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Abstract. We describe a suite of data mining tools that cover clustering, 
information retrieval and the mapping of high dimensional data to low dimensions 
for visualization. Preliminary applications are given to particle physics, 
bioinformatics and medical informatics.  The data vary in dimension from low (2-
20), high (thousands) to undefined (sequences with dissimilarities but not vectors 
defined). We use deterministic annealing to provide more robust algorithms that 
are relatively insensitive to local minima. We discuss the algorithm structure and 
their mapping to parallel architectures of different types and look at the 
performance of the algorithms on three classes of system; multicore, cluster and 
Grid using a MapReduce style algorithm. Each approach is suitable in different 
application scenarios.  We stress that data analysis/mining of large datasets can be 
a supercomputer application. 
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Computation and data intensive scientific data analyses are increasingly prevalent. In 
the near future, data volumes processed by many applications will routinely cross the 
peta-scale threshold, which would in turn increase the computational requirements. 
Efficient parallel/concurrent algorithms and implementation techniques are the key to 
meeting the scalability and performance requirements entailed in such scientific data 
analyses. Most of these analyses can be thought of as a Single Program Multiple Data 
(SPMD) [1] algorithms or a collection thereof. These SPMDs can be implemented 
using different parallelization techniques such as threads, MPI [2], MapReduce [3], and 
mash-up [4] or workflow technologies [5] yielding different performance and usability 
characteristics. In some fields like particle physics, parallel data analysis is already 
commonplace and indeed essential. In others such as biology, data volumes are still 
such that much of the work can be performed on sequential machines linked together 
by workflow systems such as Taverna. The parallelism currently exploited is usually 
the “almost embarrassingly parallel” style illustrated by the independent events in 

                                                           
1 Corresponding Author. 



particle physics or the independent documents of information retrieval – these lead to 
independent “maps” (processing) which are followed by a reduction to give histograms 
in particle physics or aggregated queries in web searches. The excellent quality of 
service (QoS) and ease of programming provided by the MapReduce programming 
model has gained itself a lot of traction for this type of problem. However, the 
architectural and performance limitations of the current MapReduce architectures make 
their use questionable for many applications. These include many of the machine 
learning algorithms such as those discussed in this paper which need iterative closely 
coupled computations. In section 2 we compare various versions of this data intensive 
programming model with other implementations for both closely and loosely coupled 
problems. However, the more general workflow or dataflow paradigm (which is seen in 
Dryad [6] and MapReduce extensions) is always valuable. In sections 3 and 4 we turn 
to some data mining algorithms that surely need parallel implementations for large data 
sets; interesting both sections see algorithms that scale like N2 (N is dataset size) and 
use full matrix algebra. 

 
Table 1. Hardware and software configurations of the clusters used for testing. 

 
Our algorithms are parallel MDS (Multi dimensional scaling) [7] and clustering. 

The latter has been discussed earlier by us [8-12] but here we extend our results to 
larger systems – single workstations with 16 and 24 cores and a 128 core (8 nodes with 
16 cores each) cluster described in table 1. Further we study a significantly different 
clustering approach that only uses pairwise distances (dissimilarities between points) 

Ref Cluster Name # Nodes CPU L2 Cache 
Memory 

Operating System 

A Barcelona  1 1 AMD Quad Core  2x1MB Windows Server  
 (4 core  Opteron 2356   8 GB HPC Edition 
 Head Node)  2.3GHz  (Service Pack 1) 
B Barcelona  4 2  AMD Quad Core 4×512K  Windows Server 2003 
 (8 core  Opteron 2356  16GB Enterprise x64 bit  
 Compute  Node)    2.3 GHz  Edition 
C Barcelona  2 4  AMD Quad Core 4×512K Windows Server 
 (16 core  Opteron 8356   16 GB HPC Edition 
 Compute Node)  2.3GHz  (Service Pack 1) 
D Barcelona  1 4 Intel Six Core 12 M Windows Server 
 (24 core  Xeon E7450  48GB HPC Edition 
 Compute Node)  2.4GHz  (Service Pack 1) 
E Madrid 1 1 AMD Quad Core 2x1MB Windows Server 
 (4 core  Opteron 2356   8 GB HPC Edition 
 Head Node)  2.3GHz    (Service Pack 1) 
F Madrid 8 4 AMD Quad Core 4x512K Windows Server 
 (16 core  Opteron 8356  16 GB HPC Edition 
 Compute Node)  2.3GHz  (Service Pack 1) 
G Gridfarm 8 2 Quad core Intel  4x1MB Red Hat Enterprise 
 8 core  Xeon E5345 8GB Linux 4 
   2.3GHz   
H IU Quarry 112 2 Quad-core Intel 4x4MB, Red Hat  Enterprise  
 8 core  Xeon 5335 8 GB Linux 4 
   2.00GHz   



and so can be applied to cases where vectors are not easily available. This is common 
in biology where sequences can have mutual distances determined by BLAST like 
algorithms but will often not have a vector representation. Our MDS algorithm also 
only uses pairwise distances and so it and the new clustering method can be applied 
broadly. Both our original vector-based (VECDA) and the new pairwise distance 
(PWDA) clustering algorithms use deterministic annealing to obtain robust results. 
VECDA was introduced by Rose and Fox almost 20 years ago [13] and has a good 
reputation [14] and there is no clearly better clustering approach. The pairwise 
extension PWDA was developed by Hofmann and Buhmann [15] around 10 years ago 
but does not seem to have used in spite of its attractive features – robustness and 
applicability to data without vector representation.  

As seen in table 1, we use both Linux and Windows platforms in our multicore and 
our work uses a mix of C#, C++ and Java. Our results study three variants of 
MapReduce, threads and MPI. The algorithms are applied across a mix of paradigms to 
indicate the performance characteristics. 

1. Choices in Messaging Runtime 

Although high level languages – especially for parallel programming – have been a 
holy grail for computer science research, there has been more progress in the area of 
runtime environments and this is our focus in this paper.  
To be more precise there are successful workflow languages but in parallel 

programming, the precise 
constraints of correct parallel 
semantics have thwarted 
research so far. This observation 
however underlies our approach 
which is to use workflow 
technologies – defined as 
orchestration languages for 
distributed computing for the 
coarse grain functional 
components of parallel 
computing with dedicated low 
level direct parallelism of 
kernels. At the run time level, 
there is much similarity between 
parallel and distributed run 
times with both supporting 
messaging with different 
properties. Some of the choices 
are shown in figure 1 and differ 

by both hardware and software models. The hardware support of 
parallelism/concurrency varies from shared memory multicore, closely coupled (e.g. 
Infiniband connected) clusters, and the higher latency and possibly lower bandwidth 
distributed systems. The coordination (communication/ synchronization) of the 
different execution units vary from threads (with shared memory on cores); MPI 
between cores or nodes of a cluster; workflow or mash-ups linking services together; 

Figure 1(a). First three of seven different combinations of 
processes/threads and intercommunication mechanisms 
discussed in the text 

 



the new generation of data intensive programming systems typified by Hadoop [16] 
(implementing MapReduce) and Dryad. These can be considered as the workflow 
systems of the information retrieval industry but are of general interest as they support 
parallel analysis of large datasets. As illustrated in the figure the execution units vary 
from threads to processes and can be short running or long lived.  

 
Figure 1(b). Last four of seven different combinations of processes/threads and intercommunication 
mechanisms discussed in the text 

Short running threads can be spawned up in the context of persistent data in 
memory and so have modest overhead seen in section 4. Short running processes in the 
spirit of stateless services are seen in Dryad and Hadoop and due to the distributed 
memory can have substantially higher overhead than long running processes which are 
coordinated by rendezvous messaging as later do not need to communicate large 

amounts of data – just the smaller change 
information needed. The importance of 
this is emphasized in figure 2 showing data 
intensive processing passing through 
multiple “map” (each map is for example a 
particular data analysis or filtering 
operation) and “reduce” operations that 
gather together the results of different map 
instances corresponding typically to a data 
parallel break up of an algorithm. The 
figure notes two important patterns 

a) Iteration where results of one stage 
are iterated many times. This is seen in the 
“Expectation Maximization” EM steps in 
the later sections where for clustering and 
MDS, thousands of iterations are needed. 

This is typical of most MPI style algorithms. 
b) Pipelining where results of one stage are forwarded to another; this is functional 

parallelism typical of workflow applications. In applications of this paper we 
implement a three stage pipeline: 

Figure 2: Data Intensive Iteration and Workflow 
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Data (from disk)  Clustering  Dimension Reduction (MDS)  Visualization 
 
Each of the first two stages is parallel and one can break up the compute and 

reduce modules of figure 2 into parallel components as shown in figure 3. There is an 
important ambiguity in parallel/distributed programming models/runtimes that both the 
parallel MPI style parallelism and the distributed Hadoop/ Dryad/ Web 
Service/Workflow models are implemented by messaging. Thus the same software can 

in fact be used for all the decompositions seen in 
figures 1-3. Thread coordination can avoid 
messaging but even here messaging can be 
attractive as it avoids many of the error scenarios 
seen in shared memory thread synchronization. The 
CCR threading [8-11] used in this paper is 
coordinated by reading and writing messages to 
ports. As a further example of runtimes crossing 
different application caharacteristics, MPI has often 
been used in Grid (distributed) applications with 
MPICH-G popular here. Again the paper of Chu 
[17] noted that the MapReduce approach can be 
used in many machine learning algorithms and one 
of our data mining algorithms VECDA only uses 

map and reduce operations (it does not need send or receive MPI operations). We will 
note in this paper that MPI gives excellent performance and ease of programming for 
MapReduce as it has elegant support for general reductions. It does not have the fault 
tolerance and flexibility of Hadoop or Dryad. Further MPI is designed for the “owner-
computes” rule of SPMD – if a given datum is stored in a compute node’s memory, 
that node’s CPU computes (evolves or analyzes) it. Hadoop and Dryad combine this 
idea with the notion of “taking the computing to the data”. This leads to the generalized 
“owner stores and computes” rule or crudely that a file (disk or database) is assigned a 
compute node that analyzes (in parallel with nodes assigned different files) the data on 
it’s file. Future scientific programming models must clearly capture this concept. 

2. Data Intensive Workflow Paradigms 

In this section, we will present an architecture and a prototype implementation of a new 
programming model that can be applied to most composable class of applications with 
various program/data flow models, by combining the MapReduce and data streaming 
techniques and compare its performance with other parallel programming runtimes 
such as MPI, Hadoop and Dryad. 
 MapReduce is a parallel programming technique derived from the functional 
programming concepts and proposed by Google for large-scale data processing in a 
distributed computing environment. The map and reduce programming constructs 
offered by MapReduce model is a limited subset of programming constructs provided 
by the classical distributed parallel programming models such as MPI.  However, our 
current experimental results highlight that many problems can be implemented using 
MapReduce style by adopting slightly different parallel algorithms compared to the 
algorithms used in MPI, yet achieve similar performance for appropriately large 
problems. The main advantage of the MapReduce programming model is that the 

Figure 3. Workflow of Parallel Services 
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easiness in providing various quality of services. Google and Hadoop both provide 
MapReduce runtimes with fault tolerance and dynamic flexibility support. 
 Dryad is a distributed execution engine for coarse grain data parallel applications. It 
combines the MapReduce programming style with dataflow graphs to solve the 
computation tasks. Dryad considers computation tasks as directed acyclic graph 
(DAG)s where the vertices represent computation tasks –typically,  sequential 
programs with no thread creation or locking, and the edges as communication channels 
over which the data flow from one vertex to another. 
 Moving computation to data is another advantage of the MapReduce and Dryad 
have over the other parallel programming runtimes. With the ever-increasing 
requirement of processing large volumes of data, we believe that this approach has a 
greater impact on the usability of the parallel programming runtimes in the future. 

2.1. Current MapReduce Implementations 

Google's MapReduce implementation is coupled with a distributed file system named 
Google File System (GFS) [18] where it reads the data for MapReduce computations 
and stores the results.  According to J. Dean et al., in their MapReduce implementation, 
the intermediate data are first written to the local files and then accessed by the reduce 
tasks. The same architecture is adopted by the Apache's MapReduce implementation – 
Hadoop.  
 Hadoop stores the intermediate results of the computations in local disks, where the 
computation tasks are executed, and informs the appropriate workers to retrieve (pull) 
them for further processing. The same approach is adopted by Disco [19] – another 
open source MapReduce runtime developed using a functional programming language 
named Erlang [20]. Although this strategy of writing intermediate result to the file 
system makes the above runtimes robust, it introduces an additional step and a 
considerable communication overhead, which could be a limiting factor for some 
MapReduce computations. Apart from the above, all these runtimes focus mainly on 
computations that utilize a single map/reduce computational unit. Iterative MapReduce 
computations are not well supported. 

2.2. CGL-MapReduce 

CGL-MapReduce is a novel MapReduce runtime that uses streaming for all the 
communications, which eliminates the overheads associated with communicating via a 
file system. The use of streaming enables the CGL-MapReduce to send the 
intermediate results directly from its producers to its consumers. Currently, we have 
not integrated a distributed file system such as HDFS with CGL-MapReduce, and 
hence the data should be available in all computing nodes or in a typical distributed file 
system such as NFS. The fault tolerance support for the CGL-MapReduce will harness 
the reliable delivery mechanisms of the content dissemination network that we use. 
Figure 4 shows the main components of the CGL-MapReduce. 
 
 
 
 



 

 
 
 
 
 
 
 
 
 

Figure 4. Components of the CGL-MapReduce 

 
 CGL MapReduce runtime comprises a set of workers, which perform map and 
reduce tasks and a content dissemination network that handles all the underlying 
communications. As in other MapReduce runtimes, a master worker (MRDriver) 
controls the other workers according to instructions given by the user program. 
However, unlike typical MapReduce runtimes, CGL-MapReduce supports both single-
step and iterative MapReduce computations.  

 
Figure 5. Computation phases of CGL-MapReduce 

  
 A MapReduce computation under CGL-MapReduce passes through several phases 
of computations as shown in figure 5. In CGL-MapReduce the initialization phase is 
used to configure both the map/reduce tasks and  can be used to load any fixed data 
necessary for the map/reduce  tasks. The map and reduce stages perform the necessary 
data processing while the framework directly transfers the intermediate result from map 
tasks to the reduce tasks. The merge phase is another form of reduction which is used 
to collect the results of the reduce stage to a single value. The User Program has access 
to the results of the merge operation. In the case of iterative MapReduce computations, 
the user program can call for another iteration of MapReduce by looking at the result of 
the merge operation and the framework performs anther iteration of MapReduce using 
the already configured map/reduce tasks eliminating the necessity of configuring 
map/reduce tasks again and again as it is done in Hadoop. 
  CGL-MapReduce is implemented in Java and utilizes NaradaBrokering[21], a 
streaming-based content dissemination network. The CGL-MapReduce research 
prototype provides the runtime capabilities of executing MapReduce computations 

 



written in the Java language. MapReduce tasks written in other programming 
languages require wrapper map and reduce tasks in order for them to be executed using 
CGL-MapReduce. 

2.3. Evaluations 

To evaluate the different runtimes we have selected several data analysis applications. 
First, we applied the MapReduce technique to parallelize a High Energy Physics (HEP) 
data analysis application and implemented it using Hadoop and CGL-MapReduce. The 
HEP data analysis application process large volumes of data and perform a 
histogramming operation on a collection of event files produced by HEP experiments. 
Next, we applied the MapReduce technique to parallelize a Kmeans clustering [22] 
algorithm and implemented it using Hadoop and CGL-MapReduce. Details of these 
applications and the challenges we faced in implementing them can be found in [23]. In 
addition, we implemented the same algorithm using MPI (C++) as well. We have also 
implemented a matrix multiplication algorithm using Hadoop and CGL-MapReduce. 
To compare the performance of Dryad with other parallel runtimes, we use two text-
processing applications, which perform a “word histogramming” operation, and a 
“distributed grep” operation implemented using Dryad, Hadoop, and CGL-MapReduce. 
Table 1 and Table 2 highlight the details of the hardware and software configurations 
and the various test configurations that we used for our evaluations. 

Table 2. Test configurations. 

Feature HEP Data Analysis Kmeans clustering Matrix 
Multiplication 

Histogramming 
& Grep 

Cluster Ref H G G B 
Number of 
Nodes 

12 5 5 4 

Number of 
Cores 

96 40 40 32 

Amount of 
Data 

 

Up to 1TB of HEP 
data 
 

Up to 40 million 
data points 

Up to 16000 
rows and 
columns 

100GB of text 
data 

Data 
Location 

IU Data Capacitor: a 
high-speed and high-
bandwidth storage 
system running the 
Lustre File System 

Hadoop : HDFS 
CGL- 
MapReduce : NFS 

Hadoop : HDFS 
CGL-
MapReduce :  
NFS 

Hadoop : HDFS 
CGL-MapReduce:  
Local Disc 
Dryad : 
Local Disc 

Language Java, C++ (ROOT) Java, C++ Java Java, C# 
 

 For the HEP data analysis, we measured the total execution time it takes to process 
the data under different implementations by increasing the amount of data. Figure 6 
depicts our results. 
 



 
Figure 6. HEP data analysis, execution time vs. the volume of data (fixed compute resources) 

 
 Hadoop and CGL-MapReduce both show similar performance. The amount of data 
accessed in each analysis is extremely large and hence the performance is limited by 
the I/O bandwidth of a given node rather than the total processor cores. The overhead 
induced by the MapReduce implementations has negligible effect on the overall 
computation. 
 We evaluate the performance of different implementations for the Kmeans 
clustering application and calculated the parallel overhead (φ) induced by the different 
parallel programming runtime using the formula given below. In this formula P denotes 
the number of hardware processing units used and T(P) denotes the total execution time 
of the program when P processing units are used. T(1) denotes the total execution time 
for a single threaded program. Figure 7 depicts our results. 

φ(P) = [PT(P) –T(1)] /T(1) (1) 

 For the matrix multiplication program, we measured the total execution time by 
increasing the size of the matrices used for the multiplication, using both Hadoop and 
CGL-MapReduce implementations. The result of this evaluation is shown in figure 8. 

 



 
Figure 7. Overheads associated with Hadoop, CGL-MapReduce and MPI for Kmeans clustering – iterative 
MapReduce - (Both axes are in log scale) 

 

 
Figure 8. Performance of the Hadoop and CGL-MapReduce for matrix multiplication 

 
 The results in figure 7 and figure 8 show how the approach of configuring once and 
re-using of map/reduce tasks for multiple iterations and the use of streaming have 
improved the performance of CGL-MapReduce for iterative MapReduce tasks. The 
communication overhead and the loading of data multiple times have caused the 
Hadoop to induce large overhead to the computation making the results comparably 
larger than that of CGL-MapReduce. 
 We compare the above two MapReduce runtimes with Microsoft Dryad 
implementation using two text processing applications. We develop the Dryad 
applications using the DryadLINQ[24] programming environment. The results of these 
two evaluations are shown in figure 9 and figure 10.  



 
Figure 9. Performance of Dryad, Hadoop, and CGL-MapReduce for “histogramming of words” operation. 

 

 
Figure 10. Performance of Dryad, Hadoop, and CGL-MapReduce for “distributed grep” operation  

 In both these tests, Hadoop shows higher overall processing time compared to 
Dryad and CGL-MapReduce. This could be mainly due to its distributed file system 
and the file based communication mechanism. Dryad uses in memory data transfer for 
intra-node data transfers and a file based communication mechanism for inter-node 
data transfers where as in CGL-MapReduce  all data transfers occur via streaming.  The 
“word histogramming” operation had data transfer requirements compared to the 
“distributed grep” operation and hence the streaming data transfer approach adopted by 
the CGL-MapReduce shows lowest execution times for the “word histogramming” 
operation. In “distributed grep” operation both Dryad and CGL-MapReduce show close 
performance results. 
 
 



3. Multidimensional Scaling 

Dimension reduction algorithms are used to reduce dimensionality of high dimensional 
data into Euclidean low dimensional space, so that dimension reduction algorithms are 
used as visualization tools. Some dimension reduction approaches, such as generative 
topographic mapping (GTM) [25] and Self-Organizing Map (SOM) [26], seek to 
preserve topological properties of given data rather than proximity information.  On the 
other hand, multidimensional scaling (MDS) [27, 28] tries to maintain dissimilarity 
information between mapping points as much as possible. The MDS uses several full 
matrices which are N × N matrices for the N given data points. Thus, the matrices 
could be very large for large problems (N could be as big as millions even today). For 
large problems, we will initially cluster the given data and use the cluster centers to 
reduce the problem size. Here we parallelize an elegant algorithm for computing MDS 
solution, named SMACOF (Scaling by MAjorizing a COmplicated Function) [29, 30], 
using MPI.NET [31, 32] which is an implementation of message passing interface 
(MPI) for C# language and presents performance analysis of the parallel 
implementation of SMACOF on multicore cluster systems. We show some examples of 
the use of MDS to visualize the results of the clustering algorithms of section 4 in 
figure 11. These are datasets in high dimension (from 20 in figure 11(right) to over a 
thousand in figure 11(left)) which are projected to 3D using proximity 
(distance/dissimilarity) information. The figure shows 2D projections determined by us 
from rotating 3D MDS results. 

 
Figure 11. Visualization of MDS projections using parallel SMACOF described in section 3. Each color 
represents a cluster determined by the PWDA algorithm of section 4. Figure 11(left) corresponds to 4500 
ALU pairwise aligned Gene Sequences with 8 clusters [33] and 11(right) to 4000 Patient Records with 8 
clusters from [34] 

Multidimensional scaling (MDS) is a general term for a collection of techniques to 
configure data points with proximity information, typically dissimilarity (interpoint 
distance), into a target space which is normally Euclidean low-dimensional space. 
Formally, the N × N dissimilarity matrix Δ = (δij) should be satisfied symmetric (δij = 
δji), nonnegative (δij ≥ 0), and zero diagonal elements (δii = 0) conditions. From given 
dissimilarity matrix Δ, a configuration of points is constructed by the MDS algorithm in 
a Euclidean target space with dimension p. The output of MDS algorithm can be an N 
× p configuration matrix X, whose rows represent each data point xi in Euclidean p-
dimensional space. From configuration matrix X, it is easy to compute the Euclidean 
interpoint distance dij(X) = ||xi – xj|| among N configured points in the target space and 



to build the N × N Euclidean interpoint distance matrix D(X) = (dij(X)). The purpose of 
MDS algorithm is to construct a configuration points into the target p-dimensional 
space, while the interpoint distance dij(X) is approximated to δij as much as possible. 
STRESS [35] and SSTRESS [36] were suggested as objective functions of MDS 
algorithms. STRESS (σ or σ(X)) criterion (Eq. (2)) is a weighted squared error between 
distance of configured points and corresponding dissimilarity, but SSTRESS (σ2 or 
σ2(X)) criterion (Eq. (3)) is a weighted squared error between squared distance of 
configured points and corresponding squared dissimilarity.  

σ(X) = Σi<j≤n wij(dij(X) − δij)2 (2) 

σ2(X) = Σi<j≤n wij [(dij(X))2 − (δij)2]2 (3) 

where wij is a weight value, so wij ≥ 0. 
Therefore, the MDS can be thought of as an optimization problem, which is 

minimization of the STRESS or SSTRESS criteria during constructing a configuration 
of points in the p-dimension target space.   

3.1. Scaling by MAjorizing a COmplicated Function (SMACOF) 

Scaling by MAjorizing a COmplicated Function (SMACOF) [29, 30] is an iterative 
majorization algorithm in order to minimize objective function of MDS. SMACOF is 
likely to find local minima due to gradient descent property.  Nevertheless, it is 
powerful since it guarantees monotonic decreasing the objective function.  The 
procedure of SMACOF is described in Algorithm 1.  For the mathematical details of 
SMACOF, please refer to [28]. 

 

3.2. Distributed-Memory Parallel SMACOF 

In order to implement distributed-memory parallel SMACOF, one must address two 
issues: one is the data decomposition which is actually block matrix decomposition for 
the SMACOF implementation since SMACOF is composed of an iterative matrix 



multiplication, and the other is the required communication between decomposed 
processes.  For the data decomposition, our implementation allows users to choose the 
number of row-blocks and column-blocks with a constraint that the product of the 
number of row-blocks and column-blocks should be equal to the number of processes, 
so that each process will be assigned corresponding decomposed sub-matrix.  For 
instance, if we run this program with 16 processes, then users can decompose the N×N 
full matrices into not only 4×4 block matrices but also 16×1, 8×2, 2×8, and 1×16 block 
matrices.  In addition, message passing interface (MPI) is used to communicate 
between processes, and MPI.NET  is used for the communication.   

3.2.1.  Advantages of Distributed-memory Parallel SMACOF 

The running time of SMACOF algorithm is O (N2). Though matrix multiplication of 
V†·B(X) takes O (N3), you can reduce the computation order by using association 
property of matrix multiplication, since V†·(B(X)·X) is O (2N2p), where N is the number 
of points and p is the target dimension that we would like to find a configuration for 
given data.  Also, SMACOF algorithm uses at least four full N×N double matrices, i.e. 
Δ, D, V†, and B(X), which means at least 32× N2 bytes of memory should be allocated 
to run SMACOF program.   

As in general, there are temporal and spatial advantages when we use distributed-
memory parallelism.  First, computational advantage should be achieved by both 
shared-memory and distributed-memory parallel implementation of SMACOF.  While 
shared-memory parallelism is limited by the number of processors (or cores) in a single 
machine, distributed-memory parallelism can be extended the available number of 
processors (or cores) as much as machines are available, theoretically.  SMACOF 
algorithm uses at least 32× N2 bytes of memory as we mentioned above.  For example, 
32MB, 3.2GB, 12.8GB, and 320GB are necessary for N = 1000, 10000, 20000, 100000, 
correspondingly.  Therefore, a multicore workstation, which has a 8GB of memory will 
be able to run SMACOF algorithm with 10000 data points. However, this workstation 
cannot be used to run the same algorithm with 20000 data points. Shared memory 
parallelism increases performance but does not increase size of problem that can be 
addressed.  Thus, the distributed-memory parallelism provides us to be able to run 
SMACOF algorithm with much more data, and this benefit is quite important in the era 
of a data deluge. 

3.3. Experimental Results and Analysis 

For the performance experiments of the distributed-memory parallel SMACOF, we use 
two nodes of Ref C and one node of Ref D in Table 1.  For the performance test, we 
generate artificial random data set which is in 8-centered Gaussian distribution in 4-
dimension with different number of data points, such as 128, 256, 512, 1024, 2048, and 
4096. 

Due to gradient descent attribute of SMACOF algorithm, the final solution highly 
depends on the initial mapping. Thus, it is appropriate to use random initial mapping 
for the SMACOF algorithm unless specific prior initial mapping exists, and to run 
several times to increase the probability to get better solution. If the initial mapping is 
different, however, the computation amount can be varied whenever the application 
runs, so that we could not measure any performance comparison between two 
experimental setups, since it could be inconsistent. Therefore, the random seed is fixed 



for the performance measures of this paper to generate the same answer and the same 
necessary computation for the same problem. The stop condition threshold value (ε) is 
also fixed for each data. We will investigate the dependence on starting point more 
thoroughly using other approaches discussed in section 3.4. 

3.3.1. Performance Analysis 

For the purpose of performance comparison, we implemented the sequential version of 
SMACOF algorithm.  The sequential SMACOF is executed on each test node, and the 
test results are in Table 3.  Note that the running time of D is almost twice faster than 
the other two nodes, though the core’s clock speed of each node is similar.  The reason 
would be the cache memory size.  L2 cache of two Ref C nodes (C1 and C2) is much 
smaller than that of D node. 
Table 3. Sequential Running time on each test node 

Initially we measured the performance of the distributed-memory parallel 
SMACOF (MPI_SMACOF) on each test node only.  Figure 12 shows the speedup of 
each test node with different number of processes.  Both axes of the Figure 12 are in 
logarithmic scale.  As the Figure 12 depicted, the MPI_SMACOF is not good for small 
data, such as 128 and 256 data points.  However, for larger data, i.e. 512 and more data 
points, the MPI_SMACOF shows great performance on the test data.  You should 
notice those speedup values of larger data, such as 1024 or more data points on C1 and 
C2 nodes are bigger than the actual processes number using the MPI_SMACOF 
application, which corresponds to super-linear speedup.  However, on the D node, it 
represented good speedup but not super-linear speedup at all.  The reason of super-
linear speedup is related to cache-hit ratio, as we discussed about sequential running 
results.  MPI_SMACOF implemented in the way of block decomposition, so that those 
sub-matrix would be better matched in the cache line size and the portion of sub-matrix 
which is in cache memory at a moment would be bigger than the portion of whole 
matrix in it.  The Figure 12 also describes that the speedup ratio (or efficiency) 
becomes worse when you run MPI_SMACOF with more processes on single node.   It 
seems natural that as the number of computing units increases, the assigned computing 
job will be decreased but the communication overhead will be increased. 
 

Data size C1 C2 D 
128 0.3437 0.3344 0.1685 
256 1.9031 1.9156 0.9204 
512 9.128 9.2312 4.8456 
1024 32.2871 32.356 18.1281 
2048 150.5793 150.949 83.4924 
4096 722.3845 722.9172 384.7344 



 
Figure 12. Speedup of MPI_SMACOF performance on each test node 

In addition, we have measured the performance of the proposed MPI_SMACOF 
algorithm on all the three test nodes with different number of processes.  Figure 13 
illustrates the speedup of those experiments with respect to the average of the 
sequential SMACOF running time on each node.  The comparison with average might 
be reasonable since, for every test case, the processes are equally spread as much as 
possible on those three test nodes except the case of 56 processes running.  The Figure 
13 represents that the speedup values are increasing as the data size is getting bigger.  
This result shows that the communication overhead on different nodes is larger than 
communication overhead on single node, so that the speedup is still increasing, even 
with large test data such as 2048 and 4096 points, instead of being converged as in 
Figure 12. 



 
Figure 13. Speedup of MPI_SMACOF on combine nodes 

3.4. Conclusions 

We have developed a dimension mapping tool that is broadly applicable as it only uses 
dissimilarity values and does not require the points to be in a vector space. We have 
good parallel performance and are starting to use it for science as illustrated in figure 
11. We will compare the method described with alternatives that can also be 
parallelized and avoid the steepest descent approach of SMACOF which can lead to 
local minima. One first described in [37] and [38] uses deterministic annealing based 
on ideas sketched in section 4. This still uses Expectation Maximization (EM) (steepest 
descent) but only for the small steps needed as temperature is decreased. We will also 
implement the straightforward but possibly best method from ref [39] that solves 
equations (2) and (3) as χ2 problems and uses optimal solution methods for this. 

4. Multicore Clustering 

Clustering can be viewed as an optimization problem that determines a set of K clusters 
by minimizing 

HVEC =  ∑i=1
N ∑k=1

K Mi(k) DVEC(i,k)   (2) 
where DVEC(i,k) is the distance between point i and cluster center k.  N is the 

number of points and Mi(k) is the probability that point i belongs to cluster k. This is 
the vector version and one obtains the pairwise distance model with: 

HPW = 0.5 ∑i=1
N ∑j=1

N D(i, j) ∑k=1
K Mi(k) Mj(k) / C(k) (3) 

and C(k) = ∑i=1
N Mi(k)   is the expected number of points in the k’th cluster. 

Equation (2) requires one be able to calculate the distance between a point i and the 
cluster center k and this is only possible when one knows the vectors corresponding to 
the points i. (3) reduces to (2) when one inserts vector formulae and drops terms ∑i=1

N 
∑j=1

N DVEC(i,k) DVEC(j,k) ∑k=1
K Mi(k) Mj(k)  that average to zero. 



One must minimize (2) or (3) as a function of cluster centers (1) and cluster 
assignments Mi(k). One can derive deterministic annealing from an informatics 
theoretic [14] or physics formalism [15]. In latter case one smoothes out the cost 
function (2) or (3) by averaging with the Gibbs distribution exp(-H/T). This implies in 
a physics language that one is minimizing not H but the free energy F at temperature T 
and entropy S 

 F = H-TS      (4) 
 

   
Figure 14. Preliminary stage of clustering shown in  figure 11(left) corresponding to 4500 ALU pairwise 
aligned Gene Sequences with 2 clusters [33]  

 
Figure 15. Parallel Overhead for pure threading or pure MPI on 24 core Ref D of Table 1 for three different 
patient datasets with 2000, 4000 and 10,000 elements. The leftmost results are MPI.NET runs labeled 
1XNX1 for N MPI processes. The rightmost results are CCR threading labeled NX1X1 for N threads 

 
In [9] and [11], we explain how a single formalism describes multiple different 

problems, VECDA (Clustering of points defined by vectors with deterministic 
annealing) [13, 14], Gaussian Mixture Models (GMM) [40]; Gaussian Mixture Models 
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with deterministic annealing (GMMDA) [41]; and Generative Topographic Maps 
(GTM) [25]. One can also add deterministic annealing to GTM and derive  asimilar 
formalism although there is no study of this yet. Annealing in most problems 
corresponds to a multi-scale approach with temperature corresponding to a distance 
scale that starts very large and decreases. For example the eight clusters in figure 
11(left) were found systematically with clusters being added as one reduced 
temperature so that at a higher temperature one first split from one to two clusters to 
find results of figure 14. The splits are determined from the structure of second 
derivative matrix and continuing figure 14 leads to figure 11(left). The vector 
clustering model is suitable for low dimensional spaces such as our earlier work on 
census data [9] but the results of figure 11 and 14 correspond to our implementation of 
PWDA – the pairwise distance clustering approach of [15] which starts from equation 
(3). As described in [42] this has similarities to familiar O(N2) problems such 
astrophysical particle dynamics. Whereas VECDA is pure MapReduce just using 
broadcast, allreduce and barrier in MPI, PWDA has significant use of send-receive in 
MPI as information must passed around a ring of processors. As N is potentially of 
order a million we see that both MDS and pairwise clustering are potential 
supercomputing data analysis applications. We have performed extensive performance 
measurements [8-11, 42] showing the effect of cache and for Windows runtime 
fluctuations can be quite significant. Here we give some typical results with figure 15 
showing the performance of PWDA on the single 24 core workstation (ref D of table 1). 
The results are expressed as an overhead using the definitions of equation (1) 
introduced in section 2. We compare both MPI and thread based parallelism using 
Microsoft’s CCR package [43, 44]. As these codes are written in C#, we use 
MPI.NET[31, 32] finding this to allow an elegant object-based extension of traditional 
MPI and good performance. MPI.NET is a wrapper for the production Microsoft MPI.  

Figure 15 shows that although threading and MPI both get good performance, their 
systematics are different. For the extreme case of 24-way parallelism, the thread 
implementation shows an overhead that varies between 10 and 20% depending on the 
data set size. MPI shows a large overhead for small datasets that decreases with 
increasing dataset size so in fact 24-way MPI parallelism is 20% faster than the thread 
version on the largest 10,000 element dataset. This is due to the different sources of the 
overhead. For MPI the overhead is due to the communication calls which are due to 
reduce (20%) and send-receive (80%) and this as expected decreases (inversely 
proportional to dataset size) as the dataset size increases. For threads there is no 
memory movement overhead but rather the overhead is due to the Windows thread 
scheduling that leads to large fluctuations that can have severe effects on tightly 
synchronized parallel codes such as those in this paper as discussed in refs. [8-11, 42]. 
We see some cases where the overhead is negative (super-linear speedup) which is due 
to better use of cache in the higher parallelism cases compared to sequential runs. This 
effect is seen in all our runs but differs between the AMD and Intel architectures 
reflecting their different cache size and architecture. 



 
Figure 16. Comparison of use of short lived (solid lines) and long lived (dashed lines) threads for the Vector-
based deterministic annealing VECDA. The results achieve a given parallelism by choosing number of 
nodes, MPI processes per node and threads per MPI process. The number of threads increases as you move 
from left to right for given level of parallelism. 
 
Figure 16 looks at the vector clustering VECDA comparing MPI versus two versions of 
threading. MPI is very efficient – the 32 way parallel code with 16 MPI processes on 
each of two 16 core nodes has overheads (given by equation (1) and roughly 1 – 
efficiency) of 0.05 to 0.10. For the case of 16 threads on each of two nodes the 
overhead is 0.65 (short lived) to 1.25 (long lived) threads. This example is particularly 
favorable to MPI as only reduction is an important operation; there are no send or 
receive calls and a negligible amount of time on broadcast and barrier. The short lived 
threads are the natural implementation with threads spawned for parallel for loops. In 
the long lived case, the paradigm is similar to MPI with long running threads 
synchronizing with rendezvous semantics. 
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Figure 17. Parallel Overhead for PWDA runs on 128 core Cluster Ref. F in table 1 with patterns defined in 
figure 16. 
 
Figure 17 shows preliminary results of PWDA for a 10,000 element dataset on the 128 
core cluster. The results show less difference between MPI and threading than figure 
16. That is partly due to MPI being dominated in this case by the use of send-receive as 
discussed above for the results of figure 15. The results also show effects of the cache 
which are still being investigated. This slows down some of low parallelism results – in 
particular the purely sequential 1x1x1 case. The patterns are always labeled as (threads 
per process)x(MPI processes per node)x(nodes). Note figure 17 studies the overhead 
for a fixed problem whereas figure 16 looks at scaled speedup with problem size 
increasing proportional to number of parallel units. We see that the 10,000 dataset can 
run well up to 32- or 64-way parallelism. 

5. Conclusions 

This paper has addressed several issues. It has studied the performance of a variety of 
different programming models on data intensive problems. It has presented novel 
clustering and MDS algorithms which are shown to parallelize well and could become 
supercomputer applications for large million point problems. It has compared MPI and 
threading on multicore systems showing both to be effective but with different 
overheads. We see these complemented by the data intensive programming models 
including Dryad and Hadoop as well as an in house version of MapReduce. These 
support an “owner stores and computes” programming paradigm that will be of 
increasing importance. 
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