
11/21/2014 1DataCloud 2014

Integrating Pig with Harp to Support Iterative
Applications with Fast Cache and Customized

Communication
Tak Lon (Stephen) Wu, Abhilash Koppula, Judy Qiu

DataCloud 2014 2Integrating Pig with Harp to Support Iterative Applications
with Fast Cache and Customized Communication

Outline

• Apache Hadoop and Pig background
• Performance issue

– Pig’s overhead
– Pig in supporting iterative applications

• Solution
– Pig with Harp (Pig+Harp) integration and performance

• Conclusion

DataCloud 2014 3Integrating Pig with Harp to Support Iterative Applications
with Fast Cache and Customized Communication

Hadoop and Pig
• Hadoop

– Hadoop has been widely used by many fields of research and commercial
companies

• Machine Learning, Text Mining, Bioinformatics, etc.
• Facebook, Amazon, LinkedIn, etc.

– Java is one of the main stream languages for distributed systems
• Apache Storm, Apache HBase, Apache Cassandra, etc.

• Pig
– Procedural language and straightforward syntax
– Runs directly on top of Hadoop
– Automatic parallelism
– Works with HDFS and HBase

DataCloud 2014 4Integrating Pig with Harp to Support Iterative Applications
with Fast Cache and Customized Communication

Types of Pig Application

• Exact, Transform, Load (ETL)
– Join, (Co)Group, Union, etc.
– Raw Data analysis: daily log analysis
– NoSQL Database queries

• Statistical data analysis
– Means, median, standard deviation, etc.

• Data mining
– K-means clustering

DataCloud 2014 5Integrating Pig with Harp to Support Iterative Applications
with Fast Cache and Customized Communication

WordCount Example in Hadoop
public class WordCount {

public static class Map
extends Mapper<LongWritable, Text, Text, IntWritable>{

private final static IntWritable one = new IntWritable(1); // type of output value
private Text word = new Text(); // type of output key
public void map(LongWritable key, Text value, Context context

) throws IOException, InterruptedException {
StringTokenizer itr = new StringTokenizer(value.toString()); // line to string token
while (itr.hasMoreTokens()) {

word.set(itr.nextToken()); // set word as each input keyword
context.write(word, one); // create a pair <keyword, 1>

}
}

}

public static class Reduce
extends Reducer<Text,IntWritable,Text,IntWritable> {

private IntWritable result = new IntWritable();
public void reduce(Text key, Iterable<IntWritable> values,

Context context
) throws IOException, InterruptedException {

int sum = 0; // initialize the sum for each keyword
for (IntWritable val : values)
{ sum += val.get(); }

result.set(sum);
context.write(key, result); // create a pair <keyword, number of occurences>

}
}

public static void main(String[] args) throws Exception {
Configuration conf = new Configuration();
String[] otherArgs = new GenericOptionsParser(conf, args).getRemainingArgs(); // get all

args
for (int i = 0; i < otherArgs.length; i++)

System.out.println(i + " " +otherArgs[i]);
Job job = new Job(conf, "wordcount");
job.setJarByClass(WordCount.class);
job.setMapperClass(Map.class);
job.setReducerClass(Reduce.class);
job.setInputFormatClass(TextInputFormat.class);
job.setOutputFormatClass(TextOutputFormat.class);
job.setCombinerClass(Reduce.class);
job.setOutputKeyClass(Text.class);
job.setOutputValueClass(IntWritable.class);
FileInputFormat.addInputPath(job, new Path(otherArgs[1]));
FileOutputFormat.setOutputPath(job, new Path(otherArgs[2]));
//Wait till job completion
System.exit(job.waitForCompletion(true) ? 0 : 1);

}
}

• 48 lines of code not including library import lines

Map

Reduce Driver

DataCloud 2014 6Integrating Pig with Harp to Support Iterative Applications
with Fast Cache and Customized Communication

Pig WordCount

• Fewer lines of code
• Data is converted into Pig data

types: bag, tuple and field.
• Data transformation is handled

by built-in operators or UDF.
• Compile into Hadoop job(s) as jar

file(s)
• DAG execution dataflow/pipeline
• Jobs are submitted sequentially

1 input = LOAD 'input.txt' AS
(line:chararray);

2 words = FOREACH input GENERATE
FLATTEN(TOKENIZE(line)) AS word;

3 filWords = FILTER words BY word MATCHES '\\w+';
4 wdGroups = GROUP filWords BY word;
5 wdCount = FOREACH wdGroups GENERATE group AS

word, COUNT(filWords) AS count;
6 ordWdCnt = ORDER wdCount BY count DESC;
7 STORE ordWdCnt INTO 'result';

DataCloud 2014 7Integrating Pig with Harp to Support Iterative Applications
with Fast Cache and Customized Communication

Outline

• Apache Hadoop and Pig background
• Performance issue

– Pig’s overhead
– Pig in supporting iterative applications

• Solution
– Pig with Harp (Pig+Harp) integration and performance

• Conclusion

DataCloud 2014 8Integrating Pig with Harp to Support Iterative Applications
with Fast Cache and Customized Communication

Pig’s Computation Overhead
• Pig’s Tuple-based (record-based) computation is slower than Hadoop

– Overall execution time is about 2+ times slower

Map

Reduce

Local combine

DataCloud 2014 9Integrating Pig with Harp to Support Iterative Applications
with Fast Cache and Customized Communication

Pig and Iterative Applications

• Need a wrapper program to support
conditional loop

• Intermediate results of iterations are
mapped from disk to next iteration

• Disk cache and Disk I/O are substantial
• Hadoop Jobs restart overhead
• No in-memory caching mechanism
• Data partitions are based on Pig

Input Format
• Tuple-based data

transformation/computation is slow

DataCloud 2014 10Integrating Pig with Harp to Support Iterative Applications
with Fast Cache and Customized Communication

Outline

• Apache Hadoop and Pig background
• Performance issue

– Pig’s overhead
– Pig in supporting iterative applications

• Solution
– Pig with Harp (Pig+Harp) integration and performance

• Conclusion

DataCloud 2014 11Integrating Pig with Harp to Support Iterative Applications
with Fast Cache and Customized Communication

Improvement?

• Avoid tuple-based computation
– Easy fix by optimizing LOAD UDF

• Need loop-awareness support
• In-memory caching for reused data among iterations

DataCloud 2014 12Integrating Pig with Harp to Support Iterative Applications
with Fast Cache and Customized Communication

Harp: A Hadoop Plugin
• Plug-and-play Hadoop plugin
• Enable loop awareness for iterative

applications
• Multi-thread and Multi-process computing
• In-memory object caching
• MPI-like and graph collective communication
• Pure Java implementation

*Apache Harp project: http://salsaproj.indiana.edu/harp

DataCloud 2014 13Integrating Pig with Harp to Support Iterative Applications
with Fast Cache and Customized Communication

Solution: Pig+Harp

• Replace default mapper interface
with Harp’s MapCollective long-
running mapper

• Read once, Compute many
• In-memory objects caching in LOAD

& MAP stages’ UDF
• Shuffle data by calling Harp’s

collective communication API
• UDF controls loop termination
• No-hassle plugins

• Same as general Pig if collective
communication is not written in UDF

DataCloud 2014 14Integrating Pig with Harp to Support Iterative Applications
with Fast Cache and Customized Communication

Applications and Benchmarking
• Madrid Cluster (before update)

– 8-node cluster with an extra head node
– 4 x AMD Opteron 8356 2.30GHz with 4 cores
– 16GB RAM per node
– 1Gbps Ethernet network
– Red Hat Enterprise 6.5s

• Hadoop 2.2.0
• Harp 0.1.0
• Pig 0.12.0
• K-means clustering on large dataset

– Fixed computation ratios (50 Billion 4D data points computation per node) but various memory
and communication usage aspects

• PageRank
– Strong scaling test on a dataset with 2 million random vertices

DataCloud 2014 15Integrating Pig with Harp to Support Iterative Applications
with Fast Cache and Customized Communication

K-means

• Pig K-means
– An external python loop-control wrapper
– Data points and centroids are reloaded each

iteration
– Batch computation right after data loading
– Default GROUP BY aggregation

• Pig+Harp K-means
– Extends from Pig’s LOAD interface
– Reads data as file directly from HDFS.
– Data points and centroids are cached as in-

memory objects
– Batch computation right after data loading
– Sync intermediate centroids by using AllReduce

communication

1 raw = LOAD $hdfsInputDir using
PigKmeans('$centroids',
'$numOfCentroids') AS (datapoints);

2 dptsBag = FOREACH raw GENERATE
FLATTEN(datapoints) as dptInStr;

3 dpts = FOREACH dptsBag GENERATE
STRSPLIT(dptInStr, ',', 5) AS
splitedDP;

4 grouped = GROUP dpts BY splitedDP.$0;
5 newCens = FOREACH grouped GENERATE

CalculateNewCentroids($1);
6 STORE newCens INTO 'output';

1 centds = LOAD $hdfsInputDir using
HarpKmeans('$initCentroidOnHDFS',
'$numOfCentroids', '$numOfMappers',
'$iteration', '$jobID', '$Comm') as
(result);

2 STORE centroids INTO '$output';

Pig K-means

Pig+Harp K-means

DataCloud 2014 16Integrating Pig with Harp to Support Iterative Applications
with Fast Cache and Customized Communication

K-means Performance

DataCloud 2014 17Integrating Pig with Harp to Support Iterative Applications
with Fast Cache and Customized Communication

K-means Performance (cont.)

• Harp K-means is written in multi-thread model; meanwhile, Pig+Harp is
written in multi-process model

• Pig+Harp 1m 50K 96 mappers runs 2 times slower than Harp’s multi-thread
computation

• L2 & L3 cache effect of in-memory caching

100m data points 500 centroids10m data points 5k centroids1m data points 50k centroids

DataCloud 2014 18Integrating Pig with Harp to Support Iterative Applications
with Fast Cache and Customized Communication

PageRank

• Pig PageRank
– An external java loop-control wrapper
– PageRank adjacent matrix is reloaded each

iteration
– Compute with built-in operators except data

loading
– Tuple-based computation

• Pig+Harp PageRank
– Extend from Pig’s LOAD interface
– Reads data as file directly from HDFS
– Data points are cached as in-memory objects
– Batch computation right after loading
– Sync intermediate page rank values by using

AllGather communication

1 pagerank = LOAD '$InputDir' using
HarpPageRank('$totalUrls',
'$numMaps', '$itrs', '$jobID')
as (result);

2 STORE pagerank INTO '$output';

Pig PageRank

Pig+Harp PageRank

1 raw = LOAD '$InputDir' USING
CmLoader('$noOfURLs','$itrs') as
(source,pagerank, out:bag{});

2 prePgRank = FOREACH raw GENERATE FLATTEN(out)
as source, pagerank/SIZE(out) as
pagerank;

3 newPgRank = FOREACH (COGROUP raw by source,
prePgRank by source OUTER)GENERATE
group as source, (1-$dpFactor) +
$dpFactor*(SUM(prePgRank.pagerank)
IS NULL?0:SUM(prePgRank.pagerank))
as pagerank, FLATTEN(raw.out)
as out;

4 STORE newPgRank INTO '$outputFile';

DataCloud 2014 19Integrating Pig with Harp to Support Iterative Applications
with Fast Cache and Customized Communication

PageRank

• Pig+Harp is 5 times faster than native
Pig

• Tuple-based computation
• Data type conversion time between bags

and fields

• Harp’s multi-thread shows the
advantage in AllGather communication
for larger partitions.

• 2 layer synchronization
• In-node sync and cross-node sync

DataCloud 2014 20Integrating Pig with Harp to Support Iterative Applications
with Fast Cache and Customized Communication

Lines of code for K-means and PageRank

Hadoop
K-means

Pig
K-means

Harp
K-means

Pig+Harp
K-means

K-means 36 36 39 39
Load & Format 261 250 499 662

Reduce / Comm. 142 56 34 34
Pig 0 10 0 3

Driver / Wrapper 341 40 176 0
Total lines 780 393 748 738

Pig
PageRank

Harp
PageRank

Pig+Harp
PageRank

PageRank 1 56 56
Load & Format 50 386 494

Reduce / Comm. 0 4 4
Pig 4 0 3

Driver / Wrapper 70 90 0
Total lines 125 536 557

• Same lines of code for core algorithm
• Zero lines of code for wrapper in Pig+Harp approach

DataCloud 2014 21Integrating Pig with Harp to Support Iterative Applications
with Fast Cache and Customized Communication

Conclusion

• A trend of using Apache high level languages for data analytics
• Leverage Apache open source building blocks to maximize the usage of

existing features such as expressiveness of data type and data structure,
automatic parallelization for applications, and algorithms.

• Easy-to-use Hadoop and Pig plugin written in Java.
• Pig+Harp saves the jobs restart overheads; by utilizing Harp, it provides in-

memory objects caching and fast communication for data shuffling.
• Pig+Harp suggests minimizing tuple-based computation by batch

computation and replacing data aggregation by writing customized
collective communication in UDF.

DataCloud 2014 22Integrating Pig with Harp to Support Iterative Applications
with Fast Cache and Customized Communication

Future Work

• Link scientific data pipelines as an end-to-end solution in the
context of using high-level languages to solve parallel
computing problems.

• Investigate Apache Tez, compare to our approach, and
optimize in-memory data caching between tasks.

• Benchmark applications at a larger scale.

DataCloud 2014 23Integrating Pig with Harp to Support Iterative Applications
with Fast Cache and Customized Communication

Q&A

DataCloud 2014 24Integrating Pig with Harp to Support Iterative Applications
with Fast Cache and Customized Communication

Wordcount without tuple-based computation

DataCloud 2014 25Integrating Pig with Harp to Support Iterative Applications
with Fast Cache and Customized Communication

Harp 0.1.0 vs Spark 1.0.2

• Run Same K-Means clustering data with default Spark Mlib K-Means clustering
• Harp’s data communication is highly optimized.
• Spark’s computation and collectAsMap has less impact on the overall performance.
• Spark’s reduceByKey operation takes much longer than usual with large data points as RDDs.

– *Large intermediate data are shuffled to disk.

100m data points 500 centroids10m data points 5k centroids1m data points 50k centroids
*http://spark-summit.org/2014/training

	Integrating Pig with Harp to Support Iterative Applications with Fast Cache and Customized Communication
	Outline
	Hadoop and Pig
	Types of Pig Application
	WordCount Example in Hadoop
	Pig WordCount
	Outline
	Pig’s Computation Overhead
	Pig and Iterative Applications
	Outline
	Improvement?
	Harp: A Hadoop Plugin
	Solution: Pig+Harp
	Applications and Benchmarking
	K-means
	K-means Performance
	K-means Performance (cont.)
	PageRank
	PageRank
	Lines of code for K-means and PageRank
	Conclusion
	Future Work
	Q&A
	Wordcount without tuple-based computation
	Harp 0.1.0 vs Spark 1.0.2

