
HARP: A MACHINE LEARNING FRAMEWORK

ON TOP OF THE COLLECTIVE COMMUNICATION LAYER

FOR THE BIG DATA SOFTWARE STACK

Bingjing Zhang

Submitted to the faculty of the University Graduate School
in partial fulfillment of the requirements

for the degree
Doctor of Philosophy

in the School of Informatics and Computing,
Indiana University

May 2017

Accepted by the Graduate Faculty, Indiana University, in partial fulfillment of the requirements for

the degree of Doctor of Philosophy.

Doctoral Committee

Judy Qiu, Ph.D.

Geoffrey Charles Fox, Ph.D.

David J Crandall, Ph.D.

Paul Purdom, Ph.D.

March 27, 2017

ii

Acknowledgments

I sincerely thank my advisor, Dr. Qiu, and my colleagues: Dr. Peng, Dr. Chen, Meng Li, Yiming

Zou, Thomas Wiggins, and Allan Streib for their support to my research work. I also thank Dr.

Crandall, Dr. Fox, and Dr. Purdom, my research committee members, for providing guidance in

my thesis research. I am very grateful to my wife, Jane, and my parents for their love and support,

which has been key to helping me complete my Ph.D. program.

iii

Bingjing Zhang

HARP: A MACHINE LEARNING FRAMEWORK ON TOP OF THE COLLECTIVE

COMMUNICATION LAYER FOR THE BIG DATA SOFTWARE STACK

Almost every field of science is now undergoing a data-driven revolution requiring analyzing mas-

sive datasets. Machine learning algorithms are widely used to find meaning in a given dataset and

discover properties of complex systems. At the same time, the landscape of computing has evolved

towards computers exhibiting many-core architectures of increasing complexity. However, there is

no simple and unified programming framework allowing for these machine learning applications

to exploit these new machines’ parallel computing capability. Instead, many efforts focus on spe-

cialized ways to speed up individual algorithms. In this thesis, the Harp framework, which uses

collective communication techniques, is prototyped to improve the performance of data movement

and provides high-level APIs for various synchronization patterns in iterative computation.

In contrast to traditional parallelization strategies that focus on handling high volume training

data, a less known challenge is that the high dimensional model is also in high volume and diffi-

cult to synchronize. As an extension of the Hadoop MapReduce system, Harp includes a collective

communication layer and a set of programming interfaces. Iterative machine learning algorithms

can be parallelized through efficient synchronization methods utilizing both inter-node and intra-

node parallelism. The usability and efficiency of Harp’s approach is validated on applications such

as K-means Clustering, Multi-Dimensional Scaling, Latent Dirichlet Allocation and Matrix Fac-

torization. The results show that these machine learning applications can achieve high parallel

performance on Harp.

Judy Qiu, Ph.D.

Geoffrey Charles Fox, Ph.D.

David J Crandall, Ph.D.

Paul Purdom, Ph.D.

iv

Contents

1 Introduction 1

2 Machine Learning Algorithms & Computation Models 6

2.1 Machine Learning Algorithms . 6

2.2 Computation Model Survey . 7

2.3 Latent Dirichlet Allocation . 10

2.3.1 LDA Background . 11

2.3.2 Big Model Problem . 14

2.3.3 Model Synchronization Optimizations . 17

2.3.4 Experiments . 19

3 Solving Big Data Problem with HPC Methods 26

3.1 Related Work . 26

3.2 Research Methodologies . 29

4 Harp Programming Model 32

4.1 MapCollective Programming Model . 32

4.2 Hierarchical Data Interfaces . 32

4.3 Collective Communication Operations . 34

4.4 Mapping Computation Models to Harp Programming Interfaces 37

5 Harp Framework Design and Implementation 39

5.1 Layered Architecture . 39

5.2 Data Interface Methods . 39

5.3 Collective Communication Implementation . 43

5.4 Intra-Worker Scheduling and Multi-Threading . 44

6 Machine Learning Applications on top of Harp 47

7 The Allreduce-based Solution 50

7.1 K-Means Clustering . 50

v

7.2 WDA-SMACOF . 52

8 The Rotation-based Solution 53

8.1 Algorithms . 54

8.2 Programming Interface and Implementation . 56

8.2.1 Data Abstraction and Execution Flow . 56

8.2.2 Pipelining and Dynamic Rotation Control 57

8.2.3 Algorithm Parallelization . 61

8.3 Experiments . 62

8.3.1 Experiment Settings . 62

8.3.2 LDA Performance Results . 63

8.3.3 MF Performance Results . 68

9 Conclusion 72

References 74

Resume

vi

1 Introduction

Data analytics is undergoing a revolution in many scientific domains. Machine learning algorithms1

have become popular methods for analytics, which allow computers to learn from existing data

and make data-based predictions. They have been widely used in computer vision, text mining,

advertising, recommender systems, network analysis, and genetics. Unfortunately, analyzing big

data usually exceeds the capability of a single or even a few machines owing to the incredible

volume of data available, and thus requires algorithm parallelization at an unprecedented scale.

Scaling up these algorithms is challenging because of their prohibitive computation cost, not only

the need to process enormous training data in iterations, but also the requirement to synchronize big

models in rounds for algorithm convergence.

Through examining existing parallel machine learning implementations, I conclude that the

parallelization solutions can be categorized into four types of computation models: “Locking”,

“Rotation”, “Allreduce”, and “Asynchronous”. My classification of the computation models is based

on model synchronization patterns (synchronized algorithms or asynchronous algorithms) and the

effectiveness of the model parameter update (the latest model parameters or stale model parameters).

As a particular case study, I chose a representative machine learning algorithm, Collapsed Gibbs

Sampling (CGS) [1, 2] for Latent Dirichlet Allocation (LDA) [3], to understand the differences

between these computation models. LDA is a widely used machine learning technique for big

data analysis. It includes an inference algorithm that iteratively updates a model until the model

converges. The LDA application is commonly solved by the CGS algorithm. A major challenge is

the scaling issue in parallelization owing to the fact that the model size is huge, and parallel workers

need to communicate the model parameters continually. I identify three important features of the

parallel LDA computation to consider here:

1. The volume of model parameters required for the local computation is high

2. The time complexity of local computation is proportional to the required model size

3. The model size shrinks as it converges

In the LDA parallelization, compared with the “Asynchronous” computation model, the “Allreduce”

computation model with optimized communication routing can improve the model synchronization
1 http://ai.stanford.edu/~ronnyk/glossary.html

1

speed, thus allowing the model to converge faster. This performance improvement derives not only

from accelerated communication but also from reduced iteration computation time as the model

size shrinks during convergence. The results also reveal that the “Rotation” computation model can

achieve faster model convergence speed than the “Allreduce” computation model. The main ratio-

nale is that in the training procedure running on each worker, the “Allreduce” computation model

uses stale model parameters, but the “Rotation” computation model uses the latest model parame-

ters. The effect of the model update in convergence reduces when stale model parameters are used.

Besides, even when two implementations use the “Rotation” computation model, communication

through sending model parameters in chunks can further reduce communication overhead compared

with flooding small messages.

Synchronized communication performed by all the parallel workers is referred to as “collective

communication” in the High-Performance Computing (HPC) domain. In MPI [4], some collective

communication patterns are implemented with various optimizations and invoked as operations.

Though the collective communication technique can result in efficient model synchronization as is

shown in LDA, it has not been thoroughly applied to many machine learning applications. MPI only

provides basic collective communication operations which describe process-to-process synchro-

nization patterns, so it does not cover all the complicated parameter-to-parameter synchronization

patterns. In that case, users have to rely on send/receive calls to develop those customized synchro-

nization patterns. The applications developed achieve high performance but create a complicated

code base.

Another way to implement machine learning algorithms is to use big data tools. Initially, many

machine learning algorithms were implemented in MapReduce [5, 6]. However, these implementa-

tions suffer from repeated input data loading from the distributed file systems and slow disk-based

intermediate data synchronization in the shuffling phase. This motivates the design of iterative

MapReduce tools such as Twister [7] and Spark [8], which utilizes memory for data caching and

communication and thus drastically improve the performance of large-scale data processing. Later,

big data tools have expanded rapidly and form an open-source software stack. Their programming

models are not limited to MapReduce and iterative MapReduce. In graph processing tools [9], in-

put data are abstracted as a graph and processed in iterations, while intermediate data per iteration

are expressed as messages transmitted between vertices. In parameter servers, model parameters

2

are stored in a set of server machines, and they can be retrieved asynchronously in parallel pro-

cessing. To support these tools, big data systems are split into multiple layers. A typical layered

architecture is seen in the Apache Big Data Stack (ABDS) [10]. Though these tools are continually

evolving and improving their performance, there are still fundamental issues unsolved. To simplify

the programming process, many tools’ design tries to fix the parallel execution flow, and develop-

ers are only required to fill the bodies of user functions. However, this results in limited support

of synchronization patterns, so that the parallelization performance suffers from improper usage of

synchronization patterns and inefficient synchronization performance.

To solve all these problems in machine learning algorithm parallelization, in this thesis, I pro-

pose the Harp framework [11]. Its approach is to use collective communication techniques to im-

prove model synchronization performance. Harp provides high-level programming interfaces for

various synchronization patterns in iterative machine learning computations, which are not well sup-

ported in current big data tools. Therefore, a MapCollective programming model is extended from

the original MapReduce programming model. The MapCollective model still reads Key-Value pairs

as inputs. However, instead of using a shuffling phase, Harp uses optimized collective communica-

tion operations on partitioned distributed datasets for data movement. All these Harp programming

interfaces can be mapped to parallel machine learning computation models. Harp is designed as

a plug-in to Hadoop2 so that it can enrich the ABDS with HPC methods. With improved expres-

siveness and performance on synchronization, a HPC-ABDS can support various machine learning

applications.

With the Harp framework, I then focus on building a machine learning library with the Map-

Collective programming model. Several machine learning algorithms are investigated in this thesis.

First, K-Means [12] and SMACOF for Multi-Dimensional Scaling [13] are implemented with the

“Allreduce” computation model. These two algorithms use classic “allgather” and “allreduce” col-

lective communication operations. The results on the Big Red II Super Computer3 show that with

applying efficient routing algorithms in collective communication, Harp can achieve high speedup.

Three other algorithms, CGS for LDA, Stochastic Gradient Descent (SGD) for Matrix Factorization

(MF) [14], and Cyclic Coordinate Descent (CCD) for MF [15], are implemented using the “Ro-
2 http://hadoop.apache.org
3 https://kb.iu.edu/d/bcqt

3

tation” computation model. These algorithms are implemented with further abstracted high-level

programming interfaces. Pipelined rotation is used to reduce synchronization overhead. Dynamic

rotation control is applied to CGS for LDA and SGD for MF in order to improve load balancing.

The performance results on an Intel Haswell cluster and an Intel Knights Landing cluster4 show

that the Harp solution achieves faster model convergence speed and higher scalability than previous

work.

To summarize, this thesis makes the following seven contributions:

1. Identify model-centric parallelization as the key to parallel machine learning and categorize

algorithm implementations into four computation models

2. Identify algorithm features and model synchronization patterns of the LDA application and

execute comparisons among computation models

3. Propose the Harp framework with the MapCollective programming model to converge the

HPC and Big Data domains

4. Implement the Harp framework with optimized collective communication operations as a

plug-in to the Hadoop system

5. Provide guidelines for developing parallel machine learning algorithms on top of Harp

6. Implement two algorithms on Harp, K-means Clustering and SMACOF for MDS, using the

“Allreduce” computation model with high speedup

7. Design a model rotation-based solution on Harp to implement three algorithms, CGS for

LDA, SGD and CCD for MF, with fast model convergence speed and high scalability

Early work related to this thesis have appeared in the following seven publications, including

information on large scale image clustering with optimizations on collective communication oper-

ations, initial Harp design and implementation as a collective communication layer in the big data

software stack, analysis of model synchronization patterns in the LDA application, computation

models, and the model rotation-based solution:

1. J. Qiu, B. Zhang. Mammoth Data in the Cloud: Clustering Social Images. Book Chapter in

Cloud Computing and Big Data, series Advances in Parallel Computing, 2013.

2. B. Zhang, J. Qiu. High Performance Clustering of Social Images in a Map-Collective Pro-

gramming Model. Poster in SoCC, 2013.
4 https://portal.futuresystems.org

4

3. B. Zhang, Y. Ruan, J. Qiu. Harp: Collective Communication on Hadoop. Short Paper in

IC2E, 2015.

4. B. Zhang. A Collective Communication Layer for the Software Stack of Big Data Analytics.

Doctor Symposium in IC2E, 2016.

5. B. Zhang, B. Peng, J. Qiu. High Performance LDA through Collective Model Communica-

tion Optimization. ICCS, 2016.

6. B. Zhang, B. Peng, J. Qiu. Model-Centric Computation Abstractions in Machine Learning

Applications. Extended Abstract in BeyondMR, 2016.

7. B. Zhang, B. Peng, J. Qiu. Parallelizing Big Data Machine Learning Applications with Model

Rotation. Book Chapter in series Advances in Parallel Computing, 2017.

In the following sections, the machine learning algorithms and their parallel computation mod-

els are first introduced. Then the research methodologies are described to show the convergence

between HPC and big data techniques. Next, the programming interfaces, design, and implemen-

tation of the Harp framework are presented. Finally, several machine learning algorithm examples

implementations are presented, either using the “Allreduce” computation model or using the “Rota-

tion” computation model. The conclusion is given at the end of the thesis.

5

2 Machine Learning Algorithms & Computation Models

This section is based on published papers [16, 17]. In this section, first the characteristics of machine

learning algorithms and their parallelization are described, and then the categorization of computa-

tion models is given. Finally, the LDA application is used as an example to analyze the difference

between different computation models.

2.1 Machine Learning Algorithms

Iterative machine learning algorithms can be formulated as

At = F (D,At−1) (1)

In this equation, D is the observed dataset, A are the model parameters to learn, and F is the model

update function. The algorithm keeps updating model A until convergence (by reaching a stop

criterion or a fixed number of iterations).

Parallelization can be performed by utilizing either the parallelism inside different components

of the model update function F or the parallelism among multiple invocations of F . In the first form,

the difficulty of parallelization lies in the computation dependencies inside F , which are either be-

tween the data and the model, or among the model parameters. If F is in a “summation form”, such

algorithms can be easily parallelized through the first category [6]. However, in large-scale machine

learning applications, the algorithms picking random examples in model update perform asymptot-

ically better than the algorithms with the summation form [18]. These algorithms are parallelized

through the second form of parallelism. In the second category, the difficulty of parallelization lies

in the dependencies between iterative updates of a model parameter. No matter which form of the

parallelization is used, when the dataset is partitioned to P parts, the parallel model update process

can be generalized with only using one part of data entries Dp as

At = F (Dp, A
t−1) (2)

Obtaining the exact At−1 is not feasible in parallelization. However, there are certain algorithm

features which can maintain the algorithm correctness and improve the parallel performance.

6

I. The algorithms can converge even when the consistency of a model is not guaranteed to

some extent. Algorithms can work on the model A with an older version i when i is within bounds

[19], as shown in

At = F (Dp, A
t−i) (3)

By using a different version of A, Feature I breaks the dependency across iterations.

II. The update order of the model parameters is exchangeable. Although different update

orders can lead to different convergence rates, they normally don’t make the algorithm diverge. In

the second form of parallelization, if F only accesses and updates one of the disjointed parts of

the model parameters (Ap′), there is a chance of finding an arrangement on the order of model

updates that allows independent model parameters to be processed in parallel while keeping the

dependencies.

Atp′ = F (Dp, A
t−1
p′) (4)

2.2 Computation Model Survey

Since the key to parallelize machine learning algorithms is to parallelize the model update function,

the parallelization is not only viewed as training data-centric processing but also model parameter-

centric processing. Based on the model synchronization patterns and how the model parameters are

used in the parallel computation, the parallel machine learning algorithms can be categorized into

computation models. Through the understanding of the model synchronization mechanisms, the

computation models are aimed to answer the following questions:

• What model parameters needs to be updated?

• When should the model update happen?

• Where should the model update occur?

• How is the model update performed?

Before the description of computation models, four attributes are introduced. These elements

are the key factors to computation models:

Worker In a computation model, each parallel unit is called a “worker.” There are two levels

of parallelism. In a distributed environment, each worker is a process, and the workers are syn-

chronized through network communication. In a multi-thread environment, the workers are threads

7

which are coordinated through various mechanisms such as monitor synchronization.

Model Model parameters are the output of the machine learning algorithms. Some algorithms

may have multiple model parts. In these cases, the parallelization solution can store some model

parts along with the training data, and leaves the rest with synchronization.

Synchronized/Asynchronous Algorithm Computation models can be divided into those with

synchronized algorithms and others with asynchronous algorithms. In synchronized algorithms,

the computation progress on one worker depends on the progress on other workers; asynchronous

algorithms lack this dependency.

The Latest/Stale Model Parameters Computation models use either the latest values or stale

values from the model. The “latest” means that the current model used in computation is up-to-

date and not modified simultaneously by other workers, while the “stale” indicates the values in the

model are old. Since the computation model using the latest model maintains model consistency,

its model output contains less approximation and is close to the output of the sequential algorithm.

These attributes derive four types of computation models, each of which uses a different means

to handle the model and coordinate workers (see Figure 1). The computation model description

focuses on the distributed environment. However, computation models can also be applied to a

multi-thread environment. In a system with two levels of parallelism, model composition is com-

monly adapted, with one type of computation model at the distributed environment and another in

the multi-thread environment.

Computation Model A (Locking) This computation model uses a synchronized algorithm to

coordinate parallel workers and guarantees each worker exclusive access to model parameters. Once

a worker trains a data item, it locks the related model parameters and prevents other workers from

accessing them. When the related model parameters are updated, the worker unlocks the parameters.

Thus the model parameters used in local computation is always the latest.

Computation Model B (Rotation) The next computation model also uses a synchronized

algorithm. Each worker first takes a part of the shared model and performs training. Afterwards,

the model is shifted between workers. Through model rotation, each model parameters are updated

by one worker at a time so that the model is consistent.

Computation Model C (Allreduce) This computation model applies a synchronized algorithm

but with the stale model. In a single iteration, Each worker first fetches all the model parameters

8

Model

Worker Worker Worker

Model

Worker Worker Worker

Model

Worker Worker Worker
Worker Worker Worker

Model 1 Model 2 Model 3

• Synchronized algorithm
• The latest model

• Synchronized algorithm
• The latest model

• Synchronized algorithm
• The stale model

• Asynchronous algorithm
• The stale model

(A) Locking (B) Rotation

(C) Allreduce (D) Asynchronous

Figure 1: Computation Model Types

9

required by local computation. When the local computation is completed, modifications of the local

model from all workers are gathered to update the model.

Computation Model D (Asynchronous) With this computation model, an asynchronous al-

gorithm employs the stale model. Each worker independently fetches related model parameters,

performs local computation, and returns model modifications. Unlike the “Locking” computation

model, workers are allowed to fetch or update the same model parameters in parallel. In contrast to

‘Rotation” and “Allreduce”, there is no synchronization barrier.

Previous work shows many machine learning algorithms can be implemented in the MapReduce

programming model [6]; later on, these algorithms are improved by in-memory computation and

communication in iterative MapReduce [20, 21, 22]. However, the solution with broadcasting and

reducing model parameters is a special case of the “Allreduce” computation model and is not im-

mediately scalable as the model size grows larger than the capacity of the local memory. As models

may reach 1010 ∼ 1012 parameters, Parameter Server type solutions [23, 24, 25] store the model

on a set of server machines and use the “Asynchronous” computation model. Petuum [19], how-

ever, uses a computation model mixed with both the “Allreduce” and “Asynchronous” computation

models [19]. Petuum also implements the “Rotation” computation model [26, 27, 28].

In practice, it is difficult to decide what algorithm and which computation model to use for the

parallelization solution of a machine learning application. Taking the LDA application as an exam-

ple, it can be solved by many different algorithms, such as CGS and Collapsed Variational Bayes

(CVB) [3]. If CGS is selected, then the SparseLDA algorithm [29] is the most common imple-

mentation. Then comes another question: which computation model should be used to parallelize a

machine learning algorithm? Currently there are various implementations (see Table 1). Potentially,

it is possible to have ways other than the implementations above to perform LDA CGS paralleliza-

tion, as long as the computation dependency is maintained. The difference between these solutions

is discussed in the section below.

2.3 Latent Dirichlet Allocation

Latent Dirichlet Allocation (LDA) is an important machine learning technique that has been widely

used in areas such as text mining, advertising, recommender systems, network analysis and genetics.

Though extensive research on this topic exists, the machine learning community is still endeavoring

10

Table 1: The Computation Models of LDA CGS Implementations
Implementation Algorithm Computation Model
PLDA [30] CGS Allreduce
PowerGraph LDAa [31] CGS Allreduce
Yahoo! LDAb [24, 25] SparseLDA Asynchronous
Peacock [32] SparseLDA Asynchronous & Rotation
Parameter Server [23] CGS, etc. Asynchronous
Petuum Bosen [19] SparseLDA Asynchronous
Petuum Stradsc [26, 27, 28] SparseLDA Rotation & Asynchronous

a https://github.com/dato-code/PowerGraph/tree/master/toolkits/topic_modeling
b https://github.com/sudar/Yahoo_LDA
c https://github.com/petuum/bosen/wiki/Latent-Dirichlet-Allocation

to scale it to web-scale corpora to explore more subtle semantics with a big model which may

contain billions of model parameters [27]. The LDA application is commonly implemented by the

SparseLDA algorithm. In this section, the model synchronization patterns and the communication

strategies of this algorithm are studied. The size of model required for local computation is so

large that sending such data to every worker results in communication bottlenecks. The required

computation time is also great due to the large model size. However, the model size shrinks as

the model converges. As a result, a faster model synchronization method can speed up the model

convergence, in which the model size shrinks and reduces the iteration execution time.

For two well-known LDA implementations, Yahoo! LDA uses the “Asynchronous” computa-

tion model while Petuum LDA uses the “Rotation” computation model. Though using different

computation models, both solutions favor asynchronous communication methods, since it not only

avoids global waiting but also quickly makes the model update visible to other workers and thereby

boosts model convergence. However, my research shows that the model communication speed can

be improved with collective communication methods. With collective communication optimization,

the “Allreduce” computation model can outperform the “Asynchronous” computation model. Be-

sides, in the “Rotation” computation model, using collective communication can further reduce the

model communication overhead compared with using asynchronous communication.

2.3.1 LDA Background

LDA modeling techniques can find latent structures inside the training data which are abstracted as

a collection of documents, each with a bag of words. It models each document as a mixture of latent

11

z1,1

zi,j

zi,1

Document Collection Topic assignment

x1,1

xi,j

xi,1

K*D

j

V*D

w

word-doc matrix

V*K

w

Nwkword-topic matrix

≈ ×

j

Mkjtopic-doc matrix

Figure 2: Topics Discovery

topics and each topic as a multinomial distribution over words. Then an inference algorithm works

iteratively until it outputs the converged topic assignments for the training data (see Figure 2).

Similar to Singular Value Decomposition, LDA can be viewed as a sparse matrix decomposition

technique on a word-document matrix, but it roots on a probabilistic foundation and has different

computation characteristics.

Among the inference algorithms for LDA, CGS shows high scalability in parallelization [32,

33], especially compared with another commonly used algorithm, CVB (used Mahout LDA5) .

CGS is a Markov chain Monte Carlo type algorithm. In the “initialize” phase, each training data

point, or token, is assigned to a random topic denoted as zij . Then it begins to reassign topics to

5 https://mahout.apache.org/users/clustering/latent-dirichlet-allocation.html

12

Table 2: LDA CGS Sequential Algorithm Pseudo Code
Input: training data X , the number of topics K, hyperparameters α, β
Output: topic assignment matrix Z, topic-document matrix M , word-topic matrix N

1: Initialize M,N to zeros
2: for document j ∈ [1, D] do
3: for token position i in document j do
4: Zij = k ∼Mult(1

K)
5: Mkj += 1;Nwk += 1
6: end for
7: end for
8: repeat
9: for document j ∈ [1, D] do

10: for token position i in document j do
11: Mkj −= 1;Nwk −= 1
12: Zij = k′ ∼ p(Zij = k|rest) // a

13: Mk′j += 1;Nwk′ += 1
14: end for
15: end for
16: until convergence

aSample a new topic according to Equation 5 using SparseLDA

each token xij = w by sampling from a multinomial distribution of a conditional probability of zij :

p
(
zij = k | z¬ij , x, α, β

)
∝

N¬ijwk + β∑
wN

¬ij
wk + V β

(
M¬ijkj + α

)
(5)

Here superscript ¬ij means that the corresponding token is excluded. V is the vocabulary size.

Nwk is the token count of word w assigned to topic k in K topics, and Mkj is the token count of

topic k assigned in document j. The matrices Zij , Nwk and Mkj , are the model. Hyperparameters

α and β control the topic density in the final model output. The model gradually converges during

the process of iterative sampling. This is the phase where the “burn-in” stage occurs and finally

reaches the “stationary” stage.

The sampling performance is more memory-bound than CPU-bound. The computation itself

is simple, but it relies on accessing two large sparse model matrices in the memory. In Figure 2,

sampling occurs by the column order of the word-document matrix, called “sample by document”.

Although Mkj is cached when sampling all the tokens in a document j, the memory access to Nwk

is random since tokens are from different words. Symmetrically, sampling can occur by the row

order, called “sample by word”. In both cases, the computation time complexity is highly related

13

to the size of model matrices. SparseLDA is an optimized CGS sampling implementation mostly

used in state-of-the-art LDA trainers. In Line 10 of Table 2, the conditional probability is usually

computed for each k with a total of K times, but SparseLDA decreases the time complexity to the

number of non-zero items in one row of Nwk and in one column of Mkj , both of which are much

smaller than K on average.

2.3.2 Big Model Problem

Sampling on Zij in CGS is a strict sequential procedure, although it can be parallelized without

much loss in accuracy [33]. Parallel LDA can be performed in a distributed environment or a shared-

memory environment. Due to the huge volume of training documents, the distributed environment is

required for parallel processing. In a distributed environment, a number of compute nodes deployed

with a single worker process apiece. Every worker takes a partition of the training document set and

performs the sampling procedure with multiple threads.

The LDA model contains four parts: I. Zij - topic assignments on tokens, II.Nwk - token counts

of words on topics (word-topic matrix), III. Mkj - token counts of documents on topics (topic-

document matrix), and IV.
∑

wNwk - token counts of topics. Here Zij is always stored along with

the training tokens. For the other three, because the training tokens are partitioned by document,

Mkj is stored locally while Nwk and
∑

wNwk are shared. For the shared model parts, a parallel

LDA implementation may use the latest model or the stale model in the sampling procedure.

Now it is time to calculate the size of Nwk, a huge but sparse V ×K matrix. The word distri-

bution in the training data generally follows a power law. If the words based on their frequencies is

sorted from high to low, for a word with rank i, its frequency is freq(i) = C · i−λ. Then for W ,

the total number of training tokens, there is

W =

V∑
i=1

freq(i) =
V∑
i=1

(C · i−λ) ≈ C · (lnV + γ +
1

2V
) (6)

To simplify the analysis, λ is considered as 1. Since C is a constant equal to freq(1), then W is the

partial sum of the harmonic series which have logarithmic growth, where γ is the Euler-Mascheroni

constant≈ 0.57721. The real model size S depends on the count of non-zero cells. In the “initialize”

phase of CGS, with random topic assignment, a word i gets max(K, freq(i)) non-zero entries. If

14

100 101 102 103 104 105 106 107

Word Rank

100

101

102

103

104

105

106

107

108

109

1010

W
or

d
Fr

eq
ue

nc
y

clueweb
y= 109. 9x−0. 9

enwiki
y= 107. 4x−0. 8

100 101 102 103 104

Document Collection Partition Number

0.0

0.2

0.4

0.6

0.8

1.0

1.2

V
oc

ab
ul

ar
y

Si
ze

 o
f P

ar
tit

io
n

(%
)

clueweb
enwiki

(a) Zipf’s Law of the Word Frequencies (b) Vocabulary Size vs. Document Partitioning

Figure 3: Words’ Distribution on the Training Documents

freq(J) = K, then J = C/K, and there is:

Sinit =
J∑
i=1

K +
V∑

i=J+1

freq(i) =W −
J∑
i=1

freq(i) +
J∑
i=1

K = C · (lnV + lnK − lnC +1) (7)

The initial model size Sinit is logarithmic to matrix size V ·K, which means S << VK. However

this does not mean Sinit is small. Since C can be very large, even C · ln(V K) can result in a

large number. In the progress of iterations, the model size shrinks as the model converges. When a

stationary state is reached, the average number of topics per word drops to a certain small constant

ratio of K, which is determined by the concentration parameters α, β and the nature of the training

data itself.

The local vocabulary size V ′ on each worker determines the model volume required for local

computation. When documents are randomly partitioned to N processes, every word with a fre-

quency higher than N has a high probability of occurring on all the processes. If freq(L) = N

at rank L, then L = W
(lnV+γ)·N . For a large training dataset, the ratio between L and V is often

very high, indicating that local computation requires most of the model parameters. Figure 3 shows

the difficulty of controlling local vocabulary size in random document partitioning. When 10 times

more partitions are introduced, there is only a sub-linear decrease in the vocabulary size per parti-

tion. The “clueweb” and “enwiki” datasets are used as examples (see Section 2.3.5). In “clueweb”,

each partition gets 92.5% of V when the training documents are randomly split into 128 partitions.

“enwiki” is around 12 times smaller than “clueweb”. It gets 90% of V with 8 partitions, keeping

15

Model

Worker Worker Worker

• A1. PLDA
- Optimized collective

A2. PowerGraph LDA
- Unoptimized collective

A3. Yahoo! LDA
- Point-to-point

B. Rotation

A. Allreduce/Asynchronous

Worker Worker Worker

Model 1 Model 2 Model 3
• B1. Petuum LDA

- Point-to-point

Figure 4: Synchronization Methods under Different Computation Models

a similar ratio. In summary, though the local model size reduces as the number of compute nodes

grows, it is still a high percentage of V in many situations.

In conclusion, there are three key properties of the LDA model:

1. The initial model size is huge but it reduces as the model converges

2. The model parameters required in local computation is a high percentage of all the model

parameters

3. The local computation time is related to the local model size

These properties indicate that the communication optimization in model synchronization is neces-

sary because it can accelerate the model update process and result in a huge benefit in computation

and communication of later iterations.

Of the various synchronization methods used in state-of-the-art implementations, they can be

categorized into two types (see Figure 4). In the first type, the parallelization either uses the “Allre-

duce” computation model or the “Asynchronous” computation model. Both computation models

16

work on stale model parameters. In PLDA, without storing a shared model, it synchronizes local

model parameters through a MPI “allreduce” operation [34]. This operation is routing optimized,

but it does not consider the model requirement in local computation, causing high memory usage and

high communication load. In PowerGraph LDA, model parameters are fetched and returned directly

in a synchronized way. Though it communicates less model parameters compared with PLDA, the

performance is low for lack of routing optimization. Unlike the two implementations above which

use the “Allreduce” computation model, a more popular implementation, Yahoo! LDA, follows

the “Asynchronous” computation model. Yahoo! LDA can ease the communication overhead with

asynchronous point-to-point communication, however, its model update rate is not guaranteed. A

word’s model parameters may be updated either by changes from all the training tokens, a part of

them, or even no change. A solution to this problem is to combine the “Allreduce” computation

model and the “Asynchronous” computation model. This is implemented in Petuum Bosen LDA

[19]. In the second type, the “Rotation” computation model is used. Currently only Petuum Strads

LDA is in this category. In its implementation, parameters are sent to the neighbor asynchronously.

A better solution for the first type of synchronization method can be a conjunction of PLDA and

PowerGraph LDA with new collective communication optimizations which include both routing

optimization and reduced data size for communication. There are three advantages to such a strat-

egy. First, considering the model requirement in local computation, it reduces the model parameters

communicated. Second, it optimizes routing through searching “one-to-all” communication pat-

terns. Finally, it maintains the model update rate compared with the asynchronous method. For the

second type of synchronization method, using collective communication is also helpful because it

maximizes bandwidth usage between compute nodes and avoids flooding the network with small

messages, which is what Petuum Strads LDA does.

2.3.3 Model Synchronization Optimizations

New solutions with optimized collective communication operations to parallelize the SparseLDA

algorithm are developed. Model parameters are distributed among workers. Two model synchro-

nization methods are used. In the first method, a set of local models are defined on each worker.

Each local model is considered a local version of the global model. The synchronization has two

steps. The first step redistributes the model parameters related to the local computation from the

17

Training Data

1 Load

WorkerWorkerWorker

Sync

4

Model 2

Compute

2

Model 3

Compute

2

Model 1

Compute

2

33 SyncSync3

Iteration

Local
Model

Local
Model

Local
Model

WorkerWorkerWorker

Rotate

Model 2

Compute

2

Model 3

Compute

2

Model 1

Compute

2

33 RotateRotate3

lgs rtt

Figure 5: LDA implementations with Optimized Communication

global model to local models. The second step reduces the updates from different local models to

one in the global model. Model parameters are packed into chunks and sent to avoid small message

flooding. Routing optimized broadcasting [34] is used if “one-to-all” communication patterns are

detected on a set of model parameters. In the second method, “rotate” considers processes in a ring

topology and shifts the model chunks from one process to the next neighbor. The model parameters

are partitioned based on the range of word frequencies in the training dataset. The lower the fre-

quency of the word, the higher the word ID given. Then the word IDs are mapped to process IDs

based on the modulo operation. In this way, each process contains model parameters with words

whose frequencies are ranked from high to low. In the first synchronization method, this kind of

model partitioning can balance the communication load. In the second synchronization method, it

can balance the computation load on different workers between two times of model shifting.

As a result, two parallel LDA implementations are presented (see Figure 5). One is “lgs” (an

abbreviation of “local-global synchronization”), and another is “rtt” (an abbreviation of “rotate”).

18

Table 3: Training Data and Model Settings in the Experiments
Dataset Number Number Vocabulary Doc Length Number Initial

of Docs of Tokens Mean/SD of Topics Model Size
clueweb 50.5M 12.4B 1M 224/352 10K 14.7GB
enwiki 3.8M 1.1B 1M 293/523 10K 2.0GB
bi-gram 3.9M 1.7B 20M 434/776 500 5.9GB

In both implementations, the computation and communication are pipelined to reduce the synchro-

nization overhead, i.e., the model parameters are sliced in two and communicated in turns. Model

Part IV is synchronized through an “allreduce” operation at the end of every iteration. In the local

computation, both “lgs” and “rtt” use the “Asynchronous” computation model. However, “lgs” sam-

ples by document while “rtt” samples by word. All these are done to keep the consistency between

implementations for unbiased communication performance comparisons in experiments. Of course,

for “rtt”, since each model shifting only gives a part of model parameters for the local computation,

sampling by word can easily reduce the time used for searching tokens which can be sampled.

2.3.4 Experiments

Experiments are done on an Intel Haswell cluster. This cluster contains 32 nodes each with two

18-core 36-thread Xeon E5-2699 processors and 96 nodes each with two 12-core 24-thread Xeon

E5-2670 processors. All the nodes have 128GB memory and are connected with 1Gbps Ethernet

(eth) and Infiniband (ib). For testing, 31 nodes with Xeon E5-2699 and 69 nodes with Xeon E5-

2670 are used to form a cluster of 100 nodes, each with 40 threads. All the tests are done with

Infiniband through IPoIB support.

“clueweb”6, “enwiki”, and “bi-gram”7 are three datasets used (see Table 3). The model settings

are comparable to other research work [27], each with a total of 10 billion parameters. α and β

are both fixed to a commonly used value 0.01 to exclude dynamic tuning. Several implementations

are tested: “lgs”, “lgs-4s” (“lgs” with 4 rounds of model synchronization per iteration, each round

with 1/4 of the training tokens), and “rtt”. To evaluate the quality of the model outputs, the model

likelihood on the words’ model parameters is used to monitor model convergence. These LDA im-

plementations are compared with Yahoo! LDA and Petuum LDA, and thereby how communication
610% of ClueWeb09, a collection of English web pages, http://lemurproject.org/clueweb09.php/
7Both “enwiki” and “bi-gram” are English articles from Wikipedia, https://www.wikipedia.org

19

0 50 100 150 200
Iteration Number

1.4

1.3

1.2

1.1

1.0

0.9

0.8

0.7

0.6

0.5

M
od

el
 L

ik
el

ih
oo

d

1e11

lgs
Yahoo!LDA
rtt
Petuum
lgs-4s

0 50 100 150 200
Iteration Number

1.3

1.2

1.1

1.0

0.9

0.8

0.7

0.6

0.5

M
od

el
 L

ik
el

ih
oo

d

1e10

lgs
Yahoo!LDA
rtt
Petuum

(a) Model Convergence Speed on “clueweb” (b) Model Convergence Speed on “enwiki”

Figure 6: Model Convergence Speed by Iteration Count

methods affect LDA performance are learned by studying the model convergence speed.

The model convergence speed is firstly measured by analyzing model outputs on Iteration 1,

10, 20... 200. In an iteration, every training token is sampled once. Thus the number of model

updates in each iteration is equal. Then how the model converges with the same amount of model

updates is measured. On “clueweb” (see Figure 6(a)), Petuum has the highest model likelihood on

all the iterations. Due to “rtt”’s preference of using stale thread-local model parameters in multi-

thread sampling, the convergence speed is slower. The lines of “rtt” and “lgs” are overlapped for

their similar convergence speeds. In contrast to “lgs”, the convergence speed of “lgs-4s” is as high

as Petuum. This shows that increasing the number of model update rounds improves convergence

speed. Yahoo! LDA has the slowest convergence speed because asynchronous communication

does not guarantee all model updates are seen in each iteration. On “enwiki” (see Figure 6(b)), as

before, Petuum achieves the highest accuracy out of all iterations. “rtt” converges to the same model

likelihood level as Petuum at iteration 200. “lgs” demonstrates slower convergence speed but still

achieves high model likelihood, while Yahoo! LDA has both the slowest convergence speed and

the lowest model likelihood at iteration 200. Though the number of model updates is the same, an

implementation using the stale model converges slower than one using the latest model. For those

using the stale model, “lgs-4s” is faster than “lgs” while “lgs” is faster than Yahoo! LDA. This

means by increasing the number of model synchronization rounds, the model parameters used in

computation are newer, and the convergence speed is improved.

Then the model convergence speed is measured by the execution time. Firstly the execution

20

speed between “lgs” and Yahoo! LDA is compared. On “clueweb”, the convergence speed is shown

based on the elapsed execution time (see Figure 7(a)). Yahoo! LDA takes more time to finish Itera-

tion 1 due to its slow model initialization, which demonstrates that it has a sizable overhead on the

communication end. In later iterations, while “lgs” converges faster, Yahoo! LDA catches up after

30 iterations. This observation can be explained by the slower computation speed of the current

Java implementation. To counteract the computation overhead, the number of model synchroniza-

tion rounds per iteration is increased to four. Thus the computation overhead is reduced by using

a newer and smaller model. Although the execution time of “lgs-4s” is still slightly longer than

Yahoo! LDA, it obtains higher model likelihood and maintains faster convergence speed during the

whole execution. Similar results are shown on “enwiki”, but this time “lgs” not only achieves higher

model likelihood but also has faster model convergence speed throughout the whole execution (see

Figure 7(b)). From both experiments, it is learned that though the computation is slow in “lgs”, with

collective communication optimization, the model size quickly shrinks so that its computation time

is reduced significantly. At the same time, although Yahoo! LDA does not have any extra overhead

other than computation in each iteration, its iteration execution time reduces slowly because it keeps

computing with an older model (see Figure 7(c)(d)).

Next “rtt” and Petuum LDA are compared on “clueweb”and “bi-gram”. On “clueweb”, the ex-

ecution times and model likelihood achieved on both sides are similar (see Figure 8(a)). Both are

around 2.7 times faster than the results in “lgs” and Yahoo! LDA. This is because they use the lat-

est model parameters for sampling, which quickly reduces the model size for further computation.

Besides, sampling by word leads to better local computation performance compared with sam-

pling by document due to less model parameter fetching/updating conflict in the “Asynchronous”

computation model. Though “rtt” has higher computation time compared with Petuum LDA, the

communication overhead per iteration is lower. When the execution arrives at the final few itera-

tions, while computation time per iteration in “rtt” is higher, the whole execution time per iteration

becomes lower (see Figure 8(b)(c)(d)). This is because Petuum communicates each word’s model

parameters in small messages and generates high overhead. On “bi-gram”, the results show that

Petuum does not perform well when the number of words in the model increases. The high over-

head in communication causes the convergence speed to be slow, and Petuum cannot even continue

executing after 60 iterations due to a memory outage (see Figure 9).

21

0 5000 10000 15000 20000 25000
Execution Time (s)

1.4

1.3

1.2

1.1

1.0

0.9

0.8

0.7

0.6

0.5

M
od

el
 L

ik
el

ih
oo

d

1e11

lgs
Yahoo!LDA
lgs-4s

0 500 1000 1500 2000 2500 3000 3500
Execution Time (s)

1.3

1.2

1.1

1.0

0.9

0.8

0.7

0.6

0.5

M
od

el
 L

ik
el

ih
oo

d

1e10

lgs
Yahoo!LDA

(a) Model Convergence Speed on “clueweb” (b) Model Convergence Speed on “enwiki”

0 5000 10000 15000 20000 25000
Execution Time (s)

0

100

200

300

400

500

600

700

800

E
xe

cu
tio

nT
im

e
Pe

r
It

er
at

io
n

(s
)

lgs-iter
Yahoo!LDA-iter
lgs-4s-iter

0 500 1000 1500 2000 2500 3000 3500
Execution Time (s)

0

10

20

30

40

50

60

70

80

E
xe

cu
tio

nT
im

e
Pe

r
It

er
at

io
n

(s
)

lgs-iter
Yahoo!LDA-iter

(c) Per Iteration Time on “clueweb” (d) Per Iteration Time on “enwiki”

Figure 7: Comparison between “lgs” and Yahoo! LDA

22

0 1000 2000 3000 4000 5000 6000 7000 8000
Execution Time (s)

1.4

1.3

1.2

1.1

1.0

0.9

0.8

0.7

0.6

0.5

M
od

el
 L

ik
el

ih
oo

d

1e11

rtt
Petuum

0 1000 2000 3000 4000 5000 6000 7000
Execution Time (s)

0

50

100

150

200

250

E
xe

cu
tio

nT
im

e
Pe

r
It

er
at

io
n

(s
)

rtt-compute
rtt-iter
Petuum-compute
Petuum-iter

(a) Model Likelihood vs. Elapsed Time (b) Iteration Time vs. Elapsed Time

1 2 3 4 5 6 7 8 9 10
Iteration

0

50

100

150

200

250

300

E
xe

cu
tio

nT
im

e
Pe

r
It

er
at

io
n

(s
)

181

131
121 116 112

106
100

92
85 80

57

23
21

18 19
18

17
18

16
15

59 54 52 50 48 44 42 39 36 35

33
30 28 32

29 29 31 29 30 26

rtt-compute
rtt-overhead
Petuum-compute
Petuum-overhead

191 192 193 194 195 196 197 198 199 200
Iteration

0

5

10

15

20

25

30

35

E
xe

cu
tio

nT
im

e
Pe

r
It

er
at

io
n

(s
)

23 23 23 23 23 23 23 23 23 23

3
3 3

2
3 3 3 2 3 3

19 19 19 19 19 19 19 19 19 19

10
10

10
11

9 10 9 9 10 10

rtt-compute
rtt-overhead
Petuum-compute
Petuum-overhead

(c) First 10 Iteration (d) Final 10 Iteration

Figure 8: Comparison between “rtt” and Petuum on “clueweb”

23

0 1000 2000 3000 4000 5000 6000
Execution Time (s)

2.4

2.3

2.2

2.1

2.0

1.9

1.8

1.7

M
od

el
 L

ik
el

ih
oo

d

1e10

rtt
Petuum

0 1000 2000 3000 4000 5000 6000
Execution Time (s)

0

20

40

60

80

100

120

E
xe

cu
tio

nT
im

e
Pe

r
It

er
at

io
n

(s
)

rtt-compute
rtt-iter
Petuum-compute
Petuum-iter

(a) Model Likelihood vs. Elapsed Time (b) Iteration Time vs. Elapsed Time

1 2 3 4 5 6 7 8 9 10
Iteration

0

20

40

60

80

100

120

E
xe

cu
tio

nT
im

e
Pe

r
It

er
at

io
n

(s
)

28

16
12 11 10 9 8 7 7 6

71

38

31
29

36 36

27
25 25 25

7 7 7 7 6 6 6 6 6 6

110

87
84

82 81
86 86 85

102

84

rtt-compute
rtt-overhead
Petuum-compute
Petuum-overhead

53 54 55 56 57 58 59 60 61 62
Iteration

0

20

40

60

80

100

E
xe

cu
tio

nT
im

e
Pe

r
It

er
at

io
n

(s
)

4 4 4 4 4 4 4 4 4 4

19 20 21 21 19 19 19 19 19 20

6 6 6 6 6 6 6 6 6 6

82
86 86

84 86
81

86 87
83

88

rtt-compute
rtt-overhead
Petuum-compute
Petuum-overhead

(c) First 10 Iteration (d) Final 10 Iteration

Figure 9: Comparison between “rtt” and Petuum on “bi-gram”

24

In sum, the model properties in parallel LDA computation suggest that using collective commu-

nication optimizations can improve the model update speed, which allows the model to converge

faster. When the model converges quickly, its size shrinks greatly, and the iteration execution time

also reduces. Optimized collective communication methods is observed to perform better than

asynchronous methods. “lgs” results in faster model convergence and higher model likelihood at

iteration 200 compared to Yahoo! LDA. On “bi-gram”, “rtt” shows significantly lower communi-

cation overhead than Petuum Strads LDA, and the total execution time of “rtt” is 3.9 times faster.

On “clueweb”, although the computation speed of the first iteration is 2- to 3-fold slower, the total

execution time remains similar.

Despite the implementation differences between “rtt”, “lgs”, Yahoo! LDA, and Petuum LDA,

the advantages of collective communication methods are evident. Compared with asynchronous

communication methods, collective communication methods can optimize routing between paral-

lel workers and maximize bandwidth utilization. Though collective communication will result in

global waiting, the resulting overhead is not as high as speculated when the load-balance is handled.

The chain reaction set off by improving the LDA model update speed amplifies the benefits of using

collective communication methods. When putting all the performance results together, it is also

clear that both “rtt” and Petuum are remarkably faster than the rest implementations. This shows

in LDA parallelization, using the “Rotation” computation model can achieve higher performance

compared with the “Allreduce” and “Asynchronous” computation model. Between the “Allreduce”

and “Asynchronous” two computation models, “lgs” proves to be faster than Yahoo! LDA at the

beginning, but at later stages, their model convergence speed tends to overlap. Through adjusting

the number of model synchronization frequencies to 4 per iteration, “lgs-4s” exceeds Yahoo! LDA

from start to finish. This means with the optimized collective communication, the “Allreduce” com-

putation model can exceed the “Asynchronous” computation model. From these results, it can be

concluded that the selection of computation models, combined with the details of computation load-

balancing and communication optimization, needs to be carefully considered in the implementation

of a parallel machine learning algorithm, as it is the key to the execution performance.

25

3 Solving Big Data Problem with HPC Methods

The LDA application presents an example which shows selecting a proper computation model is

important to the machine learning algorithm parallelization and using collective communication op-

timization can improve the model synchronization speed. However, existing tools for parallelization

have limited support to the computation models and collective communication techniques. Since

the collective communication has been commonly used in the HPC domain, it is a chance to adapt

it to big data machine learning and derive an innovative solution.

3.1 Related Work

Before the emergence of big data tools, MPI is the primary tool used for parallelization in the HPC

domain. Other than “send” and “receive” calls, MPI provides collective communication opera-

tions such as “broadcast”, “reduce”, “allgather” and “allreduce”. These operations provide efficient

communication performance through optimized routing. However, these operations only describe

the relations between parallel processes in the collective communication, when fine-grained model

synchronization is required, these collective communication operations lacks of a mechanism to

identify the relations between model updates and parameters in the synchronization. In this case,

lots of “send” and “receive” calls are used, which makes the application code complicated.

Different from MPI, big data tools focus on the synchronization based on the relations between

data items. In MapReduce [5], input data are read as Key-Value pairs and in the “shuffle” phase,

intermediate data are regrouped based on keys. So the communication pattern between processes

depends on the distribution of the intermediate data. Initially, MapReduce proved very successful as

a general tool to process many problems but was later considered not optimized for many important

analytics, especially those machine learning algorithms involving iterations. The reason is that the

MapReduce frameworks have to repeat loading training data from distributed file systems (HDFS)

each iteration. Iterative MapReduce frameworks such as Twister [7] and Spark [8] improve the

performance through caching invariable training data. To solve graph problems, Pregel [9], Giraph8,

and GraphLab [31, 35] abstract the training data as a graph, cache, and process it in iterations.

The synchronization is performed as message passing along the edges between neighbor vertices.
8 https://giraph.apache.org

26

Though the synchronization relations between data items/model parameters are expressed in these

tools, there are still limitations. In MapReduce, the dependency between model parameters and

local training data is not well solved, so that model parameters are only broadcasted to the workers

or reduced to one in the execution flow, making the implementation hard to scale. This is seen in the

K-means Clustering implementations of Mahout on Hadoop9 or Spark MLlib10. Other applications’

complicated synchronization dependency also require multiple ways of model synchronization (e.g.

the SparseLDA algorithm). However, both MapReduce and Graph tools follow the “Allreduce”

computation model, it is impossible for developers to parallelize SparseLDA with the “Rotation”

computation model within these frameworks.

Routing optimization is another important feature which is missing in existing big data tools.

For example, in K-Means with Lloyd’s algorithm [12], the training data (high dimensional points)

can be easily split and distributed to all the workers, but the model (centroids) have to be synchro-

nized and redistributed to all the parallel workers in the successive iterations. Mahout on Hadoop

chooses to reduce model updates from all the map tasks in one Reduce task, generate the new model,

store it on HDFS, and let all the Map tasks read the model back to memory. The whole process can

be summarized as “reduce-broadcast”. According to C.-T. Chu et al. [6], this pattern can be applied

to many other machine learning algorithms, including Logistic Regression, Neural Networks, Prin-

cipal Component Analysis, Expectation Maximization and Support Vector Machines, all of which

follow the statistical query model. However, when both the size of the model and the number of

workers grow large, this method becomes inefficient. In K-Means Clustering, the time complex-

ity of this communication process is O(pkd), where p is the number of workers, k is the number

of centroids, and d is the number of dimensions per centroid/point. In my initial research work,

a large-scale K-Means clustering on Twister is studied. Image features from a large collection of

seven million social images, each representing as a point in a high dimensional vector space, are

clustered into one million clusters [20, 21]. This clustering application is split into five stages in

each iteration: “broadcast”, “map”, “shuffle”, “reduce”, and “combine”. By applying a three-stage

synchronization of “regroup-gather-broadcast” with, the overhead of data synchronization can be

reduced toO(3kd). Furthermore, if “regroup-allgather” is applied directly, the communication time

9 https://mahout.apache.org
10 https://spark.apache.org/docs/latest/ml-guide.html

27

Table 4: Programming Models and Synchronization Patterns of Big Data Tools
Tool Programming Model Synchronization Pattern

MPI

a set of parallel workers
are spawned with com-
munication support be-
tween them

send/receive or collective communication opera-
tions

Hadoop
(iterative) MapReduce,
DAG-like job execution
flow may be supported

disk-based shuffle between the Map stage and the
Reduce stage

Twister
in-memory regroup between the Map stage and
the Reduce stage; “broadcast” and “aggregate”

Spark
RDD transformations on RDD; “broadcast” and
“aggregate”

Giraph

BSP model, data are
expressed as vertices
and edges in a graph

graph-based message communication following
the Pregel model (vertex-based partitioning,
messages are sent between neighbor vertices)

Hama
graph-based communication following the Pregel
model or direct message communication between
workers.

GraphLab
(Turi)

graph-based communication through caching and
fetching of ghost vertices and edges, or the com-
munication between a master vertex and its repli-
cas in the PowerGraph (GAS) model

GraphX
graph-based communication supports both Pregel
model and PowerGraph model

Parameter
Server

BSP model, or loosely
synchronized on the
parameter server

asynchronous “push” and “pull” calls are used for
communicating model parameters between pa-
rameter servers and workers

Petuum
in addition to asynchronous “push” and “pull”
calls, the framework allows scheduling model pa-
rameters between workers

can even be reduced to O(2kd). The LDA application is another example to show the advantages

of collective communication with routing optimization, as what has been discussed in the previous

section. Both Parameter Server-type Yahoo! LDA and Petuum are inefficient in communication due

to asynchronous parameter-based point-to-point communication.

In sum, existing tools can be listed with their programming models and synchronization pat-

terns (see Table 4). The first one is MPI. It spawns a set of parallel processes and perform syn-

chronization through “send”/“receive” calls or collective communication operations based on the

process relations. Next is the MapReduce type, MapReduce systems such as Hadoop describes the

parallelization as processing inputs as Key-Value pairs in the Map tasks, generating intermediate

Key-Value pairs, and then shuffling and reducing them. It became popular thanks to its simplicity,

28

yet is still slow when running iterative algorithms. Frameworks like Twister, Spark, and HaLoop

[36] solved this issue by caching the training data and extend MapReduce to iterative MapReduce.

In Spark, multiple MapReduce jobs can form a directed acyclic execution graph with additional

work flow management to support complicated data processing. The third type is the graph process-

ing tools, which abstracts data as vertices and edges and executes in the BSP (Bulk Synchronous

Parallel) model. Pregel and its open source version Giraph and Hama11 follow this design. By

contrast, GraphLab [35] abstracts data as a graph but uses consistency models to control vertex

value updates (no explicit message communication calls). GraphLab (now called Turi12) was later

enhanced with PowerGraph [31] abstractions to reduce the communication overhead. This was also

used by GraphX [37]. The fourth type of tools directly serve machine learning algorithms through

providing programming models for model parameter synchronization. These tools include Param-

eter Server and Petuum. Parameter Server does not force global synchronization. Parameters are

stored in a separate group of servers. Parallel workers can exchange model updates with servers

asynchronously. In addition to the model synchronization between workers and servers, Petuum

also allows to schedule and shift model parameters between workers.

3.2 Research Methodologies

Based on the requirements of model synchronization in parallel machine learning algorithms, and

the discussion about the status quo of how the computation models and collective communication

techniques are applied in existing tools, it is necessary to build a separate communication layer with

high level programming interfaces to provide a rich set of communication operations, granting users

flexibility and easiness to develop machine learning applications. There are three challenges derived

from prior research:

Express Communication Patterns from Different Tools From the four computation models,

the “Allreduce” and “Rotation” computation models can be expressed with collective communi-

cation operations. As what is shown in the related work, each tool has its own synchronization

operations, either based on the process relations or the data item relations. For a unified collec-

tive communication layer, it is necessary to unite different synchronization patterns into one layer
11 https://hama.apache.org
12 https://turi.com/

29

1 25 50 75 100 125 150
Number of Nodes

0

5

10

15

20

25

30

E
xe

cu
tio

n
Ti

m
e

(S
ec

on
ds

)

Chain 0.5GB
Chain 1GB
Chain 2GB

MPI 0.5GB
MPI 1GB
MPI 2GB

1 25 50 75 100 125 150
Number of Nodes

0

10

20

30

40

50

E
xe

cu
tio

n
Ti

m
e

(S
ec

on
ds

)

Chain 0.5GB
Chain 1GB
Chain 2GB

MPJ 0.5GB
MPJ 1GB

(a) Chain vs. MPI (b) Chain vs. MPJ

1 25 50 75 100 125 150
Number of Nodes

0

20

40

60

80

100

120

140

E
xe

cu
tio

n
Ti

m
e

(S
ec

on
ds

)

Chain 0.5GB
Chain 1GB
Chain 2GB

Chain w/oTA 0.5GB
Chain w/oTA 1GB
Chain w/oTA 2GB

1 25 50 75 100 125 150
Number of Nodes

0

500

1000

1500

2000

2500

3000

3500

E
xe

cu
tio

n
Ti

m
e

(S
ec

on
ds

)

Chain 0.5GB
Chain 1GB
Chain 2GB

Naive 0.5GB
Naive 1GB
Naive 2GB

(c) Chain vs. Chain w/o
topology-awareness

(d) Chain vs. the Naive Method

Figure 10: The “Chain Broadcast” Method

and provide a set of programming interfaces for parallel machine learning applications which can

re-distribute training data items and synchronize model parameters.

Optimize Collective Communication Operations The performance of collective communi-

cation varies significantly based on the implementation. The key to high performance is routing

optimization. Through a specially designed routing order, the communication can maximize the

bandwidth usage between workers. In past, several work has tried to improve the performance of

“broadcast” to fast synchronize the model parameters [20, 21, 22, 38]. The results of my work [21]

are presented in Figure 10. They show that when the bandwidth is limited (1 Gbps), topology-aware

pipeline-based chain broadcasting can achieve similar performance compared with Open MPI 1.4.1

(see Figure 10(a)) and runs 4 times faster compared with MPJ 0.38 (see Figure 10(b)) on IU Po-

larGrid cluster. When the size of communication data becomes huge, the main communication

30

overhead is determined by the bandwidth. However, the time taken on broadcasting does not in-

crease much when the number of nodes increases. As a result, for each collective communication

operation designed, it is important to provide routing-optimized implementation based on the size

and the distribution of the communication and the communication patterns among these data.

Apply Collective Communication Operations to Machine Learning Applications Besides

designing and implementing collective communication operations, investigating the computation

and communication characteristics of each machine learning application is necessary in order to

find the proper computation model with balanced computation load and optimized collective com-

munication operations. These factors are important to both the algorithm convergence and the exe-

cution performance. In this thesis, with several parallel machine learning algorithm examples, the

guidelines for choosing computation models, selecting collective communication operations, and

balancing computation loads are provided.

31

4 Harp Programming Model

Based on Section 2 and 3, I have identified the need for a new framework that is able to meet

the various needs of machine learning algorithm parallelization and make the technologies from

both the HPC and Big Data domains converge. In this section, I introduce Harp, a new framework

that can program machine learning algorithms with the MapCollective programming model. The

description covers the basic execution flow, the related data, and the communication abstractions.

4.1 MapCollective Programming Model

The MapCollective programming model is derived from the original MapReduce programming

model. For the input data, similar to MapReduce, they are read from HDFS as Key-Value pairs

to Map tasks. However, instead of using Map/Reduce tasks and the shuffling procedure to exchange

Key-Value pairs, the MapCollective programming model keeps the Map tasks alive and allows data

exchange through collective communication operations (see Figure 11). Therefore, this program-

ming model follows the BSP model and enables two levels of parallelism. At the inter-node level,

each worker is a Map task where the collective communication operations happen. The second

is the intra-node level for multi-thread processing inside Map tasks. Thread-level parallelism is

not mandatory in the MapCollective programming model, but it can maximize the memory shar-

ing and the parallelism inside one machine. The fault tolerance in this programming model poses

a challenge because its execution flow becomes very flexible when the collective communication

operations are invoked. Currently, job-level failure recovery is applied. An application with a large

number of iterations can be separated into several jobs, each of which containing multiple itera-

tions. This naturally forms check points between iterations. Simultaneously worker-level recovery

by resynchronizing execution states between new launched workers and other old live workers is

also under investigation.

4.2 Hierarchical Data Interfaces

Key-Value pairs are still used as interfaces for processing the input data, but to support various

collective communication patterns, data types are abstracted in a hierarchy. Data in collective com-

munication are horizontally abstracted as primitive arrays or objects, and constructed into partitions

32

M M M M

Partitioned Distributed Dataset

Shuffle

Collective Communication

M M M M

R R

MapCollectiveMapReduce

K-V K-V K-V K-V

K-V K-V

Input Splits Input Splits

P

P

P

P

Figure 11: MapReduce vs. MapCollective

33

and tables (see Figure 12 and Figure 13). Any type which can be sent or received is under the

interface “Transferable”. Based on the component type of an array, there can be byte array, short

array, int array, float array, long array, or double array. Users can also define an arbitrary object

under the “Writable” interface with code which tells the framework how to serialize or deserialize

the object. Both arrays and objects are under the “Simple” interface. Another type under the inter-

face “Transferable” is “Partition”. It contains a partition ID and a partition body, which is either an

array or a “Writable” object. The partition ID is used for indexing the partition body during the pro-

cedure of collective communication. A collection of partitions inside each Map task are held by a

“Table”. In a collective communication operation, tables in different Map tasks are associated with

each other to describe a distributed dataset. Partition IDs are used to direct partition re-distribution

or consolidation in the tables. Since each table is also equipped with a combiner, if a partition

received uses the same ID as the partition in the table, it will solve the ID conflict by combining

them into one. The partition-based data abstraction provides a coarse-grained mapping between the

communication data items. Thus the collective communication operations based on data relations

can be performed. In addition to partition ID-based indexing, A type of “Key-Value Table” is still

provided if users needs customized indexing for the value objects. Key-Value tables allow users to

manage Key-Value pairs through providing auto partitioning based on keys. In this way, Key-Value

pairs are organized as Key-Value partitions in Key-Value tables, and they are redistributed based on

Key-Value partitions in collective communication operations.

4.3 Collective Communication Operations

Collective communication is operated on top of one or more set of user-defined tables on all the

workers. Currently, four types of communication operations are observed in existing tools:

1. MPI collective communication operations [34]:

e.g. “broadcast”, “reduce”, “allgather”, and “allreduce”.

2. MapReduce “shuffle-reduce” operation:

e.g. regroup operation with combine.

3. Graph communication:

e.g. edge communication in Pregel, vertex communication in GAS programing model.

4. Operations from machine learning frameworks such as Parameter Server and Petuum:

34

Partitions & Tables

Partition

• An array/object with partition ID

Table

• The container to organize partitions

• Key-Value Table (automatic partitioning
based on keys)

Arrays & Objects

Primitive Arrays

• ByteArray, ShortArray, IntArray, FloatArray,
LongArray, DoubleArray

Serializable Objects

• Writable

Figure 12: Data Interface Hierarchy

35

Transferable

Simple

Array

ByteArray

ShortArray

IntArray

FloatArray

LongArray

DoubleArray

Writable

UserDefinedClass1

UserDefinedClass2

…

Partition
<P extends Simple>

Interfaces

Types

Figure 13: Data Interface Inheritance of Arrays and Objects

36

Table 5: Collective Communication Operation Interfaces
Operation Name Definition

broadcast
The master worker broadcasts all the partitions to the tables on other
workers, the rest workers wait for the partitions broadcasted.

reduce
Partitions from all the workers are reduced to the master worker
(partitions with the same ID are combined).

allreduce Partitions from all workers are reduced and received by all workers.
allgather Partitions from all workers are gathered on all the workers.

regroup
Regroup partitions on all workers based on partition IDs (partitions
with the same IDs are combined).

push & pull
Partitions are pushed from local tables to the global table or pulled
from the global table to local tables.

rotate
Build a virtual ring topology and shift partitions from a worker to a
neighbor worker.

e.g. “push” and “pull” model parameters from the the global model, or rotate global model

parameters between workers.

Thus in Harp, seven collective communication operations are defined based on the observations

above (see Table 5). The definition of these operations in Harp are all partition-based and performed

in a collective way with routing optimization. When the operation is performed, each worker in-

vokes the method with a local “table” object, all of which are operated together and considered as

one distributed dataset in the collective communication. Only the “push & pull” operation is dif-

ferent. The “push & pull” operation contains “push” and “pull” two parts. Since they are always

connected with each other, these two are simply considered as one operation. This operation can

simulate Type 3 and 4 simultaneously. Both “push” and “pull” involve two table references: global

tables and local tables. The global tables hold a global version of each partition, but the local tables

each holds a local version of the global tables. In “push”, the partitions are sent to the global table

objects without modifying the contents in the local table objects. Similarly, in “pull”, the partitions

are pulled from the global table objects to the local table objects while the contents in the global

table objects are not modified.

4.4 Mapping Computation Models to Harp Programming Interfaces

Both the “Rotation” and “Allreduce” computation models can be implemented through the Harp

programming interfaces with collective communication operations. Model parameters are stored

with partitions and tables. To perform the “Rotation” computation model, the “rotate” operation is

37

used. For each round of the rotation, users are required to invoke the “rotate” operation a certain

number of times equal to the number of workers. Since the model parameters are fully distributed

among workers and are shifted among neighbor workers in chunks, there is neither a memory issue

of holding a large number of model parameters nor a routing issue of communication.

To perform the “Allreduce” computation model, there are four options of collective commu-

nication operations. When the model size is small, each mapper can have a separate copy of all

the parameters. Synchronization can be performed through collective communication operations

such as “broadcast & reduce”, “allgather” or “allreduce”, all of which can efficiently synchronize

model copies on all the workers. When the model size increases but can still be held by each

machine, synchronization can be performed through “regroup & allgather” to reduce the commu-

nication overhead. For a large model which cannot be held in the memory of one machine, Harp

relies on the “push & pull” operation. Since the “push & pull” operation tries to search for the

locality of the model computation dependency and only provides each worker with the model par-

titions required in the local computation, this approach can reduce the model parameters required

per worker. However, if the local computation requires all the model parameters and they cannot

be held by each machine, this solution cannot work. In this case, the parallelization can be solved

with two rounds of model rotation. In the first round, each worker accumulates partial computation

results based on the model parameters shifted and finally generates local model updates. Then with

the second round of rotation, the model updates are collected and applied to the global model. Of

course, these “two rounds of rotation” can also work as “allreduce”, “regorup & allgather”, and

“push & pull” operations to synchronize local model copies in the previous cases.

The “Locking” and “Asynchronous” computation models cannot be covered by collective com-

munication operations, but Harp does provide a set of event-driven interfaces, including “getEvent”,

“waitEvent”, and “sendEvent”, for designing machine learning algorithms in the “Locking” and

“Asynchronous” computation models. However, the “Locking” computation model requires high

overhead in distributed locking. From what is observed in the LDA experiments, the “Asyn-

chronous” computation model can be inefficient compared with the “Allreduce” computation model

with collective communication operations. Therefore, machine learning algorithm parallelization in

Harp focuses on using the “Allreduce” and “Rotation” computation models with collective commu-

nication operations.

38

5 Harp Framework Design and Implementation

In this section, the design and implementation of the Harp framework is described. The ideas of

Harp are implemented in an open source library as a Hadoop plugin. By plugging Harp into Hadoop,

the MapCollective programming model with efficient in-memory collective communication for ma-

chine learning applications is enabled.

5.1 Layered Architecture

The current Harp plug-in targets Hadoop 2.6.0 (also works on Hadoop 2.7.3). The whole software

is written in Java. Through extending the components of the original Hadoop MapReduce frame-

work, MapCollective applications can be run side by side with MapReduce applications (see Figure

14). In Hadoop, a MapCollective application is launched in a way similar to how the MapReduce

applications are launched. There is a “Runner” at the client, and an “AppMaster” to manage the

running states of MapCollective applications. All these components are extended from the original

“Runner” and “AppMaster” components in the MapReduce framework. Thus, many functionalities

of the original MapReduce framework can be reused in the MapCollective framework, such as in-

put data splitting and Key-Value pairs generating. However, unlike Map tasks in the MapReduce

application, all the Map tasks have to be kept alive for in-memory communication. As a result,

“AppMaster” for a MapCollective application maintains the host addresses of Map tasks. When

the Map tasks start running, they use the host address information to establish a communication

group. Each task uses a Key-Value reader to read all the Key-Value pairs into the memory and an

user-implemented “mapCollective” function to process input data in iterations with synchronization

through the collective communication operations. The whole execution flow is in Figure 15.

5.2 Data Interface Methods

Data interfaces have been divided into arrays and objects horizontally and formed into partitions and

tables vertically. In Harp, all these are implemented with pool-based memory management. The

rationale is that in iterative processing, arrays and objects may be repeatedly used in iterations but

filled with different contents. Thus, it is necessary to keep the memory allocation in a cache pool to

avoid the Garbage Collection (GC) overhead of repeat memory allocation. Table 6 shows that for

39

YARN

MapReduce V2

Harp

MapReduce
Applications

MapCollective
Applications

Application

Framework

Resource
Manager

Figure 14: Layered Architecture

40

YARN Resource Manager

Client

MapCollective
Runner

1. Record Map task
locations from
original MapReduce
AppMaster

MapCollective
AppMaster

MapCollective
Container
Launcher

MapCollective
Container
Allocator

I. Launch
AppMaster

II. Launch
Tasks

CollectiveMapper

setup

mapCollective

cleanup

3. Invoke
collective
communication
APIs

4. Write output
to HDFS

2. Read key-
value pairs

Figure 15: Execution Mechanism of Harp Plug-in

41

Table 6: Data Interface Methods

Array

Methods
static create(int len, boolean approximate) - fetch array allocation
from the pool. The boolean parameter indicates if the real allocation
size can be padded to increase the chance for reuse
release() - release the array back to the pool
free() - free the allocation to GC
get() - get the array body
start() - get the start index of the array
size() - get the size of the array

Writable

Methods
static create(Class<W> clazz) - create a object based on the real
class
release() - release the object to the pool
free() - free the object to GC

Interfaces
getNumWriteBytes() - calculate the number of bytes to be serial-
ized
write(DataOutput out) & read(DataInput in) - interfaces for se-
rialization / deserialization
clear() - clean the fields of the object before releasing to the pool

Partition
<P extends Simple>

Constructor & Methods
Partition(int partitionID, P partition)
int id() - get the partition ID
P get() - get the content object of the partition

Table
<P extends Simple>

Constructor & Methods
Table(int tableID, PartitionCombiner<Simple> combiner)
int getTableID() - user defined table ID
PartitionCombiner<P> getCombiner() - combiner can combine
partitions with the same ID in the table
PartitionStatus addPartition(Partition<P> partition) - add a par-
tition to the table, return the status to check if the partition is added
or combined
Partition<P> getPartition(int partitionID) - get a partition by ID
Partition<P> removePartition(int partitionID) - remove a parti-
tion from the table

42

both primitive arrays and the “Writable” objects, users can use the “create” method to get a cached

data structure from the pool and use the “release” method to return them back to the pool, or use

the “free” method to let GC handle the allocation directly. For arrays, a parameter called “approxi-

mate” is used in the “create” method. When it is set to true, it allows an array with a larger size to

be returned so that the reuse rate of an array allocation is increased. Other operations such as “get”,

“start”, and “size” are provided for accessing the body of the primitive array. To define a class un-

der the “Writable” interface, users need to implement four methods: “getNumWriteBytes”, “write”,

“read” and “clear”. “getNumWriteBytes” is used to define the number of bytes an object under this

class will use in serialization. The “read” and “write” methods direct object serialization and dese-

rialization. The number of bytes read or written should match the number in “getNumWriteBytes”.

Finally, the “clear” method directs how the fields in the object is cleaned before returning it to the

pool. Based on the arrays and the “Writable” objects, a partition is constructed by a partition ID and

a partition body, which can be either an array or a “Writable” object. The “id” method returns the

partition ID, and the “get” method returns the partition body. A “Table” is constructed by a partition

ID and a combiner. Users can add partitions to the table or get or remove partitions from the table.

5.3 Collective Communication Implementation

For each collective communication operation, a context name and an operation name is defined to

identify a collective communication operation. This allows users to group communication opera-

tions into different threads and invoke them concurrently. The implementation of each collective

communication operation is listed in Table 7.

The “minimum spanning tree” algorithm, “bucket” algorithm, and the “bidirectional exchange”

algorithm are all classic MPI collective communication algorithms [34]. The “broadcast” operation

is optimized with two algorithms for different sizes of the communication data. If the communi-

cation data is small, users are suggested to use the minimum spanning tree algorithm. When the

communication data goes large, it is more efficient to use the chain broadcasting algorithm. For The

“allreduce” operation, the “bidirectional-exchange” algorithm is designed for the small data. For

allreducing large data, the other option is to use “regroup & allgather” two operations together or

use the “push & pull” operation. Both “regroup” and “rotate” operations are provided with extra

options to allow users to decide the mapping between the partitions and the target worker in the

43

Table 7: Collective Communication Operations
Operation Name Algorithm Time Complexitya

broadcast
chain nβ

minimum spanning tree (log2 p)nβ

reduce minimum spanning tree (log2 p)nβ

allgather bucket pnβ

allreduce bidirectional exchange (log2 p)nβ

regroup point-to-point direct sending nβ

push & pull
point-to-point direct sending

plus routing optimization
nβ

rotate
direct sending between

neighbors on a ring topology
nβ

aNote in “time complexity”, p is the number of processes, n is the number of input data items per worker, β is the
per data item transmission time, communication startup time is neglected and the time complexity of the “point-to-point
direct sending” algorithm is estimated regardless of potential network conflicts.

data movement. In the “push & pull” operation, the “push” operation allows the user to decide the

mapping between partitions and workers if the related global partition is not found, while the “pull”

operation is optimized with broadcasting for the partitions which are required by all the workers.

5.4 Intra-Worker Scheduling and Multi-Threading

The current many-core architecture encourages two-level parallelism. When the number of cores is

increasing, it is common to let one level of parallelism between inter-node processes and another be-

tween intra-node threads. In Harp, to embrace two levels of parallelism, each Map task is a process,

and they are synchronized through collective communication operations. For multi-threading inside

the Map processes, users can use the schedulers provided by Harp, start Java threads by themselves,

use Java execution services, or Java parallel streams.

The two schedulers in Harp are the dynamic scheduler and the static scheduler (see Figure 16).

The dynamic scheduler does not distinguish the parallel threads. Each thread keeps fetching inputs

from one shared queue and sends the output generated to another shared queue. In this way, the

inputs are dynamically scheduled to different threads, and the multi-threaded computation can be

balanced. In contrast, for the static scheduler, each thread has its own input and output queue. One

thread may submit input objects to other threads’ input queue, which enables the message passing

between threads. When retrieving the output, users need to specify the queue based on the thread,

and thus, the load-balancing of the multi-threaded computation is controlled by users themselves.

44

Thread Thread Thread

I I I

O O O

Thread Thread Thread

I I I

O O O

(A) Dynamic Scheduler (B) Static Scheduler

I

I

I

I

Figure 16: Schedulers for Multi-Threading

45

Therefore the philosophy behind these two schedulers are different. The dynamic scheduler simply

processes input objects in parallel and seeks the load balancing on multi-threading. However, for

the static scheduler, it is designed for solving customized execution dependency between threads.

The four computation models can be mapped to the multi-thread level, however, users are re-

quired to manage the synchronization between threads. For the “Locking” and “Asynchronous” two

computation models, users are required to control the access to the shared model parameters. For

the “Allreduce” computation model, user can simply spawn multiple threads to perform the com-

putation and then wait for their completion. The “Rotation” computation model is implemented in

different ways under the dynamic and static schedulers. When the dynamic scheduler is used, user

has to maintain the execution progress and avoid the model update conflict. When the static sched-

uler is used, user can command each thread to process a set of model parameters and then submit

them to another thread. In the new rotation-based solution (see Section 8), the dynamic scheduler

is further packaged to be able to perform the model rotation in a simple way, which only requires

users to fill the code of how to update a chunk of model parameters with a chunk of training data

items.

46

6 Machine Learning Applications on top of Harp

Many machine learning applications can be built on top of Harp directly. With the computation

models and programming interfaces, Harp enables developers to handle complicated model syn-

chronization and program iterative machine learning algorithms productively. Machine learning

algorithms that can be implemented on Harp include but are not limited to:

• Expectation-Maximization Type

– K-Means Clustering

– Collapsed Variational Bayesian for topic modeling (e.g. LDA)

• Gradient Optimization Type

– Stochastic Gradient Descent and Cyclic Coordinate Descent for classification (e.g. SVM

and Logistic Regression), regression (e.g. LASSO), collaborative filtering (e.g. Matrix

Factorization)

• Markov Chain Monte Carlo Type

– Collapsed Gibbs Sampling for topic modeling (e.g. LDA)

Before implementing a machine learning application, it is important to know that one machine

learning application can be solved by more than one algorithms. For example, K-Means Clustering

with Lloyd’s algorithm [12] is an Expectation-Maximization type of algorithm. However, Mini-

Batch K-means [39], though it is still K-Means Clustering, is classified as a Gradient Optimization

Type of algorithm. At the same time, one algorithm can also be used to solve different machine

learning applications. For example, Stochastic Gradient Descent (SGD) can be used in Linear

Regression or Matrix Factorization. However, when the application changes, the model contents

and the computation dependency of the algorithm are also changed; only the algorithm method

itself is kept.

Once an algorithm is selected for the implementation, developers need to select the computa-

tion model while considering the selection of collective communication operations, the balance of

the computation and communication load between processes and threads, and the optimization of

per-thread implementation (see Figure 17). The LDA application has shown that model rotation can

improve model convergence speed due to the use of the latest model parameters. However, there are

also other algorithms which cannot perform direct model update, e.g. Expectation-Maximization

47

Application

• Latent Dirichlet Allocation, Matrix Factorization, Linear
Regression…

Algorithm

• Expectation-Maximization, Gradient Optimization, Markov
Chain Monte Carlo…

Computation Model

• Locking, Rotation, Allreduce, Asynchronous

System Optimization

• Collective Communication Operations

• Load Balancing on Computation and Communication

• Per-Thread Implementation

Figure 17: Guidelines of Parallel Machine Learning Application Implementation

48

Table 8: Machine Learning Application Examples

Application Model Size
Model Computation

Dependency
K-means Clustering In MBs, but can grow to GBs All

WDA-SMACOF [13] In MBs All
CGS for LDA

From a few GBs to 10s of
GBs or more

PartialSGD for MF
CCD for MF

Type algorithms where model update only happens in the maximization step. All these kinds of

algorithms have to use the “Allreduce” computation model. In this computation model, the paral-

lelization solution needs to select the collective communication operations used for model synchro-

nization. The decision is based on model size and model computation dependency. As what have

been discussed in Section 4.4, the “rotate” operation can make the application scalable when the

model size increases and when the model computation dependency is dense. However, if the model

computation dependency on each worker is sparse, the workers cannot get enough computation by

shifting a part of the model parameters. Balancing the load on each worker becomes hard, resulting

in huge synchronization overhead. In this case, the “push & pull” operation should be used.

Table 8 shows the characteristics of model computation in some machine learning application

examples, including K-means Clustering with Lloyd’s algorithm, Scaling by MAjorizing a COmpli-

cated Function with Weighted Deterministic Annealing (WDA-SMACOF), Collapsed Gibbs Sam-

pling for Latent Dirichlet Allocation (CGS for LDA), Stochastic Gradient Descent (SGD) and

Cyclic Coordinate Descent (CCD) for Matrix Factorization (MF). In the following sections, I de-

scribe how the first two are solved by the “Allreduce” computation model while the last three are

solved by the “Rotation” computation model.

49

7 The Allreduce-based Solution

We developed two machine learning applications in the “Allreduce” computation model, K-means

Clustering and WDA-SMACOF. They are implemented through the “allreduce” and “allgather”

operations. By simply keeping the computation load-balanced, the efficiency of using MPI-style

collective communication operations is directly shown through the speedup.

In all experiments, I tested on Big Red II13, using the nodes in the “cpu” queue where the

maximum number of nodes allowed for job submission is 128. Each node has 32 cores and 64GB

memory. The nodes are running in “Cluster Compatibility Mode” and connected with Cray Gemini

interconnect. Data Capacitor II (DC2) is for storing the data. File paths on DC2 are grouped into

partition files on HDFS to let each map task read file paths as key-value pairs. In all these tests, each

node deploys one map task and utilizes all 32 threads to do multi-threading.

7.1 K-Means Clustering

K-means clustering calculates the Euclidean distance between the point vectors (training data) and

the centroids (model) in each iteration. At the start of k-means, each worker loads and caches a

part of the training points while a single worker needs to prepare initial centroids and use “broad-

cast” operation to send the data to all other workers. In every iteration, the workers run their own

calculations and then use “regroup” and “allgather” operations to compute the global centroids.

K-means clustering is tested with two different random generated datasets. One is clustering

500 million 3D points into ten thousand clusters, while another is clustering 5 million 3D points

into 1 million clusters. In the former, the input data is about 12GB and the ratio of points to clusters

is 50000:1. In the latter case, the input data size is only about 120MB but the ratio is 5:1. Such a

ratio is commonly high in clustering; the low ratio is used in a scenario where the algorithm tries

to do fine-grained clustering as classification [40]. The baseline test uses 8 nodes, then scales up to

128 nodes. The execution time is seen in Figure 18(a) and the speedup in Figure 18(b). Since each

point is required to calculate distance with all the cluster centers, total workload of the two tests is

similar. But due to the cache effect, “5 million points and 1 million centroids” is slower than “500

million points and 10 thousand centroids” when the number of nodes is small. As the number of
13 https://kb.iu.edu/data/bcqt.html

50

8 16 32 64 128
Number of Nodes

0

1000

2000

3000

4000

5000

6000

E
xe

cu
tio

n
Ti

m
e

(S
ec

on
ds

)

500Mp10Kc 5Mp1Mc

8 16 32 64 128
Number of Nodes

0

20

40

60

80

100

120

140

Sp
ee

du
p

500Mp10Kc 5Mp1Mc

(a) K-means Execution time (b) K-means Speedup

8 16 32 64 128
Number of Nodes

0

1000

2000

3000

4000

5000

E
xe

cu
tio

n
Ti

m
e

(S
ec

on
ds

)

100K
200K

300K
400K

1 8 16 32 64 128
Number of Nodes

0

20

40

60

80

100

120

Sp
ee

du
p

100K 200K 300K

(c) WDA-SMACOF Execution time (d) WDA-SMACOF Speedup

Figure 18: The Performance of K-means and WDA-SMACOF

51

nodes increases, however, they draw closer to one another. Assuming there is linear speedup on 8

nodes, the speedup in both test cases is close to linear.

7.2 WDA-SMACOF

SMACOF is a gradient descent type of algorithm used for large-scale multi-dimensional scaling

problems. Through iterative stress majorization, the algorithm minimizes the difference between

distances from points in the original space and their distances in the new space. WDA-SMACOF

improves on the original SMACOF [13]. It uses deterministic annealing techniques to avoid local

optima during stress majorization, and employs conjugate gradient for the equation solving with a

non-trivial matrix to keep the time complexity of the algorithm as O(N2). WDA-SMACOF has

nested iterations. In every outer iteration, the algorithm firstly does an update on an order N matrix,

then performs a matrix multiplication; the coordination values of points on the target dimension

space are calculated through conjugate gradient process in inner iterations; the stress value of this

iteration is determined as the final step. The algorithm is expressed with “allgather” and “allreduce”

two operations. In outer iterations, “allreduce” sums the results from the stress value calculation.

For inner iterations the conjugate gradient process uses “allgather” to collect the results from matrix

multiplication and “allreduce” for those from inner product calculations.

The WDA-SMACOF algorithm runs with different problem sizes including 100K points, 200K,

300K and 400K. Each point represents a gene sequence in a dataset of representative 454 pyrose-

quences from spores of known AM fungal species [41]. Because the training data is the distance

matrix of points and related weight matrix and V matrix, the total size of input data is in quadratic

growth. It is about 140GB for the 100K problem, about 560GB for 200K, 1.3TB for 300K and

2.2TB for 400K. Due to memory limitations, the minimum number of nodes required to run the ap-

plication is 8 for the 100K problem, 32 for the 200K, 64 for 300K and 128 for 400K. The execution

time and speedup are seen in Figure 18(c) and Figure 18(d). Since running each input on a single

machine is impossible, the minimum number of nodes required to run the job is selected as the base

to calculate parallel efficiency and speedup. In most cases, the efficiency values are very good. The

only point that has low efficiency is 100K problems on 128 nodes. This is a standard effect in par-

allel computing where the small problem size reduces compute time compared to communication,

which in this case has an overhead of about 40% of total execution time.

52

8 The Rotation-based Solution

This section is based on the published paper [42]. LDA and MF have been successfully applied on

big data within various domains. For example, Tencent uses LDA for search engines and online

advertising [32] while Facebook14 uses MF to recommend items to more than one billion people.

With tens of billions of data entries and billions of model parameters, these applications can help

data scientists to gain a better understanding of big data. However, the growth of data size and

model size makes it hard to deploy these applications in a way that scales to peoples’ needs. Pre-

vious analysis on computation models has shown that the advantage of model rotation comes from

maximizing the effect of parallel model updates for algorithm convergence while minimizing the

overhead of communication for scaling. In this section, a model rotation-based solution is designed

to parallelize three algorithms: Collapsed Gibbs Sampling (CGS) for LDA, Stochastic Gradient

Descent (SGD) and Cyclic Coordinate Descent (CCD) for MF.

In the implementations of these applications, model rotation has been applied before. In LDA,

F. Yan et al. implement CGS on a GPU [43]. In MF, DSGD++ [44] and NOMAD15 [45] use model

rotation in SGD for MF in a distributed environment while LIBMF [46] applies it to SGD on a

single node through dynamic scheduling. Another work, Petuum STRADS [26, 27, 28], supplies a

general parallelism solution called “model parallelism” through “schedule-update-aggregate” inter-

faces. This framework implements CGS for LDA using model rotation but not uses it in CCD for

MF16. Instead it uses “allgather” operation to collect model parameters without using model rota-

tion. Thus Petuum CCD cannot be applied to big model applications due to the memory constraint.

The new model rotation-based solution tries to solve the big model problem in the LDA and

MF applications with the Harp framework. In this work, high level programming interfaces for

model rotation are provided. Further optimizations include pipelining to reduce the communica-

tion overhead and dynamically controlling the time point of the model rotation for load balancing.

Through comparing with state-of-the-art implementations running side-by-side on the same cluster,

the performance results of the Harp CGS, SGD and CCD implementations show that they achieve

fast model convergence speed and high scalability.
14 https://code.facebook.com/posts/861999383875667/recommending-items-to-more-t

han-a-billion-people
15 http://bikestra.github.io/
16 https://github.com/petuum/strads/tree/master/apps/

53

8.1 Algorithms

The sequential pseudo code of the three algorithms: CGS for LDA, SGD and CCD for MF, are

listed in Table 9. LDA CGS algorithm has been described in details previously. It learns the model

parameters by going through the tokens in a collection of documents D and computing the topic

assignmentZij on each tokenXij = w by sampling from a multinomial distribution of a conditional

probability of Zij : p
(
Zij = k | Z¬ij , Xij , α, β

)
∝ N¬ijwk +β∑

w N
¬ij
wk +V β

(
M¬ijkj + α

)
. Here superscript

¬ij means that the corresponding token is excluded. V is the vocabulary size. Nwk is the current

token count of the word w assigned to topic k in K topics, and Mkj is the current token count of

the topic k assigned in the document j. α and β are hyperparameters. The model includes Z, N ,

M and
∑

wNwk. When Xij = w is computed, some elements in the related row Nw∗ and column

M∗j are updated. Therefore dependencies exist among different tokens when accessing or updating

N and M model matrices.

MF decomposes a m × n matrix V (training dataset) to a m × K matrix W (model) and a

K × n matrix H (model). SGD algorithm learns the model parameters by optimizing the object

loss function composed by a squared error and a regularizer (L2 regularization is used here). When

an element Vij is computed, the related row vector Wi∗ and column vector H∗j are updated. The

gradient calculation of the next random element Vi′j′ depends on the previous updates in Wi′∗ and

H∗j′ . CCD also solves the MF application. But unlike SGD, the model update order firstly goes

through all the rows in W and then the columns in H , or all the columns in H first and then rows in

W . The model update inside each row of W or column of H goes through feature by feature.

CGS, SGD and CCD can all be implemented by the “Allreduce/Asynchronous” Computation

Models [27, 33, 44, 47, 48]. Due to the fact that each model update is only related to partial model

parameters, the parallelization of these three algorithms can be performed through the “Rotation”

Computation Model, which has been proven to perform better [27, 28, 44]. However, model rotation

may result in high synchronization overhead in these algorithms due to the dataset being skewed,

generating unbalanced workload on each worker [17, 46]. Therefore the completion of an iteration

has to wait for the slowest worker. If the straggler acts up, the cost of synchronization becomes

even higher. In the rotation-based solution, this problem is taken into consideration to minimize the

synchronization overhead. It has been noted that in CGS and SGD, the model parameters for update

54

Table 9: Sequential Pseudo Code of Machine Learning Algorithm Examples
CGS Algorithm for LDA

Input: training data X , the number of topics K, hyperparameters α, β
Output: topic assignment matrix Z, topic-document matrix M , word-topic matrix N

1: Initialize M,N to zeros
2: for document j ∈ [1, D] do
3: for token position i in document j do
4: Zij = k ∼Mult(1

K)
5: Mkj += 1;Nwk += 1
6: end for
7: end for
8: repeat
9: for document j ∈ [1, D] do

10: for token position i in document j do
11: Mkj −= 1;Nwk −= 1
12: Zij = k′ ∼ p(Zij = k|rest)
13: Mk′j += 1;Nwk′ += 1
14: end for
15: end for
16: until convergence

SGD Algorithm for MF CCD Algorithm for MF
Input: training matrix V , the number of features

K, regularization parameter λ, learning rate ε
Output: row related model matrix W and col-

umn related model matrix H
1: Initialize W,H to UniformReal(0, 1√

K
)

2: repeat
3: for random Vij ∈ V do
4: error =Wi∗H∗j − Vij
5: Wi∗ =Wi∗ − ε(error ·Hᵀ

∗j + λWi∗)
6: H∗j = H∗j − ε(error ·W ᵀ

i∗ + λH∗j)
7: end for
8: until convergence

Input: training matrix V , the number of features
K, regularization parameter λ

Output: row related model matrix W and col-
umn related model matrix H

1: Initialize W,H to UniformReal(0, 1√
K
)

2: Initialize residual matrix R to V −WH
3: repeat
4: for V∗j ∈ V do
5: for k = 1 to K do

6: s∗ =

∑
i∈V∗j (Rij +HkjWik)Wik∑

i∈V∗j (λ+W 2
ik)

7: Rij = Rij − (s∗ −Hkj)Wik

8: Hkj = s∗

9: end for
10: end for
11: for Vi∗ ∈ V do
12: for k = 1 to K do

13: z∗ =

∑
j∈Vi∗(Rij +WikHkj)Hkj∑

j∈Vi∗ (λ+H2
kj)

14: Rij = Rij − (z∗ −Wik)Hkj

15: Wik = z∗

16: end for
17: end for
18: until convergence

55

can be randomly selected: CGS by its nature supports random scanning on model parameters [49]

while SGD allows random selection on model parameters for updating through randomly selecting

items from the training dataset. Because of this algorithm feature, it is possible to dynamically

control the time point of model synchronization for load-balancing.

8.2 Programming Interface and Implementation

This subsection describes the model rotation solution based on the Harp MapCollective framework

and demonstrates how model rotation is applied to three algorithms.

8.2.1 Data Abstraction and Execution Flow

The structure of the training data can be generalized as a tensor. For example, the dataset in CGS is

a document-word matrix. In SGD, the dataset is explicitly expressed as a matrix. When it is applied

to recommendation systems, each row of the matrix represents a user and each column an item;

thus every element represents the rating of a user to an item. In these matrix structured training

data, each row has a row-related model parameter vector as does each column. For quickly visiting

data entries and related model parameters, indices are built on the training matrix’s row IDs or the

column IDs. Based on the model parameter settings, the number of elements per vector can be very

large. As a result, both row-related and column-related model structures might be large matrices. In

CGS and SGD, the model update function allows the data to be split by rows or columns so that one

model matrix (with regards to the matching row or column of training data) is cached with the data,

leaving the other to be rotated. For CCD, the model update function requires both the row-related

model matrix W and the column-related model matrix H to be rotated. The model for rotation is

abstracted through the partitions and tables in Harp. In CGS, each partition holds an array list of

word’s topic counts. In SGD, each partition holds a column’s related model parameter vector. In

CCD, each partition holds a feature dimension’s parameters of all the rows or columns.

Model rotation is expressed with the “rotate” operation in Harp. By default, the operation

sends the model partitions to the next neighbor and receives the model partitions from the last

neighbor in a predefined ring topology of workers. An advanced option is that the ring topology

can be dynamically defined before performing the model rotation. For local computation inside

each worker, they are simply programmed through an interface of “schedule-update”. A scheduler

56

Table 10: Pseudo Code of Model Rotation
Input: P workers, data D, model A0, the number of iterations T
Output: At

1: parallel for worker p ∈ [1, P] do
2: for t = 1 to T do
3: for i = 1 to P do
4: Atip′ = F (Dp, A

ti−1

p′)

5: rotate Atip′
6: end for
7: end for
8: end parallel for

employs a user-defined function to maintain a dynamic order of model parameter updates and avoid

the update conflict. Since the local computation only needs to process the model obtained during the

rotation without considering the parallel model updates from other workers, the code of a parallel

machine learning algorithm can be modularized as a series of actions of performing computation

and rotating model partitions (see Table 10, Figure 19).

8.2.2 Pipelining and Dynamic Rotation Control

The model rotation operation is wrapped as a non-blocking call so that the efficiency of model

rotation can be optimized through pipelining. The distributed model parameters are divided on all

the workers into two setsA∗a andA∗b (see Figure 20). The pipelined model rotation is conducted in

the following way: all the workers first compute Model A∗a with related local training data. Then

they start to shift A∗a, and at the same time they compute Model A∗b. When the computation on

Model A∗b is completed, it starts to shift. All workers wait for the completion of corresponding

model rotations and then begin computing model updates again. Therefore the communication is

overlapped with the computation.

Since the model parameters for update can be randomly selected, dynamic control on the invo-

cation of model rotation is allowed based on the time spent and the number of data items trained

during the time period. (see Figure 21). In CGS for LDA and SGD for MF, assuming each worker

caches rows of data and row-related model parameters and obtains column-related model param-

eters through rotation, it then selects related training data to perform local computation. The data

and model are split into small blocks which the scheduler randomly selects for model update while

avoiding the model update conflicts on the same row or column. Once a block is processed by a

57

Training Data 𝑫 on HDFS

Load, Cache & Initialize

3 Iteration Control

Worker 2Worker 1Worker 0

Local Compute

1

2 Rotate Model

Model 𝑨𝟎
𝒕𝒊 Model 𝑨𝟏

𝒕𝒊 Model 𝑨𝟐
𝒕𝒊

Training
Data 𝑫𝟎

Training
Data 𝑫𝟏

Training
Data 𝑫𝟐

Figure 19: Execution Flow of Model Rotation

58

Worker 2
Compute

Worker 1
Compute

Worker 0
Compute

Time

Model 𝑨𝟏𝒂

Model 𝑨𝟎𝒃

Model𝑨𝟎𝒂

Model 𝑨𝟐𝒃

Model 𝑨𝟐𝒂

Model 𝑨𝟏𝒂

Model 𝑨𝟏𝒃

Model 𝑨𝟏𝒃

Model 𝑨𝟎𝒂

Model 𝑨𝟐𝒂

Model 𝑨𝟐𝒃

Model 𝑨𝟏𝒃

Model𝑨𝟏𝒂

Model 𝑨𝟎𝒂

Model 𝑨𝟎𝒃

Model 𝑨𝟎𝒃

Model 𝑨𝟐𝒂

Model𝑨𝟏𝒂

Model 𝑨𝟏𝒃

Model 𝑨𝟎𝒃

Model𝑨𝟎𝒂

Model 𝑨𝟐𝒂

Model 𝑨𝟐𝒃

Model 𝑨𝟐𝒃

Model 𝑨∗𝒂 Model 𝑨∗𝒃

Shift Shift Shift

Figure 20: Pipelining

59

Other Model Parameters
From Caching

Model Parameters
From Rotation

Model Related Data Computes until the time is
reached, then starts model
rotation

Multi-Thread
Execution

Figure 21: Dynamic Rotation Control

60

thread, it reports the status back to the scheduler. Then the scheduler searches another free block

and dispatches to an idle thread. A timer is set to oversee the training progress. When the desig-

nated time arrives, the scheduler stops dispatching new blocks, and the execution ends. With the

same length of execution time per worker, the computation is load balanced and the synchronization

overhead is minimized. In the iterations of model rotations, the time length is further adjusted based

on the amount of data items processed. When the multi-threaded local computation progresses,

the blocks on some rows or columns may have all been processed, and then only few blocks from

other rows are still left, making the CPU utilization be low. To keep the load-balancing between

threads, the execution time length is adjusted to a number which are able to keep both most threads

running and the communication time being overlapped. Usually, the adjusted time length allows

to process about half of the local training data items. Since the algorithms allow data items to be

randomly selected, eventually all the data items can be processed so that the algorithm correctness

is guaranteed. When the load-balancing is kept, the throughput in the parallelization is significantly

improved which results in fast model convergence speed.

However, in CCD, the algorithm dependency does not allow us to dynamically control the model

rotation. The reason is that in each iteration of CCD, each model parameter is only updated once

by the local training data and the communication overhead of rotating W and H is high. Using

dynamic control cannot save much of the execution time per iteration and results in incomplete

model updates, which reduces the model convergence speed.

8.2.3 Algorithm Parallelization

The details of each algorithm’s parallelization solution are described as below:

CGS When parallelizing CGS with model rotation, the training data is split by document. As

a result, the document-topic model matrix is partitioned by documents while the word-topic model

matrix is rotated among processes. On each worker, documents are partitioned and inverted index is

used to group each partitions’ tokens by word. The word-topic matrix owned by the worker is also

split into partitions. Thus the training tokens can be selected in blocks, trained and updated with the

related model parameters. Because the computation time per token changes as the model converges

[17], the amount of tokens which can be trained during a time period grows larger. As a result, an

upper bound and a lower bound are kept for the amount of tokens trained between two invocations

61

of the “rotate” operation.

SGD BothW andH are model matrices. Assuming n < m, then V is regrouped by rows,W is

partitioned with V , andH is the model for rotation. The ring topology for rotation is randomized per

iteration for accelerating the model convergence. For pipelining and load balancing, the execution

time length is adjusted to a number to be able to process about 60% ∼ 70% training elements per

iteration.

CCD Both W and H are model matrices. Because model update on a row of W needs all the

related data items in the same row and model update on a column of H needs all the related data

items in the column, the training data is duplicated so that one is regrouped by rows and another is

regrouped by columns among workers. However, the model update on each feature dimension is

still independent. Then W and H are split by features and distributed across workers. Both W and

H are rotated for parallel updating of each feature vector in W and H .

8.3 Experiments

In this subsection, the Harp rotation-based solutions are compared with other state-of-the-art imple-

mentations. Experiment settings are described first, then the LDA and MF experiment results are

used to show that the Harp implementations have high performance and scalability.

8.3.1 Experiment Settings

For LDA and MF applications, each has one small dataset and one big dataset. The datasets and

related training parameters are presented in Table 11. Two big datasets are generated from the same

source “ClueWeb09”, while two small datasets are generated from Wikipedia. With different types

of datasets, the effectiveness of the model rotation solution is shown on the model convergence

speed. In LDA, the model convergence speed is evaluated with respect to the model likelihood,

which is a value calculated from the word-topic model matrix. In MF, the model convergence

speed is evaluated by the value of Root Mean Square Error (RMSE) calculated on the test dataset,

which is from the original matrix V but separated from the training dataset. The scalability of

implementations is examined based on the processing throughput of the training data items.

Experiments are conducted on a 128-node Intel Haswell cluster and a 64-node Knights Landing

cluster at Indiana University. In the Intel Haswell cluster, 32 nodes each has two 18-core Xeon

62

Table 11: Training Datasets
LDA

Dataset Documents Words Tokens CGS Training Parameters

clueweb1 76163963 999933 29911407874
K = 10000, α = 0.01, β = 0.01

enwiki 3775554 1000000 1107903672

MF
Dataset Rows Columns Elements

SGD
Training

Parameters

CCD
Training

Parameters

clueweb2 76163963 999933 15997649665
K = 2000,
λ = 0.01,
ε = 0.001 K = 120,

λ = 0.1

hugewiki 50082603 39780 3101135701
K = 1000,
λ = 0.01,
ε = 0.004

Table 12: Test Plan

Dataset
Node Type

two Xeon E5 2699 v3 Haswell
(each node uses 30 Threads)

one Xeon Phi 7250F Knights Landing
(each node uses 60 Threads)

clueweb1 24a 12
clueweb1 18, 24, 30 12, 24, 36

enwiki 10 5
enwiki 2, 4, 8, 16 2, 4, 8, 16

aThe number of nodes is used.

E5-2699 v3 processors (36 cores in total), and 96 nodes each has two 12-core Xeon E5-2670 v3

processors (24 cores in total). All the nodes have 128 GB memory and are connected by QDR

InfiniBand. In the tests, JVM memory is set to “-Xmx120000m -Xms120000m”, and IPoIB is used

for communication. In the Intel Knights Landing cluster, 48 nodes each have one 68-core Xeon Phi

7250F, and 16 nodes each have one 72-core Xeon Phi 7290F. All the nodes have 192 GB memory

and are connected by Intel Omni-Path Fabric. In the tests, JVM memory is set to “-Xmx180000m

-Xms180000m”, and IP on Omni-Path Fabric is used for communication.

8.3.2 LDA Performance Results

Harp LDA CGS implementation is compared with Petuum LDA, and Yahoo! LDA. The implemen-

tations are tested on Haswell machines (with two 18-core Xeon E5-2699 v3) and Knights Landing

machines (with one 68-core Xeon Phi 7250F) separately. The test plan is shown in Table 12.

In Figure 22, the results on two different datasets, machines and scales all show that Harp consis-

63

0 10000 20000 30000 40000 50000 60000 70000 80000 90000
Training Time (s)

3.0

2.8

2.6

2.4

2.2

2.0

1.8

1.6

1.4

1.2

M
od

el
 L

og
-li

ke
lih

oo
d

1e11

Harp
Petuum
Yahoo!LDA

0 5000 10000 15000 20000 25000 30000 35000
Training Time (s)

3.0

2.8

2.6

2.4

2.2

2.0

1.8

1.6

1.4

1.2

M
od

el
 L

og
-li

ke
lih

oo
d

1e11

Harp
Petuum

(a) clueweb1, Haswell 24× 30 (b) clueweb1, Knights Landing 12× 60

0 1000 2000 3000 4000 5000 6000 7000 8000 9000
Training Time (s)

1.2

1.1

1.0

0.9

0.8

0.7

0.6

0.5

M
od

el
 L

og
-li

ke
lih

oo
d

1e10

Harp
Petuum
Yahoo!LDA

0 5000 10000 15000 20000 25000 30000 35000
Training Time (s)

1.3

1.2

1.1

1.0

0.9

0.8

0.7

0.6

0.5

M
od

el
 L

og
-li

ke
lih

oo
d

1e10

Harp
Petuum
Yahoo!LDA

(c) enwiki, Haswell 10× 30 (d) enwiki, Knights Landing 5× 60

Figure 22: CGS Model Convergence Speed

64

tently outperforms Petuum LDA (about two to four times). Yahoo! LDA is not tested on “clueweb1”

with Knights Landing 12× 60 due to the extreme slow performance (see Figure 22(b)). On the rest

three settings it shows more than ten times slower than Harp LDA (see Figure 22(a)(c)(d)). The total

number of threads used on the Haswell machines is equal to the number of threads on the Knights

Landing machines. However, because each core of Knights Landing is much weaker than the core

of Haswell, the results on Knights Landing are about four times slower than the results on Haswell.

The scaling tests is performed with the “enwiki” dataset. Usually the scalability is evaluated

based on the time spent per iteration. However, because the model likelihood values achieved by

the same amount of model updates are all different in these implementations, the scalability is

examined by the convergence speed and the throughput together. In Figure 23, The results show

that on different scales, Harp LDA runs faster than Petuum LDA and Yahoo! LDA on Haswell

machines (due to the extreme slowness, the result of Yahoo! LDA on two nodes is not available).

Figure 23(e) shows that Harp LDA has much higher throughput of token sampling than Petuum

LDA for the first 200 seconds on all the scales. The throughput difference between Harp LDA and

Petuum LDA reduces a little bit when scaling to 16 nodes. This is because each iteration of Harp

LDA only takes a few seconds with little computation in this setting. Similar results are shown on

Knights Landing machines (see Figure 24).

Java is commonly considered slow compared with C++, but Harp LDA shows higher perfor-

mance than those C++ implementations. After the detailed comparison between code implementa-

tions, the optimizations in Harp LDA can be summarized as below:

• Apply high-performance parallel computation model

• Dynamic control on model synchronization for load-balancing

• Loop optimization for token sampling

• Utilize efficient data structures

• Cache intermediate results in token sampling

The first two techniques help the Harp LDA achieve excellent parallel performance. The rest three

improve the performance of the sampling procedure in each thread. The time complexity of sam-

pling each token is O(
∑

k 1(Nwk 6= 0) +
∑

k 1(Nkj 6= 0)). Since the topics of the tokens are

randomly initialized and K is 10000, the initial
∑

k 1(Nwk 6= 0) on each word is a very large

65

0 5000 10000 15000 20000
Training Time (s)

1.3

1.2

1.1

1.0

0.9

0.8

0.7

0.6

0.5

M
od

el
 L

og
-li

ke
lih

oo
d

1e10

Harp
Petuum

0 2000 4000 6000 8000 10000 12000 14000 16000 18000
Training Time (s)

1.3

1.2

1.1

1.0

0.9

0.8

0.7

0.6

0.5

M
od

el
 L

og
-li

ke
lih

oo
d

1e10

Harp
Petuum
Yahoo!LDA

(a) 2× 30 (b) 4× 30

0 1000 2000 3000 4000 5000 6000 7000 8000 9000
Training Time (s)

1.2

1.1

1.0

0.9

0.8

0.7

0.6

0.5

M
od

el
 L

og
-li

ke
lih

oo
d

1e10

Harp
Petuum
Yahoo!LDA

0 1000 2000 3000 4000 5000 6000 7000
Training Time (s)

1.2

1.1

1.0

0.9

0.8

0.7

0.6

0.5

M
od

el
 L

og
-li

ke
lih

oo
d

1e10

Harp
Petuum
Yahoo!LDA

(c) 8× 30 (d) 16× 30

2 4 8 16
Nodes Number

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

T
hr

ou
gh

pu
t o

f F
ir

st
 2

00
s(

to
ke

ns
/s

ec
)

1e8

2.2e+07

4.2e+07

7.7e+07

1.2e+08

6.0e+06

1.2e+07

2.4e+07

4.3e+07

1.1e+06 2.7e+06 4.5e+06
8.0e+06

20

21

22

23

Sp
ee

dU
p

T
(2

)/T
(N

)

1.0

1.9

3.5

5.7

1.0

2.0

3.9

7.2

1.0

2.4

3.9

7.0Harp
Petuum
Yahoo!LDA

(e) Throughput Speedup

Figure 23: Speedup on enwiki, Haswell

66

0 10000 20000 30000 40000 50000 60000
Training Time (s)

1.3

1.2

1.1

1.0

0.9

0.8

0.7

0.6

0.5

M
od

el
 L

og
-li

ke
lih

oo
d

1e10

Harp
Petuum

0 10000 20000 30000 40000 50000 60000
Training Time (s)

1.3

1.2

1.1

1.0

0.9

0.8

0.7

0.6

0.5

M
od

el
 L

og
-li

ke
lih

oo
d

1e10

Harp
Petuum
Yahoo!LDA

(a) 2× 60 (b) 4× 60

0 5000 10000 15000 20000 25000 30000 35000
Training Time (s)

1.2

1.1

1.0

0.9

0.8

0.7

0.6

0.5

M
od

el
 L

og
-li

ke
lih

oo
d

1e10

Harp
Petuum
Yahoo!LDA

0 5000 10000 15000 20000 25000
Training Time (s)

1.2

1.1

1.0

0.9

0.8

0.7

0.6

0.5

M
od

el
 L

og
-li

ke
lih

oo
d

1e10

Harp
Petuum
Yahoo!LDA

(a) 8× 60 (b) 16× 60

2 4 8 16
Nodes Number

0

1

2

3

4

5

6

T
hr

ou
gh

pu
t o

f F
ir

st
 2

00
s(

to
ke

ns
/s

ec
)

1e7

1.0e+07

1.9e+07

3.3e+07

5.1e+07

1.8e+06
4.2e+06

8.3e+06

1.3e+07

3.1e+05 7.2e+05 1.2e+06 2.2e+06

20

21

22

23

Sp
ee

dU
p

T
(2

)/T
(N

)

1.0

1.8

3.2

4.9

1.0

2.3

4.6

7.1

1.0

2.3

4.0

7.2Harp
Petuum
Yahoo!LDA

(e) Throughput Speedup

Figure 24: Speedup on enwiki, Knights Landing

67

Table 13: Test Plan

Dataset
Node Type

Xeon E5 2699 v3
(each uses 30 Threads)

Xeon E5 2670 v3
(each uses 20 Threads)

clueweb2
Harp SGD vs. NOMAD (30)
Harp CCD vs. CCD++ (30)

Harp SGD vs. NOMAD (30, 45, 60)
Harp CCD vs. CCD++ (60)

hugewiki
Harp SGD vs. NOMAD (10)
Harp CCD vs. CCD++ (10)

number close to K while
∑

k 1(Nkj 6= 0) on each document is a relative small number because

each document only contains no more than 1000 tokens. Since each word has more topics than

each document, the loop in the sampling procedure goes through each word and then through each

document. For the same reason, Harp LDA indexes the words’ topics for fast topic searching but

uses linear search for documents’ topic searching. In addition to these two optimizations, caching

is also used to avoid repeating calculation. When sampling multiple tokens with the same word and

document, the topic probabilities calculated for the first token are reused for the following tokens.

8.3.3 MF Performance Results

In MF, Harp SGD is compared with NOMAD. Later Harp CCD is compared to CCD++17. Note that

both NOMAD and CCD++ are implemented in C++ while Harp SGD and CCD are implemented

in Java 8, so it is quite a challenge to exceed them in performance. NOMAD uses MPICH218

for inter-node processes and Intel Thread Building Blocks19 for multi-threading. In NOMAD,

MPI_Send/MPI_Recv are communication operations, but the destination of model shifting is ran-

domly selected without following a ring topology. CCD++ also uses MPICH2 for inter-node collec-

tive communication operations but OpenMP20 for multi-threading. CCD++ uses a parallelization

method different from either Petuum CCD’s model “allgather” implementation or Harp’s model ro-

tation implementation. It allows parallel update on different parameter elements in a single feature

vector of W and H . In such a way, only one feature vector in W and one feature vector in H are

“allgathered”. Thus there is no memory constraint in CCD++ compared with Petuum CCD.

The implementations are tested on two types of machines separately (see Table 13). For the
17 http://www.cs.utexas.edu/~rofuyu/libpmf/
18 http://www.mpich.org
19 https://www.threadingbuildingblocks.org
20 http://openmp.org/wp

68

“hugewiki” dataset, 10 Xeon E5-2699 v3 nodes each with 30 threads are used, while the “clueweb2”

dataset are undertaken by 30 Xeon E5-2699 v3 nodes and 60 Xeon E5-2670 nodes to compare the

model convergence speed among different implementations. The scalability with 30, 45, and 60

Xeon E5-2670 v3 nodes is further examined each with 20 threads.

In SGD, Harp SGD also converges faster than NOMAD. On “clueweb2”, with 30 × 30 Xeon

E5-2699 v3 nodes, Harp is 58% faster, and with 60 × 20 Xeon E5-2670 v3 nodes, Harp is 93%

faster when the test RMSE value converges to 1.61 (see Figure 25(a)(b)(d)). The difference in the

convergence speed increases because the random shifting mechanism in NOMAD becomes unstable

when the scale goes up. The “hugewiki” dataset is tested on 10× 30 Xeon E5-2699 v3 nodes, and

the result remains that Harp SGD is faster than NOMAD (see Figure 25(c)). The scalability of

SGD implementations is further evaluated with the throughput on the number of training data items

processed (see Figure 25(e)). In SGD, the time complexity of processing a training data item is

O(K) for all the elements in V ; as such this metric is suitable for evaluating the performance of

SGD implementations on different scales. Figure 25(e) shows that the throughput of Harp at 1000s

achieves 1.7× speedup when scaling from 30 to 60 nodes. Meanwhile, NOMAD only achieves

1.5× speedup. The throughput of NOMAD on three scales are all lower than Harp.

In CCD, the model convergence speed is again tested on “clueweb2” and “hugewiki” datasets

(see Figure 26(a)(b)(c)). The results show that Harp CCD also has comparable performance with

CCD++. Note that CCD++ uses a different model update order, so that the convergence rate based

on the same number of model update count is different with Harp CCD. However the tests on

“clueweb2” reveal that with 30×30 Xeon E5-2670 v3 nodes, Harp CCD is 53% faster than CCD++

and with 60 × 20 Xeon E5-2699 v3 nodes Harp CCD is 101% faster than CCD++ when the test

RMSE converges to 1.68 (see Figure 26(d)).

69

0 1000 2000 3000 4000 5000 6000 7000 8000
Training Time (s)

1.6

1.7

1.8

1.9

2.0

2.1

2.2
T

es
t R

M
SE

Nomad
Harp

0 1000 2000 3000 4000 5000 6000 7000 8000
Training Time (s)

1.6

1.7

1.8

1.9

2.0

2.1

2.2

T
es

t R
M

SE

Nomad
Harp

(a) clueweb2, 30x30 (b) clueweb2, 60x20

0 500 1000 1500 2000 2500 3000 3500 4000
Training Time (s)

0.50

0.55

0.60

0.65

T
es

t R
M

SE

Nomad
Harp

30x30 60x20
Nodes x Threads

0

2000

4000

6000

8000

10000

12000

14000

T
ra

in
in

g
T

im
e

(s
)

12531

9658

7954

5013

Nomad
Harp

(c) hugewiki, 10x30 (d) clueweb2, Time to Convergence

30 45 60
Nodes Number

0.0

0.2

0.4

0.6

0.8

1.0

1.2

M
od

el
 U

pd
at

e
C

ou
nt

@
10

00
(s

)

1e11

5.3e+10

7.3e+10
7.8e+10

6.5e+10

8.8e+10

1.1e+11

1.0

1.1

1.2

1.3

1.4

1.5

1.6

1.7

1.8

Sp
ee

dU
p

1.0

1.4

1.5

1.0

1.4

1.7
Nomad
Harp

(e) clueweb2, Throughput Scalability

Figure 25: SGD for MF Model Convergence Speed

70

0 1000 2000 3000 4000 5000
Training Time (s)

1.6

1.7

1.8

1.9

2.0

2.1

2.2

2.3

2.4

T
es

t R
M

SE

CCD++
Harp

0 1000 2000 3000 4000 5000
Training Time (s)

1.6

1.7

1.8

1.9

2.0

2.1

2.2

2.3

2.4

T
es

t R
M

SE

CCD++
Harp

(a) CCD, clueweb2, 30x30 (b) CCD, clueweb2, 60x20

0 500 1000 1500 2000 2500 3000 3500
Training Time (s)

0.5

0.6

0.7

0.8

0.9

1.0

1.1

1.2

1.3

1.4

T
es

t R
M

SE

CCD++
Harp

30x30 60x20
Nodes x Threads

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

T
ra

in
in

g
T

im
e

(s
) 6364

8209

4172 4093

CCD++
Harp

(c) CCD, hugewiki, 10x30 (d) CCD, clueweb2

Figure 26: CCD for MF Model Convergence Speed

71

9 Conclusion

In iterative machine learning algorithms, understanding the computation dependency between model

updates is indispensable in creating efficient implementations. Through surveying the related re-

search work, I identified four computation models to help users understand the mechanisms of

model synchronization in machine learning parallelization. My research also indicates the advan-

tages of collective communication techniques in implementing parallel big data machine learning

algorithms. Therefore, I designed a MapCollective programming model for the big data software

stack to enable model-centric computation with collective communication-based model synchro-

nization. In the MapCollective model, Key-Value pairs are still used as the input data, and parti-

tioned distributed datasets are used as the data abstraction for performing collective communication

operations. To test these ideas in practice, I created te Harp framework. Experiments on parallel

machine learning applications show that the current Harp parallelization achieves high performance

and is comparable to other leading implementations in the domain. The current Harp framework has

been released at https://dsc-spidal.github.io/harp/. Through the efforts of other

contributors, we have implemented and made available several machine learning applications, in-

cluding K-means Clustering, Latent Dirichlet Allocation, Matrix Factorization, Multi-class Logistic

Regression, and Support Vector Machine.

Future research directions include enhancing the reliability of the Harp framework, improving

the expressiveness of the programming model, utilizing new hardware, and expanding the appli-

cability to other machine learning applications. For the Harp framework itself, I did not focus on

the fault tolerance in the current implementation. Since the execution flow in the MapCollective

programming model is more flexible compared with existing MapReduce or graph programming

models, it is a challenge to recover the computation automatically. However, check-pointing-based

fault tolerance techniques should be investigated to guide developers to recover the computation

in a simple way. The expressiveness of the Harp MapCollective programming model can also

be improved so that developers can simplify their code for implementing machine learning appli-

cations. Ideally, developers hope that their sequential code can be simply parallelized with high

performance. However, in reality, high-performance parallelization cannot happen without being

given detailed instructions. Following the guidelines in my thesis, developers can provide answers

72

to the four questions of “what”, “when”, “where” and “how” in the model synchronization of a

specific machine learning application. The challenge is if the development cost of parallel machine

learning algorithms can be further reduced while preserving the freedom of conducting fine-grained

performance optimization in the parallelization.

Other challenges of applying the Harp framework come from the algorithms and the hardware.

Deep Learning algorithms have been parallelized by GPU with HPC methods applied [50], but the

current Harp framework has yet to cover them. Though Java can improve the programming produc-

tivity in developing machine learning applications, it is inconvenient to operate high-performance

computing devices and communication devices. Thus Java becomes a performance bottleneck to

the Harp framework. One solution is to build a hybrid framework which uses the Harp collective

communication operations for model synchronization, but leaves the local computation for high-

performance machine learning libraries such as Intel DAAL21. Another option is to implement the

methodologies in the Harp framework on top of Yarn MPI22 with high level programming interfaces,

which is able to provide both full access to high-performance hardware and convergence between

the HPC and Big Data domains.

21 https://software.intel.com/en-us/intel-daal
22 https://software.intel.com/en-us/intel-mpi-library

73

References

[1] T. L. Griffiths and M. Steyvers, “Finding Scientific Topics,” PNAS, 2004.

[2] P. Resnik and E. Hardist, “Gibbs Sampling for the Uninitiated,” University of Maryland, Tech.

Rep., 2010.

[3] D. M. Blei, A. Y. Ng, and M. I. Jordan, “Latent Dirichlet Allocation,” JMLR, 2003.

[4] D. W. Walker and J. J. Dongarra, “MPI: A Standard Message Passing Interface,” in Supercom-

puter, 1996.

[5] J. Dean and S. Ghemawat, “MapReduce: Simplified Data Processing on Large Clusters,”

CACM, 2008.

[6] C.-T. Chu et al., “Map-Reduce for Machine Learning on Multicore,” in NIPS, 2007.

[7] J. Ekanayake et al., “Twister: A Runtime for Iterative MapReduce,” in HPDC, 2010.

[8] M. Zaharia et al., “Spark: Cluster Computing with Working Sets,” in HotCloud, 2010.

[9] G. Malewicz et al., “Pregel: A System for Large-Scale Graph Processing,” in SIGMOD, 2010.

[10] S. Kamburugamuve, “Survey of Apache Big Data Stack,” Indiana University, Tech. Rep.,

2013.

[11] B. Zhang, Y. Ruan, and J. Qiu, “Harp: Collective Communication on Hadoop,” in IC2E, 2015.

[12] S. Lloyd, “Least Squares Quantization in PCM,” Information Theory, IEEE Transactions on,

vol. 28, no. 2, pp. 129–137, 1982.

[13] Y. Ruan and G. Fox, “A Robust and Scalable Solution for Interpolative Multidimensional

Scaling with Weighting,” in e-Science, 2013.

[14] Y. Koren et al., “Matrix Factorization Techniques for Recommender Systems,” Computer,

2009.

[15] H.-F. Yu et al., “Scalable Coordinate Descent Approaches to Parallel Matrix Factorization for

Recommender Systems,” in ICDM, 2012.

74

[16] B. Zhang, B. Peng, and J. Qiu, “Model-Centric Computation Abstractions in Machine Learn-

ing Applications,” in BeyondMR, 2016.

[17] B. Zhang, B. Peng, and J. Qiu, “High Performance LDA through Collective Model Commu-

nication Optimization,” in ICCS, 2016.

[18] L. Bottou, “Large-Scale Machine Learning with Stochastic Gradient Descent,” in COMPSTAT,

2010.

[19] Q. Ho et al., “More Effective Distributed ML via a Stale Synchronous Parallel Parameter

Server,” in NIPS, 2013.

[20] J. Qiu and B. Zhang, “Mammoth Data in the Cloud: Clustering Social Images,” in Clouds,

Grids and Big Data, ser. Advances in Parallel Computing, 2012.

[21] B. Zhang and J. Qiu, “High Performance Clustering of Social Images in a Map-Collective

Programming Model,” in SoCC, 2013.

[22] M. Chowdhury et al., “Managing Data Transfers in Computer Clusters with Orchestra,” in

SIGCOMM, 2011.

[23] M. Li et al., “Scaling Distributed Machine Learning with the Parameter Server,” in OSDI,

2014.

[24] A. Smola and S. Narayanamurthy, “An Architecture for Parallel Topic Models,” VLDB, 2010.

[25] A. Ahmed et al., “Scalable Inference in Latent Variable Models,” in WSDM, 2012.

[26] S. Lee et al., “On Model Parallelization and Scheduling Strategies for Distributed Machine

Learning,” in NIPS, 2014.

[27] E. P. Xing et al., “Petuum: A New Platform for Distributed Machine Learning on Big Data,”

IEEE Trans. Big Data, 2015.

[28] J. K. Kim et al., “STRADS: A Distributed Framework for Scheduled Model Parallel Machine

Learning,” in EuroSys, 2016.

75

[29] L. Yao, D. Mimno, and A. McCallum, “Efficient Methods for Topic Model Inference on

Streaming Document Collections,” in KDD, 2009.

[30] Y. Wang et al., “PLDA: Parallel Latent Dirichlet Allocation for Large-Scale Applications,” in

AAIM, 2009.

[31] J. E. Gonzalez et al., “Powergraph: Distributed Graph-Parallel Computation on Natural

Graphs,” in OSDI, 2012.

[32] Y. Wang et al., “Peacock: Learning Long-Tail Topic Features for Industrial Applications,”

ACM TIST, 2015.

[33] D. Newman et al., “Distributed Algorithms for Topic Models,” JMLR, 2009.

[34] E. Chan et al., “Collective Communication: Theory, Practice, and Rxperience,” Concurrency

and Computation: Practice and Experience, 2007.

[35] Y. Low et al., “Distributed GraphLab: A Framework for Machine Learning and Data Mining

in the Cloud,” VLDB, vol. 5, no. 8, pp. 716–727, 2012.

[36] Y. Bu et al., “HaLoop: Efficient Iterative Data Processing on Large Clusters,” VLDB, vol. 3,

no. 1-2, pp. 285–296, 2010.

[37] R. S. Xin et al., “GraphX: A Resilient Distributed Graph System on Spark,” in GRADES, 2013.

[38] T. Gunarathne, J. Qiu, and D. Gannon, “Towards a Collective Layer in the Big Data Stack,” in

CCGrid, 2014.

[39] D. Sculley, “Web-Scale K-Means Clustering,” in WWW, 2010.

[40] G. Fox, “Robust Scalable Visualized Clustering in Vector and non Vector Semimetric Spaces,”

Parallel Processing Letters, vol. 23, no. 02, 2013.

[41] Y. Ruan et al., “Integration of Clustering and Multidimensional Scaling to Determine Phylo-

genetic Trees as Spherical Phylograms visualized in 3 Dimensions,” in CCGrid, 2014.

[42] B. Zhang, B. Peng, and J. Qiu, “Parallelizing Big Data Machine Learning Applications with

Model Rotation,” ser. Advances in Parallel Computing, 2017.

76

[43] F. Yan, N. Xu, and Y. Qi, “Parallel Inference for Latent Dirichlet Allocation on Graphics

Processing Units,” in NIPS, 2009.

[44] C. Teflioudi, F. Makari, and R. Gemulla, “Distributed Matrix Completion,” in ICDM, 2012.

[45] H. Yun et al., “NOMAD: Non-locking, stOchastic Multi-machine algorithm for Asynchronous

and Decentralized matrix completion,” VLDB, 2014.

[46] Y. Zhuang et al., “A Fast Parallel SGD for Matrix Factorization in Shared Memory Systems,”

in RecSys, 2013.

[47] B. Recht et al., “HOGWILD!: A Lock-Free Approach to Parallelizing Stochastic Gradient

Descent,” in NIPS, 2011.

[48] R. Gemulla et al., “Large-Scale Matrix Factorization with Distributed Stochastic Gradient

Descent,” in SIGKDD, 2011.

[49] R. A. Levine and G. Casella, “Optimizing Random Scan Gibbs Samplers,” JMVA, 2006.

[50] A. Gibiansky, “Bringing HPC Techniques to Deep Learning,” Baidu Research, Tech. Rep.,

2017, http://research.baidu.com/bringing-hpc-techniques-deep-learning/.

77

Bingjing Zhang

EDUCATION

School of Informatics and Computing, Indiana University, Bloomington, IN
Ph.D. of Science in Computer Science August 2009 - May 2017
GPA: 3.98/4.0
Master of Science in Computer Science August 2009 - June 2011
GPA: 3.94/4.0
Software Institute, Nanjing University, Nanjing, China
Master of Engineering in Software Engineering September 2007 - June 2009
GPA: 92.5/100
Bachelor of Engineering in Software Engineering September 2003 - June 2007
GPA: 86/100

WORK EXPERIENCE

Microsoft Research, Redmond, WA
Research Intern June 2 - August 22, 2014
• Worked on Retainable Evaluator Execution Framework (now Apache REEF)

Facebook, Menlo Park, CA
Software Engineer Intern May 20 - August 9, 2013
• Algorithmic message reduction in Apache Giraph

School of Informatics and Computing, Indiana University, Bloomington, IN
Volunteer in Science Cloud Summer School July 30 - August 3, 2012
• Prepared slides for the presentation Data Mining with Twister Iterative MapReduce
• Answered questions in hands-on session

Mentor in IU Summer Research Internships in
Informatics and Computing Program

June - July, 2012

• Taught students how to use Twister iterative MapReduce framework

Teaching Assistant for A110: Introduction to
Computers & Computing

September - December, 2009

• Held lab sessions and help desk hours

IBM China Research Laboratory, Beijing, China
Intern September 2008 - June 2009
• Developed the web-page based control panel for a virtual machine management

platform (programming in JavaScript, PHP)
• Developed a tool (programming in Python) to analyze the scalability of the virtual

machine management platform.

TECHNICAL SKILLS

Java, Hadoop, Collective Communication, Parallel Computing, Machine Learning

TESTS & CERTIFICATIONS

IBM Certified Database Associate-DB2 Universal Database V8.1 Family 2005
IBM Certified for On Demand Business-Solution Designer 2005

HONORS & AWARDS

Excellent Graduate Student, Nanjing University 2008
Tung OOCL Scholarship, Nanjing University 2008
Outstanding Graduate, Nanjing University 2007
People’s Scholarship I, Nanjing University 2006
People’s Scholarship III, Nanjing University 2005
People’s Scholarship II, Nanjing University 2004

RESEARCH EXPERIENCE

School of Informatics and Computing, Indiana University, Bloomington, IN
Research Assistant January 2010 - present
• Developed Harp, a machining learning framework with a collective communication

library on Hadoop for big data (programming in Java)

PUBLICATIONS

1. B. Zhang, B. Peng, J. Qiu. Parallelizing Big Data Machine Learning Applications with Model
Rotation. Book Chapter in series Advances in Parallel Computing, 2017.

2. B. Zhang, B. Peng, J. Qiu. Model-Centric Computation Abstractions in Machine Learning
Applications. Extended Abstract in BeyondMR, 2016.

3. B. Zhang, B. Peng, J. Qiu. High Performance LDA through Collective Model Communication
Optimization. ICCS, 2016.

4. B. Zhang. A Collective Communication Layer for the Software Stack of Big Data Analytics.
Doctor Symposium in IC2E, 2016.

5. B. Zhang, Y. Ruan, J. Qiu. Harp: Collective Communication on Hadoop. Short Paper in IC2E,
2015.

6. B. Zhang, J. Qiu. High Performance Clustering of Social Images in a Map-Collective Program-
ming Model. Poster in SoCC, 2013.

7. J. Qiu, B. Zhang. Mammoth Data in the Cloud: Clustering Social Images. Book chapter in
Cloud Computing and Big Data, series Advances in Parallel Computing, 2013.

8. T. Gunarathne, B. Zhang, T.-L. Wu, J. Qiu. Scalable Parallel Computing on Clouds using
Twister4Azure Iterative MapReduce. Future Generation Computer Systems, 2013.

9. T. Gunarathne, B. Zhang, T.-L. Wu, J. Qiu. Portable Parallel Programming on Cloud and HPC:
Scientific Applications of Twister4Azure. UCC, 2011.

10. B. Zhang, Y. Ruan, T.-L. Wu, J. Qiu, A. Hughes, G. Fox. Applying Twister to Scientific Appli-
cations. CloudCom, 2010.

11. J. Qiu, J. Ekanayake, T. Gunarathne, J. Y. Choi, S.-H. Bae, H. Li, B. Zhang, T.-L. Wu, Y.
Ruan, S. Ekanayake, A. Hughes, G. Fox. Hybrid cloud and cluster computing paradigms for life
science applications. BMC Bioinformatics, 2010.

12. J. Ekanayake, H. Li, B. Zhang, T. Gunarathne, S.-H. Bae, J. Qiu, G. Fox. Twister: A Runtime
for Iterative MapReduce. Workshop on MapReduce and its Applications, HPDC, 2010.

