
Parallel Data Mining from Multicore to
Cloudy Grids

Geoffrey Foxa,b,1

Introduction

 Seung-Hee Baeb, Jaliya Ekanayakeb, Xiaohong Qiuc, and Huapeng
Yuanb

a
 Informatics Department, Indiana University 919 E. 10th Street Bloomington, IN

47408 USA
b

 Computer Science Department and Community Grids Laboratory, Indiana University
501 N. Morton St., Suite 224, Bloomington IN 47404 USA

c
 UITS Research Technologies, Indiana University, 501 N. Morton St., Suite 211,

Bloomington, IN 47404

Abstract. We describe a suite of data mining tools that cover clustering,
information retrieval and the mapping of high dimensional data to low dimensions
for visualization. Preliminary applications are given to particle physics,
bioinformatics and medical informatics. The data vary in dimension from low (2-
20), high (thousands) to undefined (sequences with dissimilarities but not vectors
defined). We use deterministic annealing to provide more robust algorithms that
are relatively insensitive to local minima. We discuss the algorithm structure and
their mapping to parallel architectures of different types and look at the
performance of the algorithms on three classes of system; multicore, cluster and
Grid using a MapReduce style algorithm. Each approach is suitable in different
application scenarios. We stress that data analysis/mining of large datasets can be
a supercomputer application.

Keywords. MPI, MapReduce, CCR, Performance, Clustering, Multidimensional
Scaling

Computation and data intensive scientific data analyses are increasingly prevalent. In
the near future, data volumes processed by many applications will routinely cross the
peta-scale threshold, which would in turn increase the computational requirements.
Efficient parallel/concurrent algorithms and implementation techniques are the key to
meeting the scalability and performance requirements entailed in such scientific data
analyses. Most of these analyses can be thought of as a Single Program Multiple Data
(SPMD) [1] algorithms or a collection thereof. These SPMDs can be implemented
using different parallelization techniques such as threads, MPI [2], MapReduce [3], and
mash-up [4] or workflow technologies [5] yielding different performance and usability
characteristics. In some fields like particle physics, parallel data analysis is already
commonplace and indeed essential. In others such as biology, data volumes are still
such that much of the work can be performed on sequential machines linked together
by workflow systems such as Taverna. The parallelism currently exploited is usually
the “almost embarrassingly parallel” style illustrated by the independent events in

1 Corresponding Author.

particle physics or the independent documents of information retrieval – these lead to
independent “maps” (processing) which are followed by a reduction to give histograms
in particle physics or aggregated queries in web searches. The excellent quality of
service (QoS) and ease of programming provided by the MapReduce programming
model has gained itself a lot of traction for this type of problem. However, the
architectural and performance limitations of the current MapReduce architectures make
their use questionable for many applications. These include many of the machine
learning algorithms such as those discussed in this paper which need iterative closely
coupled computations. In section 2 we compare various versions of this data intensive
programming model with other implementations for both closely and loosely coupled
problems. However, the more general workflow or dataflow paradigm (which is seen in
Dryad [6] and MapReduce extensions) is always valuable. In sections 3 and 4 we turn
to some data mining algorithms that surely need parallel implementations for large data
sets; interesting both sections see algorithms that scale like N2 (N is dataset size) and
use full matrix algebra.

Table 1. Hardware and software configurations of the clusters used for testing.

Our algorithms are parallel MDS (Multi dimensional scaling) [7] and clustering.

The latter has been discussed earlier by us [8-12] but here we extend our results to
larger systems – single workstations with 16 and 24 cores and a 128 core (8 nodes with
16 cores each) cluster described in table 1. Further we study a significantly different
clustering approach that only uses pairwise distances (dissimilarities between points)

Ref Cluster Name # Nodes CPU L2 Cache
Memory

Operating System

A Barcelona 1 1 AMD Quad Core 2x1MB Windows Server
 (4 core Opteron 2356 8 GB HPC Edition
 Head Node) 2.3GHz (Service Pack 1)
B Barcelona 4 2 AMD Quad Core 4×512K Windows Server 2003
 (8 core Opteron 2356 16GB Enterprise x64 bit
 Compute Node) 2.3 GHz Edition
C Barcelona 2 4 AMD Quad Core 4×512K Windows Server
 (16 core Opteron 8356 16 GB HPC Edition
 Compute Node) 2.3GHz (Service Pack 1)
D Barcelona 1 4 Intel Six Core 12 M Windows Server
 (24 core Xeon E7450 48GB HPC Edition
 Compute Node) 2.4GHz (Service Pack 1)
E Madrid 1 1 AMD Quad Core 2x1MB Windows Server
 (4 core Opteron 2356 8 GB HPC Edition
 Head Node) 2.3GHz (Service Pack 1)
F Madrid 8 4 AMD Quad Core 4x512K Windows Server
 (16 core Opteron 8356 16 GB HPC Edition
 Compute Node) 2.3GHz (Service Pack 1)
G Gridfarm 8 2 Quad core Intel 4x1MB Red Hat Enterprise
 8 core Xeon E5345 8GB Linux 4
 2.3GHz
H IU Quarry 112 2 Quad-core Intel 4x4MB, Red Hat Enterprise
 8 core Xeon 5335 8 GB Linux 4
 2.00GHz

and so can be applied to cases where vectors are not easily available. This is common
in biology where sequences can have mutual distances determined by BLAST like
algorithms but will often not have a vector representation. Our MDS algorithm also
only uses pairwise distances and so it and the new clustering method can be applied
broadly. Both our original vector-based (VECDA) and the new pairwise distance
(PWDA) clustering algorithms use deterministic annealing to obtain robust results.
VECDA was introduced by Rose and Fox almost 20 years ago [13] and has a good
reputation [14] and there is no clearly better clustering approach. The pairwise
extension PWDA was developed by Hofmann and Buhmann [15] around 10 years ago
but does not seem to have used in spite of its attractive features – robustness and
applicability to data without vector representation.

As seen in table 1, we use both Linux and Windows platforms in our multicore and
our work uses a mix of C#, C++ and Java. Our results study three variants of
MapReduce, threads and MPI. The algorithms are applied across a mix of paradigms to
indicate the performance characteristics.

1. Choices in Messaging Runtime

Although high level languages – especially for parallel programming – have been a
holy grail for computer science research, there has been more progress in the area of
runtime environments and this is our focus in this paper.
To be more precise there are successful workflow languages but in parallel

programming, the precise
constraints of correct parallel
semantics have thwarted
research so far. This observation
however underlies our approach
which is to use workflow
technologies – defined as
orchestration languages for
distributed computing for the
coarse grain functional
components of parallel
computing with dedicated low
level direct parallelism of
kernels. At the run time level,
there is much similarity between
parallel and distributed run
times with both supporting
messaging with different
properties. Some of the choices
are shown in figure 1 and differ

by both hardware and software models. The hardware support of
parallelism/concurrency varies from shared memory multicore, closely coupled (e.g.
Infiniband connected) clusters, and the higher latency and possibly lower bandwidth
distributed systems. The coordination (communication/ synchronization) of the
different execution units vary from threads (with shared memory on cores); MPI
between cores or nodes of a cluster; workflow or mash-ups linking services together;

Figure 1(a). First three of seven different combinations of
processes/threads and intercommunication mechanisms
discussed in the text

the new generation of data intensive programming systems typified by Hadoop [16]
(implementing MapReduce) and Dryad. These can be considered as the workflow
systems of the information retrieval industry but are of general interest as they support
parallel analysis of large datasets. As illustrated in the figure the execution units vary
from threads to processes and can be short running or long lived.

Figure 1(b). Last four of seven different combinations of processes/threads and intercommunication
mechanisms discussed in the text

Short running threads can be spawned up in the context of persistent data in
memory and so have modest overhead seen in section 4. Short running processes in the
spirit of stateless services are seen in Dryad and Hadoop and due to the distributed
memory can have substantially higher overhead than long running processes which are
coordinated by rendezvous messaging as later do not need to communicate large

amounts of data – just the smaller change
information needed. The importance of
this is emphasized in figure 2 showing data
intensive processing passing through
multiple “map” (each map is for example a
particular data analysis or filtering
operation) and “reduce” operations that
gather together the results of different map
instances corresponding typically to a data
parallel break up of an algorithm. The
figure notes two important patterns

a) Iteration where results of one stage
are iterated many times. This is seen in the
“Expectation Maximization” EM steps in
the later sections where for clustering and
MDS, thousands of iterations are needed.

This is typical of most MPI style algorithms.
b) Pipelining where results of one stage are forwarded to another; this is functional

parallelism typical of workflow applications. In applications of this paper we
implement a three stage pipeline:

Figure 2: Data Intensive Iteration and Workflow

Disk/Database

Compute
(Map #1)

Disk/Database
Memory/Streams

Compute
(Reduce #1)

Disk/Database
Memory/Streams

Disk/Database

Compute
(Reduce #2)

Disk/Database
Memory/Streams

Compute
(Map #2)

Disk/Database
Memory/Streams

Iteration

Workflow

Data (from disk)  Clustering  Dimension Reduction (MDS)  Visualization

Each of the first two stages is parallel and one can break up the compute and

reduce modules of figure 2 into parallel components as shown in figure 3. There is an
important ambiguity in parallel/distributed programming models/runtimes that both the
parallel MPI style parallelism and the distributed Hadoop/ Dryad/ Web
Service/Workflow models are implemented by messaging. Thus the same software can

in fact be used for all the decompositions seen in
figures 1-3. Thread coordination can avoid
messaging but even here messaging can be
attractive as it avoids many of the error scenarios
seen in shared memory thread synchronization. The
CCR threading [8-11] used in this paper is
coordinated by reading and writing messages to
ports. As a further example of runtimes crossing
different application caharacteristics, MPI has often
been used in Grid (distributed) applications with
MPICH-G popular here. Again the paper of Chu
[17] noted that the MapReduce approach can be
used in many machine learning algorithms and one
of our data mining algorithms VECDA only uses

map and reduce operations (it does not need send or receive MPI operations). We will
note in this paper that MPI gives excellent performance and ease of programming for
MapReduce as it has elegant support for general reductions. It does not have the fault
tolerance and flexibility of Hadoop or Dryad. Further MPI is designed for the “owner-
computes” rule of SPMD – if a given datum is stored in a compute node’s memory,
that node’s CPU computes (evolves or analyzes) it. Hadoop and Dryad combine this
idea with the notion of “taking the computing to the data”. This leads to the generalized
“owner stores and computes” rule or crudely that a file (disk or database) is assigned a
compute node that analyzes (in parallel with nodes assigned different files) the data on
it’s file. Future scientific programming models must clearly capture this concept.

2. Data Intensive Workflow Paradigms

In this section, we will present an architecture and a prototype implementation of a new
programming model that can be applied to most composable class of applications with
various program/data flow models, by combining the MapReduce and data streaming
techniques and compare its performance with other parallel programming runtimes
such as MPI, Hadoop and Dryad.
 MapReduce is a parallel programming technique derived from the functional
programming concepts and proposed by Google for large-scale data processing in a
distributed computing environment. The map and reduce programming constructs
offered by MapReduce model is a limited subset of programming constructs provided
by the classical distributed parallel programming models such as MPI. However, our
current experimental results highlight that many problems can be implemented using
MapReduce style by adopting slightly different parallel algorithms compared to the
algorithms used in MPI, yet achieve similar performance for appropriately large
problems. The main advantage of the MapReduce programming model is that the

Figure 3. Workflow of Parallel Services

Parallel
Services

easiness in providing various quality of services. Google and Hadoop both provide
MapReduce runtimes with fault tolerance and dynamic flexibility support.
 Dryad is a distributed execution engine for coarse grain data parallel applications. It
combines the MapReduce programming style with dataflow graphs to solve the
computation tasks. Dryad considers computation tasks as directed acyclic graph
(DAG)s where the vertices represent computation tasks –typically, sequential
programs with no thread creation or locking, and the edges as communication channels
over which the data flow from one vertex to another.
 Moving computation to data is another advantage of the MapReduce and Dryad
have over the other parallel programming runtimes. With the ever-increasing
requirement of processing large volumes of data, we believe that this approach has a
greater impact on the usability of the parallel programming runtimes in the future.

2.1. Current MapReduce Implementations

Google's MapReduce implementation is coupled with a distributed file system named
Google File System (GFS) [18] where it reads the data for MapReduce computations
and stores the results. According to J. Dean et al., in their MapReduce implementation,
the intermediate data are first written to the local files and then accessed by the reduce
tasks. The same architecture is adopted by the Apache's MapReduce implementation –
Hadoop.
 Hadoop stores the intermediate results of the computations in local disks, where the
computation tasks are executed, and informs the appropriate workers to retrieve (pull)
them for further processing. The same approach is adopted by Disco [19] – another
open source MapReduce runtime developed using a functional programming language
named Erlang [20]. Although this strategy of writing intermediate result to the file
system makes the above runtimes robust, it introduces an additional step and a
considerable communication overhead, which could be a limiting factor for some
MapReduce computations. Apart from the above, all these runtimes focus mainly on
computations that utilize a single map/reduce computational unit. Iterative MapReduce
computations are not well supported.

2.2. CGL-MapReduce

CGL-MapReduce is a novel MapReduce runtime that uses streaming for all the
communications, which eliminates the overheads associated with communicating via a
file system. The use of streaming enables the CGL-MapReduce to send the
intermediate results directly from its producers to its consumers. Currently, we have
not integrated a distributed file system such as HDFS with CGL-MapReduce, and
hence the data should be available in all computing nodes or in a typical distributed file
system such as NFS. The fault tolerance support for the CGL-MapReduce will harness
the reliable delivery mechanisms of the content dissemination network that we use.
Figure 4 shows the main components of the CGL-MapReduce.

Figure 4. Components of the CGL-MapReduce

 CGL MapReduce runtime comprises a set of workers, which perform map and
reduce tasks and a content dissemination network that handles all the underlying
communications. As in other MapReduce runtimes, a master worker (MRDriver)
controls the other workers according to instructions given by the user program.
However, unlike typical MapReduce runtimes, CGL-MapReduce supports both single-
step and iterative MapReduce computations.

Figure 5. Computation phases of CGL-MapReduce

 A MapReduce computation under CGL-MapReduce passes through several phases
of computations as shown in figure 5. In CGL-MapReduce the initialization phase is
used to configure both the map/reduce tasks and can be used to load any fixed data
necessary for the map/reduce tasks. The map and reduce stages perform the necessary
data processing while the framework directly transfers the intermediate result from map
tasks to the reduce tasks. The merge phase is another form of reduction which is used
to collect the results of the reduce stage to a single value. The User Program has access
to the results of the merge operation. In the case of iterative MapReduce computations,
the user program can call for another iteration of MapReduce by looking at the result of
the merge operation and the framework performs anther iteration of MapReduce using
the already configured map/reduce tasks eliminating the necessity of configuring
map/reduce tasks again and again as it is done in Hadoop.
 CGL-MapReduce is implemented in Java and utilizes NaradaBrokering[21], a
streaming-based content dissemination network. The CGL-MapReduce research
prototype provides the runtime capabilities of executing MapReduce computations

written in the Java language. MapReduce tasks written in other programming
languages require wrapper map and reduce tasks in order for them to be executed using
CGL-MapReduce.

2.3. Evaluations

To evaluate the different runtimes we have selected several data analysis applications.
First, we applied the MapReduce technique to parallelize a High Energy Physics (HEP)
data analysis application and implemented it using Hadoop and CGL-MapReduce. The
HEP data analysis application process large volumes of data and perform a
histogramming operation on a collection of event files produced by HEP experiments.
Next, we applied the MapReduce technique to parallelize a Kmeans clustering [22]
algorithm and implemented it using Hadoop and CGL-MapReduce. Details of these
applications and the challenges we faced in implementing them can be found in [23]. In
addition, we implemented the same algorithm using MPI (C++) as well. We have also
implemented a matrix multiplication algorithm using Hadoop and CGL-MapReduce.
To compare the performance of Dryad with other parallel runtimes, we use two text-
processing applications, which perform a “word histogramming” operation, and a
“distributed grep” operation implemented using Dryad, Hadoop, and CGL-MapReduce.
Table 1 and Table 2 highlight the details of the hardware and software configurations
and the various test configurations that we used for our evaluations.

Table 2. Test configurations.

Feature HEP Data Analysis Kmeans clustering Matrix
Multiplication

Histogramming
& Grep

Cluster Ref H G G B
Number of
Nodes

12 5 5 4

Number of
Cores

96 40 40 32

Amount of
Data

Up to 1TB of HEP
data

Up to 40 million
data points

Up to 16000
rows and
columns

100GB of text
data

Data
Location

IU Data Capacitor: a
high-speed and high-
bandwidth storage
system running the
Lustre File System

Hadoop : HDFS
CGL-
MapReduce : NFS

Hadoop : HDFS
CGL-
MapReduce :
NFS

Hadoop : HDFS
CGL-MapReduce:
Local Disc
Dryad :
Local Disc

Language Java, C++ (ROOT) Java, C++ Java Java, C#

 For the HEP data analysis, we measured the total execution time it takes to process
the data under different implementations by increasing the amount of data. Figure 6
depicts our results.

Figure 6. HEP data analysis, execution time vs. the volume of data (fixed compute resources)

 Hadoop and CGL-MapReduce both show similar performance. The amount of data
accessed in each analysis is extremely large and hence the performance is limited by
the I/O bandwidth of a given node rather than the total processor cores. The overhead
induced by the MapReduce implementations has negligible effect on the overall
computation.
 We evaluate the performance of different implementations for the Kmeans
clustering application and calculated the parallel overhead (φ) induced by the different
parallel programming runtime using the formula given below. In this formula P denotes
the number of hardware processing units used and T(P) denotes the total execution time
of the program when P processing units are used. T(1) denotes the total execution time
for a single threaded program. Figure 7 depicts our results.

φ(P) = [PT(P) –T(1)] /T(1) (1)

 For the matrix multiplication program, we measured the total execution time by
increasing the size of the matrices used for the multiplication, using both Hadoop and
CGL-MapReduce implementations. The result of this evaluation is shown in figure 8.

Figure 7. Overheads associated with Hadoop, CGL-MapReduce and MPI for Kmeans clustering – iterative
MapReduce - (Both axes are in log scale)

Figure 8. Performance of the Hadoop and CGL-MapReduce for matrix multiplication

 The results in figure 7 and figure 8 show how the approach of configuring once and
re-using of map/reduce tasks for multiple iterations and the use of streaming have
improved the performance of CGL-MapReduce for iterative MapReduce tasks. The
communication overhead and the loading of data multiple times have caused the
Hadoop to induce large overhead to the computation making the results comparably
larger than that of CGL-MapReduce.
 We compare the above two MapReduce runtimes with Microsoft Dryad
implementation using two text processing applications. We develop the Dryad
applications using the DryadLINQ[24] programming environment. The results of these
two evaluations are shown in figure 9 and figure 10.

Figure 9. Performance of Dryad, Hadoop, and CGL-MapReduce for “histogramming of words” operation.

Figure 10. Performance of Dryad, Hadoop, and CGL-MapReduce for “distributed grep” operation

 In both these tests, Hadoop shows higher overall processing time compared to
Dryad and CGL-MapReduce. This could be mainly due to its distributed file system
and the file based communication mechanism. Dryad uses in memory data transfer for
intra-node data transfers and a file based communication mechanism for inter-node
data transfers where as in CGL-MapReduce all data transfers occur via streaming. The
“word histogramming” operation had data transfer requirements compared to the
“distributed grep” operation and hence the streaming data transfer approach adopted by
the CGL-MapReduce shows lowest execution times for the “word histogramming”
operation. In “distributed grep” operation both Dryad and CGL-MapReduce show close
performance results.

3. Multidimensional Scaling

Dimension reduction algorithms are used to reduce dimensionality of high dimensional
data into Euclidean low dimensional space, so that dimension reduction algorithms are
used as visualization tools. Some dimension reduction approaches, such as generative
topographic mapping (GTM) [25] and Self-Organizing Map (SOM) [26], seek to
preserve topological properties of given data rather than proximity information. On the
other hand, multidimensional scaling (MDS) [27, 28] tries to maintain dissimilarity
information between mapping points as much as possible. The MDS uses several full
matrices which are N × N matrices for the N given data points. Thus, the matrices
could be very large for large problems (N could be as big as millions even today). For
large problems, we will initially cluster the given data and use the cluster centers to
reduce the problem size. Here we parallelize an elegant algorithm for computing MDS
solution, named SMACOF (Scaling by MAjorizing a COmplicated Function) [29, 30],
using MPI.NET [31, 32] which is an implementation of message passing interface
(MPI) for C# language and presents performance analysis of the parallel
implementation of SMACOF on multicore cluster systems. We show some examples of
the use of MDS to visualize the results of the clustering algorithms of section 4 in
figure 11. These are datasets in high dimension (from 20 in figure 11(right) to over a
thousand in figure 11(left)) which are projected to 3D using proximity
(distance/dissimilarity) information. The figure shows 2D projections determined by us
from rotating 3D MDS results.

Figure 11. Visualization of MDS projections using parallel SMACOF described in section 3. Each color
represents a cluster determined by the PWDA algorithm of section 4. Figure 11(left) corresponds to 4500
ALU pairwise aligned Gene Sequences with 8 clusters [33] and 11(right) to 4000 Patient Records with 8
clusters from [34]

Multidimensional scaling (MDS) is a general term for a collection of techniques to
configure data points with proximity information, typically dissimilarity (interpoint
distance), into a target space which is normally Euclidean low-dimensional space.
Formally, the N × N dissimilarity matrix Δ = (δij) should be satisfied symmetric (δij =
δji), nonnegative (δij ≥ 0), and zero diagonal elements (δii = 0) conditions. From given
dissimilarity matrix Δ, a configuration of points is constructed by the MDS algorithm in
a Euclidean target space with dimension p. The output of MDS algorithm can be an N
× p configuration matrix X, whose rows represent each data point xi in Euclidean p-
dimensional space. From configuration matrix X, it is easy to compute the Euclidean
interpoint distance dij(X) = ||xi – xj|| among N configured points in the target space and

to build the N × N Euclidean interpoint distance matrix D(X) = (dij(X)). The purpose of
MDS algorithm is to construct a configuration points into the target p-dimensional
space, while the interpoint distance dij(X) is approximated to δij as much as possible.
STRESS [35] and SSTRESS [36] were suggested as objective functions of MDS
algorithms. STRESS (σ or σ(X)) criterion (Eq. (2)) is a weighted squared error between
distance of configured points and corresponding dissimilarity, but SSTRESS (σ2 or
σ2(X)) criterion (Eq. (3)) is a weighted squared error between squared distance of
configured points and corresponding squared dissimilarity.

σ(X) = Σi<j≤n wij(dij(X) − δij)2 (2)

σ2(X) = Σi<j≤n wij [(dij(X))2 − (δij)2]2 (3)

where wij is a weight value, so wij ≥ 0.
Therefore, the MDS can be thought of as an optimization problem, which is

minimization of the STRESS or SSTRESS criteria during constructing a configuration
of points in the p-dimension target space.

3.1. Scaling by MAjorizing a COmplicated Function (SMACOF)

Scaling by MAjorizing a COmplicated Function (SMACOF) [29, 30] is an iterative
majorization algorithm in order to minimize objective function of MDS. SMACOF is
likely to find local minima due to gradient descent property. Nevertheless, it is
powerful since it guarantees monotonic decreasing the objective function. The
procedure of SMACOF is described in Algorithm 1. For the mathematical details of
SMACOF, please refer to [28].

3.2. Distributed-Memory Parallel SMACOF

In order to implement distributed-memory parallel SMACOF, one must address two
issues: one is the data decomposition which is actually block matrix decomposition for
the SMACOF implementation since SMACOF is composed of an iterative matrix

multiplication, and the other is the required communication between decomposed
processes. For the data decomposition, our implementation allows users to choose the
number of row-blocks and column-blocks with a constraint that the product of the
number of row-blocks and column-blocks should be equal to the number of processes,
so that each process will be assigned corresponding decomposed sub-matrix. For
instance, if we run this program with 16 processes, then users can decompose the N×N
full matrices into not only 4×4 block matrices but also 16×1, 8×2, 2×8, and 1×16 block
matrices. In addition, message passing interface (MPI) is used to communicate
between processes, and MPI.NET is used for the communication.

3.2.1. Advantages of Distributed-memory Parallel SMACOF

The running time of SMACOF algorithm is O (N2). Though matrix multiplication of
V†·B(X) takes O (N3), you can reduce the computation order by using association
property of matrix multiplication, since V†·(B(X)·X) is O (2N2p), where N is the number
of points and p is the target dimension that we would like to find a configuration for
given data. Also, SMACOF algorithm uses at least four full N×N double matrices, i.e.
Δ, D, V†, and B(X), which means at least 32× N2 bytes of memory should be allocated
to run SMACOF program.

As in general, there are temporal and spatial advantages when we use distributed-
memory parallelism. First, computational advantage should be achieved by both
shared-memory and distributed-memory parallel implementation of SMACOF. While
shared-memory parallelism is limited by the number of processors (or cores) in a single
machine, distributed-memory parallelism can be extended the available number of
processors (or cores) as much as machines are available, theoretically. SMACOF
algorithm uses at least 32× N2 bytes of memory as we mentioned above. For example,
32MB, 3.2GB, 12.8GB, and 320GB are necessary for N = 1000, 10000, 20000, 100000,
correspondingly. Therefore, a multicore workstation, which has a 8GB of memory will
be able to run SMACOF algorithm with 10000 data points. However, this workstation
cannot be used to run the same algorithm with 20000 data points. Shared memory
parallelism increases performance but does not increase size of problem that can be
addressed. Thus, the distributed-memory parallelism provides us to be able to run
SMACOF algorithm with much more data, and this benefit is quite important in the era
of a data deluge.

3.3. Experimental Results and Analysis

For the performance experiments of the distributed-memory parallel SMACOF, we use
two nodes of Ref C and one node of Ref D in Table 1. For the performance test, we
generate artificial random data set which is in 8-centered Gaussian distribution in 4-
dimension with different number of data points, such as 128, 256, 512, 1024, 2048, and
4096.

Due to gradient descent attribute of SMACOF algorithm, the final solution highly
depends on the initial mapping. Thus, it is appropriate to use random initial mapping
for the SMACOF algorithm unless specific prior initial mapping exists, and to run
several times to increase the probability to get better solution. If the initial mapping is
different, however, the computation amount can be varied whenever the application
runs, so that we could not measure any performance comparison between two
experimental setups, since it could be inconsistent. Therefore, the random seed is fixed

for the performance measures of this paper to generate the same answer and the same
necessary computation for the same problem. The stop condition threshold value (ε) is
also fixed for each data. We will investigate the dependence on starting point more
thoroughly using other approaches discussed in section 3.4.

3.3.1. Performance Analysis

For the purpose of performance comparison, we implemented the sequential version of
SMACOF algorithm. The sequential SMACOF is executed on each test node, and the
test results are in Table 3. Note that the running time of D is almost twice faster than
the other two nodes, though the core’s clock speed of each node is similar. The reason
would be the cache memory size. L2 cache of two Ref C nodes (C1 and C2) is much
smaller than that of D node.
Table 3. Sequential Running time on each test node

Initially we measured the performance of the distributed-memory parallel
SMACOF (MPI_SMACOF) on each test node only. Figure 12 shows the speedup of
each test node with different number of processes. Both axes of the Figure 12 are in
logarithmic scale. As the Figure 12 depicted, the MPI_SMACOF is not good for small
data, such as 128 and 256 data points. However, for larger data, i.e. 512 and more data
points, the MPI_SMACOF shows great performance on the test data. You should
notice those speedup values of larger data, such as 1024 or more data points on C1 and
C2 nodes are bigger than the actual processes number using the MPI_SMACOF
application, which corresponds to super-linear speedup. However, on the D node, it
represented good speedup but not super-linear speedup at all. The reason of super-
linear speedup is related to cache-hit ratio, as we discussed about sequential running
results. MPI_SMACOF implemented in the way of block decomposition, so that those
sub-matrix would be better matched in the cache line size and the portion of sub-matrix
which is in cache memory at a moment would be bigger than the portion of whole
matrix in it. The Figure 12 also describes that the speedup ratio (or efficiency)
becomes worse when you run MPI_SMACOF with more processes on single node. It
seems natural that as the number of computing units increases, the assigned computing
job will be decreased but the communication overhead will be increased.

Data size C1 C2 D
128 0.3437 0.3344 0.1685
256 1.9031 1.9156 0.9204
512 9.128 9.2312 4.8456
1024 32.2871 32.356 18.1281
2048 150.5793 150.949 83.4924
4096 722.3845 722.9172 384.7344

Figure 12. Speedup of MPI_SMACOF performance on each test node

In addition, we have measured the performance of the proposed MPI_SMACOF
algorithm on all the three test nodes with different number of processes. Figure 13
illustrates the speedup of those experiments with respect to the average of the
sequential SMACOF running time on each node. The comparison with average might
be reasonable since, for every test case, the processes are equally spread as much as
possible on those three test nodes except the case of 56 processes running. The Figure
13 represents that the speedup values are increasing as the data size is getting bigger.
This result shows that the communication overhead on different nodes is larger than
communication overhead on single node, so that the speedup is still increasing, even
with large test data such as 2048 and 4096 points, instead of being converged as in
Figure 12.

Figure 13. Speedup of MPI_SMACOF on combine nodes

3.4. Conclusions

We have developed a dimension mapping tool that is broadly applicable as it only uses
dissimilarity values and does not require the points to be in a vector space. We have
good parallel performance and are starting to use it for science as illustrated in figure
11. We will compare the method described with alternatives that can also be
parallelized and avoid the steepest descent approach of SMACOF which can lead to
local minima. One first described in [37] and [38] uses deterministic annealing based
on ideas sketched in section 4. This still uses Expectation Maximization (EM) (steepest
descent) but only for the small steps needed as temperature is decreased. We will also
implement the straightforward but possibly best method from ref [39] that solves
equations (2) and (3) as χ2 problems and uses optimal solution methods for this.

4. Multicore Clustering

Clustering can be viewed as an optimization problem that determines a set of K clusters
by minimizing

HVEC = ∑i=1
N ∑k=1

K Mi(k) DVEC(i,k) (2)
where DVEC(i,k) is the distance between point i and cluster center k. N is the

number of points and Mi(k) is the probability that point i belongs to cluster k. This is
the vector version and one obtains the pairwise distance model with:

HPW = 0.5 ∑i=1
N ∑j=1

N D(i, j) ∑k=1
K Mi(k) Mj(k) / C(k) (3)

and C(k) = ∑i=1
N Mi(k) is the expected number of points in the k’th cluster.

Equation (2) requires one be able to calculate the distance between a point i and the
cluster center k and this is only possible when one knows the vectors corresponding to
the points i. (3) reduces to (2) when one inserts vector formulae and drops terms ∑i=1

N
∑j=1

N DVEC(i,k) DVEC(j,k) ∑k=1
K Mi(k) Mj(k) that average to zero.

One must minimize (2) or (3) as a function of cluster centers (1) and cluster
assignments Mi(k). One can derive deterministic annealing from an informatics
theoretic [14] or physics formalism [15]. In latter case one smoothes out the cost
function (2) or (3) by averaging with the Gibbs distribution exp(-H/T). This implies in
a physics language that one is minimizing not H but the free energy F at temperature T
and entropy S

 F = H-TS (4)

Figure 14. Preliminary stage of clustering shown in figure 11(left) corresponding to 4500 ALU pairwise
aligned Gene Sequences with 2 clusters [33]

Figure 15. Parallel Overhead for pure threading or pure MPI on 24 core Ref D of Table 1 for three different
patient datasets with 2000, 4000 and 10,000 elements. The leftmost results are MPI.NET runs labeled
1XNX1 for N MPI processes. The rightmost results are CCR threading labeled NX1X1 for N threads

In [9] and [11], we explain how a single formalism describes multiple different

problems, VECDA (Clustering of points defined by vectors with deterministic
annealing) [13, 14], Gaussian Mixture Models (GMM) [40]; Gaussian Mixture Models

1x
2x

1

2x
1x

1

1x
4x

1

4x
1x

1

1x
8x

1

8x
1x

1

1x
16

x1

16
x1

x1

1x
24

x1

24
x1

x1

Parallel Pattern (ThreadXProcess XNode)

1x
1x

1-0.2

-0.1

1E-15

0.1

0.2

0.3

0.4

0.5

0.6

PWDA Parallel Pairwise data clustering
by Deterministic Annealing run on 24 core computer

Patient2000

Patient4000

Patient10000

Parallel Overhead

MPI Threading

0

with deterministic annealing (GMMDA) [41]; and Generative Topographic Maps
(GTM) [25]. One can also add deterministic annealing to GTM and derive asimilar
formalism although there is no study of this yet. Annealing in most problems
corresponds to a multi-scale approach with temperature corresponding to a distance
scale that starts very large and decreases. For example the eight clusters in figure
11(left) were found systematically with clusters being added as one reduced
temperature so that at a higher temperature one first split from one to two clusters to
find results of figure 14. The splits are determined from the structure of second
derivative matrix and continuing figure 14 leads to figure 11(left). The vector
clustering model is suitable for low dimensional spaces such as our earlier work on
census data [9] but the results of figure 11 and 14 correspond to our implementation of
PWDA – the pairwise distance clustering approach of [15] which starts from equation
(3). As described in [42] this has similarities to familiar O(N2) problems such
astrophysical particle dynamics. Whereas VECDA is pure MapReduce just using
broadcast, allreduce and barrier in MPI, PWDA has significant use of send-receive in
MPI as information must passed around a ring of processors. As N is potentially of
order a million we see that both MDS and pairwise clustering are potential
supercomputing data analysis applications. We have performed extensive performance
measurements [8-11, 42] showing the effect of cache and for Windows runtime
fluctuations can be quite significant. Here we give some typical results with figure 15
showing the performance of PWDA on the single 24 core workstation (ref D of table 1).
The results are expressed as an overhead using the definitions of equation (1)
introduced in section 2. We compare both MPI and thread based parallelism using
Microsoft’s CCR package [43, 44]. As these codes are written in C#, we use
MPI.NET[31, 32] finding this to allow an elegant object-based extension of traditional
MPI and good performance. MPI.NET is a wrapper for the production Microsoft MPI.

Figure 15 shows that although threading and MPI both get good performance, their
systematics are different. For the extreme case of 24-way parallelism, the thread
implementation shows an overhead that varies between 10 and 20% depending on the
data set size. MPI shows a large overhead for small datasets that decreases with
increasing dataset size so in fact 24-way MPI parallelism is 20% faster than the thread
version on the largest 10,000 element dataset. This is due to the different sources of the
overhead. For MPI the overhead is due to the communication calls which are due to
reduce (20%) and send-receive (80%) and this as expected decreases (inversely
proportional to dataset size) as the dataset size increases. For threads there is no
memory movement overhead but rather the overhead is due to the Windows thread
scheduling that leads to large fluctuations that can have severe effects on tightly
synchronized parallel codes such as those in this paper as discussed in refs. [8-11, 42].
We see some cases where the overhead is negative (super-linear speedup) which is due
to better use of cache in the higher parallelism cases compared to sequential runs. This
effect is seen in all our runs but differs between the AMD and Intel architectures
reflecting their different cache size and architecture.

Figure 16. Comparison of use of short lived (solid lines) and long lived (dashed lines) threads for the Vector-
based deterministic annealing VECDA. The results achieve a given parallelism by choosing number of
nodes, MPI processes per node and threads per MPI process. The number of threads increases as you move
from left to right for given level of parallelism.

Figure 16 looks at the vector clustering VECDA comparing MPI versus two versions of
threading. MPI is very efficient – the 32 way parallel code with 16 MPI processes on
each of two 16 core nodes has overheads (given by equation (1) and roughly 1 –
efficiency) of 0.05 to 0.10. For the case of 16 threads on each of two nodes the
overhead is 0.65 (short lived) to 1.25 (long lived) threads. This example is particularly
favorable to MPI as only reduction is an important operation; there are no send or
receive calls and a negligible amount of time on broadcast and barrier. The short lived
threads are the natural implementation with threads spawned for parallel for loops. In
the long lived case, the paradigm is similar to MPI with long running threads
synchronizing with rendezvous semantics.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

1.2

1.3

VECDA Parallel Deterministic Annealing Vector Clustering
Long Lived (LL dashed lines) vs. Short Lived (SL solid lines) Threads

(Scaled Speedup Tests on two 16-core Systems;
10 Clusters; 160,000 data points per cluster per thread)

1x
1x

1
1x

2x
1

1x
1x

2
2x

1x
1

1x
4x

1
2x

2x
1

1x
2x

2
2x

1x
2

4x
1x

1
1x

8x
1

2x
4x

1
4x

2x
1

1x
4x

2
2x

2x
2

4x
1x

2
8x

1x
1

1x
16

x1
2x

8x
1

4x
4x

1
8x

2x
1

1x
8x

2
2x

4x
2

4x
2x

2
8x

1x
2

16
x1

x1
1x

16
x2

2x
8x

2
4x

4x
2

8x
2x

2
16

x1
x2

Parallel Patterns (# Threads/Process) X (#Processes/Node)X(#Nodes)

Parallel Overhead

2-way

32-way

4-way
8-way

16-way

Figure 17. Parallel Overhead for PWDA runs on 128 core Cluster Ref. F in table 1 with patterns defined in
figure 16.

Figure 17 shows preliminary results of PWDA for a 10,000 element dataset on the 128
core cluster. The results show less difference between MPI and threading than figure
16. That is partly due to MPI being dominated in this case by the use of send-receive as
discussed above for the results of figure 15. The results also show effects of the cache
which are still being investigated. This slows down some of low parallelism results – in
particular the purely sequential 1x1x1 case. The patterns are always labeled as (threads
per process)x(MPI processes per node)x(nodes). Note figure 17 studies the overhead
for a fixed problem whereas figure 16 looks at scaled speedup with problem size
increasing proportional to number of parallel units. We see that the 10,000 dataset can
run well up to 32- or 64-way parallelism.

5. Conclusions

This paper has addressed several issues. It has studied the performance of a variety of
different programming models on data intensive problems. It has presented novel
clustering and MDS algorithms which are shown to parallelize well and could become
supercomputer applications for large million point problems. It has compared MPI and
threading on multicore systems showing both to be effective but with different
overheads. We see these complemented by the data intensive programming models
including Dryad and Hadoop as well as an in house version of MapReduce. These
support an “owner stores and computes” programming paradigm that will be of
increasing importance.

1x
2x

2
2x

1x
2

2x
2x

1
1x

4x
2

1x
8x

1
2x

2x
2

2x
4x

1
4x

1x
2

4x
2x

1

1x
8x

2
2x

4x
2

2x
8x

1
4x

2x
2

4x
4x

1
8x

1x
2

8x
2x

1

1x
16

x1

1x
16

x2
2x

8x
2

4x
4x

2
8x

2x
2

16
x1

x2

2x
8x

3

1x
16

x3
2x

4x
6

1x
8x

8
1x

16
x4

2x
8x

4

16
x1

x4

1x
16

x8
4x

4x
8

8x
2x

8
16

x1
x8

4x
2x

6
4x

4x
3

16
x1

x3
8x

2x
3

8x
2x

4

1x
16

x6
4x

4x
6

Parallel Patterns (# Thread /process) x (# MPI process /node) x (# node)

Parallel Pairwise Clustering PWDA
Speedup Tests on eight 16-core Systems (6 Clusters; 10,000 patient records)

Threading with CCR using Short Lived Threads
Parallel Overhead

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

4-way

8-way 16-way
32-way

48-way

64-way

128-way

96-way

Parallel Overhead

6. Acknowledgements

We thank other members of the SALSA parallel computing group including Jong Choi
and Yang Ruan for conversations. Our work on patient data would not have been
possible with Gilbert Liu from IU Medical School and the gene sequence data was
produced by Haixu Tang and Mina Rho from the IU Bioinformatics group who also
answered our endless naïve questions. The IU MPI.NET group led by Andrew
Lumsdaine was very helpful as we learnt how to use this. Our research was partially
supported by Microsoft. We have obtained continued help on Dryad from Roger Barga
and CCR from George Chrysanthakopoulos and Henrik Frystyk Nielsen. Scott Beason
provided key support on visualization and set up of Clusters.

References

[1] F. Darema, SPMD model: past, present and future, Recent Advances in Parallel Virtual Machine and
Message Passing Interface, 8th European PVM/MPI Users' Group Meeting, Santorini/Thera, Greece,
2001.

[2] MPI (Message Passing Interface), http://www-unix.mcs.anl.gov/mpi/
[3] J. Dean and S. Ghemawat, Mapreduce: Simplified data processing on large clusters, ACM Commun.,

vol. 51, Jan. 2008, pp. 107-113.
[4] Geoffrey Fox and Marlon Pierce Grids Challenged by a Web 2.0 and Multicore Sandwich Special Issue

of Concurrency&Compuitation:Practice&Experience on Seventh IEEE International Symposium on
Cluster Computing and the Grid — CCGrid 2007, Keynote Talk Rio de Janeiro Brazil May 15
2007 ://grids.ucs.indiana.edu/ptliupages/publications/CCGridDec07-Final.pdf

[5] Dennis Gannon and Geoffrey Fox, Workflow in Grid Systems Concurrency and Computation: Practice &
Experience 18 (10), 1009-19 (Aug 2006), Editorial of special issue prepared from GGF10 Berlin.

[6] M. Isard, M. Budiu, Y. Yu, A. Birrell, and D. Fetterly, Dryad: Distributed data-parallel programs from
sequential building blocks, European Conference on Computer Systems , March 2007.

[7] Seung-Hee Bae Parallel Multidimensional Scaling Performance on Multicore Systems at workshop on
Advances in High-Performance E-Science Middleware and Applications in Proceedings of eScience
2008 Indianapolis IN December 7-12
2008 ://grids.ucs.indiana.edu/ptliupages/publications/eScience2008_bae3.pdf

[8] Xiaohong Qiu, Geoffrey Fox, H. Yuan, Seung-Hee Bae, George Chrysanthakopoulos, Henrik Frystyk
Nielsen High Performance Multi-Paradigm Messaging Runtime Integrating Grids and Multicore
Systems September 23 2007 published in proceedings of eScience 2007 Conference Bangalore India
December 10-13 2007 ://grids.ucs.indiana.edu/ptliupages/publications/CCRSept23-07eScience07.pdf

[9] Xiaohong Qiu, Geoffrey C. Fox, Huapeng Yuan, Seung-Hee Bae, George Chrysanthakopoulos, Henrik
Frystyk Nielsen PARALLEL CLUSTERING AND DIMENSIONAL SCALING ON MULTICORE
SYSTEMS Invited talk at the 2008 High Performance Computing & Simulation Conference (HPCS
2008) In Conjunction With The 22nd EUROPEAN CONFERENCE ON MODELLING AND
SIMULATION (ECMS 2008) Nicosia, Cyprus June 3 - 6, 2008; Springer Berlin / Heidelberg Lecture
Notes in Computer Science Volume 5101/2008 "Computational Science: ICCS 2008" ISBN 978-3-540-
69383-3 Pages 407-416 DOI: ://dx.doi.org/10.1007/978-3-540-69384-0_46

[10] Xiaohong Qiu, Geoffrey C. Fox, Huapeng Yuan, Seung-Hee Bae, George Chrysanthakopoulos, Henrik
Frystyk Nielsen Performance of Multicore Systems on Parallel Data Clustering with Deterministic
Annealing ICCS 2008: "Advancing Science through Computation" Conference; ACC CYFRONET and
Institute of Computer Science AGH University of Science and Technology Kraków, POLAND; June
23-25, 2008. Springer Lecture Notes in Computer Science Volume 5101, pages 407-416, 2008.
DOI: ://dx.doi.org/10.1007/978-3-540-69384-0_46

[11] Xiaohong Qiu , Geoffrey C. Fox, Huapeng Yuan, Seung-Hee Bae, George Chrysanthakopoulos, Henrik
Frystyk Nielsen Parallel Data Mining on Multicore Clusters 7th International Conference on Grid and
Cooperative Computing GCC2008 Shenzhen China October 24-26
2008 ://grids.ucs.indiana.edu/ptliupages/publications/qiu-ParallelDataMiningMulticoreClusters.pdf

[12] Home Page for SALSA Project at Indiana University ://www.infomall.org/salsa.
[13] Kenneth Rose, Eitan Gurewitz, and Geoffrey C. Fox Statistical mechanics and phase transitions in

clustering Phys. Rev. Lett. 65, 945 - 948 (1990)

http://grids.ucs.indiana.edu/ptliupages/publications/CCGridDec07-Final.pdf�
http://grids.ucs.indiana.edu/ptliupages/publications/eScience2008_bae3.pdf�
http://grids.ucs.indiana.edu/ptliupages/publications/CCRSept23-07eScience07.pdf�
http://dx.doi.org/10.1007/978-3-540-69384-0_46�
http://dx.doi.org/10.1007/978-3-540-69384-0_46�
http://grids.ucs.indiana.edu/ptliupages/publications/qiu-ParallelDataMiningMulticoreClusters.pdf�
http://www.infomall.org/salsa�

[14] Rose, K. Deterministic annealing for clustering, compression, classification, regression, and related
optimization problems, Proceedings of the IEEE Vol. 86, pages 2210-2239, Nov 1998

[15] T Hofmann, JM Buhmann Pairwise data clustering by deterministic annealing, IEEE Transactions on
Pattern Analysis and Machine Intelligence 19, pp1-13 1997

[16] Apache Hadoop, ://hadoop.apache.org/core/
[17] C. Chu, S. Kim, Y. Lin, Y. Yu, G. Bradski, A. Ng, and K. Olukotun. Map-reduce for machine learning

on multicore. In B. Scholkopf, J. Platt, and T. Hoffman, editors, Advances in Neural Information
Processing Systems 19, pages 281–288. MIT Press, Cambridge, MA, 2007.

[18] S. Ghemawat, H. Gobioff, and S. Leung, The Google file system, Symposium on Operating Systems
Principles 2003, pp 29–43, 2003.

[19] Disco project, http://discoproject.org/
[20] Erlang programming language, http://www.erlang.org/
[21] S. Pallickara and G. Fox, “NaradaBrokering: A Distributed Middleware Framework and Architecture

for Enabling Durable Peer-to-Peer Grids,” Middleware 2003, pp. 41-61.
[22] J. B. MacQueen , Some Methods for classification and Analysis of Multivariate Observations,

Proceedings of 5-th Berkeley Symposium on Mathematical Statistics and Probability, Berkeley,
University of California Press, vol. 1, pp. 281-297.

[23] Jaliya Ekanayake, Shrideep Pallickara, and Geoffrey Fox Map-Reduce for Data Intensive Scientific
Analyses Proceedings of the IEEE International Conference on e-Science. Indianapolis. 2008.
December 7-12 2008 ://grids.ucs.indiana.edu/ptliupages/publications/ekanayake-MapReduce.pdf

[24] Y. Yu, M. Isard, D. Fetterly, M. Budiu, U. Erlingsson, P. Kumar and J. Currey, DryadLINQ: A System
for General-Purpose Distributed Data-Parallel Computing Using a High-Level Language Symposium
on Operating System Design and Implementation (OSDI), San Diego, CA, December 8-10, 2008.

[25] M. Svens´en. GTM: The Generative Topographic Mapping. PhD thesis, Neural Computing Research
Group, Aston University, Birmingham, U.K., 1998.

[26] T. Kohonen. Self-Organizing Maps. Springer-Verlag, Berlin, Germany, 2001.
[27] J. B. Kruskal and M.Wish. Multidimensional Scaling. Sage Publications Inc., Beverly Hills, CA, U.S.A.,

1978.
[28] I. Borg and P. J. Groenen. Modern Multidimensional Scaling: Theory and Applications. Springer, New

York, NY, U.S.A., 2005.
[29] J. de Leeuw. Applications of convex analysis to multidimensional scaling. Recent Developments in

Statistics, pages 133–145, 1977.
[30] J. de Leeuw. Convergence of the majorization method for multidimensional scaling. Journal of

Classification, 5(2):163–180, 1988.
[31] Douglas Gregor and Andrew Lumsdaine. Design and Implementation of a High-Performance MPI for

C# and the Common Language Infrastructure. Principles and Practice of Parallel Programming
(PPoPP), pages 133-142, February 2008. ACM.

[32] MPI.NET Home Page ://www.osl.iu.edu/research/mpi.net
[33] Alkes L. Price, Eleazar Eskin and Pavel A. Pevzner, Whole-genome analysis of Alu repeat elements

reveals complex evolutionary history. Genome Res. 2004 14: 2245-2252 DOI:
http://dx.doi.org/10.1101/gr.2693004

[34] Bell JF, Wilson JS, Liu GC. Neighborhood greenness and 2-year changes in body mass index of
children and youth. Am J Prev Med. Dec 2008;35(6):547-553.

[35] J. B. Kruskal. Multidimensional scaling by optimizing goodness of fit to a nonmetric hypothesis.
Psychometrika, 29(1):1–27, 1964.

[36] Y. Takane, F. W. Young, and J. de Leeuw. Nonmetric individual differences multidimensional scaling:
an alternating least squares method with optimal scaling features. Psychometrika, 42(1):7–67, 1977.

[37] Hansjorg Klock, Joachim M. Buhmann Multidimensional scaling by deterministic annealing in Energy
Minimization Methods in Computer Vision and Pattern Recognition, Eds Pelillo M. and Hancock E.R.,
Proc. Intl. Workshop EMMCVPR Venice Italy, Springer Lecture Notes in Computer Science 1223 ppg.
246-260 May 1997

[38] Hansjorg Klock, Joachim M. Buhmann, Data visualization by multidimensional scaling: a deterministic
annealing approach, Pattern Recognition 33 (2000) 651}669

[39] Anthony J. Kearsley, Richard A. Tapia, Michael W. Trosset The Solution of the Metric STRESS and
SSTRESS Problems in Multidimensional Scaling Using Newton’s Method, technical report 1995.

[40] Dempster, A.P., Laird, N.M., & Rubin, D.B. (1977). Maximum-likelihood from incomplete data via the
EM algorithm. J. R. Statist. Soc. Ser. B (methodological), 39, 1–38.

[41] Naonori Ueda and Ryohei Nakano Deterministic annealing EM algorithm Neural Networks Volume 11,
Issue 2, 31 March 1998, Pages 271-282 ://dx.doi.org/10.1016/S0893-6080(97)00133-0

[42] Xiaohong Qiu and Geoffrey Fox, Parallel Data Mining for Medical Informatics, Technical Report
January 13 2009 ://grids.ucs.indiana.edu/ptliupages/publications/DataminingMedicalInformatics.pdf

http://hadoop.apache.org/core/�
http://grids.ucs.indiana.edu/ptliupages/publications/ekanayake-MapReduce.pdf�
http://www.osl.iu.edu/research/mpi.net�
http://dx.doi.org/10.1016/S0893-6080(97)00133-0�
http://grids.ucs.indiana.edu/ptliupages/publications/DataminingMedicalInformatics.pdf�

[43] Microsoft Robotics Studio is a Windows-based environment that includes end-to-end Robotics
Development Platform, lightweight service-oriented runtime, and a scalable and extensible platform.
For details, see ://msdn.microsoft.com/robotics/

[44] Georgio Chrysanthakopoulos and Satnam Singh An Asynchronous Messaging Library for C#,
Synchronization and Concurrency in Object-Oriented Languages (SCOOL) at OOPSLA October 2005
Workshop, San Diego, CA.

http://msdn.microsoft.com/robotics/�

	Introduction
	Choices in Messaging Runtime
	Data Intensive Workflow Paradigms
	Current MapReduce Implementations
	CGL-MapReduce
	Evaluations

	Multidimensional Scaling
	Scaling by MAjorizing a COmplicated Function (SMACOF)
	Distributed-Memory Parallel SMACOF
	Advantages of Distributed-memory Parallel SMACOF

	Experimental Results and Analysis
	Performance Analysis

	Conclusions

	Multicore Clustering
	Conclusions
	Acknowledgements
	References

