asymtotically the physical region boundary is ¢ = O

(ve consider corrections to this in the next section) nd so
we must have

lvs + vel

8 g ~ () (4.2.5)

L 1N 74 1)

and on using parity which relates g,  and 5_,  we also

Yty ¥ibz |

have

=y v vel
: S e ~ )



and hence
) [Ps]
gy, ~ (/T ! (4.2.6)
Fst
50 8, , 15 frec of all kinematic singularities apart
from its behaviour at t = O which is given by (4.2.6).

Although the contribution of a Regge pole is asymptotically

simple in By @s in H, Lt will turn out to be more convenient
to parameterize ¥ , directly and so we now §0 on to consider
5A

thi

(11) gro:

ed Channel Approach

The amplitudes g of (4.2.4) gave a very simple expression
of the kinematic structure, but as discussed in subsection 3.2(i)
they do not simply satisfy the nonsense conditions, which, in

potential theory, are

o, ~— (= 3) IR
Y [Nl (G2
~  const I & 9
Af the Regge pole chooses sense, while if it should choose
nonsense
oy o~ JX=3  reran X, . & 2.70)
¥igh, 1 )

T™is holds for J intesral y 0, while if J is o negative integer,
onky ossdality 162 T8,

There have been many discussions lately of the status of these



results in a relativistic theory.,
If the pole chooses sense, these give nontrivial conditions
on the g, which are not easy to satisfy and must be imposed as
extra constraints. An alternative method which we will use,
is to take Y' in terms of which the rules of (4.2.7) are
casily stated and impose the threshold behaviour as extra
conditions.
[LZIENT I
B ¥y, 18 Fesl for ¢ ¢ 0, and more exacely
we may divide out its singularities in the manner of Hara and
Wang as follows.

(a) Top Threshold

Yo~ -"_—HTT (4.2.82)
S T ] .
gm0 ar ceqRes (0

5085

9= 1 ar weqlef (0t -

(b) Botton Threshold m) o my

Y~ L (4.2.80)
M T k(s sm ) .
[ - @enp?y 20

s

q=0 ar  <pqlqd 0P -
s

g1 ar weqfq3 G0t e o




() t=0 m 4m

-
iy~ UF el . (4.2.80)
@
(S M (4.2.80)
q=0 1 xrqlqd (-n)‘")" =1

Q=1 1 ceqfed [RTA J

Only in the unequal mass case at t = O does (4.2.8)
represent the full conditions and in the other cases we must
supplement (4.2.8) with further constraints to remove the
kinematic zeros. Those at the thresholds may be most easily
expressed, as in the full amplitude, in tems of the perpen-
dicular amplitudes of Kotanski [(3.2.5)] . This gives

53 1 .
;5 ST gy ) NG

AL
s

(4.2.92)

usual the negative sign is taken for the lighter

particle at t = (m - mg)?.
In the equal mass case at t = O (4.2.4) immediately

gives
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£5 Y05 7D Gy, (V) e 1)
(4.2.90)

. It - ¥
C B, ~ e sl

as X7= XJ= /2 at t =0 in this case.
Finally we give the conditions on y' following from
invariance under the various dlscrete symetries.
Time reversal has already been token into account in using
the same symbol for the coupling et each vertex. Parity implies

. *1*%5 o0
i, - AR08 wP e LA, (4.2.108)

and if particle 1 = particle 3
3 = . T £ (4.2.100)
By, By
a4 A7 we have formed states of derinite Lgospin T in the -
21
channel, (4.2.10b) has an extra phase (1) 7.
Similarly if particle 1 = 3
(4.2.10¢)

. T .
Bgy = 00T T8

where the Regge pole has G parity G.



(111) consptracy P1)213)

The result (4.2.6), following from factorization or
parity, implies that, however many Regge poles contribute to
the scactering ampiicude, i ~ /¥l *1¥el

seymototscatly
ratner than tne expectes Jx 114Vl

This leads one to
predict a certain behaviour of the density motrix elements as
90, which is not particulerly well satisfied experimentally.
So we may try to remove this theoretical prediction by allowing
two or more poles to collide at the same value of « at t = O,
There are of course many ways of doing this but @ particularly
interesting case is found by taking Just two poles of opposite
velues of TP, Ve must satisfy

W) L, @ et
B A I XA

which may be done by taking

Il
(k) pa3
s~ /% wal #0
K2
~ = o
ana .
(1) (2)

- P o
Son = Shn or oy >

to leading order in t as t - O while the coefficients of /=T
for p, = 0 are arbitrary.



. 70

We will apply this with Regge pole 1 as the T and g as
the amplitudes at the N¥ and wp vertices. In the first case
we mave |p| = 1only but in the second |p| =0 end 1.

But in either case before conspiracy we have

o -y~ Sy = 0y consts

byt sfter conspiracy

KT i T =)=

So before conspiracy, the dominant (i.e. that containing
the particle pole) < contribution to NN = NN, wN =+ pN
and N+ pN behave Like €/, 1, while after conspiracy,
Mike 1, /%, ©. We will only consider the midale case, TN
§¥, qommeitacively, where ders 1s wneicerei in shaps b
conspiracy altars the sapsctad t-variation of the dansity

matrix elements.

4.3 Regge Theory including ic Corrections

In the previous section, we have chosen the t-dependence
of our residues to ensure that suitable amlitudes were
consistent with analyticity in leading order. Me now consider
whether this still holds when non-ssymptotic corrections are

included. Non-leading terms may be classified into three types.
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b)  Threshold effects.
©) t=0and the physical region boundary. This has a part

Near u = 0 and another asymptoticelly t = 0. Both are quite

important.
10 st (see Erratum)

As we are treating the Regge formula with some suspicion,
we must consider whether to use % or z in our formulse. Ir

We wish to avoid Regge poles with parallel trajectories « and

® =1 ..., we must use z.. Al6oz, puts the cut in s associated

with the Regge form at z, = 0, i.e. .

2 = Xn? -t~ @f-ad) F-n)) /¢

Which is more satisfactory than one at s = O (indicated by the
symptotic form). We have therefore used this correction in
our fitting. A proper treatment of this requires the explicit
subtraction of the unwanted discontinuity, and has been given

for unequal mass scattering by Goldberger and Jones®),
11) Thresholds

As long as one uses the brick due to Mandlestam of
aropping the part of P ec ¢! and keep only the ¢ portion,
(this 1s necessary to apply Regge theory below Rej = - §) the
nonasymjtotic terms of the usual Regge form give a full amplitude

the restdue functions

with the correct analyticity, es long

have the form determined asymptotically. This statement is



only exactly true at the lower threshold, as unitarity is

well known to require a condensation of poles at L = - 1 at

the top threshold. This appears rother high in the § plane
(L.e. § = max(s) + 85, 8, + 5,) = 1) for spinning particies

but we will ignore it.
The thresholds become rather more interesting when in
part iv) of this section we add daughter trajectories with

residues determined at ¢ = 0,

111) £ = 0 and the Physical Region Boundary: Direct Channel

Method
An asymptotic behaviour which is consistent with analy-
ticity, for fixed s, and all t is obtained by placing

P PPy Pivr 1
Y % SR

S |asymptotic form

equation (4.2.3) + any corrections of O(s'

which are nonsinguler in t

This is unsatisfactory for two reasons:
(a) It gives Regge poleSwith J differing by integral values

for pll t which would not be sensible in some potential theory

limit (and relativistically summing ladder graphs does not give

parallel trajectortes$?)r$4)),
This is

(b) It does not give the correct amalyticity in s

<) s



probably not ususlly Important, but becomes so if the Regge
pole creates a particle at t = m’. Then the formula (4.3.1)
by no means ensires that at ¢ = m? the residue in H hos an

s dependence o< 03(9,). This enhoncement of the nonanslyticity
in s becomes particulorly spparent for the T Regge pole and

I have verified on the computer that, whereas at s = 5 Gev®

the natural non-asymptotic corrections are quite small (see
Section 4.3), formula (4.3.1) gives results differing by 50
from the asymptotic velue.

A more sensible method, which answers the first objection,
ney be found in the O, symmetry approach developed by Freednan
and wang®2), This model 1s only applicable naturally to equal
mass scattering but may have a more general use as in @ Wick
ses become equal in poirs

rotated pethe-salpeter cquation the m
s 0. It sccns more complicated to spoly then o siapie
Resse mdel, other than Just st ¢ = O, s it only applics
vithout symmetry-breakins to the coefricient of /70 11 V1l
A vevoring, e s s
cxperinental tests on its predictions on the ratios of residue
functtons at ¢ = 0, following from placing the particle Regse
poles tn derinite O, representations, before deciding whecher
1t hos any fundamental signiiconce,

e second abjection msy be avercoss by using avariont

remove the singularities in s and t

amplitudes as the:

simultaneously. However we saw in Chapter 2 that they contained



no more information on the amalyticity at t = O than the
principle (P') and so.there is no need to use them in a
theoretical treatment of daughters snd the behaviour at € % 0.
s no general éimple formula 1s known for them they are not
even userul as a convenient phenomenological device.

iv) t = 0 and the Physical Region Boundary: Crossed Channel

Method
The method of the previous subsection generated results

we discussed there,

which were non-singular ot t = 0. However
they had certain disadventages and so we will now study the

same problem keeping rather closer o the natural Regge form.
For a1 mass values, f, s o suitable smplitude to study
analyticity at t = O and on the physical region boundary.
However in the case of UU scattering we can use (cf. Section 3.3)

In -]

RIS VERS
B2 (/) (4.3.2)

where

€ = stsn [d - nd) @2 - )]

Which 1s non-singulor at these two points and more convenient
for Regge theory.

We will say something later about UE and BE scettering.
The full contribution of » Regge pole to f, is



4.3.3)

© R (A-whex, m2a;

where the second term is just 1/the asymptotic value of the
third tera and

IR [ E AW

P_— m..{\ x,} m{|x , |x,|}.

as t 0 foralls, z-€ isa satisfactory

Because z > €
quantity to appear and (£:€) and t are @ pair of variables non-

singularly related to s and t as t > 0.
Working to 0(s® 1) the hypergeometric function becomes

(4.3.4).

which has a 1/t pole as t 0. This must be cancelled by one
or more daughter trajectories. In order to make the study
nontrivial we will suppose there is but one daughter trajectory
(st § = « - 1) which has factorizable residues, It therefore
must contribute to f, & term which is proportional to the 1/t

part of the ,F) and hence adds to (4.3.4) & term
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IR aTew
where from factorization we have || and not X . so the
Joint contribution of parent and dsughter ot t = O may be

obtained by replacing (4.3.4) by

L B O- b
1 s “.3.5)

f, must be non-singular ond there is still a 1/t in (4.3.5)
1T X negative. However factorization of the parent trajectory

implies from (4.2.6) that as ¢ 0,
Af N positive

if N negative

This behaviour when multiplied into (4.3.5) gives a non-
singular forn to f,.

In terms of ' the parameters of the daughter are given
by

. (a) ()
« (0 = o« 0 -1
(a) ®)
< = P

(d)
L

(4.3.6)
(to be continued)



(4.3.6 continued)

PG L L (as ¢ > 0)
Co e TN Ty T a
where

€, = ston (82 - o) (and e have given the porent ang
daughter the same scale foctor »
P

o
Towork to order a2 and lower 1s only well defined for
the most singular part in t, s the other singular terms are
affected by the difference between the daughter and parent
parameters away from t = O. Thus (4.3.6) cannot hold for all
© as it contradicts the threshold benaviour ot T, = 0. (This
occurs even in the spinless case when %' is non-singular at
thresholds). However one can essily give a formal extension
of the analysis to all orders in s by using the identity.

(Andrews and Gunson*!), equation (13.1) ).

(A=) r-w)p
1 -
Z # e el PUSUS T S

-2xsorx)
which 1s simply o complex form of the C.G. series for
Ja Jp
it O Gaeg, @0 Uty = %)

Pputting x = 2/(1 - € z) and then multiplying through by

(-1/x6)°™" we get the sum of parent pole and daughters on the



8

Fight hand side equal to the, well-behaved as t 3 0, function
(52 - 59" . s, as for the rirst daghter, only works
exactly for the positive X but, as before, the asymptotic
Vvanishing of f, %ensures that the deughter residues determined
for N » 0 are sufficient to ensure analyticity for » < 0.

We had to use the above device rather then expand (4.3.3)
further as the residue of the second daughter is determined by
terms from both the parent and the first daughter.

S0 the residues of the daughter at «(P)(0) - r are given

Cayg -« )"
(@) () Il -« 13 x] R
Ty

T
- PR [

AgeLn we have one and only one daughter trajectory at
o - r (r integral) and if (4.3.7) held es identity in t (and
the daughter trajectories were parallel to the parent away
from t = 0) this would ensure that f, had no singular terms.
However as discussed above this is impossible and the above .
analysis only holds for the most singular term in t.

We will now consider UE and EE scattering. UE scattering
seems the most difficult but a treatment to order s< 1 may be
siven as follows.

We now state our anelyticity in terms of the Trueman-Wick
crossing relation and the non-singularity of A. As we are

only intérested in t = O and the physical region boundary and
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not the other t thresholds we may introduce the total spin s',
which as mentioned before (Section 2.4) always diagonalizes
the behaviour we want here, and simplify the statement of

analyticity by putting

Mgt .
moemy s Mo \:} B ;\_:n.;,n-x-m
S
g e
whien satisfies 4.3.8)
EYEPRY
2%7 M i
B () )
KIS

has only the physical region boundary behaviour Ibcoso'.l
where X may be token as X or X; (or X, + X for that
matter). Because in UE scattering, the physical region boundary
differs from t = O by terms proportional to 1/s’
[ cor o 0 TSP Ly e cepracea vy N 7 ol
for the purposes of our analysis to 0(s*™).
From (4.2.9b) it is useful to introduce, at the equal mass

vertex, the perpendicular amplitudes

v ) sy -iv/z
B e T e o oy 7
h (4.3.9)

. st
Yy Oy 7D



wien ¥y,

Instead of z

€ whieh was an appropriate variable in the
UU case, it is now sensible to expand in terms of z. Then 1\“
we assume that there is sgain only one daughter whose residue
at the unequal mass vertex Ls given from factorization by
(4.3.6), we con show that the daughter residucs at the equal

mass vertex are given by

wow

Pt e G-l

Jxlr,q-o s ] (parent)
5
dor 1 2o

. u.
G g™ Signepo
InD” St (4.3.10)

o tao

While for p, = O the daughter can have eny residue as long as
it vanishes like /% to cancel the 14T in y'{®}

It may be verified that the equal mass conditions ( (3.2.11) )
are also satisfied to 0(s*™) by the some daughter with factorized
residues given by (4.3.10).

As an example we con toke the well known case of nueleon-

nucleon scattering. In terms of the perpendicular and s' notation,

which is rather cumbersome in this special case, we have three
types. of couplings:
1 oxpes:cEnees
8' =0  one coupling which is irrelevant here
o (4.3.11)
s'=1  one coupling =0

1 - '
plepteo1 g



I wp=-:cntret
s =1  onecowling p° =177 ¥}
. )

plepteo
‘m o xpe-:ontes-

s' =1  one coupling

(4.3.11)

P =0
ple-ptayy /7

tere 'y stancs for
, Sy
e h) G
Zx.‘::f“‘ M) ) .

for s] = 1 and so are directly the residues to be inserted in
the standard relation (3.2.10).

Our rules (4.3.10) show that only one type has a daughter
at § = & - 1 with singular residues. This is type I (associ-
ated with the Ay or D mesons) with a type IIT (w,q)
daughter. This is a particular case of many solutions known

umption that there is only one dughter

to (3.2.10). our
covering all reactions has picked out a unique solution.
This method of tackling the UE and EE cases seems incapable

of easy extension to 0(s€"%) and lower. Also it makes it

appear rather miraculous that the daughter has factorizable
restdues, while in fact this should have becn expected. Thus
the only reason UE and B reactions are different from the

. 2 2
e s that'the thresholds (m, - mg)?, (m, - m,)
Now the threshold conditions

general UU o
move down and coalesce with t = O,



in the UU case required no extra daughters and so one would
not expect extra ones to be produced when t = O happens to

coincide with £ = (m - m;)%. This can be made the basis of
a quantitative study of £ and UE reactions as follows. Thus
take the UU expressions for the daughter residues and write

them in terms of amplitudes which have no kinematic singularities
or zeros at the thresholds. As emphasized before, even in the
spinless case, this is not automatic from the natural factors
of (4.3.6) snd (4.3.7). Then letting my + mg we would achieve
the correct results for UE and EE scattering. This is straight-
forward for the most singular term in t and although one does

not know an explicit general solution it is not very difficult
in practice for NN when we only need s' = O and 1.

The above analysis may seem rather complicated but in
practice it would probably be sufficient to include non-

asymptotic terms only if they were singular compared with the

parent, and destroyed the asymptotic vanishing of f,. In our
model which makes the arbitrary assumption of one daughter ot
each « - ¢, this destruction occurs in a controlled way.
Namely @ term asymptotically proportional to tlx loses one
factor of ¢ each tine you go down one power in s until you
reach s~ > after which the further non-asymptotic terms
are not more singular. In snalysing the experimental situation
one can bear In mind that non

ymptotic terms may be more
singular than the sbove model suggests.



Finally we note that the simple prescription of just

dividing out the physical region boundary behaviour

N (4.3.12)
asymtotic

although consistent with analyticity at ¢ = O would lead to

non-asymptotic contradictions with analyticity at the thresholds.

As experinents are conducted nearer the physical region boundary

than the thresholds this may not be important. The natural

Regge non-asymptotic terms restore consistency at thresholds

and in fact make the corrections away from the physical region

boundary smaller. Thus (4.3.12) gives corrections of 0(1/s)

relotive to leading order in physical quantities but as

« LR
a3 = Asmwtic tom {1+ |5
Ay -
(where asymptotic means ssymtotic in z not s, here see sub-
section (1)) the non-asymtotic correction behaves like a pole
of opposite <P to the leading order and so does not interfere
with it in calculsting physical quantities. So the only 1/s

correction is the daughter-leading order interference.

4.4 Experimental Fitting

(1) The quantities which we must try to fit are:
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average over initial
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and the density matrix elements. These are usually referred

to a set of axes popularized by Jackson, and

Lo (4.4.2)

where

~ . NN, J
DI L A

[ w

for particle 3 decaying while for particle 4 the formula is
the same with 3 € 4 but without the factor (-1)™™™. We must
be careful about the definition of our y axis. I have taken it

atong pS“™ x pS°™ for botn particles 3 and 4. Everybody
follows this procedure for particle 3 but for particle 4 (which

W11 be the N 30) there sppears to be sone confusion. The Ki"
C.E.R.N. experiment and Jackson and Pllkuhn'”) make the opposite
choice but T have assuned that the other exerinents have made
ny cholce. The sign of Re g, is altered on cranging the
atrection of the y axis and s this is smal, little qualitative

difference will be made to the fits if my assumption is not



correct.
AS Pt 18 given by t channel amplitudes it is strongly
affected by their kinematic singularities (especially for the
N*) which may obscure the dynamical information. This may be
en argument against using this particular set of axes. Thus
we saw earlier in Section 4.2 that the simplicity following
from a single Regge pole exchange was as easily stated in terms
of H as H,.
(i1) The reactions we will be interested in and some of the
Regge poles which may be expected to dominate are given in the
table below.

Reaction @ -
N >Nt p (gn
KN > kN p P Ay not " allowed
g A

.
TN pN A, AL
sy’ ? [

e
ERIN P A A B,

Type.1 Type IT Type 111

N - pN Appw
N 2 KN AprfiPiPl, A D B




The division into the two values of <P is useful os

from (4.2.10a) we see that in leadin; order poles of opposite
<P do not interfere in either de/dt or density matrix elements.
Also when: there is an NN vertex the three types of (4.3.11)

do ot interfere.

We notice that, except for the T, the poles of high

intercept . have TP = +. Experimentally this is born out
in our reactions except at the lowest energies where we

definitely need more TP = - th

the T provides. This could
either be due o o failure of Regge pole theory (e.z. the
background integral is important) or that the A,D and B mesons
with probably somewhat lower intercepts are becoming lmportant.

I will usually consider all data above p ., = 2 Gev, which is

an unfortunately low linit but the most reliable experiments

Lie in the 2 to 3 Gev region. The errors on the density matrix
elements are especially large at high energies and fits involving
only the high energy data are lorgely determined by de/dt. At
Lower energies we have much more nccurate density matrix giving
large contributions to X2 as they are very sensitive to the
~exchanged <P

In the non-charge cxchange reactions such as Wi + pp

there 1s the well known forwerd scanning biss, which means

that de/dt end the density matrix elements are unrelisble for
small t. I have deleted all such suspleious points slthough

it would appear that some experiments have made the necessary



corrections. -

(i11) Characteristics of the Exchanged Poles

The density matrix elements for TN N and KN - K’

. are espectally sensitive to the value of TP of the exchanged

pole as will be described in more detail in Section 4.6. For
N* production the density motrix elements are not so critically
dependent on <tP. (See Section 4.7). Also the density matrix
elements will enable one to detect if a pole chooses sense or
nonsense when it goes through zero near t = 0.

However there is one gencral comment that may be made about
the shape of de/dt produced by these poles. Thus T has o
nearby pole; and p o reasonable slope «f, quite a near pole
and a strong spin-flip vonishing at t = = .6. So these two
poles produce do/dt's which fall off rapidly with t. « ‘may
be similar but the evidence is less conclusive. These conclusions
will be somewhat modifies-for p and w in KN+ K'N and

N > N where we have only a spin-flip coupling ot the meson
vertex and the associated t = O vanishing can give a broader
4s/at. A, and P' however produce a characteristic broad cross
section, as the lack of dips in their reactions may be because
they choose nonsense at s = O so that the vanishing (4.2.7)
cancels the ghost and there is no residual spin-flip vanishing.
(1v) T have written programs which fit the experimental ds/dt's

and density matrix elements to the leading order formulae for

an arbitrary number of poles in the reactions of interest here.



The restdue functions 3/‘ ) ere paraneterized as poly-

by @ choiée of sy, X was minimized with respect to the
coefficients of the polynonisls by eveluating the derivatives
in the ususl way. The threshold constraints (4.2.9a) gave
Linear relations among these coefficients which were conveniently
incorporated using Legrange multipliers, The parometers <,

4 and s, for each pole were fixed during each fit.

Tn the next three sections we will describe the results
of these fits for the three classes of reactions. e can
summarize the conclusions by saying then is in general reason-
able agreement for any given reaction. The strong correlation
in the deternination of paremeters from any one reaction renders
tests of factorization difficult. However there appear to be
some significant differences in the parancters necessary in
aifferent reactions (espectally for the ) which may indicate
the presence of cuts in the § plane.

Lastly I should say that there have been several Regge
pole analyses™) of the reactions of interest. I can add no
more to this work on the energy variation of &y, (see
Morrison'®)) and do/at. However the previous work seems to

contain technical errors especially in the treatment of density
matrix elements.



45 TN TN, and KN 9 KNG o
() general

There are four couplings at the RN' vertex into which
we may coalesce the single W coupling. At t = (my -my,)?
2 .09 Gev} there are from (4.2.9a) four constraints while we
Will ignore the two further constraints at t = (my + my,)%
The closeness of the threshold and the number of the conditions
ould scem to make them quite important. In order to illustrate
the constraints, suppose that the helicity double-flip term
¥l3/ 5 = O- Then the remaining residues ~ constants at
(my - my,)? (previously they ~ 1/[t - (my - my,)?) and savisty
the one relation

4.5.1)

3y - Yy s Yy
This clearly indicates that sithough the hellcity-rlip
torms vanish at ¢ = 0 they are related in megnitude to the

non-flip term at ¢ = .09. Thus we should not be surprised to

find evidence for strong spin flip terms in the density matrix

elenents.
There are three density matrix elements measured experi-

mentally: py, Reps ) and Re s (where the index Ls 2m not

m).
If we take Y{y = O and assume the other residues are

sufficiently constant to be able to apply (4.5.1) away from



t = .09 we find

P33 = A Py = A py =0 (4.5.2)

which is the well known Stodolsky-Sakurai distribution which
we sce is to some extent determined solely by kinematic effects.
In particular this distribution and a turn over in do/dt as
£ 0 (1.e. ¥y, = 0) are kinematically realted.

As pointed out by Bialas and Kotanski if only one pole is
exchanged, we have

2 2
$33 P = (eps)? + (Reps ) (4.5.3)

This is well satisfied in both reactions although there is
insufficient published information to evaluate the error
properly.

Finally we note that non

symptotic corrections are
expected to be quite small because one vertex s spinless and
the daughters have residues which are no more singular than the
leading tem. Also, even at p, . = 1.59, the physical region
boundary differs from t = O by only .00l Gev, (for =N = wN').
(11) w'p o wOy***

Of the data used only that st 4 Gev has reasonable statistics.

In this reaction we only have one important pole exchanged:

the p pole with wg== .58 and « § 2= 1. The density matrix

elements show an increasing and large amount of spin flip terms



45 t moves away from the physical region boundary, which we
expect from the arguments in (i). Thus one might expect the
Stodolsky-sakurai assumption ¥fy = O to be unnecessary and
that the situetion could be described by simple constancy
assumptions subject to (4.5.1) (or more correctly, the full
conditions with ¥ 13,y £ 0). However the data show a dip
in de/dt in the forward direction which is extremely difficult
©0 it due o the sharp fall off of the § exchange contribution.
Thus all my fits needed Yy to be much smsller than kinemati-
cally expected and gave theoretically a fractionally larger
$35 than the experimental value for low t.

The strong spin flip terms lead one to predict a dramatic

dlp 1n the cross section at t= .6 where the p trajectory
passes through zero. Unfortunately the best dip in.the data
occurs at ¢4 -.35. W can imrove the sgreement here by
invoking the p' trajectory, which Ls slready needed in one
model of WN charge exchange, to fill in the predicted dip.
The p parameters were insensitive to the introduction of the
§' 85 long as you kept the intercept <o & .2 so that the

energy dependence of the data determined the p os the dominant

contribution.

The 4 and 8 Gev data had 37 data points and with 3 degrees
of freedom for the g and 1 for the g we found a  X?
between 40 and 50 (depending on o and the p' parameters).
Flgure 4.1 shows a typicel fit to the 4 Gev data.
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From the encrsy variation of o, the lover encrgy data
appears of suspect normalization. Allowing de/dt scale factors
determined at 3.54 Gev to be = 2 and at 2.75 Gev to be = 1.5
we had a X2 from 80 4100 on a grand fit, to all 80 deta
points, using the same number of theoretical parameters as
above. This is a measure of the poor statistics of the lover
energy data rother than the applicabllity of the theory at low
energies.

The important nature of the four kinematic constraints
might lead one to expect a dependence on the mass of the N used.
on altering my, to 1.15 Gev (so that (my - my,)? = .05) we
found no change in X2 as there were no density matrix elements
for small enough ¢ for this shift to be significont. However
1t may be significant that the kinematically expected value of
¥y Socs down, after this mass change.

(111) K'p = KON

In this reaction p and A, are expected to be the dominant
poles but from SUs and the N > TN cross section the A, is
expected to be dominant. S0 we can first-try a fit with just

Ays ond os discussed in Section 4.4 we have an immediate
qualitative explanation of why KN  KN* has a much broader
de/at than wN + wN". The experimentalists have already done

an anelysis of the energy variotion of this and found o = .4

.22, which is excellent, but obtain also the unfortunate
result that o

=172 4 .33. S0 we found for the A, parameters
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o= .35 b= .34 rother bad agreement but for «j = .6
(the density matrix elements imply that A, must choose nonsense
at % = 0 for tnis large slope) there is a great improvement,
although the t = -.3 p,, = 5 Gev data point was still too
large theoretically (by three standard deviations). Thus on
50 data points and 3 degrees of freedom for the A, we found a
X? = 130 in the first case and X2 = 90 in the second.

We then added g exchange with porameters determined from
my WN > wn® analysis and with its SUy ratio. This leads to
roushly equal § and A, Contributions near t = O but with the
rapld p fall off and broad A,, the A, dominates away from
t = 0. This reduced X2 by about 10 but it did not alter the
systematic disagreement discussed above. Increasing the
contribution led to a rise in X2 due to the theory being too
large for smell t. So one may say the data is consistent with
a p contribution ranging from nothing up to 1.5 times the SUy
prediction.

If the rapid fall off with t of the 5 Gev experiment is
confirmed at higher energies it would suggest that the anount
of p exchange has been underestimated in the sbove analysis.
In this respect we may note that the similar reaction TN =

N which only has A, exchanse shows the characteristic broed
cross section in the data"?) at 8 Gev.

The data was consistent with A, parameters rather similar

tothe o (L.e. small Yiy ¥!;/, ; in sgreement with the



Stodolsky-Sakurai prediction) but reasonable fits can be
obtained without this feature. Whereas the p can have
sensible sy = 1 the A, needs a small value sg= .1 in order
o pull 1ts de/dt down for large t. The exact value of s,
depends on -6 ‘and whether the A, chooses sense or nonsense
when it goes through zero (either was consistent with the
density matrix elements for the small slope «f = .34).

Flgure 4.2 gives the results of one of the fits,using A,
only,for the 2.97 Gev experiment.

4.6 wN » pN and kN 3 K'N
(1) general

This class of reactions have the following features:
(a) Three chorge states of which the charge exchange reaction
picks out T = 1 exchange. In both examples the two non-charge
exchange reactions, e.g. ¥ 2 p¥p, have cross-sections which
are compatible with equality.
(b) There is a lerge amount of date although not over a wide
range of energie

(€) The coupling structure at the two vertices is summarized
below,



Nonconspiracy Conspiracy
=2 (a(-1)"|
Meson Vertex| NN Vertex [Meson Vertex|Ni vVertex
+ + T |¥j=v i~ TE[¥ =¥ ~const [ ¥ ~const |¥], ~F
v, ~ ¥5=0 |¢)~const
o+ |

¥j=v:

S| - ||y ~conse

¥} ~const [¢]~const

¥o~IT |¥i =0

The structure of two couplings at the NN vertex for a type
I pole con be ignored initially as we have no polarization data
and always sum over the NN indices

(d) There are again three density matrix elements measured
experimentally: oo, Ré §) 1, Re §)0-

From (4.4.2) we find the ususl results



TPEr S Plo=Poo =0 Pn =P 70

: @.6.)
=t goow¥gTr0 gy =-py ¥ 0

This implies that if we form P, Py~ Py_y and )1+ 1y
we pick out the relative (leading order) contributions of the
<P = -, Y% wp =, %% ana P =+, ¥}? couplings respectively.
The higher energy data have too large errors to make this very
useful at the present although plotting these out does not
contradict one's expectation of their encrgy dependence (e.s.
TP = + having a higher intercept than TP = -).

The above holds however many mesons are exchanged but if
only one TP = - Regge pole is present we have analogously to

(4.5.3)
$oo (o1 - $11) = 294 (4.6.2)

e experiments satisfy this to within their internal
inconsistencies. (The 2.72 Gev 9%n data badly violates it
but the 2.7 Gev data ogrees well).

" Now let us consider the expected ¢ behaviour of the density
matrix clements. As usual we take ¢ = O and the thresholds
separately and begin with ¢ = 0. As we have an US case Hy is
singular at ¢ = O but we can overcome this as the equal mass
Lndices are sumped over. Thus we can introduce the Trueman-

Wick crossing matrices into (4.4.2), s0.that .. is given
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by the same expression but with the NN indices belonging to

the s not the t channel.
in (4.3.8)).

(We also used this partial rotation

The hybrid amplitudes now appearing in the

formula for § .. have the advantage of only having the physicsl

region boundary singularity in t.

S0 we find the following

behaviour of the density matrix elements at t ='0 and the

physical region boundary.

Bxact Norcans
General[spiracy| W noncon- [conspiring| conspirator
Result | Regge | spiracy -
Resuit
$oo [const| const | const | t/(t-n®)? | e/(e-nd)? o
$ou [stnfel ¢E | &3 [/ end)| S/ (en) °
fiafsino ¢ v v const -
L contribution
at e =0
$uy | const| conse | ¢ « const -
L contribution
at e =0

I have appended the nonconspiring and conspiring behaviour

for the T and put in its pole as this occurs at essentially

t = 0. The observed density matrix elements are of course



p= §/wy -

We notice that the behaviour in the presence of conspiracy
is the most singular allowed while in the nonconspiratorial
case we have.an extra vanishing in §ou and $yy. ond vouid
expect 9o, to be small and  pog = 1= 29, to be larse
near t = 0.

Now consider the thresholds. There are no conditions at

the meson vertex for the TP = + Regge poles to satisfy. let
us paremeterize the W couplings at the meson vertex by
b
13
) . (4.6.3)
L e

2 wiich are in our réactions

We have thresholds ¢ = (m, + m)

wN S PN t = .4, .8 Gev'

KN > KN t o= .16, 1.9 Gev
The amplitudes of (4.6.3) must satisfy there

A= Tt (4.6.4)

where
For < -/ « A8 4.6.5)
(4.6.4) is interesting as it relates the sign of A and B

which on making minimal constency assumptions and substituting



into (4.6.5) sives a definite sign for oo,
2 gives as %<0 in the

Taking just t = “‘l = my]
physical region, Po; » O. If you allow A a Lineor variation
in ¢ ond apply (4.6.4) at both thresholds you find pg) < O
but in any case it is small being proportional to /¢ (t-m2)
~ 0¥

However if the T suffers conspiracy o, s proportional
to (t-nd)//=¢ and for small t is large and predicted from
(4.6.4) to be negative whether one includes t = (n 1 )% or
Just ¢ = (my - m5)®. OF course by alloving the T residues
extra variation one can obtain either sign in this case as well.

Finally we note that the conspirator itself played little
Fole in the above discussion of ) to which it does not
contribute as it has no helicity O coupling. Indeed it does
Rot Interfere with the w and only shows up in @), where it
8dds constructively to the W to make g smaller in the
forwara direction, and in §, ), where it adds destructively
to the T to ensure ) ) has the necessary vanishing at t = O,
Also note that the conspirator has its dominant contribution
as spin flip ot the NN vertex and so we may ignore its inter-

ference with other TP = + mesons, such as the w , whose

most important coupling is non-flip.

(11) =N o
Here we have so much data that I have been forced to choose

Also to save time on the

between those at similar energies.



100

computer in large fits I have combined successive bins to get
ones about .1 Gev in width. This reduces X* as it reduces
statistical fluctuations but increases the ratio X2/degrees
of freedom. Also the width of the p meson produces “much.
greater systematic differences in o, ) than the statistical
accuracy of the experiment would sugsest. Thus it proved
necessary to allow de/dt scale factors in about one fifth of
the experiment:

1 tried three types of fit:
(a) First I took all the data with pj, % 4 Gev which gave
120 data point

one dirficulty 1s the 8 oev % experiment
WhLCh has in two experiments ., Verying from .24 to .39.
Theoretically we do not expect the total cross section to be
greater than .18 and so this data had to be allowed a scale
factor which turned out to be rather large. The T dominates
this reaction, e.g. at 8 Gev for w¥p »p¥p it is 2/5 of the
cross section {n 0y t > - .1 and % that in 0 t> - 1. So
e must decide on what o add to the w and I tried fits with
WAy i w5 W, Ay T LW, Ccoond T,W, c, A
where ¢ stands for conspirator. The first two fl te were
unsatisfactory giving X7 > 180. The 3 and 4 pole fits
(although of course the conspirator parameters are determined
at t = 0 and 50 do not represent much extra freedon) were all
atisfactory with X2 from 140 + 150. There is insufficient

data to get conclusive evidence for conspiracy from the density
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matrix elements olthough p o is always negative and the dota
agrees well with the conspiracy predictions, The nonconspira-
torial fits were also good but did not represent a smaller
number of paremeters as the T residues required extra voristion.
I have always made the conspirator choose nonsense at X° = O
%0 a8 not to produce a particle, and usually given it a slope
of .5 although fits without the A, preferred a smoller one.
ne point of interest is the w parameters. ALthough this
is the dominant ‘TP = + contribution the data is most insensitive
to its encrgy dependence. However, whether it chooses sense
or nonsense, its contribution should vanish when «”= 0. Tnere
18 no perticular dip in the data until ¢ = = .4 when there is
some levelling off of de/dt and g, ) which is suggestive of
2w dip leavened by a conspirator or A, background. (This dip
made fits with only T and w unsatisfactory). I have tried
fits without compelling the w to vanish where  « = 0 but
allowing the residue function a linear variation in t. In many
of these fits the residue function chose to vanish at t = = .4
and so T have taken «% = .4 and 3" = 1. (This goes through
the w pole and has an intercept in sgreement vith the t = O
N nd KN elastic scattering analyses). Dut see the erratum,
ne unfortunate feature of oll the fits was the small scale
factor (.1) preferred by the I .
(b) Encouraged by the above results it wes decided to include

the lower energy data. But first the three charge states were



considered separately. This produced the expected resuits.

$7p and p*p needed similar parameters but P“.. needed much
less TP =+ exchange, The small value of poo in the %

daa seens to indicate conspiracy bt the agreement with tne
density matrix eloments s inferior in all mdels (slthough chere
are serious discrepancies between the 2.7 and 2,72 Gev data).
Unfortunately I have ignorcd €° contamination which might be
expecteﬂ”) to produce some difference in normalization near

€= 0. Tese runs weeded out experiments of inconsistent
noraslization and equipping these with scale factors we then
combinea a1l the dsta.

(c) On the combined data over all energies we found good
agreement with de/dt. Unfortunately there is quantitative
atsagrecnont in the experimental density motrix elements at
2.7 and 2.72 Gev. In the y'p state the theory agrees best
With the 2.72 Gev data which shaws p, | increasing with ¢ but
dropping avay for ¢ = - .4 in sgrecaent with the w dip.

Te 2.7 Gev data shovs & consistencly lover p,_|. However in
the p%n state we agreed better with the 2.7 Gev data.

" Fita were better vith conspiracy as they gavé a lower o
and o better smape for po . Hovever ss the high enersy data
vas consistent with no conepiracy this could be the effect of

ymptotic terms which may be expected, from our earlier
discussion, to destroy the predicted extra vanishing of P .

Our model did not give an s % ! term capable of, this but the
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Ay daughter has singular residues and is of type III and can

interfere with the yr.. Still one must say that the data is

consistent at present over all energies with conspiracy.
As the theoretical p, ) was too high at 2.7 Gev (although
satisfactory at 2.72 Gev) it may be that we are wrong in
attributing all the deviations from w exchange to TP = +
mesons. The inclusion of the Ay improved X2 somewhat and gave
abetter ) \; the Aj daughter will also lower P, .
On 270 data points typical values of X * were 540 for
T, w,c and 460 for W, w,c,Ay AL ADATL from o,y there were
no systematic differences between theory and experiment and
bearing in mind the increased statistics of the lower energy
data the agreement between theory and experiment seems as good

at low as at high energies. This is perhaps because non-asymp-

totic corrections to T exchange are small.

In figures 4.3 to 4.5 we give typical fits to de/dt and
the density matrix elements at 2.7 and 8 Gev.
(111) k¥ 2 KN

InwN 5 pN we have a fit which Ls very similar to the

absorptive model. Thus we use the some dominant poles and
pOssibly our conspirator represents the cut given by absorptive
corrections. However KN & K'N is more interesting in that the
dominant pole is not that used in the absorptive model which

has v ond w exchange. In both models T exchange is a

much smaller fraction of the total cross section than in



N > pN but in Regge theory the w cannot have a large

contribution as the experimental de/dt shows no evidence at
present for a dip at t = - .4 Also SU; would suggest the
W 1s small but if the w decides both to violate SU; and

]
not to vanish when  «”= O (this does not contradict
analyticity), T have verified it gives as good a fit as the
model to be described and Lt certainly has a more satisfactory
energy depenticnce. Thus one would expect P and P' to be the
other important poles. From exact SU; P exchange is forbidden
while P! (associating it with 1°) has a reasonable coupling
which ought to be larger (from the N vertex) than the P
(associated with the £'(1500)) which has a lover intercept.
The dejat distribution is rather broad sugsesting a B cheosing

nonsense but unfort.

tely the energy variation of oy
shows a 1/62 behaviour.

Now let us consider the three charge states separately as
in contrast to wN 5 N they show significont differences.
(a) K'p 2 k™p

The experimentalists have done a Regge type fit to their
data finding an effective o, = .26 + .27 but this includes
‘the w-contribution which is, for example, at 2.97 Gev one half
the totel cross sectjon in 03 t > - .1 and one quarter that in
0>ty -1

An Interesting feature is Py, which is even positive in

some experiments and so in sccordance with our previous discussion
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fits with o conspiring w were hopeless. Thus I have tried
some >nmple W+ effective TP = + meson fits, On 105 data
points we had satisfactory fits for' o = .2 and .4 with

x_z == 160 and all the disagreement at lower energies. For
g = 169 (P') X2 was about 20 higher,

It is perhaps significant that this is the only reaction,
out of those I have considered, which prefers nonconspiracy as
it is also tne one that, due to a lack of direct resonances,

n

least absorptive corrections.

() gharge exchange K'n 2 k%'p ___Kp 9 K%

For the exchanged poles I will consider, it requires

§ - A, interference to produce a difference between the cross
sections for the two charge exchange reactions and this will be
a small effect. Thus from isospin conservation the T is much
larger than for K'p » K™*p and the previously dominant T = O
mesons do not contribute. For example, even ot 10 Gev the T
and combined TP = + contributions to @, . are roughly
equal.

Asin wp o+ §%,  pog is rather small and so, unlike
K"p, conspiracy is definitely favoured. The § @nd A, both
give rather small contributions due to their weak N coupling
but the insufficient date ‘and the effect of the TP = +
conspirator obscure any attempt to find a preference for one or
the other.

The shape of dey/dt at 4.1 and 5.5 Gev is rather broader



than expected theoretically (indeed all three charge states

prefer a larger scele factor (.25) for the 7 than wN & 1l
but this may be an effect of the nearer threshold) while the
cross section at 10 Gev is about 30% lower than expected.

The variation of the density matrix elements with t is so
different st 4.1 and 5.5 Gev that no simple theory could fit.
them.

) Kpak'p

This charge state contains more data and a-larger energy
range than the other two and accordingly I have attempted more
fits (70) than in any of the other reactions I have considered.
$10 15 negative for small t and although conspiratorial fits
are satisfactory they prefer a smoller ratio ¥}/¥
thon for wN > BN even when you take into account tne different
threshold positions. However the dats is compatible with as
large a conspiracy ss in wN > pN.

As we mentioned before the enersy dependence of &
Finding the
paraneters from a fit to all the data we subtracted off the T

does not suggest the high intercept of the P'.

and then fitted the remainder to a form proportional to
o effective ¢4,

0rey-.3 orrective = 12 % .05

B R Rt ®orrective = - +h % 06



where we averaged over the given t intervals to reduce the
error. On dropping the accurate data in the 2 to 3 Gev range
the value of =, .. . in 0> t )= .3 was unaltered but
the value for the second range changed to - .7 3 .12.

We tried fits to T and an effective TP = + meson of
even signature with various intercepts and slopes. High volues

o { % .4) were only compatible if they had steep (1.5)
g =125

of
slopes but the best fit occured with &g = .2 and

which had a X2 of 530 on 180 data points. On adding a

conspirator with a small slope (.5) which gave a significant

contribution for large t, the necessity of associating steep

slopes with high intercepts disappeared and the best fit occured
W, xp=1anda X of 400.

wth <,
On dropping the data between 2 and 3 Gev the amount of T
(This wes like TN & pN where

necessary dropped by some 20%.
TP = - than the T provided).

the lower energy data needed more
Also as the most accurate experiments were now in the middle of

the energy range the fits could pivot on these and on varying
X2 only varied by 20 with a

the intercept between .1 and .7

mininum of 280 for &y = .4 (and 120 data points).
We may conclude that the reoction is prodably dominated

by a P! type Regge pole whose parsmeters are rather sensitive

to the method of snalysis employed but whose preferred average

Intercept is nearer .4 than .69.



(d) ALL Charge states

We then tried o few runs on the combined data. This was
probably not very useful s the scparate charge states analyses
had suggested very different T parometers for the three cases.
Thus k™*p did not want conspiracy while Kp although consistent
with no conspiracy needed a T helicity 1 coupling of the
opposite sign to K'*p. Finally KO definitely wanted conspiracy.
We included nothing in our fits to resolve these discrepancies

0,

but do/dt was fitted reasonably well with the K'%n oo large
theoretically at the higher energies. The residue at the
pole agreed well with that expected from the K* width. (We had
sinilar agrecment for wN > pN althoush the width seems less
well deternined experimentally).

on 320 data points our X? varied from 1040 for W, P'
@nd A, exchange to 820 for T, c, P', w  and the D meson.
We added the D meson in an attempt to lover the theoretical
§11 8t low energies and also T hoped it might reduce the
amount of T necessary leaving, as the D meson 1s T = 0, a
smaller predicted charge exchange cross section. It succeeded
in the first aim but did not have a large enough contribution
near £ = 0 for the second hope to be realised.

In the sbove fits the contribution of the w ~ one Fifth
that of P! and one would expect it to be small as the near

equality of the K*~ and K** cross sections suggest little P', w

interference which 1s of opposite sign in these two reactions.
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Due to the above mentioned discrepancies P which

usually gave a small contribution to X2 now gave as much as

the other density matrix element
The difference between K* and p production is illustrated

in figures 4.6 and 4.7.

4.7 Double Resonance Production

(1) constraints
In Section 4.5 on N* production we only had TP = +

exchange. We must now consider TP = - exchange. This has at

the lower threshold 2 constraints

B - = Vpy- Yipay
(4.7.1)

Byt ¥ispy) = Ay v ¥y

where all amplitudes ~ 1/[t - (m, - m,)%%.
2 = "
There are at the top thresholds four constraints which we

as usual ignore, (The difference in the number of constraints

at the two thresholds is because the lighter porticle is a
fermion according to our earlier discussion about the change
1In the effective parity for Q' states).

Experimentally TP = - mesons appear to have less spin

flip than the <cP = + which may be connected with the reduced

number of constraints.



(11) general niscussion

These reactions are interesting as they provide opportunities
to test factorization as the spin structure at each vertex should
be the same as in the single resonance production processes.

w*p + po"** has been considered in detail by T. W. Rogers.
We may remark here that P, is negative as one expects at the

very least from factorization and our WN > pN fits. There is
such difficulty with the normalization and the behaviour of

do7dt near t = O that it is difficult to carry the factorization
tests further.

wtp WOt M2D85) ag o ana 8 exchange with about
50% of each at 4 Gev. From the density elements the amount of
§ 1s seen to incre

expectations.

e by § Gev in agreement with one's

In accordance with this situation is the dip in
4e/dt at t = O where the p meson contribution vanishes. I
have not had time to see if the coupling structure for the §
meson determined from wN » wN® is in quantitative agreement
With this although it is encoursging that s does seem to
be about 50% the N value and increases with energy.

The only reaction of this kind, that we have made quant-
Ltative rits to, 15 K% + KNP,
(1) kp 0 e

Like the charge exchange reaction in single resonance (K')

production this isolates the T exchonge contribution as being
dominant. Some TP = + exchange is however necessary and O



and A, are available. Both improve the fit obtained with T
lone: § by decreasing the theoretical value of P near
& =0 and A, by increasing the cross section for large t.

P10 1® alvays negative ana tne T paramcters necessary
ror tne KK* vertex are in rough accordance with those found in
K"p and K*%n production. The available data does not enable
one to distinguish conspiracy es even at 5 Gev the physical
region boundary is still at € = - .05 and so we have no data at
small t. There fs no sgreement with the positive @) of
K**p which we tentatively sssociated with the lack of direct
resonances in the K'p system. As there is only one K''p
experiment incompatible with negative o, perhaps
K% + K**p will eventually turn out to agree with the other
three reactions supporting negative 9o

Conspiracy, from the discussion of Section 4.3, would
suggest do/dt vanishing at t = 0. There is no evidence in the
published data for a turnover in de/dt and in my fits without
conspiracy I find good agreement with the expected W residue
at its pole. This contrasts with W' > pON*** and tndeed

whereas the Born terms for this and K'p » KN"** airrer by a

factor 3 the experinental cross sections are roushly equal.
Again one should be able to enforce the p and A, couplings

from the wN" and KN analyses respectively. However it will

be 1ess interesting than for wON'** as the comdined o, &,

contribution is only about 20§ that of the T .
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CHAPTER 5

Electromagnetic Corrections to_the

2 Strong Interactions

5.1 Introduction

The topics to be discussed in this chapter bear no relstion
to the previous work in this thesis. Indeed, for these topics,
e will avoid the comlications due to spin, end will consider
only spinless non-identical particles.

There are many excellent accounts in the literature of the
theory of combining the strong and electromagnetic interactions.
However they use rather different, and in’some cases unfashion-
able, methods. We can separate four spproaches.

(1) Low-energy

Here potential®™) ana /o™ methods may ve used. e
nonrelativistic problem of the N/D method h
Comille and unruncz).

been solved by
This will provide a good basis for any
N/D approach as an N/b calculation is only expected to be
relisble at low energies. We will consider this in Section
5.4, which is on Dashen's®?) calculation of the p-n mass
difference, where we will relate his method to these standardC2)
results,

(i1) High-energy Elastic Scattering at t = 0

By this we mean the t,het'n'yln’a‘“'ssj nes

ssary to extract



the’ "pure nuclear” amplitude from experimental mensurements.
We will consider it in Section 5.3 and translate the previous

methods into on-mass shell language. ALso we compare it with

other situations (e.g. the absorptive model) where one is

faced with the problem of combining two potentials.

(i11) General Relstivistic Theory

This is expounded in the massive work by Yennie, Frautschi

and suura¥). Here it is shown how one can extract the infra-

red divergent factors from matrix elements in such a way that

experimental quantities are finite. They also prove that under

certain circumstances (e.g. large angle scattering but not

unfortunate1y®®) under the conditions of (11)) this gives the

dominant radiative corrections at high enérgy.

(1v) Rigorous Results
In (iii) the infra-red divergence was treated by using
the standard field theory of a massive photon whose mass A
tends to zero at the end of the calculation. In this limit,
and working to'all orders in e?, the amplitude for the
production of a finite number of photons is zero. However
summing over all possible numbers of photons gives finite
experimental quantities which can usually be calculated, s

shown in (1i1), from the result to first order in e’ In a

from the start,

treatment which gives the photon a zero ma:

it is unsatisfactory not to have a finite amplitude (as opposed
to finite cross sections) and so one can follow Chung®?)*F7)
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and define scattering amplitudes between states containing an
infinite number of photons. ALthough it is very pleasing to
treat the electromagnetic interaction to all orders in ¢, it
seems unlikely that any practical schemes will be based on

such an approach. Thus Section 5.2 suggests that the analyticity
of the amplitude, to all orders in e?, is unsatisfactory whereas,
to any finite order in e?, it can be treated by the methods
usually applied for non-zero mass particles. So it would seem
sufficient to treat the amplitude to first order in e, adding
in the corrections due to higher order terms, when they are
enhanced by the long-range nature of the Coulomb force. - (This
Would be necessary, for instance, at threshold and at t = 0 in
elastic scattering). We shall adopt this pragmatic approach
in the following considerations. .

(v) Dpefinitions

In order to discuss the best estimate of the "pure nuclear"
scattering amplitude we may define some amplitudes.

The nonrelativistic scattering amplitudes is

8n /5

where T is as defined in the appendix to Chapter 2. We define
the Coulomb scattering amplitude f., with no strong interactions

present, by



©
H |Z Gran e in s Rless) Gy

with phase-shifts §°.

Similarly introduce the strong interaction amplitude f,

with phase  §° and the combined amplitude fo . with phase §°7%,
Define 3 by
R (5.1.2)

and put £, = T, + £, where
218 15 =
6 = %j; @rsne e tamf Rlese) (5.3

1, might be our first guess at the "nuclear" amplitude but
as we will see later a better choice under some circumstances

ts 1, definea by
1% -
)= b IZH et sinky Rlessy) (5.1.4)

Nonrelativistically f) has an infra-red convergent pertur-

bation series and it may be interesting to note that it may be
found from

i.e. it is the scattering matrix generated by the strong potential

where in both the initial and final states one takes, as basis
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states, Coulonb "in stotest, rather than the plane ave staces
usea when there 13 no electromsanetic interaction. of course
W6 F1n0 £, by taking out boundary conditions for both potentisls
in the ket

Relativistically ve hove the extra infro-red divergence

associated with photon emission, and f) Still has this divergence.

We will also need the relation®l)
. an
e leJ o, 48 (5.1.6)

We will compare the analyticity of f) and f, in Section 5.2
where we use potential theory as a guide.

In Sections 5.3 and 5.4 we consider the methods of (ii)
and (i) respectively.

I would like to thank J.-K. Storrow for discussions on
these problems and his work with Landshoff on the more rigorous

aspects.

5.2 Nonrelativistic Analyeicity
We will consider the analyticity of f, and f, in non-
relativistic potential theory. This will not be done rigorously

but, as we shall find a rather unpleasant behaviour from our

own linited treatment, it seems unlikely that either relativity

or a fuller nonrelativistic theory will make this any better.
The relativistic and nonrelativistic results are manifestly

similar to first order in e”, as long as one takes core of
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relativistic crossed diagrams by permuting s, t and u in the

argument below,

In particular the distinction between s and

t disappears relativistically and, for instance, one can obtain

the same result for the nature of the singularity of %1 [

B
( aww = a photon) from my nonrelativistic result ((i) below),

or from inserting a one photon,nucleon intermediate state in

t channel unitarity.

“)

mnalyticity in ¢

Working to first order in the strong interaction coupling,

but to all orders in the electromagnetic interaction, we may
carcutate®)
v

T
(R

K

which is (for

where

1

2

=17

=t

8 zero-mass photon)

- Lo 215 J200
™ Pasg) Pa-ip [:T;—Z%Tﬁ

(5.2.1)
2
P T - cos
2Py (eiq.a-iq, 1 o (v cos 9) )
2
"l [Passq)]e le=pted?t
[l 5.2.2)

SFy (i, 1w, 15 e/ pY)

(5.2.3)
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. The pole at t = p? has been joined by an infinite number

of cus starting there. In f,, we see from (5.2.2) that this
sives a benaviour (¢t -
tha

(a)

27172 to the amplitude. e note

The dispersion integral over the discontinuity of such a

function does not converge unless provided with predetermined

This is done 1y by using a photon mass

A2 90 but in fact presencs no dirficuleyST).

(b) The pole Ls somewhat obscured by the cuts and relativistically

one must be careful about the definition of the electromagnetic

mass and coupling constant changes. This is again specified by

separating the pole and the cut with a photon mass A2

(€) 7o first order in ? the amplitude f,~ % (x =t - p?)

and the Landau curve of has degenerated into’ the

pair of lines t = p? and p® = 0.

(d) The result that the singularity on the Landau curve of —i_

aue to is only logarithmically worse thon the original

singularity of —L_ , extends to case when we have any number
of strong lines. Thus, as in the non-coulomb case, the
singularity on the Landau curve improves by a power %,up to
logarithns, each tine we add a strons line.

The diagrems, such as , are enhanced to

be larger than 0(«) by the long renge nature of the coulomb
force. Although one may not be able to calculate the detailed

coulomb corrections one can hope to estimate this enhancement.
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In the analyticity approach, this enhoncement manifests itselr
as the rather. singular cut we have just discussed. Une can
therefore decide that the task of evaluating large coulomb
corrections reduces to exhibiting functions which do not have
such singular cuts.

As from (5.2.1) we find that f) ~ original pole tern +
atern e Qn (¢ - p?) ve nave a reason for believing f) to be
a better estinate than T, of the “nucleor” amplicude.

These results have been generalized to the relativistic
case by storrowt?),

(11) Analyticity in s
(a) Threshoid senaviour

cornille and Martin®?) have shown that

(5.2.4)

has a bounded right hend cut determined by a suitable form of

unitarity (5.4.1). Here

@ = 2w/t -

- TTY 2.t
i a 3y
We can now try to investigate the anslyticity of the full
amplitudes by summing their partial wave series (5.1.3) (5.1.4).

We obtain a different result from the non-coulomb case because



the partial vave amplitude no longer has a factor p?% to
cancel the 1/2p? in cos © = 1 + t/2p2. S0 we find that for
general fixed t, f) and T, hove an essential singularity as
p% 50 wntle r,/c? has satisfactory analyticity regarded as
a function of s and cos @. However for the particular case
t =0 in elastic scattering (cos © = 1) we may write a fixed
t dispersion relation.

ond f,

(8) pifrerence betneen 1,
£, may not be numerically very like the nuclear amplitude
(see section 5.3) but it does at least have expected crossing

and analyticity properties.

is defined especially w.r.t. the s-channel, snd so

cannot have easy s ¢ u crossing properties, Also it has some

unexpected s singularities below threshold which normally only
appear on unphysical sheets. Thus from (5.1,6) we see that f)
18 not only singular when f, is but also when a t or w singularity

of £, enters the domsin of integration in (5.1.6)

region of integration
0 (5.1.6)



This is just like a K-natrix or the left-hand cut of
partial wave amplitude and the singularity begins at the some
point p? = - p?/. The discontinuity is trivially evaluated
and deternines the singularity to be logarithaic. In ihe
Language of (1) the cost of removing the singular t discontinuity
is this mild s singularity plus a siniler remaining logarithmic
t singularity. According to the philosophy of (1), both are
negligible awsy from the cut, unless one was using £, in o
dispersion relation working to an accuracy of 0(«).

We would like to point out a relation betveen this unphysical
singularity and (5.1.5) which shows £, to be specified by a
mixed i€ prescription i.c. the ket has opposite boundary
conuitions for the coulomb and strong interactions. Thus in a
Lippmann-Schwinger formalisn we have to first order.in the
electronagnetic interaction but to all orders inthe strong

interactions

-ty = 2w Gr, o+ TG GT, (5.2.6)
where G 1s the usual Greens function o —5——%
-k
while
f-fg = f0eCT)f, 4 £ Gr GT, ER

a principsl value integral in the first term which
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remdves the infra-red divergence at the cost of unsatisfectory
analyticity,

e crossing and p? = - p?/4 difficulty do not occur in

for the leading Re;

tern in T, ot high enersies.

Finally we note that f) is also singular when the t
singulerities of fy enter the domain of integration. This
indeed 1s its mOSt lmportant unexpccted singularity and occurs

2 = - N/ i.e. p® = 0 in the limit A2 = 0. For thc

at p
partial wave amplitude it is customary®?) (cf. (5.2.4)) t
draw the cut fron 0 to e and mot to -e0  as one cxpects.
One then divides Uy a factor C2 in order to ensure that tic

discontinuity over the new cut is given by unitarity. We i

coae across this again in Section 5.4.

5.3 Isolation of the Purely Nuclear Amplitude

It is customary to identify f, with the “nuclear" am;litude
when there is no electromagnetism (e.g. the amplitude which

obeys SU,), we will lay no claim to estimate graphs such as
2.

I which are 0(«) but will try to estimate
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T wscn 15 entoncea above o) by the long range

eace ve

only for a long ronge force is
as for « perturbing force of the sane

over
range as the strong force they are of course identical.
ne can discuss these problems with any of the classical

approaches to high enersy scottering®®) TR ang Rix and

haler™) nave noted the relation to the Feynman graph formalism'})

However in order to relate the problem to fashionable schemes,
we will use an on-mass shell method.

(1) yonrelativistic

The difference between ) and f, has been written out

2.7) showing how f) still has

sraphically in (5.2.6) and (5
significont, albeit O(« ), differences from fy.
Work to first order in % ond write

£, = f, + 8

when unitarity gives

LI Sro= 2 J‘% Crery 1o + Re(rl 1) (5.5.1)

(a) Aoproximote Im 6f by the first term in (5.3.1) and generate

2e 8 by a fixed t dispersion relation.

(b) Assune the integrand has no left-hand cut so that we find



0w bl (5.3.2)
or
©of % £, ... as desired.

Assumption (a) is justified as (5.3.2) makes the second

term of (5.3.1) vanish identically. Assumption (b) is the

crucial one in that it contains our long range philosophy which
has yet to be used. Thus in Section 5.2 we considered the left-
hend cut of (5.3.2) showing that it was for the p = - p?/i
singularity a mild logarithmic singularity and not cnhanced by

the long range force. The most dangerous part of the left-hand

cut is that due to the photon pole but it can be treated as

mentioned at the end of Section 5.2 by rotating the cut to run
from O to s and using a modified unitarity relation.
(11) Zsgin

s of f,

Take the elastic reaction 1+ 21+ 2 at ¢ = O when the
particles hove cherses zje and zpe.
Then from (5.3.2)

o .
= ic G 1, (s,) (5.7:3)
w? =X .

where ¢ 5 2, .
(a) putting £, = £y(s,0) A" givestl)

= iclos (A M) 1, (s,0) (5.3.4)
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which, with A = (R/2)% end R a nucleon radius, gives Bethe's
fornu1e®3) up to numerical factors inside the logarithm and
this is consistent with the neglect of terms which are 0(w ).
() solovievS®) puts £, = 1 (s,0) which is sufficient to remove
the infra-red diversence but has little else in its favour for

this particular application. Thereby we get

= ic log ( N/4p?) 1,(s,0) (5.3.5)

which has a different energy dependence from (5.3.4). Of course
Soloviev's result is quite sufficient if all one wishes is an
infra-red finite answer and is not concerned with estimating
redistive corrections.
(111) Relativistic Analysis

The methods used in (1) and (ii) undergo important
modifications vhen we introduce relativity.
(a) The change in the photon Born term in (ii) is as usual
taken care of by replacing q by its relativistic value
“Mape
(b) In caleulating Re §1 by a dispersion relation in (1), we
must use 5 8 to obtain correct relativistic avalyticity.
They the extra s in the analogue of (5.3.2) has a left-hand
cut which must be considered as well as that from the integrand.

The fact that
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is non-zero whereas

° ey - 0
. pray

for s > 4n’ is related to the fact that whereas nonrelativis-
ticelly the infra-red divergent factor is pure imaginary,
relativistically we have a real part cancelling with photon
emission diagrams in experimental quantities.

(c) Thus to obtain consistent results we must add to (5.3.1)
intermediate states containing one photon and any strongly

interacting particles, This is not only due to disgrams such

: f i I
but also those like m

which have no infra-red divergence themselves whereas their

2-particle and 2-particle + photon discontinuities are
separately divergent.

(5.3.1) becones

B N T (5.3.6)

where

L = Jd.n.nlef R A )

1 Zjan2:<={sr““r:""*.r:""‘:r““}
n



and I is the same :

I, except that the intermediate state

n has an extra photon. Iy can be estimaced’’) by making a

bole approximation in the varisble s,, defined below
a.{ .

T

e - —)

to get

= e fommzren e

(5.3.7)
. {i“‘-i“"‘-’i“"‘}

where the function T 15 as cefined in Yennie, Frautschi and

suura‘ﬂ).

If, we try to solve (5.3.6) in the form sr= ¥r,

there is, for our elastic & = 0 case, cancellation between I

and 15, and we recover (5.3.4) or (5.3.5) for the coefficient

of  Ln 2. But we want to know whether to take (5.3.4) or
(5.5.5) with their different quantities multislying A2 to
|make it dimensionless. Here there is a real difficulty as this
means we must estinate B which in reference’™) wouid lead to o

result like (5.5.5). Although this estimate is presumably

wrong I do not see how to obtain the same cut-off A in I and
150
This may be a real difficulty as the term in  §f oc O X



. represents a perturbation de in tie Regge pole at J = &

we put in (5.3.4). This can be shown as, ignoring signature,
a perturbed Regge pole gives an asymptotic behaviour
§6~ ¥r, where

Re ¥ ~ log s det(t)

m¥ ~ -w  de(t)

lowever the rest of (5.3.4) With A ~ log s represents

acut st § = o + photon spin - 1 = &  with a singular

residue. Now it is vell known that cannot. have

4 cut inthe | plane and so one moy be sceptical about
(5.3.4).

For the elastic ¢ = 0 case T+ 1 1s ssymtotically
nesligible due to s-u cancellation and the trouble only occurs
for n A1 in (5.3.7) and so perhaps (5.3.4) holds to higher
energies thon in the inelastic case.

The mechanisn of the cancellation of the cut in

is probably best exanined in a Feynman graph
formalisn as in aotne®?),

Finally we note a relation to another theory - the absorptive
model - which is meant to correspond to a concelled cut in the
§ plene. '

Identify forces as below

Absorptive Nodel Coulomd

strong «  Coulomd

 exchange > strong



as entries on the first line are important only in elastic
reactions while those on the second are thus the only inelastic

This mismatching of the short and long range forces

forces.
are

in unimportant os diagrams such as
symmetric and either force may be regarded as added "externally"

to the other.

5.4 /b Equations

We will now consider how one can include electromagnetic
forces in an N/D equation, We will first treat the problem
nonrelativistically pointing out the equivalence between

Dashen and Frautschi's method® ) and that of Cornille and
in®) M) Finally we will consider relativistic effects.

For convenience we will only treat s waves and let a, be the

0 = 0partisl wave of the various smplitudes f, introduced

in section 5.1,
Nonrelativistic Treatment

)
When one considers the N/D equation for the long range

coulomd perturbation it is nstural, from a nearest singularity
biiLosophy, to suppose that the left-hand cut of g, = o
can be well approximated by the longest range force, namely

single photon exchange. However, as we have seen in similar

situations in the previous scctions, this is incorrect and

leads to infra-red divergences for one must also consider,

for instance, T whose cut has moved up to



coincide with that due to i . ‘As we have said,
using ) estimates I to some extent and so
* one may distinguish three approaches.
(3) Take  §a = a, - o, and include as its left-hand cut
plus eny diagram used in the original N/D
calculstion of ag with an extra photon added i.e. if a, had
e

only the Born term H as its left-hand cut we would

take : - for the left-hand cut of

The formula of pashen”) for the chonge §s; in the bound
state mass? on adding the coulomb perturbation is found as
follows. Write a, = N/0 and letting a have a pole R/s = s

we find

= 2t e 02y sa (5.4.1)

where ¢ is any counter clockwise CORtour Surrounding s = sg.
The integrand has no right-hand cut and so we can convert c
into an integral over the left-hand cut. It is casy (see
(111)) to prove (5.4.1) is non-infra-red divergent ‘due to
cancellation between ond .
approximately

This fs true even when, as above, we calculate ag
s TT anu safrom .

trom g Sar T

This is because the infra-red divergence of i

is 2 function of s with no left-hand cut times



1.h.c.

Re ag, and it is In a that is calculated exactly in an N/D
equation.

The change  $R in the residue moy be considered similarly

using the equation

2

p8ads 2 . s,

T J TS - e e By 0ty 0 (R i)
< s

Hovever §2 has an instrinsic infra-red divergence which

is removed by specifying, for instance, that one should take the

residue in 1.
In his actual calculotion), as opposed to the theory”t),
Dashen uses a version of this method with, however, a rather

dubious estimate of H .
(8) e second wey of tackling the problem s € take &y - 8,
and only include a5 the lertohand cut. This
is the method advocated by Dashen and Frauucmm).

(¢) An entirely equivalent prescription to (b) is that based
on the rigorous theory of Cornille and N-‘Ar'.lncz). Namely form
24y = 3,/C% where €% is given by (5.2.5) and rotate the one
photon left-hand cut to run from O to +oe . Then we have

W e (5.4.3)
and we get the method (b) on aseuning ay, hes the same left-hand
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cut s ag.

In order to estimate the error in the approximation (b)
or (c) one need only refer to the work of Noyes and Wong™')

where they explicitly evaluate the residual left-hand cut
contribution of

(i1) Example

In figure 5.1 we plot estimates of §s; for Paton's’?)
example of the s-wave exponential potential.

We have taken &
potencial of strength - o/p® = 5 (in Paton's"?) notation)
and give results for N = 1 or 2 where in the unperturbed
problen we hove teken up to the Neh Born terms. Three different
ways liave been used for the perturbed problen.

(%) ALl graphs included which contain one "photon" line and
p to X strong lines.

®

This is essentially the method (a).

The noive method using graphs with one "photon” line and
us to X - 1 strong lines.
)

This is infra-red divergent.

s (p) but the graph containing N strong lines and an

al "photon" is estimated ¢s in the method (b) or (c).
From the fimure (8) moy appeer ss good as (&) but this is
probably a spurious effect ss, in this model, all the higher
order terms omitted in () sre positive. Thus (¥) by over-
estiuting T

may be accidentally better.

7o estimate the error due to @ bad uperturbed solution
2

note that with sy = - ap

ay/y -

we have the following values of



exact 74
approximate N=3 .67
coleulation 2 | s

1| s

Similer results are obtained from calculations for 63
hand side

liowever, if one calculates the quantity on the right
of (5.4.2) which is more ranidly convergent than &3, in
(5.4.1), the estimates (&), (p), (¥) become more nearly equsl.
But for low ¥, they sre still in dissgreesent wth the exact

result showing the raid convergence of the perturbed problem

cannot overcone & bad unperturbed solution.

(111) gelstivistic Treatnent

The modifications necessary are very similar to Section

We will first indicate how one can exhibit the

5.50111).
85, ond then

cancellation of the infra-red divergence in

state which terms cancel cmong themselves.

In (5.4.1) we rewrite

IR PO S

*u integral over the left- nd right-hand cuts.

Relativistically

is non-zero due to the presence of photon emission
we replace  Ba by  Ba' where
L.

In the




us

§i = 8o+ the perturbed pole terns whose parameters we ore
tryins o find.
e,

cut siving

s, 2= I . {. In( 620 0% (5.4.42)
e, 0%

+ I (62 0%) } (5.4.40)

This equation is less toutological thon it appears os in

(5.4.4a) 83’ is usually evaluated as §a, . . (the integral
over the loft-hand cut of  §a) while (5.4.4b) is evaluated
from uniterity end has contridutions only from photon emission
diagreas. e have written §a' rather then  §a) . o as then
the infra-red divergences will cancel term by term in the
integrand. (5.4.4) 9lso ellows o trivial extension to the new

fora of the strip approximation’®)

where unitarity is only
enforced for threshold § s § strip boundary.

Infra-red divergent terms in (5.4.4) orej in (5.4.42),

(¢} $c' is the partial wave projection of an infra-red
Givergent part of . §f; .

(p) The one photon orn tera hos an infra-red divergent

1al wave projection;

wiile in (5.4.4b),

(f) e photon emission contributions to unitarity are infr

! aivergent,
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wiich re proportional to times a function with

d imeginary part. The imaginery part, which is all

that is present nonrelotivistically, cencels with (§). The

real part cosdines with the remaining contributions to (<),

cancel with (¥).

nemely

e finisn with four d ected remarks on the relativist

(a) The difrerence of
25 = Ss = tng e n?) (s - (g - mg?)
from ifs threshold value

Vis - +n?) 4o g

ond in particular the lefe-hend cut of p V¥ need photon emission
dlogrons to obtoin cancellstion of the infra-red diversence.
This could sugsest Lhot photon emission dingrans cre important
at quite low energies for WX 5 WX

(8) The cancellation of the infra-red diversence vill no
longer oceur for muroxinations to ag as happened in the non-
Felstivistic ense. Thus the infra-red divergent part of

will involve not only Im a, but also
L.
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Re ag.

(c) Dashen's method calculates §s, from an assumption about
the strong interactions: namely that the particle is o bound

state. The canonical Tield theory method®®) calculates the

mass change assuning the specicl form of the electromognetic

interaction., ALl graphs of this latter approach,

VAN

h 3

for exanple,

where

is the bound state, occur in Dashen's method
but are suppressed at high energy due to the two extra
ropagators p) and p, not present in the ficld theory method.
(d) Again one can treat the change §$R in the coupling
constant in the sane way as  §s; but I think this is less
useful for the reasons mentioned in Section 5.2 (i) (b).



Figure 5.1



Figure 5

83,/ §a v. the ratio K of the unperturbed
sange yp to the perturbed ronge. e is
tie change in the coupling strensth and the

other notation is explained in Section 5.4(ii).
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