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Hadoop and Pig
• Hadoop 

– Hadoop has been widely used by many fields of research and commercial 
companies

• Machine Learning, Text Mining, Bioinformatics, etc.
• Facebook, Amazon, LinkedIn, etc.

– Java is one of the main stream languages for distributed systems
• Apache Storm, Apache HBase, Apache Cassandra, etc.

• Pig
– Procedural language and straightforward syntax
– Runs directly on top of Hadoop
– Automatic parallelism 
– Works with HDFS and HBase
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Types of Pig Application

• Exact, Transform, Load (ETL)
– Join, (Co)Group, Union, etc.
– Raw Data analysis: daily log analysis
– NoSQL Database queries

• Statistical data analysis
– Means, median, standard deviation, etc.

• Data mining
– K-means clustering
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WordCount Example in Hadoop
public class WordCount {

public static class Map 
extends Mapper<LongWritable, Text, Text, IntWritable>{

private final static IntWritable one = new IntWritable(1); // type of output value
private Text word = new Text();   // type of output key
public void map(LongWritable key, Text value, Context context

) throws IOException, InterruptedException {
StringTokenizer itr = new StringTokenizer(value.toString()); // line to string token
while (itr.hasMoreTokens()) {

word.set(itr.nextToken());    // set word as each input keyword
context.write(word, one);     // create a pair <keyword, 1> 

}
}

}

public static class Reduce
extends Reducer<Text,IntWritable,Text,IntWritable> {

private IntWritable result = new IntWritable();
public void reduce(Text key, Iterable<IntWritable> values, 

Context context
) throws IOException, InterruptedException {

int sum = 0; // initialize the sum for each keyword
for (IntWritable val : values)
{ sum += val.get(); }

result.set(sum);
context.write(key, result); // create a pair <keyword, number of occurences>

}
}

public static void main(String[] args) throws Exception {
Configuration conf = new Configuration(); 
String[] otherArgs = new GenericOptionsParser(conf, args).getRemainingArgs(); // get all 

args
for (int i = 0; i < otherArgs.length; i++)

System.out.println(i + " " +otherArgs[i]);
Job job = new Job(conf, "wordcount");
job.setJarByClass(WordCount.class);
job.setMapperClass(Map.class);
job.setReducerClass(Reduce.class);
job.setInputFormatClass(TextInputFormat.class);
job.setOutputFormatClass(TextOutputFormat.class);    
job.setCombinerClass(Reduce.class);  
job.setOutputKeyClass(Text.class);
job.setOutputValueClass(IntWritable.class);
FileInputFormat.addInputPath(job, new Path(otherArgs[1]));
FileOutputFormat.setOutputPath(job, new Path(otherArgs[2]));
//Wait till job completion
System.exit(job.waitForCompletion(true) ? 0 : 1);

}
}

• 48 lines of code not including library import lines

Map

Reduce Driver
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Pig WordCount

• Fewer lines of code 
• Data is converted into Pig data 

types: bag, tuple and field.
• Data transformation is handled 

by built-in operators or UDF.
• Compile into Hadoop job(s) as jar 

file(s)
• DAG execution dataflow/pipeline
• Jobs are submitted sequentially  

1 input    = LOAD 'input.txt' AS
(line:chararray);

2 words    = FOREACH input GENERATE 
FLATTEN(TOKENIZE(line)) AS word;

3 filWords = FILTER words BY word MATCHES '\\w+';
4 wdGroups = GROUP filWords BY word;
5 wdCount = FOREACH wdGroups GENERATE group AS 

word, COUNT(filWords) AS count;
6 ordWdCnt = ORDER wdCount BY count DESC;
7 STORE ordWdCnt INTO 'result';
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Pig’s Computation Overhead
• Pig’s Tuple-based (record-based) computation is slower than Hadoop

– Overall execution time is about 2+ times slower 

Map

Reduce

Local combine
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Pig and Iterative Applications

• Need a wrapper program to support 
conditional loop

• Intermediate results of iterations are 
mapped from disk to next iteration

• Disk cache and Disk I/O are substantial
• Hadoop Jobs restart overhead
• No in-memory caching mechanism 
• Data partitions are based on Pig 

Input Format
• Tuple-based data 

transformation/computation is slow
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Improvement?

• Avoid tuple-based computation
– Easy fix by optimizing LOAD UDF

• Need loop-awareness support
• In-memory caching for reused data among iterations
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Harp: A Hadoop Plugin
• Plug-and-play Hadoop plugin
• Enable loop awareness for iterative 

applications
• Multi-thread and Multi-process computing 
• In-memory object caching 
• MPI-like and graph collective communication
• Pure Java implementation

*Apache Harp project: http://salsaproj.indiana.edu/harp
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Solution: Pig+Harp

• Replace default mapper interface 
with Harp’s MapCollective long-
running mapper

• Read once, Compute many
• In-memory objects caching in LOAD 

& MAP stages’ UDF
• Shuffle data by calling Harp’s 

collective communication API
• UDF controls loop termination
• No-hassle plugins

• Same as general Pig if collective 
communication is not written in UDF
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Applications and Benchmarking
• Madrid Cluster (before update)

– 8-node cluster with an extra head node
– 4 x AMD Opteron 8356 2.30GHz with 4 cores
– 16GB RAM per node
– 1Gbps Ethernet network 
– Red Hat Enterprise 6.5s

• Hadoop 2.2.0
• Harp 0.1.0
• Pig 0.12.0
• K-means clustering on large dataset

– Fixed computation ratios (50 Billion 4D data points computation per node) but various memory 
and communication usage aspects

• PageRank
– Strong scaling test on a dataset with 2 million random vertices
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K-means

• Pig K-means
– An external python loop-control wrapper
– Data points and centroids are reloaded each 

iteration
– Batch computation right after data loading
– Default GROUP BY aggregation

• Pig+Harp K-means
– Extends from Pig’s LOAD interface 
– Reads data as file directly from HDFS.
– Data points and centroids are cached as in-

memory objects 
– Batch computation right after data loading
– Sync intermediate centroids by using AllReduce

communication

1 raw     = LOAD $hdfsInputDir using 
PigKmeans('$centroids',
'$numOfCentroids') AS (datapoints);

2 dptsBag = FOREACH raw GENERATE
FLATTEN(datapoints) as dptInStr; 

3 dpts = FOREACH dptsBag GENERATE 
STRSPLIT(dptInStr, ',', 5) AS 
splitedDP;

4 grouped = GROUP dpts BY splitedDP.$0;
5 newCens = FOREACH grouped GENERATE 

CalculateNewCentroids($1);
6 STORE newCens INTO 'output';

1 centds = LOAD $hdfsInputDir using 
HarpKmeans('$initCentroidOnHDFS', 
'$numOfCentroids', '$numOfMappers', 
'$iteration', '$jobID', '$Comm') as 
(result);

2 STORE centroids INTO '$output';

Pig K-means

Pig+Harp K-means
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K-means Performance 
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K-means Performance (cont.)

• Harp K-means is written in multi-thread model; meanwhile, Pig+Harp is 
written in multi-process model

• Pig+Harp 1m 50K 96 mappers runs 2 times slower than Harp’s multi-thread 
computation 

• L2 & L3 cache effect of in-memory caching 

100m data points 500 centroids10m data points 5k centroids1m data points 50k centroids
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PageRank

• Pig PageRank
– An external java loop-control wrapper
– PageRank adjacent matrix is reloaded each 

iteration
– Compute with built-in operators except data 

loading
– Tuple-based computation

• Pig+Harp PageRank
– Extend from Pig’s LOAD interface
– Reads data as file directly from HDFS
– Data points are cached as in-memory objects 
– Batch computation right after loading
– Sync intermediate page rank values by using 

AllGather communication

1 pagerank = LOAD '$InputDir' using 
HarpPageRank('$totalUrls', 
'$numMaps', '$itrs', '$jobID') 
as (result);

2 STORE pagerank INTO '$output';

Pig PageRank

Pig+Harp PageRank

1 raw       = LOAD '$InputDir' USING 
CmLoader('$noOfURLs','$itrs') as   
(source,pagerank, out:bag{});

2 prePgRank = FOREACH raw GENERATE FLATTEN(out) 
as source, pagerank/SIZE(out) as 
pagerank;

3 newPgRank = FOREACH (COGROUP raw by source, 
prePgRank by source OUTER)GENERATE   
group as source, (1-$dpFactor) +  
$dpFactor*(SUM(prePgRank.pagerank) 
IS NULL?0:SUM(prePgRank.pagerank)) 
as pagerank, FLATTEN(raw.out) 
as out;

4 STORE newPgRank INTO '$outputFile';
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PageRank

• Pig+Harp is 5 times faster than native 
Pig

• Tuple-based computation 
• Data type conversion time between bags 

and fields

• Harp’s multi-thread shows the 
advantage in AllGather communication 
for larger partitions.

• 2 layer synchronization
• In-node sync and cross-node sync 
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Lines of code for K-means and PageRank

Hadoop 
K-means

Pig 
K-means

Harp 
K-means

Pig+Harp 
K-means

K-means 36 36 39 39
Load  & Format 261 250 499 662

Reduce / Comm. 142 56 34 34
Pig 0 10 0 3

Driver / Wrapper 341 40 176 0
Total lines 780 393 748 738

Pig
PageRank

Harp
PageRank

Pig+Harp
PageRank

PageRank 1 56 56
Load  & Format 50 386 494

Reduce / Comm. 0 4 4
Pig 4 0 3

Driver / Wrapper 70 90 0
Total lines 125 536 557

• Same lines of code for core algorithm
• Zero lines of code for wrapper in Pig+Harp approach
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Conclusion

• A trend of using Apache high level languages for data analytics
• Leverage Apache open source building blocks to maximize the usage of 

existing features such as expressiveness of data type and data structure, 
automatic parallelization for applications, and algorithms.

• Easy-to-use Hadoop and Pig plugin written in Java.
• Pig+Harp saves the jobs restart overheads; by utilizing Harp, it provides in-

memory objects caching and fast communication for data shuffling.
• Pig+Harp suggests minimizing tuple-based computation by batch 

computation and replacing data aggregation by writing customized 
collective communication in UDF.
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Future Work

• Link scientific data pipelines as an end-to-end solution in the 
context of using high-level languages to solve parallel 
computing problems.

• Investigate Apache Tez, compare to our approach, and 
optimize in-memory data caching between tasks.

• Benchmark applications at a larger scale.
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Q&A
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Wordcount without tuple-based computation
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Harp 0.1.0 vs Spark 1.0.2

• Run Same K-Means clustering data with default Spark Mlib K-Means clustering
• Harp’s data communication is highly optimized.
• Spark’s computation and collectAsMap has less impact on the overall performance.
• Spark’s reduceByKey operation takes much longer than usual with large data points as RDDs.

– *Large intermediate data are shuffled to disk.

100m data points 500 centroids10m data points 5k centroids1m data points 50k centroids
*http://spark-summit.org/2014/training
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