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o

of Physical C
Q Cellular Automata

Q Complex Systems
Physical (Pertaining to Nature) optimization

Q Genetic Algorithms Evolution

2 .

Q Neural Networks Biology (low level)

Q Information Theory Electrical Engineering

(Maximum Entropy)

Q Elastic Networks Physics (Determiistic)
Q Deterministic Annealing

Q These can be compared with

Q Heuristics Problem
ac ; N
Q Expert systems Computer Science

(High level reasoning)

92X-11/6/92-GCF 11992 ‘Syracuse Center for Computational Science



Q Nature is often solving optimization problems
QO On long term, evolution of species
Q On short term, interpretation of visual and other sensor

information

Q Physics laws can usually be formulated as variational
(optimization) problems

Q We can also - and indeed this should be the norm? -
combine methods

DGee'ﬂ'eng‘:l"gaorlthma evolve peole over long time period
Expert systems high level resoning
Learning networks and ? intermediate level vision

optimization networks  low level vision
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Some Questions

Q What is the shape of the objective function?
Q Correlated or uncorrelated minima?

Q Do you need the
Q exact global minimum
QO an approximate minimum

Q In this case, do you want solution to always be
within some tolerance of exact solution

Q or, on the average, to be within tolerance
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Energy (Objective Function)

[ 3

Local Global

Local minima in "physics" problems are closely
correlated with true minimum

Global  Configuration

"Computer Science" grand challenges in
optimization might look different
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Different methods have different trade offs

Q speed, suitability for
parallelization,
problem size dependence

Neural networks do simple things on large data sets and

parallelize easily

Expert systems do complex things on small data sets and

parallelize with difficulty

Combinatorial Optimization

Q Finds exact minima in a time that is exponential in
problem size. However in particular cases, e.g. TSP, very
clever special techniques make this quite practical -
solve exactly 10 — 10° city problem if we can parallelize

Physical Optimization

Q Finds approximate minima in a time that is sometimes
only linear log(linear) in system size.

Q il we only want approxi minima

o

o

o

o

o
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O As computers get more powerful, we need to solve larger
problems and physical computation methods get more
attractive
Q Thermodynamics studles bulk propenles of Iarge

systems i detail
Q Physical computatlun can solve 1000 times bigger
problems on 1000 times bigger machines

o

lllustrates that "computer science" benefits from broad
intellectual base lhat includes blology and physics as
well as and
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a Physical Optimization
Q Minimize E = E(parameters y)
Q y can be continuous or discrete, or a mix
Q Introduce a fake temperature T and set § = 1/T
Q Often T ~ distance scale at which you look at problem
Q Probability of state y = exp(-BE)/Z

where Z= );e'“

o

As B — o, minimum E (ground state) dominates
Find y(T) by minimizing F = E- TS = -/, log Z

o
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T,>T,>T,~0
FwT)

local minima

!

Initial guess
{y} Configuration

global minima

QO Annealing tracks global minima by initializing search at
temperature T by minima found at temperature T + dT
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low Temperature

taise
minimum #/ medum T

Fw,T

global minimum

¥y

o

Simulated annealing: find y(T) by Monte Carlo as mean
over i i at that

Q Neural networks: y is discrete. Find y by mean field
approximation

Elastic net: y is discrete, but use improved mean field
including some or all constraints

Deterministic annealing: leave important y out of sum =.
Find by simple iterative optimization

o

o
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The Test Problem (x=real center)

X - center of cluster random generator
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0O A deterministic annealing approach to clustering
(Gurewitz and Rose)

o

For each data point x there is an energy E (j) for its
association with the cluster CI. The probability that x
belongs to cluster C is:

se0
Prixe C)= <

Q where Z_ is the partition function
v Summing over all
Z= E‘e #5M assignments of data point
X o each cluster
O and F, is the free energy

F, = -',log(Z))

o

The total free energy is:
F=
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The Squared Distance Energy
E)=Ix-yp
edxyi2
Pr(x e C‘) = W
0 Optimizing the free energy:
{;—' F=0, Vj
QO vyields the solution for the centers of the
clusters:

ZxPr(x € Cl)

Y=EPrixeC) ' v

O Note 1/b"2 is distance scale
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ISODATA DETERMINISTIC
(K means) ANNEALING

@ = cluster centers determined by two methods
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exp [ -1x -g1%/T] High T is only sensistive to
average over large distance
scales.
High T

Al clusters at
overall
centroid

Lower T
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“Correct” Solution
- p

Data Point

exp [-{x-c2]

Cluster Center

As Temperature T!/2 s lowered below cluster
size -—> find "clusters" inside true clusters
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#clusters

log E
Objective
Function

T-00 < Temperature, T-0
coarse Resolution fine

0 The clustering problem - like any good
physical system - exhibits phase transitions
as one lowers the temperature
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O TSP or Travelling Salesman Problem

Classic NP: discrete optimi: problem

Q Can be viewed as constrained clustering. Thls approach
"derives" elastic net from determini

Cities
1 Assoclate each i with
one and only one p
7 [
Time ! n, = 1:citypvisited at time i
steps : otherwise
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O Classical Neural Network Approach to TSP
Qn= 1 : city p visited at time i
=0 : otherwise

Q Constraint
for each i only one ', nonzero

Q Elastic net (roughly)
Qni=p multistate neuron
(actually position in space of cities)

Q Simic showed how neural network
(Hopfield-Tank) and elastic net came from
making different mean field approximations
to the same physical free energy
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0 Generalized Elastic Network
(Simic's derivation of Durbin and

Q Review of TSP Application

Let p label cities  TSP: Assign unique i to each p (**)

ilabel time unique p to each i (*)
o 1 o 0 0 constraints
01 1 0 0 Such that
Zd(p, -p,,)
100 00 ih minimized >\_
00 1 0 0 goal
onetineach] 0 0 0 0 1 Introduce n ‘f =11f salesman
row () 0 0 0 1 0 at city p at time i, 0 otherwise
P one 1in each

n as an N x N matrix Column ()
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Q Typical Hopfield Tank Energy Functions

P .
3 S dp gy i D+ 3 v, nh
¥ 2y dpap(lg g Dt %, VpqlpTg

time cities + Z Eij T’lp T,‘]a
Pii#]
goal
constraints

Q Typical Elastic Net Energy Functions

3§-ueP 2 S exp -l - uf)

elastic force

between beads cities beads
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O Physical Optimization

Q Energy = Real Goal (X d)
+(*) Positivelt
() constraints violated
QO Consider a physical system with this energy function at
temperature T
Minimize F = freeenergy=E-TSasT -0
Q Use "mean field" approximation to make annealing

deterministic )
e.g. for a term of form 1M - function (other n's)

Monte Carlo becomes a
deterministic set of equations. replaced by
Find minimum of F(mean n's) mean values
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92X

Q Hopfield-Tank Neural Network

Q Apply physical procedure to full F where we allow n's
to vary over all 0,1 values with constraints (*), (**)
enforced by penalty functions

Q Simic's Derivation of Elastic Net

Q Letn vary over a restricted space where we choose to
satisfy some of the constraints exactly.
Q In TSP, one can choose either (*) or (**)

Q Remarkable this converts
neural picture into a
particle dynamics problem

beads (i): one for each
clock tick

cities (p)

Science




Physical Model

1/\/

‘> s N
\I / \'“:"z,

/ 15cal elastic particle
Cities O to particle force
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Deterministic Annealing versus Multistate Neurons

Q Inelastic net use x (i)
( position in city space at time i )

Q Equivalently consider a multistate neuron
taking values in space x

Q Binary neurons ---> Ising model

O Multistate neurons ---> Potts model ( if discretize x ) or
continuous spin model ( x continuous)
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O Elastic Net for Navigation

‘beads for each vehicle at
time step

Neighboring beads attract each other
with terrain dependent value reflecting
cost of travel

Q Can be applied to single or multiple vehicle problem
QO Note temperature T allows large changes at high T

e.g. to jump over a large obstacle,
T is again physical scale

QO Neural Net variables 1 (x,t) are redundant
Q Elastic Net (string) variables x(t)
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[=l's]

o

o

New effect: >1 (2 in fact) Lagrange multipliers
expl-B, E'. B,E, B=B(M
goal  constraint

In this problem, goal (E,) easy to satisfy but constraints
(E,) hard
At high temperatures make E, go away

B/B,»0asT — e Imphes thatE =0
(elastic string of zero length) is global minimum
Decrease temperature and gradually "switch on"
constraint such that as T-> 0, constraint is rigorously
enforced

B/B, > ~asT—0

eg.B,=1T B,= 1T
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cost

The two-vehicle navigator solution
for a conflict imposing terrain
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cost

L

,,.'." e ",Z. 1
R

e ',;;’,,.,.l/.

W /’ A

ot g X

Four paths in the cost-terrain space calculated by the neural net.
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Deterministic Annealing for Navigation

(Ghandi, Fox)

O |=
(@) —
- 74 §

T=.74

As T decreases,
switch on
constraint that
obstacles must
be avoided

T=.26

Low
Temp.
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O Most work on navigation concentrates on
exact methods (combinatorial optimization)
for a few degrees of freedom

0 Physical optimization allows very many
vehicles to be navigated

QO Air traffic control

0 Land vehicles

0O Robot manipulators
Looks very promising for multiple
manipulator problem which is otherwise
intractable

0 But we must use elastic net - neural
networks gave us right general idea, but
too many constraints
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Physical Optimization in Computational Chemistry

Hamiltonian (used) = Hamiltonian (Nature) +

H, = (C ints from
or i

Q Evolve system by Monte Carlo

H_ is minimi by

QO Evolve system by Newton's Laws

H is i by
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Some Applications of Deterministic Annealing

General, Travelling Salesman, Quadratic Assignment
Durbin and Willshaw, Frean
Yuille
Simic
Scheduling
Peterson and Soderberg (high school classes)
Johnston (Hubble Space Telescope)
Track Finding
Rose, (Fox, Gurewitz)
Ohlsson, Peterson, Yuille
Robot Path Planning, Navigation

Fox
Character Recognition
Hinton

Image Analysis
Geiger, Girosi

Clustering, Vector (coding), i ging
Rose, et al.
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A new method
Simulated Tempering

Marinari ( Rome, Syracuse)
Parisi (Rome)

0 Conventional Monte Carlo methods do not
work well for
Random Field Ising Model = RFIM

=-20,6,+Xh o,
i
rort
Q Spins g, live on 3D lattice
o,= +/-1 to be determined

0 Fixed Magnetic Field
h=1|h|r,
lh| =1
r, = +/- 1 with random probability 1/2

92 - Science




0 What sort of NP complete optimization problems are like the
RFIM ?

O Normally choose sequence
B, = 1/T,, increasing

m=0,12...
At each B, equiliberate system according to weight
function
P, =exp (-8, E)
QO Monte Carlo gets stuck in local minima (which differ by

approximately the square root of the system size from true
minima
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Q The Tempering Method

Q B, Increasing

Qo B‘ Add B to list of dynamical variables
a Bz B chosen out of {8, }

QB Prob (B, {o} )

Q B, o exp (-, E({o]) +g,}

choose so
probability for each m
Q Now system can move up in temperature and jump
barriers

O Don't have to decide on a priori annealing schedule i.e. list
of B, and computer time to be spent at each 3.
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Magnetization

\ TR0 | 1
. . A
o 2000 2000 600 8000 100
Computer Time
Simulated Tempering
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Magnetization

04 -

06

One local

°

5X 10 108 15X103 2X 105

Fixed p Monte Carlo gets stuck in one particular local minima
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Some Scheduling Problems in NASA

Q Schedule observations on planetary orbiter subject to
physical constraints of power, which instruments near each
other, etc. dynamically (new "moon" discovered change
schedule). Several hundred people devoted to this at JPL .

o

Similar space telescope problem

o

Originally NASA hoped to turn shuttle around in ~2 weeks.
Actually takes ~4 months

o

In orbiter processing facility
Q 60,000 technician hours
Q 10,000 tasks
Q 50% generic
Q 50% mission specific
Q maybe >1 shuttle to share critical teams
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University Class Scheduling Problem

Peterson and Soderberg, Lund
Q Currently Syracuse University spends ~3 weeks
scheduling freshmen classes. (the time critical case)
Q Variables are "multi-state” neurons

X,
i = (p,q) = (teacher, class) pair
= (classroom, time slot) pair

QO Student (preferences) are the "quanta” of force acting
on particles i. These particles move in space of (

classroom, time slot ).

92X - 11/6/92 - GCF ‘Syracuse Center for Computational Science
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Hard Constraints

Q x, singled valued i.e. a (teacher, class)
event occupies one spacetime slot

- — i.e. Different classes do
ifL#] | notshare class rooms
at same time

O A given teacher can only teach one class
at atime
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Soft(er) Constraints

o

Each student should be allowed a "lunch class" if
possible

The different meetings of a given class should be
spread over a week

o

o

Each student's MWF and T Th classes should be
roughly balanced

Q Distance constraints between classrooms
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Q

Q

Student must meet eligibility
requirements for class

Do not enroll athletes in courses that
conflict with their sports practice (hard
or soft constraints depending on sport)

Balance enroliment in different sections
of a given class

Balance gender in Honors Seminar
sections

Enroll students in all parts of a course
when linked e.g. recitation and lecture

Satisfy student preferences

92X - 11/6/92 - GCF Syracuse Center for Computational Science
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Approaches to Complexity

0O Dynamical Systems
Q A complicated system is really only sensitive to a
few parameters in a space whose dimension can
be determined (perhaps not very reliably)
Q Parameters (assumed to be) governed by coupled
differential equations ----> chaos

Q Statistical Systems
Q Don't ignore the (10%) (other) degrees of freedom

but rather sum over them subject to constraints
---> maximize information, entropy

Q Are approaches consistent?
Q Thermodynamics does show how macroscopic
variables emerge from a statistical formulation.
How ever only a qualitative relation between
dynamical and statistical systems ?
Q "Back-propagation” neural networks unbiased
parameterization

92X - 11/6/92 - GCF Syracuse Center for Computational Science
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Parallel Computing is just an
optimization problem, even if
can't agree on what to optimize

0O Execution time - main focus of HPCC community?

0 User happiness - main focus of software
engineering community
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0O Computing

Problem
Model Minimize:
user preparation time +
Method execution time

in some combination

High level software
4
Mix of lever level
systems: Fortran,
communication systems, ...
Hardware

Q A hierarchy of mapping problems
Q We would like to optimize the overall mapping
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Q Various optimizations are possible at each stage of
mapping. These can be (but usually are not) formulated
as minimizing

E = E, (Performance) + E, (Constlralms)

L> This is a difficulty if constraint ensures correctness of
ion as in code ion phase of
compiler for a digital computer. Then we must have E,=0
at
Q This "correctness” issue might not be present in
for neural (as to

ion of "prog
digital) supercomputers.
Q We can study use of physical optimization in generation
or execution of program
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O Physical Optimization in the Execution of
Programs

Q0 Both Message Routing
Dynamic or static decomposition
or scheduling of data or processes
need "performance" optimized
and are satisfied with reasonable (~ within 20% of best)
answers
and have no difficult correctness constraints

[=ly's)

o

Heuristics

Simulated Annealing

Neural Networks (static data)
Elastic Nets (messages)

work well

92X+ Science 2




Find MAP in
DISTRIBUTION (MAP) in FortranD (High Performance
Fortran

A user ) data

User (compiler) supplies

o What is to be distributed

« "Graph" - algorithmic connection between entities to
be distributed

These are:
particles
grid points

matrix elements depending on problem
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Data Mapping Problem

Q Given: Data set and Algorithm / Solver

Q Assumptions: Data Parallelism
Loosely Synchronous Computation model

y MIM

Q Definitions:  Computation graph G, = (V,, E.)
Multiprocessor graph G, = (V,,, E,)

e.g.
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Mapping:

MAP: Vg >V,

such that
[Execution time of parallel algo/solver is minimized

2
eg. (36,16)

4
(38,14)

5
(35,18)

3 7
(37,15) | (40,11)

Represent mapping configuration by
MAPLv,]=p,
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Data Allocation Approaches

Allocation problem as a graph isomorphism problem

- a maximum number of pairs of communicating modules fall into
pairs of directly connected processors

problem as a i i problem
ming SE 010 X A @0 () [

Allocation problem as a minmax problem

- [ mipmaxisier (Zenoh % 4G O |

Geometry based allocation approach

- represent the partioning of the domain by a graph

- represent the parallel machine by a graph

- project the problem and system graphs into the 2D-euclidean space
- solve a planar assignment problem

- Iteratively improve the initial assignment
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This optimization can also be thought of
as finding ground state of a "physics"”
problem. The particles are "entities" (grid
points) moving around in space with "#
processors" discrete positions.

Repulsive force - load balance
Attractive force - communicate
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Mapping Problem: Criteria

QO Decompose the geometric data structures in a specified
number of subdomains (substructures) so that:
Q the subdomains have the "same" number of elements
or grid points
Q theil amomg the ins is "small"
Q the number of adjacent subdomains is minimal
Q each subdomain is compact domain

Q Allocate the subdomains to processors, so that:
a ins are to
2] in the ion network of
given parallel machine, and

Q Decouple (color) the processors so that:
Q the local sy i among the p| is
edge contention free.
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4 Typical Cases
N. Mansour (Syracuse PhD 1992)

n e
s [1=7, o ks [A=17, 02325,p.
12 12
11
10| _RsB
o7
09
16 vy 32
.
4150 T T
o ettert 12
PGA
Efficiency 1.1 11
com
t0RSB ==, [PNN,
10 | RsB 10 | _RsB
TESAS 068 o D]
09 09
g 16 vy 32 0 e
Number of nodes Actual Number of nodes
efficiency
For Machines

RSB = Very good Heuristic for graph partioning

Recursive Spectral Bisection (Simon, NASA Ames)

PSA = Parallel Simulated Annealing
PGA = P ic Algorithm
PNN = Parallel Neural Network
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B rGA
A psa
(N\NRGY
B PRSB

s 3 2 TVl
Number of nodes

Average execution time, in seconds, for mappig FEMW (2800).

(N=1VyD)

Actual time taken to perform mapping NOT time taken to

execute mapped problem—same size machine used to find

mapping as to execute mapped code
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Note:

Q Parallel algorithms for

Q Genetic Algorithm

Q Simulated Annealing

Q Neural Networks

Q Are not "trivial"

0O Are not identical to sequential algorithms

Q Large problems (the "real world") require multiscale algorithms

92X+

id is faster than gauss seidel for large P.D.E.'s
3)

hocer

Graph Contraction
is "computer
science"

Tle) o)
1o le 19
(ole 18/ 18)
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Efficiency
with respect
to best RSB

Results for "Multiscale” physical optimization

FeC Ty
12 rox
ul | T
N
rs NG
-
o
TR R v

27

Time to find map:
280 RSB parallel but not
multiscale

Wyl
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Any approximate method can be dangerous when applied by

expert - can apply " too precisley”
pert - can apply i

Best known method (Recursive Spectral Bisection) applied
to mesh

As given Sorted in X Sorted in Y

by mesh

generator
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Note: Lesson from 1990 CRPC workshop on TSP at Rice

Q The i exact, sil ing (etc.) papers
have been greatly improved but

o

Each new heuristic for TSP shows how their method is
better than published results which are not "state of
the art” ...

Again many say "simulated annealing” or "genetic
algorithms" too slow for data decomposition

o

o

Only true for some (naive) implementations
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o

ral work well for NP-
problem but fail for formally equivalent TSP. Why?

data fe
Label processesby" 1..M

nodes byp=1.N=2¢

o

o

The redundant choice of NM neural (binary) variables
n(i,p) =1 ionnodep
=0 otherwise
Fails for same reason as for TSP
Q The choice (NO ints in E) of Mlog,N
neural variables
i— P

P(i) = ¢ 2*n(i,k) succeeds
k=0

= Not all NP-complete problems are created equal
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In Summary

O Neural Networks work well for data
decomposition as neural variables are
natural nonredundant description

0 In "analogous" TSP and navigation
problems, constraints on redundant neural
variable = elastic net (can view as a
generalized neural net) better

O Why do all methods work so well for graph
partitioning when computer scientists are
taught to be terrified by such NP complete
problems
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Q Program Preparation / Code Generation

=}
o] @
£
2
E
H
&
3
$
Q
us
discussed
vetore
Q
Q

92X - 11/6/92 -

Advice on which algorithms  Expert System
and which machine to use

Choose compiler Opportunity here?
ions and gy:

loop genetic i ?

discrete set of choices at each

of many program lragments

Given find  "Back p ion" i.e.
performance on given Iearnlng network
machine

i Dy and neural
Static networks both work well

Local Register Assignments,
peephole optimizations,
pipelining, etc.

" Multiple TSP CO/Heuristics
now could use elastic nets
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Track Finding

QO Given a bunch of measurements x _(t), find the best
tracks given certain prejudice as to nature of particles
or missiles 1,

Q Casel: |->20 Tracks
Kalman Filter or
c? method
QO Do a combinatorial search to

choose for each time t, which
measurements belong to which %
tracks. Use c?and various
heuristics to reject spurious tracks and accept
good tracks

o Fails if many tracks or lot of noise
o Difficult to parallelize except on a few nodes
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Q Case lI: Very Many Tracks

Q In one space (plus time) this tracking problem is
formally equivalent to edge detection in vision.

Q In vision, are the it
(differentiations) of color / motion / texture etc. in an
image. Edge detection involves linking this basic data
into "lines" which will separate regions of image.

Q Solve by neural network method
n(x) =1 ifthereis an edge
=0 if there is no edge

In vision x = (x,y), tracking X = (x,t)

Q nis a field theory formalism, whereas Kalman Filter is
a particle formalism
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[w] gy to T ing
Q Hopfield-Tank use n(x) with x = (x,t) with t labelling
tour and x labelling city
Q Two critical differences
QO TSP: Only 1 tour so Hopfield-Tank very redundant
and must satisfy difficult constraint
Q Vision: Many tours and indeed unknown number
of tours, so less redundancy and no ggnﬂrglngg'
Q TRW have this app h to
O Neural network d of dent of
number of tracks! (Kalman filter gets difficult as number
of tracks becomes large and unknown)

Q Neural network has i p

Again neural networks "work" when these are natural
degrees of freedom
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Gurewitz, Rose

Tracking using Statistical Mechanics

( Deterministic Annealing)

Syracuse Center for Computational Science
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Q Case lll: Intermediate Number of Tracks or
Few Tracks with Dirty Data
O Now we want to view total tour (track) as a single entity
and use either annealing or elastic net methods?
Q Kalman filter fails as it uses information incrementally -
adds one time slice to previous local track
Q x2 gets stuck in a local minimum - need concept of
temperature to avoid false minima
Neural networks inefficient as too much redundancy
Deterministic Annealing (elastic net) is a good
possibility
Rose has tested this
Note in tracking, tracks are attracted to measurements;
in navigation, vehicles are repelled from obstacles,
otherwise identical
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O So not only do different problems need different methods but
in a fixed problem - varying parameter values causes best

method to change
Number of Neural Network
tracks and
measurements
Detorministic
Kalman Annealing
Filter

Nolse Level

Q Tracking is like a multiple TSP with each track like a salesman

Q The quality of solution needed depends on quality of data.
Also as time advances, one can get new information and
physical computation naturally allows time dependent data

Q E.g. in related navigation problems, you may start with some
information about terrain and update it with new sensory data
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O Conclusions

Q Physical Optimization is a class of y parallel
heuristics that solve "hard problems” quickly but
approximately

Q Monte Carlo or Deterministic
Q Choice of variables is important

Q No unlversally "good" method even in a given problem,
ent are or different

values
QT controls a
Clustering T'? was distance resolution

Navigation 1/T controlled importance of obstacles
i.e. Tis "resolution” in parameter space
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Many Choices - Which is best When?

Simulated
Annealing

Linear
Programming,

Complex
Systems

Information
Theory

Deterministic
Annealing

Optimization

Neural

Tempering Networks

Mean Field

Theory
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