

INTRODUCTION	TO	PYTHON

Gregor	von	Laszewski

(c)	Gregor	von	Laszewski,	2018,	2019

INTRODUCTION	TO	PYTHON

1	PREFACE
1.1	Disclaimer	☁�
1.1.1	Acknowledgment
1.1.2	Extensions

2	INTRODUCTION
2.1	Introduction	to	Python	☁�
2.1.1	References

3	INSTALATION
3.1	Python	3.7.4	Installation	☁�
3.1.1	Hardware
3.1.2	Prerequisits	Ubuntu	19.04
3.1.3	Prerequisits	macOS
3.1.3.1	Installation	from	Apple	App	Store
3.1.3.2	Installation	from	python.org
3.1.3.3	Installation	from	Hoembrew

3.1.4	Prerequisits	Ubuntu	18.04
3.1.5	Prerequisite	Windows	10
3.1.5.1	Linux	Subsystem	Install

3.1.6	Prerequisit	venv
3.1.7	Install	Python	3.7	via	Anaconda
3.1.7.1	Download	conda	installer
3.1.7.2	Install	conda
3.1.7.3	Install	Python	3.7.4	via	conda

3.2	Multi-Version	Python	Installation	☁�
3.2.1	Disabling	wrong	python	installs
3.2.2	Managing	2.7	and	3.7	Python	Versions	without	Pyenv
3.2.3	Managing	Multiple	Python	Versions	with	Pyenv
3.2.3.1	Installation	pyenv	via	Homebrew
3.2.3.2	Install	pyenv	on	Ubuntu	18.04
3.2.3.3	Using	pyenv
3.2.3.3.1	Using	pyenv	to	Install	Different	Python	Versions
3.2.3.3.2	Switching	Environments

3.2.3.4	Updating	Python	Version	List
3.2.3.4.1	Updating	to	a	new	version	of	Python	with	pyenv

3.2.4	Anaconda	and	Miniconda	and	Conda
3.2.4.1	Miniconda
3.2.4.2	Anaconda

3.2.5	Exercises
4	FIRST	STEPS
4.1	Interactive	Python	☁�
4.1.1	REPL	(Read	Eval	Print	Loop)
4.1.2	Interpreter
4.1.3	Python	3	Features	in	Python	2

4.2	Editors	☁�
4.2.1	Pycharm
4.2.2	Python	in	45	minutes

4.3	Google	Colab	☁�
4.3.1	Introduction	to	Google	Colab
4.3.2	Programming	in	Google	Colab
4.3.3	Benchamrking	in	Google	Colab	with	Cloudmesh

5	LANGUAGE
5.1	Language	☁�
5.1.1	Statements	and	Strings
5.1.2	Comments
5.1.3	Variables
5.1.4	Data	Types
5.1.4.1	Booleans
5.1.4.2	Numbers

5.1.5	Module	Management
5.1.5.1	Import	Statement
5.1.5.2	The	from	…	import	Statement

5.1.6	Date	Time	in	Python
5.1.7	Control	Statements
5.1.7.1	Comparison
5.1.7.2	Iteration

5.1.8	Datatypes
5.1.8.1	Lists
5.1.8.2	Sets
5.1.8.3	Removal	and	Testing	for	Membership	in	Sets
5.1.8.4	Dictionaries
5.1.8.5	Dictionary	Keys	and	Values

5.1.8.6	Counting	with	Dictionaries
5.1.9	Functions
5.1.10	Classes
5.1.11	Modules
5.1.12	Lambda	Expressions
5.1.12.1	map
5.1.12.2	dictionary

5.1.13	Iterators
5.1.14	Generators
5.1.14.1	Generators	with	function
5.1.14.2	Generators	using	for	loop
5.1.14.3	Generators	with	List	Comprehension
5.1.14.4	Why	to	use	Generators?

6	CLOUDMESH
6.1	Introduction	☁�
6.2	Installation	☁�
6.2.1	Prerequisite
6.2.2	Basic	Install

6.3	Output	☁�
6.3.1	Console
6.3.2	Banner
6.3.3	Heading
6.3.4	VERBOSE
6.3.5	Using	print	and	pprint

6.4	Dictionaries	☁�
6.4.1	Dotdict
6.4.2	FlatDict
6.4.3	Printing	Dicts

6.5	Shell	☁�
6.6	StopWatch	☁�
6.7	Cloudmesh	Command	Shell	☁�
6.7.1	CMD5
6.7.1.1	Resources
6.7.1.2	Installation	from	source
6.7.1.3	Execution
6.7.1.4	Create	your	own	Extension
6.7.1.5	Bug:	Quotes

6.8	Exercises	☁�
6.8.1	Cloudmesh	Common
6.8.2	Cloudmesh	Shell

7	LIBRARIES
7.1	Python	Modules	☁�
7.1.1	Updating	Pip
7.1.2	Using	pip	to	Install	Packages
7.1.3	GUI
7.1.3.1	GUIZero
7.1.3.2	Kivy

7.1.4	Formatting	and	Checking	Python	Code
7.1.5	Using	autopep8
7.1.6	Writing	Python	3	Compatible	Code
7.1.7	Using	Python	on	FutureSystems
7.1.8	Ecosystem
7.1.8.1	pypi
7.1.8.2	Alternative	Installations

7.1.9	Resources
7.1.9.1	Jupyter	Notebook	Tutorials

7.1.10	Exercises
7.2	Data	Management	☁�
7.2.1	Formats
7.2.1.1	Pickle
7.2.1.2	Text	Files
7.2.1.3	CSV	Files
7.2.1.4	Excel	spread	sheets
7.2.1.5	YAML
7.2.1.6	JSON
7.2.1.7	XML
7.2.1.8	RDF
7.2.1.9	PDF
7.2.1.10	HTML
7.2.1.11	ConfigParser
7.2.1.12	ConfigDict

7.2.2	Encryption
7.2.3	Database	Access
7.2.4	SQLite

7.2.4.1	Exercises	⷏�
7.3	Plotting	with	matplotlib	☁�
7.4	DocOpts	☁�
7.5	OpenCV	☁�
7.5.1	Overview
7.5.2	Installation
7.5.3	A	Simple	Example
7.5.3.1	Loading	an	image
7.5.3.2	Displaying	the	image
7.5.3.3	Scaling	and	Rotation
7.5.3.4	Gray-scaling
7.5.3.5	Image	Thresholding
7.5.3.6	Edge	Detection

7.5.4	Additional	Features
7.6	Secchi	Disk	☁�
7.6.1	Setup	for	OSX
7.6.2	Step	1:	Record	the	video
7.6.3	Step	2:	Analyse	the	images	from	the	Video
7.6.3.1	Image	Thresholding
7.6.3.2	Edge	Detection
7.6.3.3	Black	and	white

8	DATA
8.1	Data	Formats	☁�
8.1.1	YAML
8.1.2	JSON
8.1.3	XML

9	MONGO
9.1	MongoDB	in	Python	☁�
9.1.1	Cloudmesh	MongoDB	Usage	Quickstart
9.1.2	MongoDB
9.1.2.1	Installation
9.1.2.1.1	Installation	procedure

9.1.2.2	Collections	and	Documents
9.1.2.2.1	Collection	example
9.1.2.2.2	Document	structure
9.1.2.2.3	Collection	Operations

9.1.2.3	MongoDB	Querying

9.1.2.3.1	Mongo	Queries	examples
9.1.2.4	MongoDB	Basic	Functions
9.1.2.4.1	Import/Export	functions	examples

9.1.2.5	Security	Features
9.1.2.5.1	Collection	based	access	control	example

9.1.2.6	MongoDB	Cloud	Service
9.1.3	PyMongo
9.1.3.1	Installation
9.1.3.2	Dependencies
9.1.3.3	Running	PyMongo	with	Mongo	Deamon
9.1.3.4	Connecting	to	a	database	using	MongoClient
9.1.3.5	Accessing	Databases
9.1.3.6	Creating	a	Database
9.1.3.7	Inserting	and	Retrieving	Documents	(Querying)
9.1.3.8	Limiting	Results
9.1.3.9	Updating	Collection
9.1.3.10	Counting	Documents
9.1.3.11	Indexing
9.1.3.12	Sorting
9.1.3.13	Aggregation
9.1.3.14	Deleting	Documents	from	a	Collection
9.1.3.15	Copying	a	Database
9.1.3.16	PyMongo	Strengths

9.1.4	MongoEngine
9.1.4.1	Installation
9.1.4.2	Connecting	to	a	database	using	MongoEngine
9.1.4.3	Querying	using	MongoEngine

9.1.5	Flask-PyMongo
9.1.5.1	Installation
9.1.5.2	Configuration
9.1.5.3	Connection	to	multiple	databases/servers
9.1.5.4	Flask-PyMongo	Methods
9.1.5.5	Additional	Libraries
9.1.5.6	Classes	and	Wrappers

9.2	Mongoengine	☁�
9.2.1	Introduction
9.2.2	Install	and	connect

9.2.3	Basics
10	OTHER
10.1	Word	Count	with	Parallel	Python	☁�
10.1.1	Generating	a	Document	Collection
10.1.2	Serial	Implementation
10.1.3	Serial	Implementation	Using	map	and	reduce
10.1.4	Parallel	Implementation
10.1.5	Benchmarking
10.1.6	Excersises
10.1.7	References

10.2	NumPy	☁�
10.2.1	Installing	NumPy
10.2.2	NumPy	Basics
10.2.3	Data	Types:	The	Basic	Building	Blocks
10.2.4	Arrays:	Stringing	Things	Together
10.2.5	Matrices:	An	Array	of	Arrays
10.2.6	Slicing	Arrays	and	Matrices
10.2.7	Useful	Functions
10.2.8	Linear	Algebra
10.2.9	NumPy	Resources

10.3	Scipy	☁�
10.3.1	Introduction
10.3.2	References

10.4	Scikit-learn	☁�
10.4.1	Introduction	to	Scikit-learn
10.4.2	Installation
10.4.3	Supervised	Learning
10.4.4	Unsupervised	Learning
10.4.5	Building	 a	 end	 to	 end	 pipeline	 for	 Supervised	machine	 learning
using	Scikit-learn
10.4.6	Steps	for	developing	a	machine	learning	model
10.4.7	Exploratory	Data	Analysis
10.4.7.1	Bar	plot
10.4.7.2	Correlation	between	attributes
10.4.7.3	Histogram	Analysis	of	dataset	attributes
10.4.7.4	Box	plot	Analysis
10.4.7.5	Scatter	plot	Analysis

10.4.8	Data	Cleansing	-	Removing	Outliers
10.4.9	Pipeline	Creation
10.4.9.1	 Defining	 DataFrameSelector	 to	 separate	 Numerical	 and
Categorical	attributes
10.4.9.2	Feature	Creation	/	Additional	Feature	Engineering

10.4.10	Creating	Training	and	Testing	datasets
10.4.11	Creating	pipeline	for	numerical	and	categorical	attributes
10.4.12	Selecting	the	algorithm	to	be	applied
10.4.12.1	Linear	Regression
10.4.12.2	Logistic	Regression
10.4.12.3	Decision	trees
10.4.12.4	K	Means
10.4.12.5	Support	Vector	Machines
10.4.12.6	Naive	Bayes
10.4.12.7	Random	Forest
10.4.12.8	Neural	networks
10.4.12.9	Deep	Learning	using	Keras
10.4.12.10	XGBoost

10.4.13	Scikit	Cheat	Sheet
10.4.14	Parameter	Optimization
10.4.14.1	Hyperparameter	optimization/tuning	algorithms

10.4.15	 Experiments	 with	 Keras	 (deep	 learning),	 XGBoost,	 and	 SVM
(SVC)	compared	to	Logistic	Regression(Baseline)
10.4.15.1	Creating	a	parameter	grid
10.4.15.2	 Implementing	 Grid	 search	 with	 models	 and	 also	 creating
metrics	from	each	of	the	model.
10.4.15.3	Results	table	from	the	Model	evaluation	with	metrics.
10.4.15.4	ROC	AUC	Score

10.4.16	K-means	in	scikit	learn.
10.4.16.1	Import

10.4.17	K-means	Algorithm
10.4.17.1	Import
10.4.17.2	Create	samples
10.4.17.3	Create	samples
10.4.17.4	Visualize
10.4.17.5	Visualize

10.5	Dask	-	Random	Forest	Feature	Detection	☁�

10.5.1	Setup
10.5.2	Dataset
10.5.3	Detecting	Features
10.5.3.1	Data	Preparation

10.5.4	Random	Forest
10.5.5	Acknowledgement

10.6	Parallel	Computing	in	Python	☁�
10.6.1	Multi-threading	in	Python
10.6.1.1	Thread	vs	Threading
10.6.1.2	Locks

10.6.2	Multi-processing	in	Python
10.6.2.1	Process
10.6.2.2	Pool
10.6.2.2.1	Synchronous	Pool.map()
10.6.2.2.2	Asynchronous	Pool.map_async()

10.6.2.3	Locks
10.6.2.4	Process	Communication
10.6.2.4.1	Value

10.7	Dask	☁�
10.7.1	How	Dask	Works
10.7.2	Dask	Bag
10.7.3	Concurrency	Features
10.7.4	Dask	Array
10.7.5	Dask	DataFrame
10.7.6	Dask	DataFrame	Storage
10.7.7	Links

11	APPLICATIONS
11.1	Fingerprint	Matching	☁�
11.1.1	Overview
11.1.2	Objectives
11.1.3	Prerequisites
11.1.4	Implementation
11.1.5	Utility	functions
11.1.6	Dataset
11.1.7	Data	Model
11.1.7.1	Utilities
11.1.7.1.1	Checksum

11.1.7.1.2	Path
11.1.7.1.3	Image

11.1.7.2	Mindtct
11.1.7.3	Bozorth3
11.1.7.3.1	Running	Bozorth3
11.1.7.3.1.1	One-to-one
11.1.7.3.1.2	One-to-many

11.1.8	Plotting
11.1.9	Putting	it	all	Together

11.2	NIST	Pedestrian	and	Face	Detection	⷏�	☁�
11.2.0.1	Introduction
11.2.0.1.1	INRIA	Person	Dataset
11.2.0.1.2	HOG	with	SVM	model
11.2.0.1.3	Ansible	Automation	Tool

11.2.0.2	Deployment	by	Ansible
11.2.0.3	Cloudmesh	for	Provisioning
11.2.0.4	Roles	Explained	for	Installation
11.2.0.4.1	Server	groups	for	Masters/Slaves	by	Ansible	inventory

11.2.0.5	Instructions	for	Deployment
11.2.0.5.1	Cloning	Pedestrian	Detection	Repository	from	Github
11.2.0.5.2	Ansible	Playbook

11.2.0.6	OpenCV	in	Python
11.2.0.6.1	Import	cv2
11.2.0.6.2	Image	Detection

11.2.0.7	Human	and	Face	Detection	in	OpenCV
11.2.0.7.1	INRIA	Person	Dataset
11.2.0.7.2	Face	Detection	using	Haar	Cascades
11.2.0.7.3	Face	Detection	Python	Code	Snippet

11.2.0.8	Pedestrian	Detection	using	HOG	Descriptor
11.2.0.8.1	Python	Code	Snippet

11.2.0.9	Processing	by	Apache	Spark
11.2.0.9.1	Parallelize	in	Spark	Context
11.2.0.9.2	Map	Function	(apply_batch)
11.2.0.9.3	Collect	Function

11.2.0.10	Results	for	100+	images	by	Spark	Cluster
12	REFERENCES

1	PREFACE

Sat	Nov	23	05:25:16	EST	2019	☁�

1.1	DISCLAIMER	☁�
This	book	has	been	generated	with	Cyberaide	Bookmanager.

Bookmanager	is	a	tool	to	create	a	publication	from	a	number	of	sources	on	the
internet.	 It	 is	 especially	 useful	 to	 create	 customized	 books,	 lecture	 notes,	 or
handouts.	 Content	 is	 best	 integrated	 in	markdown	 format	 as	 it	 is	 very	 fast	 to
produce	the	output.

Bookmanager	has	been	developed	based	on	our	experience	over	the	last	3	years
with	 a	more	 sophisticated	 approach.	Bookmanager	 takes	 the	 lessons	 from	 this
approach	and	distributes	a	tool	that	can	easily	be	used	by	others.

The	 following	shields	provide	 some	 information	about	 it.	Feel	 free	 to	click	on
them.

pypipypi v0.2.28v0.2.28 	 LicenseLicense Apache	2.0Apache	2.0 	 pythonpython 3.73.7 	 formatformat wheelwheel 	 statusstatus stablestable 	 buildbuild unknownunknown

1.1.1	Acknowledgment

If	you	use	bookmanager	to	produce	a	document	you	must	include	the	following
acknowledgement.

“This	 document	 was	 produced	 with	 Cyberaide	 Bookmanager
developed	 by	 Gregor	 von	 Laszewski	 available	 at
https://pypi.python.org/pypi/cyberaide-bookmanager.	 It	 is	 in	 the
responsibility	 of	 the	 user	 to	make	 sure	 an	 author	 acknowledgement
section	 is	 included	 in	 your	 document.	 Copyright	 verification	 of
content	included	in	a	book	is	responsibility	of	the	book	editor.”

The	bibtex	entry	is
@Misc{www-cyberaide-bookmanager,

		author	=			{Gregor	von	Laszewski},

https://github.com/cloudmesh-community/book/blob/master/chapters/version.md
https://github.com/cyberaide/bookmanager/blob/master/bookmanager/template/disclaimer.md
https://pypi.python.org/pypi/cyberaide-bookmanager
https://pypi.python.org/pypi/cyberaide-bookmanager
https://github.com/cloudmesh/cyberaide-bookmanager/blob/master/LICENSE
https://pypi.python.org/pypi/cyberaide-bookmanager
https://pypi.python.org/pypi/cyberaide-bookmanager
https://pypi.python.org/pypi/cyberaide-bookmanager
https://travis-ci.com/cloudmesh/cyberaide-bookmanager

1.1.2	Extensions

We	 are	 happy	 to	 discuss	 with	 you	 bugs,	 issues	 and	 ideas	 for	 enhancements.
Please	use	the	convenient	github	issues	at

https://github.com/cyberaide/bookmanager/issues

Please	do	not	file	with	us	issues	that	relate	to	an	editors	book.	They	will	provide
you	with	their	own	mechanism	on	how	to	correct	their	content.

		title	=				{{Cyberaide	Book	Manager}},

		howpublished	=	{pypi},

		month	=				apr,

		year	=					2019,

		url={https://pypi.org/project/cyberaide-bookmanager/}

}

https://github.com/cyberaide/bookmanager/issues

2	INTRODUCTION

2.1	INTRODUCTION	TO	PYTHON	☁�

	Learning	Objectives

Learn	 quickly	 Python	 under	 the	 assumption	 you	 know	 a	 programming
language
Work	with	modules
Understand	docopts	and	cmd
Contuct	some	python	examples	to	refresh	your	python	knpwledge
Learn	about	the	map	function	in	Python
Learn	how	to	start	subprocesses	and	rederect	their	output
Learn	more	advanced	constructs	such	as	multiprocessing	and	Queues
Understand	why	we	do	not	use	anaconda
Get	familiar	with	pyenv

Portions	 of	 this	 lesson	 have	 been	 adapted	 from	 the	 official	 Python	 Tutorial
copyright	Python	Software	Foundation.

Python	is	an	easy	to	learn	programming	language.	It	has	efficient	high-level	data
structures	and	a	simple	but	effective	approach	to	object-oriented	programming.
Python’s	simple	syntax	and	dynamic	typing,	together	with	its	interpreted	nature,
make	 it	 an	 ideal	 language	 for	 scripting	 and	 rapid	 application	 development	 in
many	areas	on	most	platforms.	The	Python	interpreter	and	the	extensive	standard
library	are	freely	available	in	source	or	binary	form	for	all	major	platforms	from
the	 Python	Web	 site,	 https://www.python.org/,	 and	 may	 be	 freely	 distributed.
The	same	site	also	contains	distributions	of	and	pointers	to	many	free	third	party
Python	modules,	programs	and	tools,	and	additional	documentation.	The	Python
interpreter	can	be	extended	with	new	functions	and	data	types	implemented	in	C
or	 C++	 (or	 other	 languages	 callable	 from	 C).	 Python	 is	 also	 suitable	 as	 an
extension	language	for	customizable	applications.

https://github.com/cloudmesh-community/book/blob/master/chapters/prg/python/python-intro.md
https://docs.python.org/2/tutorial/
http://www.python.org/
https://www.python.org/

Python	is	an	interpreted,	dynamic,	high-level	programming	language	suitable	for
a	wide	range	of	applications.

The	philosophy	of	python	is	summarized	in	The	Zen	of	Python	as	follows:

Explicit	is	better	than	implicit
Simple	is	better	than	complex
Complex	is	better	than	complicated
Readability	counts

The	main	features	of	Python	are:

Use	of	indentation	whitespace	to	indicate	blocks
Object	orient	paradigm
Dynamic	typing
Interpreted	runtime
Garbage	collected	memory	management
a	large	standard	library
a	large	repository	of	third-party	libraries

Python	 is	 used	 by	 many	 companies	 and	 is	 applied	 for	 web	 development,
scientific	 computing,	 embedded	 applications,	 artificial	 intelligence,	 software
development,	and	information	security,	to	name	a	few.

The	 material	 collected	 here	 introduces	 the	 reader	 to	 the	 basic	 concepts	 and
features	of	the	Python	language	and	system.	After	you	have	worked	through	the
material	you	will	be	able	to:

use	Python
use	the	interactive	Python	interface
understand	the	basic	syntax	of	Python
write	and	run	Python	programs
have	an	overview	of	the	standard	library
install	 Python	 libraries	 using	 pyenv	 for	 multipython	 interpreter
development.

E	doe	not	attempt	to	be	comprehensive	and	cover	every	single	feature,	or	even
every	 commonly	 used	 feature.	 Instead,	 it	 introduces	 many	 of	 Python’s	 most

https://www.python.org/dev/peps/pep-0020/

noteworthy	features,	and	will	give	you	a	good	idea	of	the	language’s	flavor	and
style.	After	 reading	 it,	 you	will	be	able	 to	 read	and	write	Python	modules	and
programs,	and	you	will	be	ready	to	learn	more	about	the	various	Python	library
modules.

In	order	to	conduct	this	lesson	you	need

A	computer	with	Python	2.7.16	or	3.7.4
Familiarity	with	command	line	usage
A	 text	 editor	 such	 as	 PyCharm,	 emacs,	 vi	 or	 others.	You	 should	 identity
which	works	best	for	you	and	set	it	up.

2.1.1	References

Some	 important	 additional	 information	 can	 be	 found	 on	 the	 following	 Web
pages.

Python
Pip
Virtualenv
NumPy
SciPy
Matplotlib
Pandas
pyenv
PyCharm

Python	 module	 of	 the	 week	 is	 a	 Web	 site	 that	 provides	 a	 number	 of	 short
examples	on	how	to	use	some	elementary	python	modules.	Not	all	modules	are
equally	useful	and	you	should	decide	if	there	are	better	alternatives.	However	for
beginners	this	site	provides	a	number	of	good	examples

Python	2:	https://pymotw.com/2/
Python	3:	https://pymotw.com/3/

https://www.jetbrains.com/pycharm/
https://www.python.org/
https://pip.pypa.io/en/stable/
https://virtualenv.pypa.io/en/stable/
http://www.numpy.org/
https://scipy.org/
http://matplotlib.org/
http://pandas.pydata.org/
https://github.com/pyenv/pyenv
https://github.com/pyenv/pyenv
https://pymotw.com/2/
https://pymotw.com/3/

3	INSTALATION

3.1	PYTHON	3.7.4	INSTALLATION	☁�

	Learning	Objectives

Learn	how	to	install	python.
Find	additional	information	about	Python.
Make	sure	your	Computer	supports	Python.

In	this	setion	we	explain	how	to	install	python	3.7.4	on	a	computer.	Likely	much
of	the	code	will	work	with	earlier	versions,	but	we	do	the	development	in	Python
on	the	newest	version	of	python	available	at	https://www.python.org/downloads
.

3.1.1	Hardware

Python	 does	 not	 require	 any	 special	 hardware.	We	 have	 installed	 Python	 not
only	on	PC’s	and	Laptops,	but	also	on	Raspberry	PI’s	and	Lego	Mindstorms.

However,	there	are	some	things	to	consider.	If	you	use	many	programs	on	your
desktop	 and	 run	 them	 all	 at	 the	 same	 time	 you	 will	 find	 that	 in	 up-to-date
operating	 systems	 you	 will	 find	 your	 self	 quickly	 out	 of	 memmory.	 This	 is
especially	true	if	you	use	editors	such	as	PyCharm	which	we	highly	recommend.
Furthermore,	as	you	likely	have	lots	of	disk	access,	make	sure	to	use	a	fast	HDD
or	better	an	SSD.

A	typical	modern	developer	PC	or	Laptop	has	16GB	RAM	and	an	SSD.	You	can
certainly	do	python	on	a	$35	Rapbperry	PI,	but	you	probably	will	not	be	able	to
run	 PyCharm.	 There	 are	 many	 alternative	 editors	 with	 less	Memory	 footprint
avialable.

3.1.2	Prerequisits	Ubuntu	19.04

https://github.com/cloudmesh-community/book/blob/master/chapters/prg/python/python-install.md
https://www.python.org/downloads

Python	 3.7	 is	 installed	 in	 ubuntu	 19.04.	 Therefore,	 it	 already	 fulfills	 the
prerequisits.	However	we	recommend	that	you	update	 to	 the	newest	version	of
python	and	pip.	However	we	recommend	that	you	update	the	the	newest	version
of	python.	Please	visit:	https://www.python.org/downloads

3.1.3	Prerequisits	macOS

3.1.3.1	Installation	from	Apple	App	Store

You	want	 a	 number	 of	 useful	 tool	 on	 your	macOS.	 They	 are	 not	 installed	 by
default,	but	are	available	via	Xcode.	First	you	need	to	install	xcode	from

https://apps.apple.com/us/app/xcode/id497799835

Next	you	need	to	install	macOS	xcode	command	line	tools:

3.1.3.2	Installation	from	python.org

The	 easiest	 instalation	 of	 Python	 for	 cloudmesh	 is	 to	 use	 the	 instaltion	 from
https://www.python.org/downloads.	 Please,	 visit	 the	 page	 and	 follow	 the
instructions.	After	this	install	you	have	python3	avalable	from	the	commandline

3.1.3.3	Installation	from	Hoembrew

An	 alternative	 instalation	 is	 provided	 from	 Homebrew.	 To	 use	 this	 install
method,	you	need	 to	 install	Homebrew	first.	Start	 the	process	by	 installing	 the
python	3	using	homebrew.	Install	homebrew	using	the	instruction	in	their	web	page:

Then	you	should	be	able	to	install	Python	3.7.4	using:

3.1.4	Prerequisits	Ubuntu	18.04

We	 recommend	 you	 update	 your	 ubuntu	 version	 to	 19.04	 and	 follow	 the

$	xcode-select	--install

$	/usr/bin/ruby	-e	"$(curl	-fsSL	https://raw.githubusercontent.com/Homebrew/install/master/install)"

$	brew	install	python

https://www.python.org/downloads
https://apps.apple.com/us/app/xcode/id497799835
https://www.python.org/downloads
https://brew.sh/#install

instructions	for	that	version	instead,	as	it	is	significantly	easier.	If	you	however
are	not	able	to	do	so,	the	following	instructions	may	be	helpful.

We	first	need	 to	make	sure	 that	 the	correct	version	of	 the	Python3	is	 installed.
The	default	version	of	Python	on	Ubuntu	18.04	is	3.6.	You	can	get	the	version
with:

If	the	version	is	not	3.7.4	or	newer,	you	can	update	it	as	follows:

You	can	 then	check	 the	 installed	version	using	 python3.7	--version	 which	 should	 be	
3.7.4.

Now	we	will	create	a	new	virtual	environment:

The	edit	the	~/.bashrc	file	and	add	the	following	line	at	the	end:

now	activate	the	virtual	environment	using:

now	you	can	install	the	pip	for	the	virtual	environment	without	conflicting	with
the	native	pip:

3.1.5	Prerequisite	Windows	10

Python	 3.7	 can	 be	 installed	 on	 Windows	 10	 using:
https://www.python.org/downloads

For	3.7.4	can	go	to	 the	download	page	and	download	one	of	 the	different	 files
for	Windows.

$	python3	--version

$	sudo	apt-get	update

$	sudo	apt	install	software-properties-common

$	sudo	add-apt-repository	ppa:deadsnakes/ppa

$	sudo	apt-get	install	python3.7	python3-dev	python3.7-dev

$	python3.7	-m	venv	--without-pip	~/ENV3

alias	ENV3="source	~/ENV3/bin/activate"

ENV3

$	source	~/.bashrc

$	curl	"https://bootstrap.pypa.io/get-pip.py"	-o	"get-pip.py"

$	python	get-pip.py

$	rm	get-pip.py

https://www.python.org/downloads
https://www.python.org/downloads/release/python-374/

Let	us	assume	you	choe	the	Web	based	installer,	than	you	click	on	the	file	in	the
edge	 browser	 (make	 sure	 the	 account	 you	 use	 has	 administrative	 priviledges).
Follow	the	instructions	that	the	installer	gives.	Important	is	that	you	select	at	one
point	“[x]	Add	to	Path”.	There	will	be	an	empty	checkmark	about	this	that	you
will	click	on.

Once	it	is	installed.	chose	a	terminal	and	execute

However,	 if	you	have	 installed	conda	 for	 some	reason	you	need	 to	 read	up	on
how	to	install	3.7.4	python	in	conda	or	identify	how	to	run	conda	and	python.org
at	the	same	time.	We	see	often	others	giving	the	wrong	installation	instructions.

An	alternative	 is	 to	use	python	from	within	 the	Linux	Subsystem.	But	 that	has
some	limitations	and	you	will	need	to	explore	how	to	exxess	the	file	system	in
the	subssytem	to	have	a	smooth	integration	between	your	Windows	host	so	you
can	for	example	use	PyCharm.

3.1.5.1	Linux	Subsystem	Install

To	activate	the	Linux	Subsystem,	please	follow	the	instructions	at

https://docs.microsoft.com/en-us/windows/wsl/install-win10

A	suitable	distribution	would	be

https://www.microsoft.com/en-us/p/ubuntu-1804-lts/9n9tngvndl3q?
activetab=pivot:overviewtab

However	as	it	uses	an	older	version	of	python	you	will	ahve	to	update	it.

3.1.6	Prerequisit	venv

This	 step	 is	 highly	 recommend	 if	 you	 have	 not	 yet	 already	 installed	 a	 venv	 for
python	to	make	sure	you	are	not	interfering	with	your	system	python.	Not	using
a	venv	could	have	catastrophic	consequences	and	a	destruction	of	your	operating
system	tools	if	they	realy	on	Python.	The	use	of	venv	is	simple.	For	our	purposes
we	assume	that	you	use	the	directory:

python	--version

https://docs.microsoft.com/en-us/windows/wsl/install-win10
https://www.microsoft.com/en-us/p/ubuntu-1804-lts/9n9tngvndl3q?activetab=pivot:overviewtab

Follow	these	steps	first:

First	cd	to	your	home	directory.	Then	execute

You	can	add	at	 the	end	of	your	 .bashrc	(ubuntu)	or	 .bash_profile	 (macOS)	file
the	line

so	the	environment	is	always	loaded.	Now	you	are	ready	to	install	cloudmesh.

Check	if	you	have	the	right	version	of	python	installed	with

To	make	sure	you	have	an	up	to	date	version	of	pip	issue	the	command

3.1.7	Install	Python	3.7	via	Anaconda

3.1.7.1	Download	conda	installer

Miniconda	is	recommended	here.	Download	an	 installer	for	Windows,	macOS,
and	Linux	from	this	page:	https://docs.conda.io/en/latest/miniconda.html

3.1.7.2	Install	conda

Follow	instructions	to	install	conda	for	your	operating	systems:

Windows.	 https://conda.io/projects/conda/en/latest/user-
guide/install/windows.html
macOS.	 https://conda.io/projects/conda/en/latest/user-
guide/install/macos.html
Linux.	https://conda.io/projects/conda/en/latest/user-guide/install/linux.html

~/ENV3

$	python3	-m	venv		~/ENV3

$	source	~/ENV3/bin/activate

$	source	~/ENV3/bin/activate

$	python	--version

$	pip	install	pip	-U

https://docs.conda.io/en/latest/miniconda.html
https://conda.io/projects/conda/en/latest/user-guide/install/windows.html
https://conda.io/projects/conda/en/latest/user-guide/install/macos.html
https://conda.io/projects/conda/en/latest/user-guide/install/linux.html

3.1.7.3	Install	Python	3.7.4	via	conda

It	is	very	important	to	make	sure	you	have	a	newer	version	of	pip	installed.	After
you	 installed	 and	 created	 the	ENV3	you	 need	 to	 activate	 it.	 This	 can	 be	 done
with

If	you	 like	 to	activate	 it	when	you	start	a	new	terminal,	please	add	 this	 line	 to
your	.bashrc	or	.bash_profile

If	you	use	zsh	please	add	it	to	.zprofile	instead.

3.2	MULTI-VERSION	PYTHON	INSTALLATION	☁�

	Learning	Objectives

Understand	why	we	need	to	worry	about	python	3.7	and	2.7
Use	pyenv	to	support	both	versions
Understand	the	limitations	of	anaconda/conda	for	developers

We	are	living	in	an	interesting	junction	point	in	the	development	of	Python.	In
January	 2019,	 it	 is	 encouraged	 that	 Python	 developers	 swoth	 from	 python
version	2.7	to	python	version	3.7.

However	there	may	be	the	requirement	when	you	still	need	to	develop	code	not
only	in	python	3.7	but	also	in	python	2.7.	To	facilitate	this	multi-python	version
development,	the	best	tool	we	know	about	capable	of	doing	so	is	pyenv.	We	will
explain	you	in	this	section	how	to	install	both	versions	with	the	help	of	pyenv.

Python	 is	 easy	 to	 install	 and	very	good	 instructions	 for	most	platforms	can	be
found	on	the	python.org	Web	page.	We	see	two	different	versions:

$	cd	~

$	conda	create	-n	ENV3	python=3.7.4

$	conda	activate	ENV3

$	conda	install	-c	anaconda	pip

$	conda	deactivate	ENV3

$	conda	activate	ENV3

https://github.com/cloudmesh-community/book/blob/master/chapters/prg/python/python-install-pyenv.md

Python	2.7.16
Python	3.7.4

To	manage	python	modules,	it	is	useful	to	have	pip	package	installation	tool	on
your	system.

We	 assume	 that	 you	 have	 a	 computer	 with	 python	 installed.	 The	 version	 of
python	however	may	not	be	the	newest	version.	Please	check	with

which	version	of	python	you	run.	If	it	is	not	the	newest	version,	we	use	pyenv	to
install	a	newer	version	so	you	do	not	effect	 the	default	version	of	python	from
your	system.

3.2.1	Disabling	wrong	python	installs

While	working	with	students	we	have	seen	at	times	that	they	take	other	classes
either	 at	 universities	 or	 online	 that	 teach	 them	 how	 to	 program	 in	 python.
Unfortunately,	 they	 seem	 to	 often	 ignore	 to	 teach	 you	 how	 to	 properly	 install
Python.	I	just	recently	had	a	students	that	had	installed	python	7	different	times
on	his	macOS	machine,	while	another	student	had	3	different	installations,	all	of
which	 conflicted	 with	 each	 other	 as	 they	 were	 not	 set	 up	 properly	 and	 the
students	 did	 not	 even	 realize	 that	 they	were	 using	 Python	 incorrectly	 on	 their
computer	due	to	setup	issues	and	conflicting	libraries.

We	recommend	that	you	inspect	if	you	have	a	files	such	as	~/.bashrc	or	~/.bashrc_profile
in	your	home	directory	and	identify	if	it	activates	various	versions	of	python	on
your	computer.	If	so	you	could	try	to	deactivate	them	while	out-commenting	the
various	 versions	with	 the	 #	 character	 at	 the	 beginning	 of	 the	 line,	 start	 a	 new
terminal	 and	 see	 if	 the	 terminal	 shell	 still	 works.	 Than	 you	 can	 follow	 our
instructions	here	while	using	an	install	on	pyenv.

3.2.2	Managing	2.7	and	3.7	Python	Versions	without	Pyenv

If	you	need	to	have	more	than	one	python	version	installed	and	do	not	want	or
can	use	pyenv,	we	recommend	you	download	and	install	python	2.7.16	and	3.7.4
from	python.org	(https://www.python.org/downloads/)

$	python	--version

https://pypi.python.org/pypi/pip
https://www.python.org/downloads/

YOu	can	than	use	either	python2	or	python3	to	invoke	the	python	interpreter.

3.2.3	Managing	Multiple	Python	Versions	with	Pyenv

Python	 has	 several	 versions	 that	 are	 used	 by	 the	 community.	 This	 includes
Python	2	and	Python	3,	but	all	different	management	of	the	python	libraries.	As
each	OS	may	have	their	own	version	of	python	installed.	It	is	recommended	that
you	not	modify	that	version.	Instead	you	may	want	to	create	a	localized	python
installation	 that	 you	 as	 a	 user	 can	 modify.	 To	 do	 that	 we	 recommend	 pyenv.
Pyenv	 allows	 users	 to	 switch	 between	 multiple	 versions	 of	 Python
(https://github.com/yyuu/pyenv).	To	summarize:

users	to	change	the	global	Python	version	on	a	per-user	basis;
users	to	enable	support	for	per-project	Python	versions;
easy	version	changes	without	complex	environment	variable	management;
to	search	installed	commands	across	different	python	versions;
integrate	with	tox	(https://tox.readthedocs.io/).

To	install	pyenv	on	your	system	you	can	use	the	command

Now	you	can	install	different	python	versions	on	your	system	such	as	python	2.7
and	3.7	with	a	few	commands:

To	 automatically	 access	 them	 from	your	 shell	we	 integrate	 them	 into	 bash	 by
editing	 the	 bash	 configuration	 files.	Make	 sure	 that	 on	 Linux	 you	 add	 to	 the	
~/.bashrc	file	and	on	macOS	to	the	file	~/.bash_profile	or	.zprofile.

$	curl	https://pyenv.run	|	bash

$	pyenv	install	3.7.4

$	pyenv	install	2.7.16

$	pyenv	virtualenv	3.7.4	ENV3

$	pyenv	virtualenv	2.7.16	ENV2

export	PYENV_ROOT="$HOME/.pyenv"

export	PATH="$PYENV_ROOT/bin:$PATH"

export	PYENV_VIRTUALENV_DISABLE_PROMPT=1

eval	"$(pyenv	init	-)"

eval	"$(pyenv	virtualenv-init	-)"

__pyenv_version_ps1()	{

		local	ret=$?;

		output=$(pyenv	version-name)

		if	[[!	-z	$output]];	then

				echo	-n	"($output)"

		fi

		return	$ret;

}

https://github.com/yyuu/pyenv
https://tox.readthedocs.io/

We	recommend	that	you	do	this	towards	the	end	of	your	file.	Than	look	up	our
convenience	methods	to	set	an	ALIAS	and	install	Python	3.7.4	via	pyenv

Next	we	recommend	to	update	pip

3.2.3.1	Installation	pyenv	via	Homebrew

On	macOS	you	can	install	pyenv	also	via	Homebrew.	Before	installing	anything
on	 your	 computer	make	 sure	 you	 have	 enough	 space.	Use	 in	 the	 terminal	 the
command:

which	gives	your	 an	overview	of	your	 file	 system.	 If	you	do	not	have	enough
space,	please	make	sure	you	free	up	unused	files	from	your	drive.

In	 many	 occasions	 it	 is	 beneficial	 to	 use	 readline	 as	 it	 provides	 nice	 editing
features	for	the	terminal	and	xz	for	completion.	First,	make	sure	you	have	xcode
installed:

On	Mojave	you	will	get	an	error	that	zlib	is	not	installed.	THis	is	due	to	that	the
header	files	are	not	properly	installed.	To	do	this	you	can	say

Next	 install	 homebrew,	 pyenv,	 pyenv-virtualenv	 and	 pyenv-virtualwrapper.
Additionally	install	readline	and	some	compression	tools:

PS1="\$(__pyenv_version_ps1)	${PS1}"

alias	ENV2="pyenv	activate	ENV2"

alias	ENV3="pyenv	activate	ENV3"

ENV3

$	ENV2

$	pip	install	pip	-U

$	ENV3

$	pip	install	pip	-U

$	df	-h

$	xcode-select	--install

$	sudo	installer	-pkg	/Library/Developer/CommandLineTools/Packages/macOS_SDK_headers_for_macOS_10.14.pkg	-target	/

$	/usr/bin/ruby	-e	"$(curl	-fsSL	https://raw.githubusercontent.com/Homebrew/install/master/install)"

$	brew	update

$	brew	install	readline	xz

To	install	pyenv	with	homebrew	execute	in	the	terminal:

3.2.3.2	Install	pyenv	on	Ubuntu	18.04

The	following	steps	will	install	pyenv	in	a	new	ubuntu	18.04	distribution.

Start	 up	 a	 terminal	 and	 execute	 in	 the	 terminal	 the	 following	 commands.	We
recommend	 that	 you	 do	 it	 one	 command	 at	 a	 time	 so	 you	 can	 observe	 if	 the
command	succeeds:

You	can	also	install	pyenv	using	curl	command	in	following	way:

Then	install	its	dependencies:

Now	 that	 you	 have	 installed	 pyenv	 it	 is	 not	 yet	 activated	 in	 your	 current
terminal.	The	easiest	thing	to	do	is	to	start	a	new	terminal	and	typ	in:

If	you	see	a	response	pyenv	is	installed	and	you	can	proceed	with	the	next	steps.

Please	remember	whenever	you	modify	.bashrc	or	.bash_profile	or	.zprofile	you	need	to
start	a	new	terminal.

3.2.3.3	Using	pyenv

3.2.3.3.1	Using	pyenv	to	Install	Different	Python	Versions

brew	install	pyenv	pyenv-virtualenv	pyenv-virtualenvwrapper

$	sudo	apt-get	update

$	sudo	apt-get	install	git	python-pip	make	build-essential	libssl-dev

$	sudo	apt-get	install	zlib1g-dev	libbz2-dev	libreadline-dev	libsqlite3-dev

$	sudo	pip	install	virtualenvwrapper

$	git	clone	https://github.com/yyuu/pyenv.git	~/.pyenv

$	git	clone	https://github.com/pyenv/pyenv-virtualenv.git	~/.pyenv/plugins/pyenv-virtualenv

$	git	clone	https://github.com/yyuu/pyenv-virtualenvwrapper.git	~/.pyenv/plugins/pyenv-virtualenvwrapper

$	echo	'export	PYENV_ROOT="$HOME/.pyenv"'	>>	~/.bashrc

$	echo	'export	PATH="$PYENV_ROOT/bin:$PATH"'	>>	~/.bashrc

$	curl	-L	https://raw.githubusercontent.com/yyuu/pyenv-installer/master/bin/pyenv-installer	|	bash

$	sudo	apt-get	update	&&	sudo	apt-get	upgrade

$	sudo	apt-get	install	-y	make	build-essential	libssl-dev

$	sudo	apt-get	install	-y	zlib1g-dev	libbz2-dev	libreadline-dev	libsqlite3-dev

$	sudo	apt-get	install	-y	wget	curl	llvm	libncurses5-dev	git

$	which	pyenv

Pyenv	 provides	 a	 large	 list	 of	 different	 python	 versions.	 To	 see	 the	 entire	 list
please	use	the	command:

However,	 for	us	we	only	need	 to	worry	about	python	2.7.16	and	python	3.7.4.
You	 can	 now	 install	 different	 versions	 of	 python	 into	 your	 local	 environment
with	the	following	commands:

You	can	set	the	global	python	default	version	with:

Type	the	following	to	determine	which	version	you	activated:

Type	the	following	to	determine	which	versions	you	have	available:

Associate	 a	 specific	 environment	 name	with	 a	 certain	 python	 version,	 use	 the
following	commands:

In	 the	 example,	 ENV2	 would	 represent	 python	 2.7.16	 while	 ENV3	 would
represent	python	3.7.4.	Often	it	is	easier	to	type	the	alias	rather	than	the	explicit
version.

3.2.3.3.2	Switching	Environments

After	 setting	 up	 the	 different	 environments,	 switching	 between	 them	 is	 now
easy.	Simply	use	the	following	commands:

To	make	it	even	easier,	you	can	add	the	following	lines	to	your	.bash_profile	or	or	

$	pyenv	install	-l

$	pyenv	update

$	pyenv	install	2.7.16

$	pyenv	install	3.7.4

$	pyenv	global	3.7.4

$	pyenv	version

$	pyenv	versions

$	pyenv	virtualenv	2.7.16	ENV2

$	pyenv	virtualenv	3.7.4	ENV3

(2.7.16)	$	pyenv	activate	ENV2

(ENV2)	$	pyenv	activate	ENV3

(ENV3)	$	pyenv	activate	ENV2

(ENV2)	$	pyenv	deactivate	ENV2

(2.7.16)	$

.zprofile	file:

If	 you	 start	 a	 new	 terminal,	 you	 can	 switch	 between	 the	 different	 versions	 of
python	simply	by	typing:

3.2.3.4	Updating	Python	Version	List

Pyenv	maintains	locally	a	list	of	available	python	versions.	To	see	the	list	use	the
command

You	will	see	the	updated	list.

3.2.3.4.1	Updating	to	a	new	version	of	Python	with	pyenv

Naturally	 python	 itself	 evolves	 and	 new	 versions	 will	 become	 available	 via
pyenv.	To	facilitate	such	a	new	version	you	need	to	first	install	it	into	pyenv.	Let
us	 assume	 you	 had	 an	 old	 version	 of	 python	 installed	 onto	 the	 ENV3
environment.	Than	you	need	to	execute	the	following	steps:

With	the	pi	install	command,	we	make	sure	we	have	the	newest	version	of	pip.
In	case	you	get	an	error,	you	may	have	to	update	xcode	as	follows	and	try	again:

After	you	installed	it	you	can	activate	it	by	typing	ENV3.	Naturally	this	requires	that
you	added	it	to	your	bash	environment	as	discussed	in	Section	1.1.1.8.	⷏�

3.2.4	Anaconda	and	Miniconda	and	Conda

alias	ENV2="pyenv	activate	ENV2"

alias	ENV3="pyenv	activate	ENV3"

$	ENV2

$	ENV3

$	pyenv	update

$	pyenv	install	-l

$	pyenv	deactivate

$	pyenv	uninstall	ENV3

$	pyenv	install	3.7.4

$	pyenv	virtualenv	3.7.4	ENV3

$	ENV3

$	pip	install	pip	-U

xcode-select	--install

While	 in	others	 on	 the	 internet	 or	 in	your	 classes	may	have	 taught	 you	 to	use
anaconda,	We	will	avoid	it	as	it	has	several	disadvantages	for	edevelopers.	The
reason	for	this	is	that	it	installs	many	packages	that	you	are	likely	not	to	use.	In
fact	installing	anaconda	on	your	VM	will	waste	space	and	time	and	you	should
look	into	other	installs.

We	do	not	recommend	that	you	use	anaconda	or	miniconda	as	it	may

interfere	with	your	default	python	interpreters	and	setup.

Please	note	that	beginners	to	python	should	always	use	anaconda	or	miniconda
only	after	 they	have	 installed	pyenv	and	use	 it.	For	 this	class	neither	anaconda
nor	miniconda	is	required.	In	fact	we	do	not	recommend	it.	We	keep	this	section
as	we	know	that	other	classes	at	IU	may	use	anaconda.	We	are	not	aware	if	these
classes	teach	you	the	right	way	to	install	it,	with	pyenv.

3.2.4.1	Miniconda

	 This	 section	 about	 miniconda	 is	 experimental	 and	 has	 not	 been
tested.	We	are	looking	for	contributors	that	help	completing	it.	If	you
use	anaconda	or	miniconda	we	recommend	to	manage	it	via	pyenv.

To	install	mini	conda	you	can	use	the	following	commands:

To	activate	use:

To	deactivate	use:

3.2.4.2	Anaconda

	 This	 section	 about	 anaconda	 is	 experimental	 and	 has	 not	 been

$	mkdir	ana

$	cd	ana

$	pyenv	install	miniconda3-latest

$	pyenv	local	miniconda3-latest

$	pyenv	activate	miniconda3-latest

$	conda	create	-n	ana	anaconda

$	source	activate	ana

$	source	deactivate

tested.	We	are	looking	for	contributors	that	help	completing	it.

You	can	add	anaconda	to	your	pyenv	with	the	following	commands:

To	 switch	 more	 easily	 we	 recommend	 that	 you	 use	 the	 following	 in	 your	
.bash_profile	or	.zprofile	file:

Once	you	have	done	this	you	can	easily	switch	to	anaconda	with	the	command:

Terminology	in	anaconda	could	lead	to	confusion.	Thus	we	like	to	point	out	that
the	version	number	of	anaconda	is	unrelated	to	the	python	version.	Furthermore,
anaconda	 uses	 the	 term	 root	 not	 for	 the	 root	 user,	 but	 for	 the	 originating
directory	in	which	the	anaconda	program	is	installed.

In	case	you	like	to	build	your	own	conda	packages	at	a	later	time	we	recommend
that	you	install	the	conda-build	package:

When	executing:

you	will	see	after	the	install	completed	the	anaconda	versions	installed:

Let	us	now	create	virtualenv	for	anaconda:

To	activate	it	you	can	now	use:

pyenv	install	anaconda3-4.3.1

alias	ANA="pyenv	activate	anaconda3-4.3.1"

$	ANA

$	conda	install	conda-build

$	pyenv	versions

pyenv	versions

system

2.7.16

2.7.16/envs/ENV2

3.7.4

3.7.4/envs/ENV3

ENV2

ENV3

*	anaconda3-4.3.1	(set	by	PYENV_VERSION	environment	variable)

$	pyenv	virtualenv	anaconda3-4.3.1	ANA

$	pyenv	ANA

However,	 anaconda	may	modify	 your	 .bashrc	 or	 .bash_profile	 or	 or	 .zprofile	 files	 and
may	 result	 in	 incompatibilities	with	 other	 python	 versions.	 For	 this	 reason	we
recommend	not	 to	use	it.	 If	you	find	ways	to	get	 it	 to	work	reliably	with	other
versions,	please	let	us	know	and	we	update	this	tutorial.

3.2.5	Exercises

E.Python.Install.1:

Install	Python	3.7.4

E.Python.Install.1:

Write	installation	instructions	for	an	operating	system	of	your	choice
and	add	to	this	documentation.

E.Python.Install.2:

Replicate	 the	 steps	 to	 install	 pyenv,	 so	 you	 can	 type	 in	 ENV2	 and
ENV3	in	your	terminals	to	switch	between	python	2	and	3.

E.Python.Install.3:

Why	 do	 you	 not	 want	 to	 use	 generally	 anaconda	 for	 cloud
computing?	When	is	it	ok	to	use	anaconda?

4	FIRST	STEPS

4.1	INTERACTIVE	PYTHON	☁�
Python	can	be	used	interactively.	You	can	enter	the	interactive	mode	by	entering
the	interactive	loop	by	executing	the	command:

You	will	see	something	like	the	following:

The	 >>>	 is	 the	 prompt	 used	 by	 the	 interpreter.	 This	 is	 similar	 to	 bash	 where
commonly	$	is	used.

Sometimes	 it	 is	 convenient	 to	 show	 the	 prompt	when	 illustrating	 an	 example.
This	 is	 to	 provide	 some	 context	 for	 what	 we	 are	 doing.	 If	 you	 are	 following
along	you	will	not	need	to	type	in	the	prompt.

This	interactive	python	process	does	the	following:

read	your	input	commands
evaluate	your	command
print	the	result	of	evaluation
loop	back	to	the	beginning.

This	 is	 why	 you	 may	 see	 the	 interactive	 loop	 referred	 to	 as	 a	REPL:	Read-
Evaluate-Print-Loop.

4.1.1	REPL	(Read	Eval	Print	Loop)

There	 are	 many	 different	 types	 beyond	 what	 we	 have	 seen	 so	 far,	 such	 as
dictionariess,	lists,	sets.	One	handy	way	of	using	the	interactive	python	is	to	get
the	type	of	a	value	using	type():

$	python

$	python

Python	3.7.1	(default,	Nov	24	2018,	14:27:15)

[Clang	10.0.0	(clang-1000.11.45.5)]	on	darwin

Type	"help",	"copyright",	"credits"	or	"license"	for	more	information.

>>>

https://github.com/cloudmesh-community/book/blob/master/chapters/prg/python/python-interactive.md

You	can	also	ask	for	help	about	something	using	help():

Using	help()	opens	up	a	help	message	within	a	pager.	To	navigate	you	can	use
the	spacebar	to	go	down	a	page	w	to	go	up	a	page,	the	arrow	keys	to	go	up/down
line-by-line,	or	q	to	exit.

4.1.2	Interpreter

Although	the	interactive	mode	provides	a	convenient	tool	to	test	things	out	you
will	see	quickly	that	for	our	class	we	want	to	use	the	python	interpreter	from	the
commandline.	Let	us	assume	the	program	is	called	prg.py.	Once	you	have	written
it	in	that	file	you	simply	can	call	it	with

It	is	important	to	name	the	program	with	meaningful	names.

4.1.3	Python	3	Features	in	Python	2

In	 this	 course	we	want	 to	 be	 able	 to	 seamlessly	 switch	 between	 python	 2	 and
python	3.	Thus	it	is	convenient	from	the	start	to	use	python	3	syntax	when	it	is
supported	also	in	python	2.	One	of	the	most	used	functions	is	the	print	statement
that	has	in	python	3	parentheses.	To	enable	it	in	python	2	you	just	need	to	import
this	function:

The	first	of	these	imports	allows	us	to	use	the	print	function	to	output	text	to	the
screen,	 instead	 of	 the	 print	 statement,	 which	 Python	 2	 uses.	 This	 is	 simply	 a
design	decision	that	better	reflects	Python’s	underlying	philosophy.

Other	functions	such	as	the	division	also	behave	differently.	Thus	we	use

>>>	type(42)

<type	'int'>

>>>	type('hello')

<type	'str'>

>>>	type(3.14)

<type	'float'>

>>>	help(int)

>>>	help(list)

>>>	help(str)

$	python	prg.py

from	__future__	import	print_function,	division

from	__future__	import	division

https://www.python.org/dev/peps/pep-3105/

This	import	makes	sure	that	the	division	operator	behaves	in	a	way	a	newcomer
to	the	language	might	find	more	intuitive.	In	Python	2,	division	/	is	floor	division
when	the	arguments	are	integers,	meaning	that	the	following

In	Python	3,	division	/	is	a	floating	point	division,	thus

4.2	EDITORS	☁�
This	section	is	meant	to	give	an	overview	of	the	python	editing	tools	needed	for
doing	 for	 this	 course.	 There	 are	 many	 other	 alternatives,	 however,	 we	 do
recommend	to	use	PyCharm.

4.2.1	Pycharm

PyCharm	 is	 an	 Integrated	 Development	 Environment	 (IDE)	 used	 for
programming	 in	 Python.	 It	 provides	 code	 analysis,	 a	 graphical	 debugger,	 an
integrated	unit	tester,	integration	with	git.

	Python	8:56	Pycharm

4.2.2	Python	in	45	minutes

An	additional	community	video	about	the	Python	programming	language	that	we
found	on	the	internet.	Naturally	there	are	many	alternatives	to	this	video,	but	the
video	is	probably	a	good	start.	It	also	uses	PyCharm	which	we	recommend.

	Python	43:16	PyCharm

How	much	you	want	to	understand	of	python	is	actually	a	bit	up	to	you.	While
its	good	 to	know	classes	and	 inheritance,	you	may	be	able	 for	 this	class	 to	get
away	without	using	it.	However,	we	do	recommend	that	you	learn	it.

PyCharm	Installation:	Method	1:	PyCharm	Installation	on	ubuntu	using	umake

(5	/	2	==	2)	is	True

(5	/	2	==	2.5)	is	True

https://www.python.org/dev/peps/pep-0238/
https://github.com/cloudmesh-community/book/blob/master/chapters/prg/python/python-editor.md
https://youtu.be/X8ZpbZweJcw
https://www.youtube.com/watch?v=N4mEzFDjqtA

Once	 umake	 command	 is	 run,	 use	 the	 next	 command	 to	 install	 Pycharm
community	edition:

If	you	want	to	remove	PyCharm	installed	using	umake	command,	use	this:

Method	2:	PyCharm	installation	on	ubuntu	using	PPA

PyCharm	 also	 has	 a	 Professional	 (paid)	 version	 which	 can	 be	 installed	 using
following	command:

Once	installed,	go	to	your	VM	dashboard	and	search	for	PyCharm.

4.3	GOOGLE	COLAB	☁�
In	 this	section	we	are	going	to	 introduce	you,	how	to	use	Google	Colab	to	run
deep	learning	models.

4.3.1	Introduction	to	Google	Colab

This	video	contains	the	introduction	to	Google	Colab.	In	this	section	we	will	be
learning	how	to	start	a	Google	Colab	project.

4.3.2	Programming	in	Google	Colab

In	this	video	we	will	learn	how	to	create	a	simple,	Colab	Notebook.

sudo	add-apt-repository	ppa:ubuntu-desktop/ubuntu-make

sudo	apt-get	update

sudo	apt-get	install	ubuntu-make

umake	ide	pycharm

umake	-r	ide	pycharm

sudo	add-apt-repository	ppa:mystic-mirage/pycharm

sudo	apt-get	update

sudo	apt-get	install	pycharm-community

sudo	apt-get	install	pycharm

https://github.com/cloudmesh-community/book/blob/master/chapters/prg/python/google-colab/python-google-colab.md
https://drive.google.com/file/d/1vz2_VaXCAae-9luzcrIuP_ugMmKJIy7w/view?usp=sharing

Required	Installations

4.3.3	Benchamrking	in	Google	Colab	with	Cloudmesh

In	 this	 video	 we	 learn	 how	 to	 do	 a	 basic	 benchmark	 with	 Cloudmesh	 tools.
Cloudmesh	StopWatch	will	be	used	in	this	tutorial.

Required	Installations

pip	install	numpy

pip	install	numpy

pip	install	cloudmesh-installer

pip	install	cloudmesh-common

https://drive.google.com/file/d/18mGVxgydx1TDdb4AYD8qb1To8rkSLS-H/view?usp=sharing
https://drive.google.com/file/d/1Ujs0XjzCTwZgmx-ADM5zx9cS5iplXfIu/view?usp=sharing

5	LANGUAGE

5.1	LANGUAGE	☁�

5.1.1	Statements	and	Strings

Let	us	explore	the	syntax	of	Python	while	starting	with	a	print	statement

This	will	print	on	the	terminal

The	 print	 function	 was	 given	 a	 string	 to	 process.	 A	 string	 is	 a	 sequence	 of
characters.	 A	 character	 can	 be	 a	 alphabetic	 (A	 through	 Z,	 lower	 and	 upper
case),	 numeric	 (any	 of	 the	 digits),	 white	 space	 (spaces,	 tabs,	 newlines,	 etc),
syntactic	directives	(comma,	colon,	quotation,	exclamation,	etc),	and	so	forth.	A
string	is	just	a	sequence	of	the	character	and	typically	indicated	by	surrounding
the	characters	in	double	quotes.

Standard	output	is	discussed	in	the	Section	Linux.

So,	 what	 happened	 when	 you	 pressed	 Enter?	 The	 interactive	 Python	 program
read	the	line	print	("Hello	world	from	Python!"),	split	it	into	the	print	statement	and	the	"Hello	
world	from	Python!"	string,	and	then	executed	the	line,	showing	you	the	output.

5.1.2	Comments

Comments	in	python	are	followed	by	a	#:

5.1.3	Variables

You	can	store	data	into	a	variable	to	access	it	later.	For	instance:

print("Hello	world	from	Python!")

Hello	world	from	Python!

#	This	is	a	comment

hello	=	'Hello	world	from	Python!'

print(hello)

https://github.com/cloudmesh-community/book/blob/master/chapters/prg/python/python.md

This	will	print	again

5.1.4	Data	Types

5.1.4.1	Booleans

A	boolean	 is	 a	 value	 that	 can	 have	 the	 values	 True	 or	 False.	 You	 can	 combine
booleans	with	boolean	operators	such	as	and	and	or

5.1.4.2	Numbers

The	interactive	interpreter	can	also	be	used	as	a	calculator.	For	instance,	say	we
wanted	to	compute	a	multiple	of	21:

We	saw	here	the	print	statement	again.	We	passed	in	the	result	of	the	operation
21	 *	 2.	An	 integer	 (or	 int)	 in	 Python	 is	 a	 numeric	 value	without	 a	 fractional
component	(those	are	called	floating	point	numbers,	or	float	for	short).

The	mathematical	operators	 compute	 the	 related	mathematical	operation	 to	 the
provided	numbers.	Some	operators	are:

Operator Function
* multiplication
/ division
+ addition
- subtraction
** exponent

Exponentiation	xy	is	written	as	x**y	is	x	to	the	yth	power.

Hello	world	from	Python!

print(True	and	True)	#	True

print(True	and	False)	#	False

print(False	and	False)	#	False

print(True	or	True)	#	True

print(True	or	False)	#	True

print(False	or	False)	#	False

print(21	*	2)	#	42

You	can	combine	floats	and	ints:

Note	that	operator	precedence	is	important.	Using	parenthesis	to	indicate	affect
the	order	of	operations	gives	a	difference	results,	as	expected:

5.1.5	Module	Management

A	module	allows	you	to	logically	organize	your	Python	code.	Grouping	related
code	into	a	module	makes	the	code	easier	to	understand	and	use.	A	module	is	a
Python	object	with	arbitrarily	named	attributes	that	you	can	bind	and	reference.
A	module	 is	 a	 file	 consisting	of	Python	 code.	A	module	 can	define	 functions,
classes	and	variables.	A	module	can	also	include	runnable	code.

5.1.5.1	Import	Statement

When	the	interpreter	encounters	an	import	statement,	it	imports	the	module	if	the
module	is	present	in	the	search	path.	A	search	path	is	a	list	of	directories	that	the
interpreter	 searches	 before	 importing	 a	 module.	 The	 from…import	 Statement
Python’s	 from	statement	 lets	you	 import	specific	attributes	 from	a	module	 into
the	current	namespace.	It	is	preferred	to	use	for	each	import	its	own	line	such	as:

When	the	interpreter	encounters	an	import	statement,	it	imports	the	module	if	the
module	is	present	in	the	search	path.	A	search	path	is	a	list	of	directories	that	the
interpreter	searches	before	importing	a	module.

5.1.5.2	The	from	…	import	Statement

Python’s	 from	statement	 lets	you	 import	specific	attributes	 from	a	module	 into
the	current	namespace.	The	from	…	import	has	the	following	syntax:

print(3.14	*	42	/	11	+	4	-	2)	#	13.9890909091

print(2**3)	#	8

print(3.14	*	(42	/	11)	+	4	-	2)	#	11.42

print(1	+	2	*	3	-	4	/	5.0)	#	6.2

print((1	+	2)	*	(3	-	4)	/	5.0)	#	-0.6

import	numpy

import	matplotlib

from	datetime	import	datetime

5.1.6	Date	Time	in	Python

The	datetime	module	supplies	classes	for	manipulating	dates	and	times	in	both
simple	and	complex	ways.	While	date	and	time	arithmetic	is	supported,	the	focus
of	 the	 implementation	 is	 on	 efficient	 attribute	 extraction	 for	 output	 formatting
and	 manipulation.	 For	 related	 functionality,	 see	 also	 the	 time	 and	 calendar
modules.

The	 import	 Statement	 You	 can	 use	 any	 Python	 source	 file	 as	 a	 module	 by
executing	an	import	statement	in	some	other	Python	source	file.

This	module	offers	a	generic	date/time	string	parser	which	is	able	to	parse	most
known	formats	to	represent	a	date	and/or	time.

pandas	 is	 an	 open	 source	 Python	 library	 for	 data	 analysis	 that	 needs	 to	 be
imported.

Create	a	string	variable	with	the	class	start	time

Convert	the	string	to	datetime	format

Creating	a	list	of	strings	as	dates

Convert	Class_dates	strings	into	datetime	format	and	save	the	list	into	variable	a

Use	parse()	to	attempt	to	auto-convert	common	string	formats.	Parser	must	be	a

from	datetime	import	datetime

from	dateutil.parser	import	parse

import	pandas	as	pd

fall_start	=	'08-21-2018'

datetime.strptime(fall_start,	'%m-%d-%Y')	\#

datetime.datetime(2017,	8,	21,	0,	0)

class_dates	=	[

				'8/25/2017',

				'9/1/2017',

				'9/8/2017',

				'9/15/2017',

				'9/22/2017',

				'9/29/2017']

a	=	[datetime.strptime(x,	'%m/%d/%Y')	for	x	in	class_dates]

string	or	character	stream,	not	list.

Use	parse()	on	every	element	of	the	Class_dates	string.

Use	parse,	but	designate	that	the	day	is	first.

Create	 a	dataframe.A	DataFrame	 is	 a	 tabular	data	 structure	 comprised	of	 rows
and	 columns,	 akin	 to	 a	 spreadsheet,	 database	 table.	 DataFrame	 as	 a	 group	 of
Series	objects	that	share	an	index	(the	column	names).

Convert	df[`date`]	from	string	to	datetime

5.1.7	Control	Statements

5.1.7.1	Comparison

parse(fall_start)	#	datetime.datetime(2017,	8,	21,	0,	0)

[parse(x)	for	x	in	class_dates]

#	[datetime.datetime(2017,	8,	25,	0,	0),

#		datetime.datetime(2017,	9,	1,	0,	0),

#		datetime.datetime(2017,	9,	8,	0,	0),

#		datetime.datetime(2017,	9,	15,	0,	0),

#		datetime.datetime(2017,	9,	22,	0,	0),

#		datetime.datetime(2017,	9,	29,	0,	0)]

parse	(fall_start,	dayfirst=True)

#	datetime.datetime(2017,	8,	21,	0,	0)

import	pandas	as	pd

data	=	{

		'dates':	[

				'8/25/2017	18:47:05.069722',

				'9/1/2017	18:47:05.119994',

				'9/8/2017	18:47:05.178768',

				'9/15/2017	18:47:05.230071',

				'9/22/2017	18:47:05.230071',

				'9/29/2017	18:47:05.280592'],

		'complete':	[1,	0,	1,	1,	0,	1]}

df	=	pd.DataFrame(

		data,

		columns	=	['dates','complete'])

print(df)

#																		dates		complete

#		0		8/25/2017	18:47:05.069722	1

#		1			9/1/2017	18:47:05.119994	0

#		2			9/8/2017	18:47:05.178768	1

#		3		9/15/2017	18:47:05.230071	1

#		4		9/22/2017	18:47:05.230071	0

#		5		9/29/2017	18:47:05.280592	1

import	pandas	as	pd

pd.to_datetime(df['dates'])

#	0			2017-08-25	18:47:05.069722

#	1			2017-09-01	18:47:05.119994

#	2			2017-09-08	18:47:05.178768

#	3			2017-09-15	18:47:05.230071

#	4			2017-09-22	18:47:05.230071

#	5			2017-09-29	18:47:05.280592

#	Name:	dates,	dtype:	datetime64[ns]

Computer	 programs	 do	 not	 only	 execute	 instructions.	 Occasionally,	 a	 choice
needs	to	be	made.	Such	as	a	choice	is	based	on	a	condition.	Python	has	several
conditional	operators:

Operator Function
> greater	than
< smaller	than
== equals
!= is	not

Conditions	are	always	combined	with	variables.	A	program	can	make	a	choice
using	the	if	keyword.	For	example:

In	 this	 example,	You	 guessed	 correctly!	 will	 only	 be	 printed	 if	 the	 variable	 x
equals	 to	 four.	 Python	 can	 also	 execute	multiple	 conditions	 using	 the	 elif	 and
else	keywords.

5.1.7.2	Iteration

To	 repeat	 code,	 the	 for	 keyword	 can	 be	 used.	 For	 example,	 to	 display	 the
numbers	from	1	to	10,	we	could	write	something	like	this:

The	second	argument	 to	 range,	11,	 is	not	 inclusive,	meaning	 that	 the	 loop	will
only	get	to	10	before	it	finishes.	Python	itself	starts	counting	from	0,	so	this	code
will	also	work:

x	=	int(input("Guess	x:"))

if	x	==	4:

			print('Correct!')

x	=	int(input("Guess	x:"))

if	x	==	4:

				print('Correct!')

elif	abs(4	-	x)	==	1:

				print('Wrong,	but	close!')

else:

				print('Wrong,	way	off!')

for	i	in	range(1,	11):

			print('Hello!')

for	i	in	range(0,	10):

			print(i	+	1)

In	fact,	the	range	function	defaults	to	starting	value	of	0,	so	it	is	equivalent	to:

We	can	also	nest	loops	inside	each	other:

In	 this	 case	 we	 have	 two	 nested	 loops.	 The	 code	 will	 iterate	 over	 the	 entire
coordinate	range	(0,0)	to	(9,9)

5.1.8	Datatypes

5.1.8.1	Lists

see:	https://www.tutorialspoint.com/python/python_lists.htm

Lists	 in	Python	are	ordered	sequences	of	elements,	where	each	element	can	be
accessed	using	a	0-based	index.

To	define	a	list,	you	simply	list	its	elements	between	square	brackets	‘[]’:

You	can	also	use	a	negative	 index	 if	you	want	 to	start	counting	elements	from
the	 end	of	 the	 list.	Thus,	 the	 last	 element	 has	 index	 -1,	 the	 second	 before	 last
element	has	index	-2	and	so	on:

Python	also	allows	you	to	take	whole	slices	of	the	list	by	specifying	a	beginning
and	end	of	the	slice	separated	by	a	colon

for	i	in	range(10):

			print(i	+	1)

for	i	in	range(0,10):

				for	j	in	range(0,10):

								print(i,'	',j)

names	=	[

		'Albert',

		'Jane',

		'Liz',

		'John',

		'Abby']

#	access	the	first	element	of	the	list

names[0]

#	'Albert'

#	access	the	third	element	of	the	list

names[2]

#	'Liz'

#	access	the	last	element	of	the	list

names[-1]

#	'Abby'

#	access	the	second	last	element	of	the	list

names[-2]

#	'John'

https://www.tutorialspoint.com/python/python_lists.htm

As	you	can	see	from	the	example,	the	starting	index	in	the	slice	is	inclusive	and
the	ending	one,	exclusive.

Python	provides	a	variety	of	methods	for	manipulating	the	members	of	a	list.

You	can	add	elements	with	append’:

As	you	can	see,	the	elements	in	a	list	need	not	be	unique.

Merge	two	lists	with	‘extend’:

Find	the	index	of	the	first	occurrence	of	an	element	with	‘index’:

Remove	elements	by	value	with	‘remove’:

Remove	elements	by	index	with	‘pop’:

Notice	that	pop	returns	the	element	being	removed,	while	remove	does	not.

If	you	are	familiar	with	stacks	from	other	programming	languages,	you	can	use
insert	and	‘pop’:

#	the	middle	elements,	excluding	first	and	last

names[1:-1]

#	['Jane',	'Liz',	'John']

names.append('Liz')

names

#	['Albert',	'Jane',	'Liz',

#		'John',	'Abby',	'Liz']

names.extend(['Lindsay',	'Connor'])

names

#	['Albert',	'Jane',	'Liz',	'John',

#		'Abby',	'Liz',	'Lindsay',	'Connor']

names.index('Liz')	\#	2

names.remove('Abby')

names

#	['Albert',	'Jane',	'Liz',	'John',

#		'Liz',	'Lindsay',	'Connor']

names.pop(1)

#	'Jane'

names

#	['Albert',	'Liz',	'John',

#		'Liz',	'Lindsay',	'Connor']

names.insert(0,	'Lincoln')

names

#	['Lincoln',	'Albert',	'Liz',

#		'John',	'Liz',	'Lindsay',	'Connor']

names.pop()

The	Python	documentation	contains	a	full	list	of	list	operations.

To	 go	 back	 to	 the	 range	 function	 you	 used	 earlier,	 it	 simply	 creates	 a	 list	 of
numbers:

5.1.8.2	Sets

Python	lists	can	contain	duplicates	as	you	saw	previously:

When	we	do	not	want	this	to	be	the	case,	we	can	use	a	set:

Keep	in	mind	that	the	set	is	an	unordered	collection	of	objects,	thus	we	can	not
access	them	by	index:

However,	we	can	convert	a	set	to	a	list	easily:

Notice	that	in	this	case,	the	order	of	elements	in	the	new	list	matches	the	order	in
which	the	elements	were	displayed	when	we	create	the	set.	We	had
set(['Lincoln',	'John',	'Albert',	'Liz',	'Lindsay'])

and	now	we	have
['Lincoln',	'John',	'Albert',	'Liz',	'Lindsay'])

#	'Connor'

names

#	['Lincoln',	'Albert',	'Liz',

#		'John',	'Liz',	'Lindsay']

range(10)

#	[0,	1,	2,	3,	4,	5,	6,	7,	8,	9]

range(2,	10,	2)

#	[2,	4,	6,	8]

names	=	['Albert',	'Jane',	'Liz',

									'John',	'Abby',	'Liz']

unique_names	=	set(names)

unique_names

#	set(['Lincoln',	'John',	'Albert',	'Liz',	'Lindsay'])

unique_names[0]

#	Traceback	(most	recent	call	last):

#			File	"<stdin>",	line	1,	in	<module>

#			TypeError:	'set'	object	does	not	support	indexing

unique_names	=	list(unique_names)

unique_names	[`Lincoln',	`John',	`Albert',	`Liz',	`Lindsay']

unique_names[0]

#	`Lincoln'

https://docs.python.org/2/library/stdtypes.html#set

You	 should	 not	 assume	 this	 is	 the	 case	 in	 general.	 That	 is,	 do	 not	 make	 any
assumptions	about	the	order	of	elements	in	a	set	when	it	is	converted	to	any	type
of	sequential	data	structure.

You	 can	 change	 a	 set’s	 contents	 using	 the	 add,	 remove	 and	 update	 methods
which	 correspond	 to	 the	 append,	 remove	 and	 extend	 methods	 in	 a	 list.	 In
addition	 to	 these,	 set	 objects	 support	 the	 operations	 you	may	 be	 familiar	with
from	mathematical	sets:	union,	intersection,	difference,	as	well	as	operations	 to
check	 containment.	 You	 can	 read	 about	 this	 in	 the	 Python	 documentation	 for
sets.

5.1.8.3	Removal	and	Testing	for	Membership	in	Sets

One	important	advantage	of	a	set	over	a	list	is	that	access	to	elements	is	fast.	 If
you	 are	 familiar	with	 different	 data	 structures	 from	a	Computer	Science	 class,
the	Python	 list	 is	 implemented	by	 an	 array,	while	 the	 set	 is	 implemented	by	 a
hash	table.

We	will	demonstrate	this	with	an	example.	Let	us	say	we	have	a	list	and	a	set	of
the	same	number	of	elements	(approximately	100	thousand):

We	will	 use	 the	 timeit	 Python	module	 to	 time	 100	 operations	 that	 test	 for	 the
existence	of	a	member	in	either	the	list	or	set:

The	 exact	 duration	 of	 the	 operations	 on	 your	 system	will	 be	 different,	 but	 the
take	 away	 will	 be	 the	 same:	 searching	 for	 an	 element	 in	 a	 set	 is	 orders	 of
magnitude	faster	than	in	a	list.	This	is	important	to	keep	in	mind	when	you	work
with	large	amounts	of	data.

5.1.8.4	Dictionaries

import	sys,	random,	timeit

nums_set	=	set([random.randint(0,	sys.maxint)	for	_	in	range(10**5)])

nums_list	=	list(nums_set)

len(nums_set)

#	100000

timeit.timeit('random.randint(0,	sys.maxint)	in	nums',

														setup='import	random;	nums=%s'	%	str(nums_set),	number=100)

#	0.0004038810729980469

timeit.timeit('random.randint(0,	sys.maxint)	in	nums',

														setup='import	random;	nums=%s'	%	str(nums_list),	number=100)

#	0.398054122924804

https://docs.python.org/2/library/stdtypes.html#set
https://docs.python.org/2/library/timeit.html

One	of	the	very	important	data	structures	in	python	is	a	dictionary	also	referred
to	as	dict.

A	dictionary	represents	a	key	value	store:

A	convenient	for	to	print	by	named	attributes	is

This	form	of	printing	with	the	format	statement	and	a	reference	to	data	increases
readability	of	the	print	statements.

You	can	delete	elements	with	the	following	commands:

You	can	iterate	over	a	dict:

5.1.8.5	Dictionary	Keys	and	Values

You	can	retrieve	both	 the	keys	and	values	of	a	dictionary	using	 the	keys()	and
values()	methods	of	the	dictionary,	respectively:

person	=	{

		'Name':	'Albert',

		'Age':	100,

		'Class':	'Scientist'

		}

print("person['Name']:	",	person['Name'])

#	person['Name']:		Albert

print("person['Age']:	",	person['Age'])

#	person['Age']:		100

print("{Name}	{Age}'.format(**data))

del	person['Name']	#	remove	entry	with	key	'Name'

#	person

#	{'Age':	100,	'Class':	'Scientist'}

person.clear()					#	remove	all	entries	in	dict

#	person

#	{}

del	person									#	delete	entire	dictionary

#	person

#	Traceback	(most	recent	call	last):

#		File	"<stdin>",	line	1,	in	<module>

#		NameError:	name	'person'	is	not	defined

person	=	{

		'Name':	'Albert',

		'Age':	100,

		'Class':	'Scientist'

		}

for	item	in	person:

		print(item,	person[item])

#	Age	100

#	Name	Albert

#	Class	Scientist

person.keys()	#	['Age',	'Name',	'Class']

person.values()	#	[100,	'Albert',	'Scientist']

Both	methods	return	lists.	Notice,	however,	that	the	order	in	which	the	elements
appear	 in	 the	 returned	 lists	 (Age,	 Name,	 Class)	 is	 different	 from	 the	 order	 in
which	we	 listed	 the	elements	when	we	declared	 the	dictionary	 initially	 (Name,
Age,	Class).	It	is	important	to	keep	this	in	mind:

	You	cannot	make	any	assumptions	about	the	order	in	which	the
elements	of	a	dictionary	will	be	 returned	by	 the	keys()	and	values()
methods.

However,	you	can	assume	that	if	you	call	keys()	and	values()	in	sequence,	the	order
of	 elements	 will	 at	 least	 correspond	 in	 both	 methods.	 In	 the	 example	 Age
corresponds	to	100,	Name	to	 Albert,	and	Class	to	Scientist,	and	you	will	observe
the	 same	 correspondence	 in	 general	 as	 long	 as	 keys()	 and	 values()	 are	 called	 one
right	after	the	other.

5.1.8.6	Counting	with	Dictionaries

One	application	of	dictionaries	that	frequently	comes	up	is	counting	the	elements
in	a	sequence.	For	example,	say	we	have	a	sequence	of	coin	flips:

The	actual	 list	die_rolls	will	 likely	be	different	when	you	execute	 this	on	your
computer	since	the	outcomes	of	the	die	rolls	are	random.

To	compute	the	probabilities	of	heads	and	tails,	we	could	count	how	many	heads
and	tails	we	have	in	the	list:

In	 addition	 to	 how	 we	 use	 the	 dictionary	 counts	 to	 count	 the	 elements	 of

import	random

die_rolls	=	[

		random.choice(['heads',	'tails'])	for	_	in	range(10)

]

#	die_rolls

#	['heads',	'tails',	'heads',

#		'tails',	'heads',	'heads',

			'tails',	'heads',	'heads',	'heads']

counts	=	{'heads':	0,	'tails':	0}

for	outcome	in	coin_flips:

			assert	outcome	in	counts

			counts[outcome]	+=	1

print('Probability	of	heads:	%.2f'	%	(counts['heads']	/	len(coin_flips)))

#	Probability	of	heads:	0.70

print('Probability	of	tails:	%.2f'	%	(counts['tails']	/	sum(counts.values())))

#	Probability	of	tails:	0.30

coin_flips,	notice	a	couple	things	about	this	example:

1.	 We	 used	 the	 assert	 outcome	 in	 counts	 statement.	 The	 assert	 statement	 in
Python	 allows	 you	 to	 easily	 insert	 debugging	 statements	 in	 your	 code	 to
help	 you	 discover	 errors	 more	 quickly.	 assert	 statements	 are	 executed
whenever	the	internal	Python	__debug__	variable	is	set	to	True,	which	is	always
the	case	unless	you	start	Python	with	the	-O	option	which	allows	you	to	run
optimized	Python.

2.	 When	 we	 computed	 the	 probability	 of	 tails,	 we	 used	 the	 built-in	 sum
function,	which	allowed	us	 to	quickly	 find	 the	 total	number	of	 coin	 flips.
sum	is	one	of	many	built-in	function	you	can	read	about	here.

5.1.9	Functions

You	can	reuse	code	by	putting	it	inside	a	function	that	you	can	call	in	other	parts
of	your	programs.	Functions	are	also	a	good	way	of	grouping	code	that	logically
belongs	 together	 in	 one	 coherent	whole.	A	 function	 has	 a	 unique	 name	 in	 the
program.	Once	you	call	a	function,	it	will	execute	its	body	which	consists	of	one
or	more	lines	of	code:

The	 def	 keyword	 tells	 Python	 we	 are	 defining	 a	 function.	 As	 part	 of	 the
definition,	we	have	the	function	name,	check_triangle,	and	the	parameters	of	the
function	–	variables	that	will	be	populated	when	the	function	is	called.

We	call	the	function	with	arguments	4,	5	and	6,	which	are	passed	in	order	into
the	parameters	a,	b	and	c.	A	function	can	be	called	several	 times	with	varying
parameters.	There	is	no	limit	to	the	number	of	function	calls.

It	 is	 also	 possible	 to	 store	 the	 output	 of	 a	 function	 in	 a	 variable,	 so	 it	 can	 be
reused.

def	check_triangle(a,	b,	c):

return	\

				a	<	b	+	c	and	a	>	abs(b	-	c)	and	\

				b	<	a	+	c	and	b	>	abs(a	-	c)	and	\

				c	<	a	+	b	and	c	>	abs(a	-	b)

				print(check_triangle(4,	5,	6))

def	check_triangle(a,	b,	c):

		return	\

					a	<	b	+	c	and	a	>	abs(b	-	c)	and	\

					b	<	a	+	c	and	b	>	abs(a	-	c)	and	\

					c	<	a	+	b	and	c	>	abs(a	-	b)

https://docs.python.org/2/library/functions.html

5.1.10	Classes

A	class	 is	 an	 encapsulation	 of	 data	 and	 the	 processes	 that	work	 on	 them.	The
data	 is	 represented	 in	member	 variables,	 and	 the	 processes	 are	 defined	 in	 the
methods	of	the	class	(methods	are	functions	inside	the	class).	For	example,	let’s
see	how	to	define	a	Triangle	class:

Python	 has	 full	 object-oriented	 programming	 (OOP)	 capabilities,	 however	 we
can	not	cover	all	of	them	in	this	section,	so	if	you	need	more	information	please
refer	to	the	Python	docs	on	classes	and	OOP.

5.1.11	Modules

Now	write	this	simple	program	and	save	it:

As	a	check,	make	sure	the	file	contains	the	expected	contents	on	the	command
line:

				result	=	check_triangle(4,	5,	6)

				print(result)

class	Triangle(object):

		def	__init__(self,	length,	width,

															height,	angle1,	angle2,	angle3):

					if	not	self._sides_ok(length,	width,	height):

									print('The	sides	of	the	triangle	are	invalid.')

					elif	not	self._angles_ok(angle1,	angle2,	angle3):

									print('The	angles	of	the	triangle	are	invalid.')

					self._length	=	length

					self._width	=	width

					self._height	=	height

					self._angle1	=	angle1

					self._angle2	=	angle2

					self._angle3	=	angle3

	def	_sides_ok(self,	a,	b,	c):

					return	\

									a	<	b	+	c	and	a	>	abs(b	-	c)	and	\

									b	<	a	+	c	and	b	>	abs(a	-	c)	and	\

									c	<	a	+	b	and	c	>	abs(a	-	b)

	def	_angles_ok(self,	a,	b,	c):

					return	a	+	b	+	c	==	180

triangle	=	Triangle(4,	5,	6,	35,	65,	80)

print("Hello	world!")

$	cat	hello.py

print("Hello	world!")

https://docs.python.org/2.7/tutorial/classes.html

To	execute	your	program	pass	the	file	as	a	parameter	to	the	python	command:

Files	 in	 which	 Python	 code	 is	 stored	 are	 called	modules.	 You	 can	 execute	 a
Python	module	form	the	command	line	like	you	just	did,	or	you	can	import	it	in
other	Python	code	using	the	import	statement.

Let	 us	 write	 a	 more	 involved	 Python	 program	 that	 will	 receive	 as	 input	 the
lengths	 of	 the	 three	 sides	 of	 a	 triangle,	 and	will	 output	whether	 they	 define	 a
valid	triangle.	A	triangle	is	valid	if	the	length	of	each	side	is	less	than	the	sum	of
the	lengths	of	the	other	two	sides	and	greater	than	the	difference	of	the	lengths	of
the	other	two	sides.:

Assuming	we	save	the	program	in	a	file	called	check_triangle.py,	we	can	run	it	like	so:

Let	us	break	this	down	a	bit.

1.	 We	are	 importing	 the	print_function	 and	division	modules	 from	python	3
like	we	did	earlier	in	this	section.	It’s	a	good	idea	to	always	include	these	in
your	programs.

2.	 We’ve	defined	a	boolean	expression	that	tells	us	if	the	sides	that	were	input
define	 a	 valid	 triangle.	 The	 result	 of	 the	 expression	 is	 stored	 in	 the

$	python	hello.py

Hello	world!

"""Usage:	check_triangle.py	[-h]	LENGTH	WIDTH	HEIGHT

Check	if	a	triangle	is	valid.

Arguments:

		LENGTH					The	length	of	the	triangle.

		WIDTH						The	width	of	the	traingle.

		HEIGHT					The	height	of	the	triangle.

Options:

-h	--help

"""

from	docopt	import	docopt

if	__name__	==	'__main__':

		arguments	=	docopt(__doc__)

		a,	b,	c	=	int(arguments['LENGTH']),

												int(arguments['WIDTH']),

												int(arguments['HEIGHT'])

		valid_triangle	=	\

						a	<	b	+	c	and	a	>	abs(b	-	c)	and	\

						b	<	a	+	c	and	b	>	abs(a	-	c)	and	\

						c	<	a	+	b	and	c	>	abs(a	-	b)

		print('Triangle	with	sides	%d,	%d	and	%d	is	valid:	%r'	%	(

						a,	b,	c,	valid_triangle

))

$	python	check_triangle.py	4	5	6

Triangle	with	sides	4,	5	and	6	is	valid:	True

valid_triangle	variable.	inside	are	true,	and	False	otherwise.
3.	 We’ve	 used	 the	 backslash	 symbol	 \	 to	 format	 are	 code	 nicely.	 The

backslash	 simply	 indicates	 that	 the	 current	 line	 is	 being	 continued	 on	 the
next	line.

4.	 When	we	run	the	program,	we	do	the	check	if	__name__	==	'__main__'.	 __name__	 is	 an
internal	 Python	 variable	 that	 allows	 us	 to	 tell	 whether	 the	 current	 file	 is
being	run	from	the	command	line	(value	__name__),	or	is	being	imported	by	a
module	 (the	 value	 will	 be	 the	 name	 of	 the	 module).	 Thus,	 with	 this
statement	we’re	just	making	sure	the	program	is	being	run	by	the	command
line.

5.	 We	are	using	 the	docopt	module	 to	handle	command	 line	arguments.	The
advantage	of	using	 this	module	 is	 that	 it	generates	a	usage	help	statement
for	 the	program	and	enforces	 command	 line	 arguments	 automatically.	All
of	this	is	done	by	parsing	the	docstring	at	the	top	of	the	file.

6.	 In	the	print	function,	we	are	using	Python’s	string	formatting	capabilities	to
insert	values	into	the	string	we	are	displaying.

5.1.12	Lambda	Expressions

As	 oppose	 to	 normal	 functions	 in	 Python	 which	 are	 defined	 using	 the	 def

keyword,	 lambda	 functions	 in	 Python	 are	 anonymous	 functions	 which	 do	 not
have	a	name	and	are	defined	using	 the	 lambda	 keyword.	The	generic	 syntax	of	 a
lambda	 function	 is	 in	 form	 oflambda	arguments:	expression,	 as	 shown	 in	 the	 following
example:

As	you	could	probably	guess,	the	result	is:

Now	consider	the	following	examples:

The	 power2	 function	 defined	 in	 the	 expression,	 is	 equivalent	 to	 the	 following
definition:

greeter	=	lambda	x:	print('Hello	%s!'%x)

print(greeter('Albert'))

Hello	Albert!

power2	=	lambda	x:	x	**	2

def	power2(x):

				return	x	**	2

https://docs.python.org/2/library/string.html#format-string-syntax

Lambda	functions	are	useful	for	when	you	need	a	function	for	a	short	period	of
time.	Note	 that	 they	can	also	be	very	useful	when	passed	as	an	argument	with
other	built-in	functions	that	take	a	function	as	an	argument,	e.g.	filter()	and	map().	In
the	next	example	we	show	how	a	lambda	function	can	be	combined	with	the	filer
function.	 Consider	 the	 array	 all_names	 which	 contains	 five	 words	 that	 rhyme
together.	We	want	to	filter	the	words	that	contain	the	word	name.	To	achieve	this,
we	pass	the	function	lambda	x:	'name'	in	x	as	 the	first	argument.	This	 lambda	function
returns	 True	 if	 the	 word	 name	 exists	 as	 a	 sub-string	 in	 the	 string	 x.	 The	 second
argument	of	filter	function	is	the	array	of	names,	i.e.	all_names.

As	you	can	see,	the	names	are	successfully	filtered	as	we	expected.

In	Python3,	filter	function	returns	a	filter	object	or	the	iterator	which	gets	lazily
evaluated	which	means	 neither	we	 can	 access	 the	 elements	 of	 the	 filter	 object
with	index	nor	we	can	use	len()	to	find	the	length	of	the	filter	object.

In	Python,	we	can	have	a	small	usually	a	single	liner	anonymous	function	called
Lambda	 function	which	 can	have	 any	number	of	 arguments	 just	 like	 a	normal
function	but	with	only	one	expression	with	no	return	statement.	The	result	of	this
expression	can	be	applied	to	a	value.

Basic	Syntax:

For	an	example:	a	function	in	python

Same	function	can	written	as	Lambda	function.	This	function	named	as	multiply
is	having	2	arguments	and	returns	their	multiplication.

all_names	=	['surname',	'rename',	'nickname',	'acclaims',	'defame']

filtered_names	=	list(filter(lambda	x:	'name'	in	x,	all_names))

print(filtered_names)

#	['surname',	'rename',	'nickname']

list_a	=	[1,	2,	3,	4,	5]

filter_obj	=	filter(lambda	x:	x	%	2	==	0,	list_a)

#	Convert	the	filer	obj	to	a	list

even_num	=	list(filter_obj)

print(even_num)

#	Output:	[2,	4]

lambda	arguments	:	expression

def	multiply(a,	b):

				return	a*b

#call	the	function

multiply(3*5)	#outputs:	15

Lambda	equivalent	for	this	function	would	be:

Here	 a	 and	 b	 are	 the	 2	 arguments	 and	 a*b	 is	 the	 expression	 whose	 value	 is
returned	as	an	output.

Also	we	don’t	need	to	assign	Lambda	function	to	a	variable.

Lambda	functions	are	mostly	passed	as	parameter	to	a	function	which	expects	a
function	objects	like	in	map	or	filter.

5.1.12.1	map

The	basic	syntax	of	the	map	function	is

map	functions	expects	a	function	object	and	any	number	of	iterables	like	list	or
dictionary.	It	executes	the	function_object	for	each	element	in	the	sequence	and
returns	a	list	of	the	elements	modified	by	the	function	object.

Example:

If	we	want	to	write	same	function	using	Lambda

5.1.12.2	dictionary

Now,	lets	see	how	we	can	interate	over	a	dictionary	using	map	and	lambda	Lets
say	we	have	a	dictionary	object

multiply	=	Lambda	a,	b	:	a*b

print(multiply(3,	5))

#	outputs:	15

(lambda	a,	b	:	a*b)(3*5)

map(function_object,	iterable1,	iterable2,...)

def	multiply(x):

				return	x	*	2

map(multiply2,	[2,	4,	6,	8])

#	Output	[4,	8,	12,	16]

map(lambda	x:	x*2,	[2,	4,	6,	8])

#	Output	[4,	8,	12,	16]

dict_movies	=	[

We	can	 iterate	 over	 this	 dictionary	 and	 read	 the	 elements	 of	 it	 using	map	 and
lambda	functions	in	following	way:

In	 Python3,	 map	 function	 returns	 an	 iterator	 or	 map	 object	 which	 gets	 lazily
evaluated	which	means	 neither	we	 can	 access	 the	 elements	 of	 the	map	 object
with	 index	nor	we	 can	use	 len()	 to	 find	 the	 length	of	 the	map	object.	We	 can
force	convert	the	map	output	i.e.	the	map	object	to	list	as	shown	next:

5.1.13	Iterators

In	Python,	 an	 iterator	protocol	 is	defined	using	 two	methods:	 __iter()__	 and	 next().
The	 former	 returns	 the	 iterator	 object	 and	 latter	 returns	 the	 next	 element	 of	 a
sequence.	Some	advantages	of	iterators	are	as	follows:

Readability
Supports	sequences	of	infinite	length
Saving	resources

There	are	several	built-in	objects	 in	Python	which	 implement	 iterator	protocol,
e.g.	string,	list,	dictionary.	In	the	following	example,	we	create	a	new	class	that
follows	the	iterator	protocol.	We	then	use	the	class	to	generate	log2	of	numbers:

				{'movie':	'avengers',	'comic':	'marvel'},

				{'movie':	'superman',	'comic':	'dc'}]

map(lambda	x	:	x['movie'],	dict_movies)		#	Output:	['avengers',	'superman']

map(lambda	x	:	x['comic'],		dict_movies)		#	Output:	['marvel',	'dc']

map(lambda	x	:	x['movie']	==	"avengers",	dict_movies)

#	Output:	[True,	False]

map_output	=	map(lambda	x:	x*2,	[1,	2,	3,	4])

print(map_output)

#	Output:	map	object:	<map	object	at	0x04D6BAB0>

list_map_output	=	list(map_output)

print(list_map_output)	#	Output:	[2,	4,	6,	8]

from	math	import	log2

class	LogTwo:

				"Implements	an	iterator	of	log	two"

				def	__init__(self,last	=	0):

								self.last	=	last

				def	__iter__(self):

								self.current_num	=	1

								return	self

				def	__next__(self):

								if	self.current_num	<=	self.last:

												result	=	log2(self.current_num)

												self.current_num	+=	1

												return	result

As	 you	 can	 see,	we	 first	 create	 an	 instance	 of	 the	 class	 and	 assign	 its	 __iter()__
function	to	a	variable	called	i.	Then	by	calling	the	next()	function	four	times,	we
get	the	following	output:

As	you	probably	noticed,	the	lines	are	log2()	of	1,	2,	3,	4	respectively.

5.1.14	Generators

Before	 we	 go	 to	 Generators,	 please	 understand	 Iterators.	 Generators	 are	 also
Iterators	but	they	can	only	be	interated	over	once.	Thats	because	Generators	do
not	store	the	values	in	memory	instead	they	generate	the	values	on	the	go.	If	we
want	to	print	those	values	then	we	can	either	simply	iterate	over	them	or	use	the
for	loop.

5.1.14.1	Generators	with	function

For	 example:	we	 have	 a	 function	 named	 as	multiplyBy10	which	 prints	 all	 the
input	numbers	multiplied	by	10.

Now,	if	we	want	to	use	Generators	here	then	we	will	make	following	changes.

								else:

												raise	StopIteration

L	=	LogTwo(5)

i	=	iter(L)

print(next(i))

print(next(i))

print(next(i))

print(next(i))

$	python	iterator.py

0.0

1.0

1.584962500721156

2.0

def	multiplyBy10(numbers):

				result	=	[]

				for	i	in	numbers:

								result.append(i*10)

				return	result

new_numbers	=	multiplyBy10([1,2,3,4,5])

print	new_numbers		#Output:	[10,	20,	30,	40	,50]

def	multiplyBy10(numbers):

				for	i	in	numbers:

								yield(i*10)

new_numbers	=	multiplyBy10([1,2,3,4,5])

In	Generators,	we	use	yield()	 function	 in	place	of	 return().	So	when	we	 try	 to
print	new_numbers	list	now,	it	just	prints	Generators	object.	The	reason	for	this
is	because	Generators	dont	hold	any	value	 in	memory,	 it	yields	one	 result	at	a
time.	So	essentially	it	is	just	waiting	for	us	to	ask	for	the	next	result.	To	print	the
next	result	we	can	just	say	print	next(new_numbers)	,	so	how	it	is	working	is	its
reading	the	first	value	and	squaring	it	and	yielding	out	value	1.	Also	in	this	case
we	can	just	print	next(new_numbers)	5	times	to	print	all	numbers	and	if	we	do	it
for	6th	time	then	we	will	get	an	error	StopIteration	which	meanns	Generators	has
exausted	its	limit	and	it	has	no	6th	element	to	print.

5.1.14.2	Generators	using	for	loop

If	we	now	want	to	print	the	complete	list	of	squared	values	then	we	can	just	do:

The	output	will	be:

5.1.14.3	Generators	with	List	Comprehension

Python	 has	 something	 called	 List	 Comprehension,	 if	we	 use	 this	 then	we	 can
replace	the	complete	function	def	with	just:

Here	 the	 point	 to	 note	 is	 square	 brackets	 []	 in	 line	 1	 is	 very	 important.	 If	we
change	it	to	()	then	again	we	will	start	getting	Generators	object.

print	new_numbers		#Output:	Generators	object

print	next(new_numbers)		#Output:	1

def	multiplyBy10(numbers):

				for	i	in	numbers:

								yield(i*10)

new_numbers	=	multiplyBy10([1,2,3,4,5])

for	num	in	new_numbers:

				print	num

10

20

30

40

50

new_numbers	=	[x*10	for	x	in	[1,2,3,4,5]]

print	new_numbers		#Output:	[10,	20,	30,	40	,50]

new_numbers	=	(x*10	for	x	in	[1,2,3,4,5])

print	new_numbers		#Output:	Generators	object

We	can	get	 the	 individual	elements	again	 from	Generators	 if	we	do	a	 for	 loop
over	new_numbers	like	we	did	previously.	Alternatively,	we	can	convert	it	into	a
list	and	then	print	it.

But	here	if	we	convert	this	into	a	list	then	we	loose	on	performance,	which	we
will	just	see	next.

5.1.14.4	Why	to	use	Generators?

Generators	 are	 better	with	Performance	 because	 it	 does	 not	 hold	 the	 values	 in
memory	and	here	with	the	small	examples	we	provide	its	not	a	big	deal	since	we
are	 dealing	 with	 small	 amount	 of	 data	 but	 just	 consider	 a	 scenario	 where	 the
records	 are	 in	 millions	 of	 data	 set.	 And	 if	 we	 try	 to	 convert	 millions	 of	 data
elements	 into	 a	 list	 then	 that	 will	 definitely	 make	 an	 impact	 on	 memory	 and
performance	because	everything	will	in	memory.

Lets	 see	 an	 example	 on	 how	 Generators	 help	 in	 Performance.	 First,	 without
Generators,	 normal	 function	 taking	 1	 million	 record	 and	 returns	 the
result[people]	for	1	million.

new_numbers	=	(x*10	for	x	in	[1,2,3,4,5])

print	list(new_numbers)		#Output:	[10,	20,	30,	40	,50]

names	=	['John',	'Jack',	'Adam',	'Steve',	'Rick']

majors	=	['Math',

										'CompScience',

										'Arts',

										'Business',

										'Economics']

#	prints	the	memory	before	we	run	the	function

memory	=	mem_profile.memory_usage_resource()

print	(f'Memory	(Before):	{memory}Mb')

def	people_list(people):

				result	=	[]

				for	i	in	range(people):

								person	=	{

																'id'	:	i,

																'name'	:	random.choice(names),

																'major'	:	randon.choice(majors)

																}

								result.append(person)

				return	result

t1	=	time.clock()

people	=	people_list(10000000)

t2	=	time.clock()

#	prints	the	memory	after	we	run	the	function

memory	=	mem_profile.memory_usage_resource()

print	(f'Memory	(After):	{memory}Mb')

print	('Took	{time}	seconds'.format(time=t2-t1))

#Output

Memory	(Before):	15Mb

I	 am	 just	giving	approximate	values	 to	compare	 it	with	next	 execution	but	we
just	try	to	run	it	we	will	see	a	serious	consumption	of	memory	with	good	amount
of	time	taken.

Now	 after	 running	 the	 same	 code	 using	 Generators,	 we	will	 see	 a	 significant
amount	 of	 performance	boost	with	 alomost	 0	Seconds.	And	 the	 reason	behind
this	is	that	in	case	of	Generators,	we	do	not	keep	anything	in	memory	so	system
just	reads	1	at	a	time	and	yields	that.

Memory	(After):	318Mb

Took	1.2	seconds

names	=	['John',	'Jack',	'Adam',	'Steve',	'Rick']

majors	=	['Math',

										'CompScience',

										'Arts',

										'Business',

										'Economics']

#	prints	the	memory	before	we	run	the	function

memory	=	mem_profile.memory_usage_resource()

print	(f'Memory	(Before):	{memory}Mb')

def	people_generator(people):

				for	i	in	xrange(people):

								person	=	{

												'id'	:	i,

												'name'	:	random.choice(names),

												'major'	:	randon.choice(majors)

								}

								yield	person

t1	=	time.clock()

people	=	people_list(10000000)

t2	=	time.clock()

#	prints	the	memory	after	we	run	the	function

memory	=	mem_profile.memory_usage_resource()

print	(f'Memory	(After):	{memory}Mb')

print	('Took	{time}	seconds'.format(time=t2-t1))

#Output

Memory	(Before):	15Mb

Memory	(After):	15Mb

Took	0.01	seconds

6	CLOUDMESH

6.1	INTRODUCTION	☁�

	Learning	Objectives

Introduction	to	the	cloudmesh	API
Using	cmd5	via	cms
Introduction	 to	 cloudmesh	 convenience	 API	 for	 output,	 dotdict,	 shell,
stopwatch,	benchmark	management
Creating	your	own	cms	commands
Cloudmesh	configuration	file
Cloudmesh	inventory

In	this	Chapter	we	like	to	introduce	you	to	cloudmesh	which	provides	you	with	a
number	of	convenient	methods	to	interface	with	the	local	system,	but	also	with
cloud	 services.	We	will	 start	while	 focussing	 on	 some	 simple	API’s	 and	 than
gradually	introduce	the	cloudmesh	shell	which	not	only	provides	a	shell,	but	also
a	commandline	 interface	so	you	can	use	cloudmesh	from	a	 terminal.	This	dual
ability	is	quite	useful	as	we	can	write	cloudmesh	scripts,	but	can	also	invoke	the
functionality	 from	 the	 terminal.	 This	 is	 quite	 an	 important	 distinction	 towards
other	tools	that	only	allow	commandline	interfaces.

Moreover	we	also	sho	you	that	it	is	easy	to	create	new	commands	and	add	them
dynamically	to	the	cloudmesh	shell	via	simple	pip	installs.

Cloudmesh	is	an	evolving	project	and	you	have	the	opportunity	to	improve	it	if
you	see	some	features	missing.

The	manual	of	cloudmesh	can	be	found	at

https://cloudmesh.github.io/cloudmesh-manual

The	API	documentation	is	located	at

https://github.com/cloudmesh-community/book/blob/master/chapters/prg/python/cloudmesh/introduction.md
https://cloudmesh.github.io/cloudmesh-manual

https://cloudmesh.github.io/cloudmesh-manual/api/index.html#cloudmesh-
api

We	will	initially	focus	on	a	subset	of	this	functionality.

6.2	INSTALLATION	☁�
The	installation	of	cloudmesh	is	simple	and	can	technically	be	done	via	pip	by	a
user.	However	you	are	not	a	user,	you	are	a	developer.	Cloudmesh	is	distributed
in	different	topical	repositories	and	in	order	for	developers	to	easily	interact	with
them	we	have	written	a	convenient	cloudmesh-installer	program.

As	 a	 developer	 you	 must	 also	 use	 a	 python	 virtual	 environment	 to	 avoid
affecting	your	system	wide	python	installation.	This	can	be	achieved	while	using
Python3	 from	 python.org	 or	 via	 conda.	 We	 do	 recommend	 that	 you	 use
python.org	as	 this	 is	 the	vanilla	python	 that	most	developers	 in	 the	world	use.
Conda	is	often	used	by	users	of	python	if	they	not	need	to	use	bleeding-edge	but
older	prepackaged	python	tools	and	libraries.

6.2.1	Prerequisite

We	require	you	to	create	a	python	virtual	environment	and	activate	it.	How	to	do
this	was	discussed	in	Section	3.1.	Please	create	 the	ENV3	environment.	Please
activate	it.

6.2.2	Basic	Install

Cloudmesh	can	install	for	developers	a	number	of	bundles.	A	bundle	is	a	set	of	git
repositories	 that	 are	 needed	 for	 a	 particular	 install.	 For	 us,	 we	 are	 mostly
interested	 in	 the	bundles	 cms,	 cloud,	 storage.	We	will	 introduce	you	 to	other	bundles
throughout	this	documentation.

If	you	like	to	find	out	more	about	the	details	of	this	you	can	look	at	cloudmesh-
installer	which	will	be	regularly	updated.

To	make	use	of	the	bundle	and	the	easy	installation	for	developers	please	install
the	cloudmesh-installer	via	pip,	but	make	sure	you	do	this	in	a	python	virtual	env

https://cloudmesh.github.io/cloudmesh-manual/api/index.html#cloudmesh-api
https://github.com/cloudmesh-community/book/blob/master/chapters/prg/python/cloudmesh/installation.md
https://pypi.org/project/cloudmesh-installer/

as	discussed	previously.	 If	not	you	may	 impact	your	system	negatively.	Please
note	 that	we	 are	 not	 responsible	 for	 fixing	 your	 computer.	Naturally,	 you	 can
also	 use	 a	 virtual	machine,	 if	 you	 prefer.	 It	 is	 also	 important	 that	we	 create	 a
uniform	 development	 environment.	 In	 our	 case	 we	 create	 an	 empty	 directory
called	cm	in	which	we	place	the	bundle.

To	see	the	bundle	you	can	use

We	will	start	with	the	basic	cloudmesh	functionality	at	this	time	and	only	install
the	shell	and	some	common	API’s.

These	commands	download	and	install	cloudmesh	shell	into	your	environment.
It	is	important	that	you	use	the	-e	flag

To	see	if	it	works	you	can	use	the	command

You	will	see	an	output.	If	this	does	not	work	for	you,	and	you	can	not	figure	out
the	issue,	please	contact	us	so	we	can	identify	what	went	wrong.

For	more	information,	please	visit	our	Installation	Instructions	for	Developers

6.3	OUTPUT	☁�
Cloudmesh	 provides	 a	 number	 of	 convenient	 API’s	 to	 make	 output	 easier	 or
more	fancyful.

These	API’s	include

Console
Banner
Heading

$	mkdir	cm

$	cd	cm

$	pip	install	cloudmesh-installer

$	cloudmesh-installer	bundles

$	cloudmesh-installer	git	clone	cms

$	cloudmesh-installer	install	cms	-e

$	cms	help

https://cloudmesh.github.io/cloudmesh-manual/installation/install.html#source-installation-for-developers
https://github.com/cloudmesh-community/book/blob/master/chapters/prg/python/cloudmesh/console.md
https://cloudmesh.github.io/cloudmesh-manual/api/cloudmesh.common.html#module-cloudmesh.common.console
https://cloudmesh.github.io/cloudmesh-manual/api/cloudmesh.common.html?highlight=banner#cloudmesh.common.util.banner
https://cloudmesh.github.io/cloudmesh-manual/api/cloudmesh.common.html?highlight=heading#cloudmesh.common.util.HEADING

VERBOSE

6.3.1	Console

Print	 is	 the	usual	 function	 to	output	 to	 the	 terminal.	However,	often	we	 like	 to
have	colored	output	that	helps	us	in	the	notification	to	the	user.	For	this	reason
we	 have	 a	 simple	 Console	 class	 that	 has	 several	 built-in	 features.	 You	 can	 even
switch	and	define	your	own	color	schemes.

In	 case	 of	 the	 error	 message	 we	 also	 have	 convenient	 flags	 that	 allow	 us	 to
include	the	traceback	in	the	output.

The	prefix	can	be	switched	on	and	off	with	 the	prefix	 flag,	while	 the	 traceflag
switches	on	and	of	if	the	trace	should	be	set.

The	 verbosity	 of	 the	 output	 is	 controlled	 via	 variables	 that	 are	 stored	 in	 the	
~/.cloudmesh	directory.

For	more	features,	see	API:	Console

6.3.2	Banner

In	case	you	need	a	banner	you	can	do	this	with

For	more	features,	see	API:	Banner

from	cloudmesh.common.console	import	Console

msg	=	"my	message"

Console.ok(msg)	#	prins	a	green	message

Console.error(msg)	#	prins	a	red	message	proceeded	with	ERROR

Console.msg(msg)	#	prins	a	regular	black	message

Console.error(msg,	prefix=True,	traceflag=True)

from	cloudmesh.common.variables	import	Variables

variables	=	Variables()

variables['debug']	=	True

variables['trace']	=	True

variables['verbose']	=	10

from	cloudmesh.common.util	import	banner

banner("my	text")

https://cloudmesh.github.io/cloudmesh-manual/api/cloudmesh.common.html?highlight=verbose#cloudmesh.common.debug.VERBOSE
https://cloudmesh.github.io/cloudmesh-manual/api/cloudmesh.common.html#module-cloudmesh.common.console
https://cloudmesh.github.io/cloudmesh-manual/api/cloudmesh.common.html?highlight=banner#cloudmesh.common.util.banner

6.3.3	Heading

A	particular	useful	function	is	HEADING()	which	prints	the	method	name.

The	 invocation	 of	 the	 HEADING()	 function	 doit	 prints	 a	 banner	 with	 the	 name
information.	The	reason	we	did	not	do	it	as	a	decorator	is	that	you	can	place	the	
HEADING()	function	in	an	arbitrary	location	of	the	method	body.

For	more	features,	see	API:	Heading

6.3.4	VERBOSE

VERBOSE	is	a	very	useful	method	allowing	you	to	print	a	dictionary.	Not	only
will	it	print	the	dict,	but	it	will	also	provide	you	with	the	information	in	which
file	it	is	used	and	which	line	number.	It	will	even	print	the	name	of	the	dict	 that
you	use	in	your	code.

To	 use	 this	 you	will	 have	 to	 enable	 the	 debugging	methods	 for	 cloudmesh	 as
discused	in	Section	6.3.1

For	more	features,	please	see	VERBOSE

6.3.5	Using	print	and	pprint

In	many	cases	it	may	be	sufficient	to	use	print	and	pprint	for	debugging.	However,
as	the	code	is	big	and	you	may	forget	where	you	placed	print	statements	or	the
print	statements	may	have	been	added	by	others,	we	recommend	that	you	use	the
VERBOSE	 function.	 If	 you	 use	 print	 or	 pprint	 we	 recommend	 using	 a	 unique
prefix,	such	as:

from	cloudmesh.common.util	import	HEADING

class	Example(object):

				def	doit(self):

								HEADING()

								print	("Hello")

from	cloudmesh.common.debug	import	VERBOSE

m	=	{"key":	"value"}

VERBOSE(m)

from	pprint	import	pprint

https://cloudmesh.github.io/cloudmesh-manual/api/cloudmesh.common.html?highlight=heading#cloudmesh.common.util.HEADING
https://cloudmesh.github.io/cloudmesh-manual/api/cloudmesh.common.html?highlight=verbose#cloudmesh.common.debug.VERBOSE

6.4	DICTIONARIES	☁�
6.4.1	Dotdict

For	 simple	 dictionaries	 we	 sometimes	 like	 to	 simplify	 the	 notation	 with	 a	 .

instead	of	using	the	[]:

You	can	achieve	this	with	dotdict

Now	you	can	either	call

or

This	is	espacially	useful	in	if	conditions	as	it	may	be	easier	to	read	and	write

and	is	the	same	as

For	more	features,	see	API:	dotdict

6.4.2	FlatDict

d	=	{"sample":	"value"}

print("MYDEBUG:")

pprint	(d)

#	or	with	print

print("MYDEBUG:",	d)

from	cloudmesh.common.dotdict	import	dotdict

data	=	{

				"name":	"Gregor"

}

data	=	dotdict(data)

data["name"]

data.name

if	data.name	is	"Gregor":

				print("this	is	quite	readable")

if	data["name"]	is	"Gregor":

				print("this	is	quite	readable")

https://github.com/cloudmesh-community/book/blob/master/chapters/prg/python/cloudmesh/dict.md
https://cloudmesh.github.io/cloudmesh-manual/api/cloudmesh.common.html?highlight=dotdict#module-cloudmesh.common.dotdict

In	some	cases	it	is	useful	to	be	able	to	flatten	out	dictionaries	that	contain	dicts
within	dicts.	For	this	we	can	use	FlatDict.

This	will	be	converted	to	a	dict	with	the	following	structure.

With	 sep	 you	 can	 change	 the	 sepaerator	 between	 the	 nested	 dict	 attributes.	 For
more	features,	see	API:	dotdict

6.4.3	Printing	Dicts

In	 case	 we	 want	 to	 print	 dicts	 and	 lists	 of	 dicts	 in	 various	 formats,	 we	 have
included	a	simple	Printer	that	can	print	a	dict	in	yaml,	json,	table,	and	csv	format.

The	function	can	even	guess	from	the	passed	parameters	what	the	input	format	is
and	uses	the	appropriate	internal	function.

A	common	example	is

from	cloudmesh.common.Flatdict	import	FlatDict

data	=	{

				"name":	"Gregor"

				"address":	{

								"city":	"Bloomington",

								"state":	"IN"

				}

}

flat	=	FlatDict(data,	sep=".")

flat	=	{

				"name":	"Gregor"

				"address.city":	"Bloomington",

				"address.state":	"IN"

}

from	pprint	import	pprint

from	cloudmesh.common.Printer	import	Printer

data	=	[

				{

								"name":	"Gregor",

								"address":	{

												"street":	"Funny	Lane	11",

												"city":	"Cloudville"

								}

				},

				{

								"name":	"Albert",

								"address":	{

												"street":	"Memory	Lane	1901",

												"city":	"Cloudnine"

								}

				}

]

https://cloudmesh.github.io/cloudmesh-manual/api/cloudmesh.common.html?highlight=flatdict#module-cloudmesh.common.FlatDict

For	more	features,	see	API:	Printer

More	examples	are	available	in	the	source	code	as	tests

6.5	SHELL	☁�
Python	 provides	 a	 sophisticated	 method	 for	 starting	 background	 processes.
However	 in	many	cases	 it	 is	quite	complex	 to	 interact	with	 it.	 It	also	does	not
provide	convenient	wrappers	that	we	can	use	to	start	them	in	a	pythonic	fashion.
For	this	reason	we	have	written	a	primitive	 Shell	class	 that	provides	just	enough
functionality	to	be	useful	in	many	cases.

Let	 us	 review	 some	 examples	where	 result	 is	 set	 to	 the	output	 of	 the	 command
being	executed.

For	many	common	commands,	we	provide	built-in	functions.	For	example:

The	list	includes	(naturally	the	commands	must	be	available	on	your	OS.	If	the
shell	command	is	not	available	on	your	OS,	please	help	us	improving	the	code	to
either	 provide	 functions	 that	 work	 on	 your	 OS	 or	 develop	 with	 us	 platform
independent	functionality	of	a	subset	of	the	functionality	for	the	shell	command

pprint(data)

table	=	Printer.flatwrite(data,

																										sort_keys=["name"],

																										order=["name",	"address.street",	"address.city"],

																										header=["Name",	"Street",	"City"],

																										output='table')

print(table)

from	cloudmesh.common.Shell	import	Shell

result	=	Shell.execute('pwd')

print(result)

result	=	Shell.execute('ls',	["-l",	"-a"])

print(result)

result	=	Shell.execute('ls',	"-l	-a")

print(result)

result	=	Shell.ls("-aux")

print(result)

result	=	Shell.ls("-a",	"-u",	"-x")

print(result)

result	=	Shell.pwd()

print(result)

https://cloudmesh.github.io/cloudmesh-manual/api/cloudmesh.common.html?highlight=flatdict#module-cloudmesh.common.Printer
https://github.com/cloudmesh/cloudmesh-common/tree/master/tests
https://github.com/cloudmesh-community/book/blob/master/chapters/prg/python/cloudmesh/shell.md

that	we	may	benefit	from.

VBoxManage(cls,	*args)

bash(cls,	*args)

blockdiag(cls,	*args)

brew(cls,	*args)

cat(cls,	*args)

check_output(cls,	*args,	**kwargs)

check_python(cls)

cm(cls,	*args)

cms(cls,	*args)

command_exists(cls,	name)

dialog(cls,	*args)

edit(filename)

execute(cls,*args)

fgrep(cls,	*args)

find_cygwin_executables(cls)

find_lines_with(cls,	lines,	what)

get_python(cls)

git(cls,	*args)

grep(cls,	*args)

head(cls,	*args)

install(cls,	name)

install(cls,	name)

keystone(cls,	*args)

kill(cls,	*args)

live(cls,	command,	cwd=None)

ls(cls,	*args)

mkdir(cls,	directory)

mongod(cls,	*args)

nosetests(cls,	*args)

nova(cls,	*args)

operating_system(cls)

pandoc(cls,	*args)

ping(cls,	host=None,	count=1)

pip(cls,	*args)

ps(cls,	*args)

pwd(cls,	*args)

rackdiag(cls,	*args)

remove_line_with(cls,	lines,	what)

rm(cls,	*args)

rsync(cls,	*args)

scp(cls,	*args)

sh(cls,	*args)

sort(cls,	*args)

ssh(cls,	*args)

sudo(cls,	*args)

tail(cls,	*args)

terminal(cls,	command='pwd')

terminal_type(cls)

unzip(cls,	source_filename,	dest_dir)

vagrant(cls,	*args)

version(cls,	name)

which(cls,	command)

For	more	features,	please	see	Shell

6.6	STOPWATCH	☁�
Often	 you	 find	 yourself	 in	 a	 situation	 where	 you	 like	 to	 measure	 the	 time
between	 two	 events.	We	 provide	 a	 simple	 StopWatch	 that	 allows	 you	 not	 only	 to
measure	a	number	of	times,	but	also	to	print	them	out	in	a	convenient	format.

To	print	them,	you	can	also	use:

For	more	features,	please	seee	StopWatch

from	cloudmesh.common.StopWatch	import	StopWatch

from	time	import	sleep

StopWatch.start("test")

sleep(1)

StopWatch.stop("test")

print	(StopWatch.get("test"))

StopWatch.benchmark()

https://cloudmesh.github.io/cloudmesh-manual/api/cloudmesh.common.html?highlight=shell#module-cloudmesh.common.Shell
https://github.com/cloudmesh-community/book/blob/master/chapters/prg/python/cloudmesh/stopwatch.md
https://cloudmesh.github.io/cloudmesh-manual/api/cloudmesh.common.html?highlight=stopwatch#module-cloudmesh.common.StopWatch

6.7	CLOUDMESH	COMMAND	SHELL	☁�

6.7.1	CMD5

Python’s	 CMD	 (https://docs.python.org/2/library/cmd.html)	 is	 a	 very	 useful
package	to	create	command	line	shells.	However	it	does	not	allow	the	dynamic
integration	of	newly	defined	commands.	Furthermore,	additions	to	CMD	need	to
be	 done	within	 the	 same	 source	 tree.	 To	 simplify	 developing	 commands	 by	 a
number	 of	 people	 and	 to	 have	 a	 dynamic	 plugin	 mechanism,	 we	 developed
cmd5.	It	is	a	rewrite	on	our	earlier	efforts	in	cloudmesh	client	and	cmd3.

6.7.1.1	Resources

The	source	code	for	cmd5	is	located	in	github:

https://github.com/cloudmesh/cmd5

We	 have	 discussed	 in	 Section	 6.2	 how	 to	 install	 cloudmesh	 as	 developer	 and
have	access	to	the	source	code	in	a	directory	called	cm.	As	you	read	this	document
we	assume	you	are	a	developer	and	can	skip	the	next	section.

6.7.1.2	Installation	from	source

WARNING:	DO	NOT	 EXECUTE	 THIS	 IF	YOU	ARE	A	DEVELOPER	OR
YOUR	ENVIRONMENT	WILL	NOT	PROPERLY	WORK.

However,	if	you	are	a	user	of	cloudmesh	you	can	install	it	with

6.7.1.3	Execution

To	 run	 the	 shell	 you	 can	 activate	 it	 with	 the	 cms	 command.	 cms	 stands	 for
cloudmesh	shell:

It	will	print	the	banner	and	enter	the	shell:

$	pip	install	cloudmesh-cmd5

(ENV2)	$	cms

https://github.com/cloudmesh-community/book/blob/master/chapters/prg/python/cloudmesh/python-cmd5.md
https://docs.python.org/2/library/cmd.html
https://github.com/cloudmesh/cmd5

To	see	the	list	of	commands	you	can	say:

To	see	the	manual	page	for	a	specific	command,	please	use:

6.7.1.4	Create	your	own	Extension

One	of	the	most	important	features	of	CMD5	is	its	ability	to	extend	it	with	new
commands.	This	is	done	via	packaged	name	spaces.	We	recommend	you	name	is
cloudmesh-mycommand,	where	mycommand	 is	 the	name	of	 the	command	 that
you	 like	 to	 create.	 This	 can	 easily	 be	 done	 while	 using	 the	 sys*	 cloudmesh
command	 (we	 suggest	 you	 use	 a	 different	 name	 than	 gregor	 maybe	 your
firstname):

It	will	download	a	template	from	cloudmesh	called	cloudmesh-bar	and	generate	a	new
directory	cloudmesh-gregor	with	all	the	needed	files	to	create	your	own	command	and
register	 it	 dynamically	 with	 cloudmesh.	 All	 you	 have	 to	 do	 is	 to	 cd	 into	 the
directory	and	install	the	code:

Adding	your	own	command	is	easy.	It	is	important	that	all	objects	are	defined	in
the	 command	 itself	 and	 that	 no	global	 variables	 be	use	 in	 order	 to	 allow	each
shell	 command	 to	 stand	 alone.	 Naturally	 you	 should	 develop	 API	 libraries
outside	 of	 the	 cloudmesh	 shell	 command	 and	 reuse	 them	 in	 order	 to	 keep	 the
command	code	as	small	as	possible.	We	place	the	command	in:

+---+

|			____	_																	_																					_						|

|		/	___|	|	___		_			_		__|	|_	__	___			___		___|	|__			|

|	|	|			|	|/	_	\|	|	|	|/	_`	|	'_	`	_	\	/	_	\/	__|	'_	\		|

|	|	|___|	|	(_)	|	|_|	|	(_|	|	|	|	|	|	|		__/__	\	|	|	|	|

|		____|_|___/	__,_|__,_|_|	|_|	|_|___||___/_|	|_|	|

+---+

|																		Cloudmesh	CMD5	Shell																	|

+---+

cms>

cms>	help

help	COMMANDNAME

$	cms	sys	command	generate	gregor

$	cd	cloudmesh-gregor

$	python	setup.py	install

#	pip	install	.

cloudmsesh/mycommand/command/gregor.py

Now	you	can	go	ahead	and	modify	your	command	in	that	directory.	It	will	look
similar	to	(if	you	used	the	command	name	gregor):

An	 important	 difference	 to	 other	 CMD	 solutions	 is	 that	 our	 commands	 can
leverage	 (besides	 the	 standard	definition),	 docopts	 as	 a	way	 to	define	 the	manual
page.	 This	 allows	 us	 to	 use	 arguments	 as	 dict	 and	 use	 simple	 if	 conditions	 to
interpret	 the	 command.	 Using	 docopts	 has	 the	 advantage	 that	 contributors	 are
forced	to	think	about	the	command	and	its	options	and	document	them	from	the
start.	Previously	we	did	not	use	but	argparse	and	click.	However	we	noticed	that
for	our	contributors	both	systems	lead	to	commands	that	were	either	not	properly
documented	or	 the	developers	delivered	 ambiguous	 commands	 that	 resulted	 in
confusion	and	wrong	usage	by	subsequent	users.	Hence,	we	do	recommend	that
you	 use	 docopts	 for	 documenting	 cmd5	 commands.	 The	 transformation	 is
enabled	by	the	@command	decorator	that	generates	a	manual	page	and	creates	a
proper	 help	 message	 for	 the	 shell	 automatically.	 Thus	 there	 is	 no	 need	 to
introduce	a	separate	help	method	as	would	normally	be	needed	 in	CMD	while
reducing	the	effort	it	takes	to	contribute	new	commands	in	a	dynamic	fashion.

6.7.1.5	Bug:	Quotes

We	have	one	bug	in	cmd5	that	relates	to	the	use	of	quotes	on	the	commandline

For	example	you	need	to	say

from	__future__	import	print_function

from	cloudmesh.shell.command	import	command

from	cloudmesh.shell.command	import	PluginCommand

class	GregorCommand(PluginCommand):

				@command

				def	do_gregor(self,	args,	arguments):

								"""

								::

										Usage:

																gregor	-f	FILE

																gregor	list

										This	command	does	some	useful	things.

										Arguments:

														FILE			a	file	name

										Options:

														-f						specify	the	file

								"""

								print(arguments)

								if	arguments.FILE:

											print("You	have	used	file:	",	arguments.FILE)

								return	""

$	cms	gregor	-f	\"file	name	with	spaces\"

If	you	 like	 to	help	us	 fix	 this	 that	would	be	great.	 it	 requires	 the	use	of	 shlex.
Unfortuantly	we	did	not	yet	time	to	fix	this	“feature”.

6.8	EXERCISES	☁�
When	doing	your	assignment,	make	 sure	you	 label	 the	programs	appropriately
with	 comments	 that	 clearly	 identify	 the	 assignment.	Place	 all	 assignments	 in	 a
folder	on	github	named	“cloudmesh-exercises”

For	example	name	the	program	solving	E.Cloudmesh.Common.1	e-cloudmesh-1.py	and
so	on.	For	more	complex	assignments	you	can	name	them	as	you	like,	as	long	as
in	the	file	you	have	a	comment	such	as
#	fa19-516-000	E.Cloudmesh.Common.1

at	 the	 beginning	 of	 the	 file.	 Please	 do	 not	 store	 any	 screenshots	 in	 your	 git
repository	of	your	working	program.

6.8.1	Cloudmesh	Common

E.Cloudmesh.Common.1

Develop	a	program	that	demonstrates	the	use	of	banner,	HEADING,	and	VERBOSE.

E.Cloudmesh.Common.2

Develop	a	program	that	demonstrates	the	use	of	dotdict.

E.Cloudmesh.Common.3

Develop	a	program	that	demonstrates	the	use	of	FlatDict.

E.Cloudmesh.Common.4

Develop	a	program	that	demonstrates	the	use	of	cloudmesh.common.Shell.

E.Cloudmesh.Common.5

Develop	a	program	that	demonstrates	the	use	of	cloudmesh.common.StopWatch.

https://docs.python.org/3/library/shlex.html
https://github.com/cloudmesh-community/book/blob/master/chapters/prg/python/cloudmesh/exercises.md

6.8.2	Cloudmesh	Shell

E.Cloudmesh.Shell.1

Install	cmd5	and	the	command	cms	on	your	computer.

E.	Cloudmesh.Shell.2

Write	a	new	command	with	your	firstname	as	the	command	name.

E.Cloudmesh.Shell.3

Write	 a	 new	 command	 and	 experiment	 with	 docopt	 syntax	 and
argument	interpretation	of	the	dict	with	if	conditions.

E.Cloudmesh.Shell.4

If	you	have	useful	extensions	that	you	like	us	to	add	by	default,	please
work	with	us.

E.Cloudmesh.Shell.5

At	this	 time	one	needs	to	quote	in	some	commands	the	 "	 in	the	shell
command	line.	Develop	and	test	code	that	fixes	this.

7	LIBRARIES

7.1	PYTHON	MODULES	☁�
Often	you	may	need	functionality	that	is	not	present	in	Python’s	standard	library.
In	this	case	you	have	two	option:

implement	the	features	yourself
use	a	third-party	library	that	has	the	desired	features.

Often	you	can	find	a	previous	implementation	of	what	you	need.	Since	this	is	a
common	situation,	there	is	a	service	supporting	it:	the	Python	Package	Index	(or
PyPi	for	short).

Our	 task	 here	 is	 to	 install	 the	 autopep8	 tool	 from	 PyPi.	 This	will	 allow	 us	 to
illustrate	the	use	if	virtual	environments	using	the	pyenv	or	virtualenv	command,
and	installing	and	uninstalling	PyPi	packages	using	pip.

7.1.1	Updating	Pip

It	is	important	that	you	have	the	newest	version	of	pip	installed	for	your	version
of	 python.	 Let	 us	 assume	 your	 python	 is	 registered	 with	 python	 and	 you	 use
pyenv,	than	you	can	update	pip	with

without	 interfering	with	 a	 potential	 system	wide	 installed	 version	 of	 p	 ip	 that
may	be	needed	by	 the	 system	default	version	of	python.	See	 the	 section	about
pyenv	for	more	details

7.1.2	Using	pip	to	Install	Packages

Let	us	now	look	at	another	 important	 tool	for	Python	development:	 the	Python
Package	Index,	or	PyPI	for	short.	PyPI	provides	a	large	set	of	third-party	python
packages.	 If	 you	want	 to	do	 something	 in	python,	 first	 check	pypi,	 as	odd	 are
someone	already	ran	into	the	problem	and	created	a	package	solving	it.

pip	install	-U	pip

https://github.com/cloudmesh-community/book/blob/master/chapters/prg/python/python-libraries.md
https://pypi.python.org/pypi

In	order	to	install	package	from	PyPI,	use	the	pip	command.	We	can	search	for
PyPI	for	packages:

It	appears	that	the	top	two	results	are	what	we	want	so	install	them:

This	will	 cause	 pip	 to	 download	 the	 packages	 from	PyPI,	 extract	 them,	 check
their	 dependencies	 and	 install	 those	 as	 needed,	 then	 install	 the	 requested
packages.

You	can	skip	‘–trusted-host	pypi.python.org’	option	if	you	have

patched	urllib3	on	Python	2.7.9.

7.1.3	GUI

7.1.3.1	GUIZero

Install	guizero	with	the	following	command:

For	a	comprehensive	tutorial	on	guizero,	click	here.

7.1.3.2	Kivy

You	can	install	Kivy	on	macOS	as	follows:

A	hello	world	program	for	kivy	 is	 included	 in	 the	cloudmesh.robot	 repository.
Which	you	can	fine	here

https://github.com/cloudmesh/cloudmesh.robot/tree/master/projects/kivy

To	 run	 the	 program,	 please	 download	 it	 or	 execute	 it	 in	 cloudmesh.robot	 as

$	pip	search	--trusted-host	pypi.python.org	autopep8	pylint

$	pip	install	--trusted-host	pypi.python.org	autopep8	pylint

sudo	pip	install	guizero

brew	install	pkg-config	sdl2	sdl2_image	sdl2_ttf	sdl2_mixer	gstreamer

pip	install	-U	Cython

pip	install	kivy

pip	install	pygame

https://lawsie.github.io/guizero/howto/
https://github.com/cloudmesh/cloudmesh.robot/tree/master/projects/kivy

follows:

To	create	stand	alone	packages	with	kivy,	please	see:

7.1.4	Formatting	and	Checking	Python	Code

First,	get	the	bad	code:

Examine	the	code:

As	 you	 can	 see,	 this	 is	 very	 dense	 and	 hard	 to	 read.	 Cleaning	 it	 up	 by	 hand
would	be	a	time-consuming	and	error-prone	process.	Luckily,	this	is	a	common
problem	so	there	exist	a	couple	packages	to	help	in	this	situation.

7.1.5	Using	autopep8

We	can	now	run	the	bad	code	through	autopep8	to	fix	formatting	problems:

Let	us	look	at	the	result.	This	is	considerably	better	than	before.	It	is	easy	to	tell
what	the	example1	and	example2	functions	are	doing.

It	 is	 a	 good	 idea	 to	 develop	 a	 habit	 of	 using	 autopep8	 in	 your	 python-
development	 workflow.	 For	 instance:	 use	 autopep8	 to	 check	 a	 file,	 and	 if	 it
passes,	make	any	changes	in	place	using	the	-i	flag:

If	you	use	pyCharm	you	have	the	ability	to	use	a	similar	function	while	pressing
on	Inspect	Code.

7.1.6	Writing	Python	3	Compatible	Code

cd	cloudmesh.robot/projects/kivy

python	swim.py

-		https://kivy.org/docs/guide/packaging-osx.html

$	wget	--no-check-certificate	http://git.io/pXqb	-O	bad_code_example.py

$	emacs	bad_code_example.py

$	autopep8	bad_code_example.py	>code_example_autopep8.py

$	autopep8	file.py				#	check	output	to	see	of	passes

$	autopep8	-i	file.py	#	update	in	place

To	write	python	2	and	3	compatible	code	we	recommend	that	you	take	a	look	at:
http://python-future.org/compatible_idioms.html

7.1.7	Using	Python	on	FutureSystems

This	is	only	important	if	you	use	Futuresystems	resources.

In	order	to	use	Python	you	must	 log	into	your	FutureSystems	account.	Then	at
the	shell	prompt	execute	the	following	command:

This	will	make	the	python	and	virtualenv	commands	available	to	you.

The	details	of	what	the	module	load	command	does	are	described	in	the	future
lesson	modules.

7.1.8	Ecosystem

7.1.8.1	pypi

The	 Python	 Package	 Index	 is	 a	 large	 repository	 of	 software	 for	 the	 Python
programming	language	containing	a	 large	number	of	packages,	many	of	which
can	be	found	on	pypi.	The	nice	 thing	about	pypi	 is	 that	many	packages	can	be
installed	with	the	program	‘pip’.

To	do	so	you	have	 to	 locate	 the	<package_name>	for	example	with	 the	search
function	in	pypi	and	say	on	the	commandline:

where	 package_name	 is	 the	 string	 name	 of	 the	 package.	 an	 example	 would	 be	 the
package	called	cloudmesh_client	which	you	can	install	with:

If	all	goes	well	the	package	will	be	installed.

7.1.8.2	Alternative	Installations

$	module	load	python

$	pip	install	<package_name>

$	pip	install	cloudmesh_client

http://python-future.org/compatible_idioms.html
https://pypi.python.org/pypi

The	 basic	 installation	 of	 python	 is	 provided	 by	 python.org.	 However	 others
claim	 to	 have	 alternative	 environments	 that	 allow	 you	 to	 install	 python.	 This
includes

Canopy
Anaconda
IronPython

Typically	 they	 include	 not	 only	 the	 python	 compiler	 but	 also	 several	 useful
packages.	It	is	fine	to	use	such	environments	for	the	class,	but	it	should	be	noted
that	 in	 both	 cases	 not	 every	 python	 library	may	 be	 available	 for	 install	 in	 the
given	environment.	For	example	if	you	need	to	use	cloudmesh	client,	it	may	not
be	available	as	conda	or	Canopy	package.	This	 is	also	 the	case	for	many	other
cloud	related	and	useful	python	libraries.	Hence,	we	do	recommend	that	 if	you
are	 new	 to	 python	 to	 use	 the	 distribution	 form	 python.org,	 and	 use	 pip	 and
virtualenv.

Additionally	 some	 python	 version	 have	 platform	 specific	 libraries	 or
dependencies.	For	example	coca	libraries,	.NET	or	other	frameworks	are	examples.
For	the	assignments	and	the	projects	such	platform	dependent	libraries	are	not	to
be	used.

If	 however	 you	 can	 write	 a	 platform	 independent	 code	 that	 works	 on	 Linux,
macOS	and	Windows	while	using	the	python.org	version	but	develop	it	with	any
of	the	other	tools	that	is	just	fine.	However	it	is	up	to	you	to	guarantee	that	this
independence	 is	 maintained	 and	 implemented.	 You	 do	 have	 to	 write
requirements.txt	files	that	will	install	the	necessary	python	libraries	in	a	platform
independent	 fashion.	The	homework	assignment	PRG1	has	even	a	 requirement
to	do	so.

In	order	to	provide	platform	independence	we	have	given	in	the	class	a	minimal
python	version	that	we	have	tested	with	hundreds	of	students:	python.org.	If	you
use	any	other	version,	that	is	your	decision.	Additionally	some	students	not	only
use	python.org	but	have	used	iPython	which	is	fine	too.	However	this	class	is	not
only	about	python,	but	also	about	how	to	have	your	code	run	on	any	platform.
The	homework	is	designed	so	that	you	can	identify	a	setup	that	works	for	you.

However	we	have	concerns	if	you	for	example	wanted	to	use	chameleon	cloud

https://store.enthought.com/downloads/#default
https://www.continuum.io/downloads
http://ironpython.net/

which	we	require	you	to	access	with	cloudmesh.	cloudmesh	is	not	available	as
conda,	canopy,	or	other	framework	package.	Cloudmesh	client	is	available	form
pypi	which	is	standard	and	should	be	supported	by	the	frameworks.	We	have	not
tested	cloudmesh	on	any	other	python	version	then	python.org	which	is	the	open
source	community	standard.	None	of	the	other	versions	are	standard.

In	 fact	we	 had	 students	 over	 the	 summer	 using	 canopy	on	 their	machines	 and
they	got	confused	as	 they	now	had	multiple	python	versions	and	did	not	know
how	 to	 switch	between	 them	and	activate	 the	 correct	 version.	Certainly	 if	 you
know	how	to	do	that,	than	feel	free	to	use	canopy,	and	if	you	want	to	use	canopy
all	 this	 is	up	to	you.	However	 the	homework	and	project	requires	you	to	make
your	program	portable	to	python.org.	If	you	know	how	to	do	that	even	if	you	use
canopy,	anaconda,	or	any	other	python	version	that	is	fine.	Graders	will	test	your
programs	 on	 a	 python.org	 installation	 and	 not	 canopy,	 anaconda,	 ironpython
while	using	virtualenv.	 It	 is	obvious	why.	 If	you	do	not	know	that	answer	you
may	want	 to	 think	about	 that	every	 time	they	test	a	program	they	need	to	do	a
new	virtualenv	and	run	vanilla	python	in	it.	If	we	were	to	run	two	installs	in	the
same	system,	this	will	not	work	as	we	do	not	know	if	one	student	will	cause	a
side	effect	 for	another.	Thus	we	as	 instructors	do	not	 just	have	 to	 look	at	your
code	 but	 code	 of	 hundreds	 of	 students	 with	 different	 setups.	 This	 is	 a	 non
scalable	solution	as	every	time	we	test	out	code	from	a	student	we	would	have	to
wipe	out	 the	OS,	 install	 it	new,	 install	an	new	version	of	whatever	python	you
have	 elected,	 become	 familiar	with	 that	 version	 and	 so	 on	 and	 on.	This	 is	 the
reason	 why	 the	 open	 source	 community	 is	 using	 python.org.	We	 follow	 best
practices.	Using	other	versions	is	not	a	community	best	practice,	but	may	work
for	an	individual.

We	 have	 however	 in	 regards	 to	 using	 other	 python	 version	 additional	 bonus
projects	such	as

deploy	run	and	document	cloudmesh	on	ironpython
deploy	 run	 and	 document	 cloudmesh	 on	 anaconda,	 develop	 script	 to
generate	a	conda	package	form	github
deploy	run	and	document	cloudmesh	on	canopy,	develop	script	to	generate
a	conda	package	form	github
deploy	run	and	document	cloudmesh	on	ironpython
other	documentation	that	would	be	useful

7.1.9	Resources

If	you	are	unfamiliar	with	programming	in	Python,	we	also	refer	you	to	some	of
the	numerous	online	resources.	You	may	wish	to	start	with	Learn	Python	or	the
book	Learn	Python	the	Hard	Way.	Other	options	include	Tutorials	Point	or	Code
Academy,	 and	 the	 Python	 wiki	 page	 contains	 a	 long	 list	 of	 references	 for
learning	as	well.	Additional	resources	include:

https://virtualenvwrapper.readthedocs.io
https://github.com/yyuu/pyenv
https://amaral.northwestern.edu/resources/guides/pyenv-tutorial
https://godjango.com/96-django-and-python-3-how-to-setup-pyenv-for-
multiple-pythons/
https://www.accelebrate.com/blog/the-many-faces-of-python-and-how-to-
manage-them/
http://ivory.idyll.org/articles/advanced-swc/
http://python.net/~goodger/projects/pycon/2007/idiomatic/handout.html
http://www.youtube.com/watch?v=0vJJlVBVTFg
http://www.korokithakis.net/tutorials/python/
http://www.afterhoursprogramming.com/tutorial/Python/Introduction/
http://www.greenteapress.com/thinkpython/thinkCSpy.pdf
https://docs.python.org/3.3/tutorial/modules.html
https://www.learnpython.org/en/Modules/_and/_Packages
https://docs.python.org/2/library/datetime.html
https://chrisalbon.com/python/strings/_to/_datetime.html

A	very	long	list	of	useful	information	are	also	available	from

https://github.com/vinta/awesome-python
https://github.com/rasbt/python_reference

This	 list	 may	 be	 useful	 as	 it	 also	 contains	 links	 to	 data	 visualization	 and
manipulation	libraries,	and	AI	tools	and	libraries.	Please	note	that	for	this	class
you	can	reuse	such	libraries	if	not	otherwise	stated.

7.1.9.1	Jupyter	Notebook	Tutorials

https://www.learnpython.org
http://learnpythonthehardway.org/book/
http://www.tutorialspoint.com/python/
http://www.codecademy.com/en/tracks/python
https://wiki.python.org/moin/BeginnersGuide/Programmers
https://virtualenvwrapper.readthedocs.io
https://github.com/yyuu/pyenv
https://amaral.northwestern.edu/resources/guides/pyenv-tutorial
https://godjango.com/96-django-and-python-3-how-to-setup-pyenv-for-multiple-pythons/
https://www.accelebrate.com/blog/the-many-faces-of-python-and-how-to-manage-them/
http://ivory.idyll.org/articles/advanced-swc/
http://python.net/~goodger/projects/pycon/2007/idiomatic/handout.html
http://www.youtube.com/watch?v=0vJJlVBVTFg
http://www.korokithakis.net/tutorials/python/
http://www.afterhoursprogramming.com/tutorial/Python/Introduction/
http://www.greenteapress.com/thinkpython/thinkCSpy.pdf
https://docs.python.org/3.3/tutorial/modules.html
https://www.learnpython.org/en/Modules/_and/_Packages
https://docs.python.org/2/library/datetime.html
https://chrisalbon.com/python/strings/_to/_datetime.html
https://github.com/vinta/awesome-python
https://github.com/rasbt/python_reference

A	Short	 Introduction	 to	Jupyter	Notebooks	and	NumPy	To	view	the	notebook,
open	 this	 link	 in	 a	 background	 tab	 https://nbviewer.jupyter.org/	 and	 copy	 and
paste	 the	 following	 link	 in	 the	 URL	 input	 area
https://cloudmesh.github.io/classes/lesson/prg/Jupyter-NumPy-tutorial-I523-
F2017.ipynb	Then	hit	Go.

7.1.10	Exercises

E.Python.Lib.1:

Write	 a	 python	 program	 called	 iterate.py	 that	 accepts	 an	 integer	 n
from	the	command	line.	Pass	this	integer	to	a	function	called	iterate.

The	iterate	function	should	then	iterate	from	1	to	n.	If	the	i-th	number
is	 a	 multiple	 of	 three,	 print	 multiple	 of	 3,	 if	 a	 multiple	 of	 5	 print
multiple	of	5,	if	a	multiple	of	both	print	multiple	of	3	and	5,	else	print
the	value.

E:Python.Lib.2:

1.	 Create	a	pyenv	or	virtualenv	~/ENV

2.	 Modify	 your	 ~/.bashrc	 shell	 file	 to	 activate	 your	 environment
upon	login.

3.	 Install	the	docopt	python	package	using	pip

4.	 Write	 a	 program	 that	 uses	 docopt	 to	 define	 a	 commandline
program.	Hint:	modify	the	iterate	program.

5.	 Demonstrate	the	program	works.

7.2	DATA	MANAGEMENT	☁�
Obviously	when	dealing	with	big	data	we	may	not	only	be	dealing	with	data	in
one	format	but	in	many	different	formats.	It	is	important	that	you	will	be	able	to
master	such	formats	and	seamlessly	integrate	in	your	analysis.	Thus	we	provide
some	 simple	 examples	 on	 which	 different	 data	 formats	 exist	 and	 how	 to	 use

https://nbviewer.jupyter.org/
https://cloudmesh.github.io/classes/lesson/prg/Jupyter-NumPy-tutorial-I523-F2017.ipynb
https://github.com/cloudmesh-community/book/blob/master/chapters/prg/python/python-data.md

them.

7.2.1	Formats

7.2.1.1	Pickle

Python	pickle	allows	you	to	save	data	in	a	python	native	format	into	a	file	that
can	 later	 be	 read	 in	 by	 other	 programs.	However,	 the	 data	 format	may	 not	 be
portable	among	different	python	versions	thus	the	format	is	often	not	suitable	to
store	information.	Instead	we	recommend	for	standard	data	to	use	either	json	or
yaml.

To	read	it	back	in	use

7.2.1.2	Text	Files

To	read	text	files	into	a	variable	called	content	you	can	use

You	can	also	use	the	following	code	while	using	the	convenient	with	statement

To	split	up	the	lines	of	the	file	into	an	array	you	can	do

This	cam	also	be	done	with	the	build	in	readlines	function

In	case	the	file	is	too	big	you	will	want	to	read	the	file	line	by	line:

import	pickle

flavor	=	{

				"small":	100,

				"medium":	1000,

				"large":	10000

				}

pickle.dump(flavor,	open("data.p",	"wb"))

flavor	=	pickle.load(open("data.p",	"rb"))

content	=	open('filename.txt',	'r').read()

with	open('filename.txt','r')	as	file:

				content	=	file.read()

with	open('filename.txt','r')	as	file:

				lines	=	file.read().splitlines()

lines	=	open('filename.txt','r').readlines()

7.2.1.3	CSV	Files

Often	data	is	contained	in	comma	separated	values	(CSV)	within	a	file.	To	read
such	files	you	can	use	the	csv	package.

Using	pandas	you	can	read	them	as	follows.

There	are	many	other	modules	and	libraries	that	include	CSV	read	functions.	In
case	you	need	to	split	a	single	line	by	comma,	you	may	also	use	the	split	function.
However,	remember	it	swill	split	at	every	comma,	including	those	contained	in
quotes.	So	this	method	although	looking	originally	convenient	has	limitations.

7.2.1.4	Excel	spread	sheets

Pandas	contains	a	method	to	read	Excel	files

7.2.1.5	YAML

YAML	 is	 a	 very	 important	 format	 as	 it	 allows	 you	 easily	 to	 structure	 data	 in
hierarchical	fields	It	is	frequently	used	to	coordinate	programs	while	using	yaml
as	the	specification	for	configuration	files,	but	also	data	files.	To	read	in	a	yaml
file	the	following	code	can	be	used

The	nice	part	is	that	this	code	can	also	be	used	to	verify	if	a	file	is	valid	yaml.	To
write	data	out	we	can	use

with	open('filename.txt','r')	as	file:

				line	=	file.readline()

				print	(line)

import	csv

with	open('data.csv',	'rb')	as	f:

			contents	=	csv.reader(f)

for	row	in	content:

				print	row

import	pandas	as	pd

df	=	pd.read_csv("example.csv")

import	pandas	as	pd

filename	=	'data.xlsx'

data	=	pd.ExcelFile(file)

df	=	data.parse('Sheet1')

import	yaml

with	open('data.yaml',	'r')	as	f:

				content	=	yaml.load(f)

The	 flow	 style	 set	 to	 false	 formats	 the	 data	 in	 a	 nice	 readable	 fashion	 with
indentations.

7.2.1.6	JSON

7.2.1.7	XML

XML	 format	 is	 extensively	 used	 to	 transport	 data	 across	 the	 web.	 It	 has	 a
hierarchical	data	format,	and	can	be	represented	in	the	form	of	a	tree.

A	Sample	XML	data	looks	like:

Python	provides	the	ElementTree	XML	API	to	parse	and	create	XML	data.

Importing	XML	data	from	a	file:

Reading	XML	data	from	a	string	directly:

Iterating	over	child	nodes	in	a	root:

Modifying	XML	data	using	ElementTree:

Modifying	text	within	a	tag	of	an	element	using	.text	method:

with	open('data.yml',	'w')	as	f:

				yaml.dump(data,	f,	default_flow_style=False)

import	json

with	open('strings.json')	as	f:

				content	=	json.load(f)

<data>

				<items>

								<item	name="item-1"></item>

								<item	name="item-2"></item>

								<item	name="item-3"></item>

				</items>

</data>

import	xml.etree.ElementTree	as	ET

tree	=	ET.parse('data.xml')

root	=	tree.getroot()

root	=	ET.fromstring(data_as_string)

for	child	in	root:

				print(child.tag,	child.attrib)

tag.text	=	new_data

tree.write('output.xml')

Adding/modifying	an	attribute	using	.set()	method:

Other	Python	modules	used	for	parsing	XML	data	include

minidom:	https://docs.python.org/3/library/xml.dom.minidom.html
BeautifulSoup:	https://www.crummy.com/software/BeautifulSoup/

7.2.1.8	RDF

To	read	RDF	files	you	will	need	to	install	RDFlib	with

This	will	than	allow	you	to	read	RDF	files

Good	 examples	 on	 using	 RDF	 are	 provided	 on	 the	 RDFlib	 Web	 page	 at
https://github.com/RDFLib/rdflib

From	the	Web	page	we	showcase	also	how	to	directly	process	RDF	data	 from
the	Web

7.2.1.9	PDF

The	 Portable	 Document	 Format	 (PDF)	 has	 been	 made	 available	 by	 Adobe
Inc.	royalty	free.	This	has	enabled	PDF	to	become	a	world	wide	adopted	format
that	 also	 has	 been	 standardized	 in	 2008	 (ISO/IEC	 32000-1:2008,
https://www.iso.org/standard/51502.html).	 A	 lot	 of	 research	 is	 published	 in
papers	making	PDF	one	of	the	de-facto	standards	for	publishing.	However,	PDF
is	 difficult	 to	 parse	 and	 is	 focused	 on	 high	 quality	 output	 instead	 of	 data
representation.	Nevertheless,	tools	to	manipulate	PDF	exist:

tag.set('key',	'value')

tree.write('output.xml')

$	pip	install	rdflib

from	rdflib.graph	import	Graph

g	=	Graph()

g.parse("filename.rdf",	format="format")

for	entry	in	g:

			print(entry)

import	rdflib

g=rdflib.Graph()

g.load('http://dbpedia.org/resource/Semantic_Web')

for	s,p,o	in	g:

				print	s,p,o

https://docs.python.org/3/library/xml.dom.minidom.html
https://www.crummy.com/software/BeautifulSoup/
https://github.com/RDFLib/rdflib
https://www.iso.org/standard/51502.html

PDFMiner

https://pypi.python.org/pypi/pdfminer/	allows	the	simple	translation	of	PDF
into	 text	 that	 than	 can	 be	 further	 mined.	 The	 manual	 page	 helps	 to
demonstrate	some	examples	http://euske.github.io/pdfminer/index.html.

pdf-parser.py

https://blog.didierstevens.com/programs/pdf-tools/	 parses	 pdf	 documents
and	identifies	some	structural	elements	that	can	than	be	further	processed.

If	you	know	about	other	tools,	let	us	know.

7.2.1.10	HTML

A	 very	 powerful	 library	 to	 parse	 HTML	 Web	 pages	 is	 provided	 with
https://www.crummy.com/software/BeautifulSoup/

More	 details	 about	 it	 are	 provided	 in	 the	 documentation	 page
https://www.crummy.com/software/BeautifulSoup/bs4/doc/

⷏�	TODO:	Students	can	contribute	a	section

Beautiful	Soup	is	a	python	library	to	parse,	process	and	edit	HTML	documents.

To	install	Beautiful	Soup,	use	pip	command	as	follows:

In	 order	 to	 process	 HTML	 documents,	 a	 parser	 is	 required.	 Beautiful	 Soup
supports	 the	 HTML	 parser	 included	 in	 Python’s	 standard	 library,	 but	 it	 also
supports	 a	 number	 of	 third-party	 Python	 parsers	 like	 the	 lxml	 parser	 which	 is
commonly	used	[1].

Following	command	can	be	used	to	install	lxml	parser

To	begin	with,	we	import	the	package	and	instantiate	an	object	as	follows	for	a
html	document	html_handle:

$	pip	install	beautifulsoup4

$	pip	install	lxml

https://pypi.python.org/pypi/pdfminer/
http://euske.github.io/pdfminer/index.html
https://blog.didierstevens.com/programs/pdf-tools/
https://www.crummy.com/software/BeautifulSoup/
https://www.crummy.com/software/BeautifulSoup/bs4/doc/

Now,	we	will	discuss	a	few	functions,	attributes	and	methods	of	Beautiful	Soup.

prettify	function

prettify()	 method	 will	 turn	 a	 Beautiful	 Soup	 parse	 tree	 into	 a	 nicely	 formatted
Unicode	 string,	with	a	 separate	 line	 for	 each	HTML/XML	 tag	and	 string.	 It	 is
analgous	to	pprint()	function.	The	object	created	above	can	be	viewed	by	printing
the	prettfied	version	of	the	document	as	follows:

tag	Object

A	tag	object	refers	to	tags	in	the	HTML	document.	It	is	possible	to	go	down	to	the
inner	levels	of	the	DOM	tree.	To	access	a	tag	div	under	the	tag	body,	it	can	be	done
as	follows:

The	attrs	attribute	of	the	tag	object	returns	a	dictionary	of	all	the	defined	attributes
of	the	HTML	tag	as	keys.

has_attr()	method

To	check	if	a	tag	object	has	a	specific	attribute,	has_attr()	method	can	be	used.

tag	object	attributes

name	-	This	attribute	returns	the	name	of	the	tag	selected.
attrs	 -	This	attribute	 returns	a	dictionary	of	all	 the	defined	attributes	of	 the
HTML	tag	as	keys.
contents	 -	This	attribute	returns	a	 list	of	contents	enclosed	within	 the	HTML
tag
string	-	This	attribute	which	returns	the	text	enclosed	within	the	HTML	tag.
This	returns	None	if	there	are	multiple	children
strings	-	This	overcomes	the	limitation	of	string	and	returns	a	generator	of	all

from	bs4	import	BeautifulSoup

soup	=	BeautifulSoup(html_handle,	`lxml`)

print(soup.prettify())

body_div	=	soup.body.div

print(body_div.prettify())

if	body_div.has_attr('p'):

				print('The	value	of	\'p\'	attribute	is:',	body_div['p'])

strings	enclosed	within	the	given	tag

Following	code	showcases	usage	of	the	above	discussed	attributes:

Searching	the	Tree

find()	 function	 takes	 a	 filter	 expression	 as	 argument	 and	 returns	 the	 first
match	found
findall()	function	returns	a	list	of	all	the	matching	elements

select()	function	can	be	used	to	search	the	tree	using	CSS	selectors

7.2.1.11	ConfigParser

⷏�	TODO:	Students	can	contribute	a	section

https://pymotw.com/2/ConfigParser/

7.2.1.12	ConfigDict

https://github.com/cloudmesh/cloudmesh-
common/blob/master/cloudmesh/common/ConfigDict.py

7.2.2	Encryption

body_tag	=	soup.body

print("Name	of	the	tag:',	body_tag.name)

attrs	=	body_tag.attrs

print('The	attributes	defined	for	body	tag	are:',	attrs)

print('The	contents	of	\'body\'	tag	are:\n',	body_tag.contents)

print('The	string	value	enclosed	in	\'body\'	tag	is:',	body_tag.string)

for	s	in	body_tag.strings:

				print(repr(s))

search_elem	=	soup.find('a')

print(search_elem.prettify())

search_elems	=	soup.find_all("a",	class_="sample")

pprint(search_elems)

#	Select	`a`	tag	with	class	`sample`

a_tag_elems	=	soup.select('a.sample')

print(a_tag_elems)

https://pymotw.com/2/ConfigParser/
https://github.com/cloudmesh/cloudmesh-common/blob/master/cloudmesh/common/ConfigDict.py

Often	we	need	to	protect	the	information	stored	in	a	file.	This	is	achieved	with
encryption.	There	are	many	methods	of	supporting	encryption	and	even	if	a	file
is	encrypted	it	may	be	target	to	attacks.	Thus	it	is	not	only	important	to	encrypt
data	that	you	do	not	want	others	to	se	but	also	to	make	sure	that	the	system	on
which	the	data	is	hosted	is	secure.	This	is	especially	important	if	we	talk	about
big	data	having	a	potential	large	effect	if	it	gets	into	the	wrong	hands.

To	 illustrate	 one	 type	 of	 encryption	 that	 is	 non	 trivial	 we	 have	 chosen	 to
demonstrate	 how	 to	 encrypt	 a	 file	 with	 an	 ssh	 key.	 In	 case	 you	 have	 openssl
installed	on	your	system,	this	can	be	achieved	as	follows.

Most	important	here	are	Step	4	that	encrypts	the	file	and	Step	5	that	decrypts	the
file.	 Using	 the	 Python	 os	 module	 it	 is	 straight	 forward	 to	 implement	 this.
However,	we	are	providing	in	cloudmesh	a	convenient	class	that	makes	the	use
in	python	very	simple.

In	our	class	we	initialize	it	with	the	locations	of	the	file	that	is	to	be	encrypted
and	decrypted.	To	initiate	that	action	just	call	the	methods	encrypt	and	decrypt.

7.2.3	Database	Access

⷏�	TODO:	Students:	define	conventional	database	access	section

see:	https://www.tutorialspoint.com/python/python_database_access.htm

7.2.4	SQLite

				#!	/bin/sh

				#	Step	1.	Creating	a	file	with	data

				echo	"Big	Data	is	the	future."	>	file.txt

				#	Step	2.	Create	the	pem

				openssl	rsa	-in	~/.ssh/id_rsa	-pubout		>	~/.ssh/id_rsa.pub.pem

				#	Step	3.	look	at	the	pem	file	to	illustrate	how	it	looks	like	(optional)

				cat	~/.ssh/id_rsa.pub.pem

				#	Step	4.	encrypt	the	file	into	secret.txt

				openssl	rsautl	-encrypt	-pubin	-inkey	~/.ssh/id_rsa.pub.pem	-in	file.txt	-out	secret.txt

				#	Step	5.	decrypt	the	file	and	print	the	contents	to	stdout

				openssl	rsautl	-decrypt	-inkey	~/.ssh/id_rsa	-in	secret.txt

from	cloudmesh.common.ssh.encrypt	import	EncryptFile

e	=	EncryptFile('file.txt',	'secret.txt')

e.encrypt()

e.decrypt()

https://www.tutorialspoint.com/python/python_database_access.htm

⷏�	TODO:	Students	can	contribute	to	this	section

https://www.sqlite.org/index.html

https://docs.python.org/3/library/sqlite3.html

7.2.4.1	Exercises	⷏�

E:Encryption.1:

Test	the	shell	script	to	replicate	how	this	example	works

E:Encryption.2:

Test	the	cloudmesh	encryption	class

E:Encryption.3:

What	 other	 encryption	methods	 exist.	 Can	 you	 provide	 an	 example
and	contribute	to	the	section?

E:Encryption.4:

What	is	the	issue	of	encryption	that	make	it	challenging	for	Big	Data

E:Encryption.5:

Given	a	test	dataset	with	many	files	text	files,	how	long	will	it	take	to
encrypt	 and	decrypt	 them	on	 various	machines.	Write	 a	 benchmark
that	you	test.	Develop	this	benchmark	as	a	group,	test	out	the	time	it
takes	to	execute	it	on	a	variety	of	platforms.

7.3	PLOTTING	WITH	MATPLOTLIB	☁�
A	brief	 overview	of	plotting	with	matplotlib	 along	with	 examples	 is	 provided.
First	matplotlib	must	be	installed,	which	can	be	accomplished	with	pip	install	as
follows:
$	pip	install	matplotlib

https://www.sqlite.org/index.html
https://docs.python.org/3/library/sqlite3.html
https://github.com/cloudmesh-community/book/blob/master/chapters/prg/python/python-matplotlib.md

We	will	start	by	plotting	a	simple	line	graph	using	built	in	numpy	functions	for
sine	and	cosine.	This	first	step	is	to	import	the	proper	libraries	shown	next.

Next	we	will	define	the	values	for	the	x	axis,	we	do	this	with	the	linspace	option
in	numpy.	The	first	two	parameters	are	the	starting	and	ending	points,	these	must
be	scalars.	The	third	parameter	is	optional	and	defines	the	number	of	samples	to
be	 generated	 between	 the	 starting	 and	 ending	 points,	 this	 value	 must	 be	 an
integer.	Additional	parameters	for	the	linspace	utility	can	be	found	here:

Now	we	will	use	the	sine	and	cosine	functions	in	order	to	generate	y	values,	for
this	we	will	 use	 the	 values	 of	 x	 for	 the	 argument	 of	 both	 our	 sine	 and	 cosine
functions	i.e.	cos(x).

You	can	display	 the	values	of	 the	 three	parameters	we	have	defined	by	 typing
them	in	a	python	shell.

Having	defined	x	and	y	values	we	can	generate	a	line	plot	and	since	we	imported
matplotlib.pyplot	as	plt	we	simply	use	plt.plot.

We	can	display	the	plot	using	plt.show()	which	will	pop	up	a	figure	displaying
the	plot	defined.

Additionally	we	can	add	the	sine	line	to	out	line	graph	by	entering	the	following.

Invoking	 plt.show()	 now	 will	 show	 a	 figure	 with	 both	 sine	 and	 cosine	 lines
displayed.	Now	that	we	have	a	figure	generated	it	would	be	useful	to	label	the	x

import	numpy	as	np

import	matplotlib.pyplot	as	plt

x	=	np.linspace(-np.pi,	np.pi,	16)

cos	=	np.cos(x)

sin	=	np.sin(x)

x

array([-3.14159265,	-2.72271363,	-2.30383461,	-1.88495559,	-1.46607657,

				-1.04719755,	-0.62831853,	-0.20943951,	0.20943951,	0.62831853,

				1.04719755,	1.46607657,	1.88495559,	2.30383461,	2.72271363,

				3.14159265])

plt.plot(x,cos)

plt.show()

plt.plot(x,sin)

and	y	axis	and	provide	a	title.	This	is	done	by	the	following	three	commands:

Along	with	axis	labels	and	a	title	another	useful	figure	feature	may	be	a	legend.
In	order	to	create	a	legend	you	must	first	designate	a	label	for	the	line,	this	label
will	 be	 what	 shows	 up	 in	 the	 legend.	 The	 label	 is	 defined	 in	 the	 initial
plt.plot(x,y)	instance,	next	is	an	example.

Then	in	order	to	display	the	legend	the	following	command	is	issued:

The	location	is	specified	by	using	upper	or	lower	and	left	or	right.	Naturally	all
these	commands	can	be	combined	and	put	 in	a	 file	with	 the	 .py	extension	and
run	from	the	command	line.

⷏�	link	error

An	example	of	a	bar	chart	is	preceded	next	using	data	from	[T:fast-cars].

plt.xlabel("X	-	label	(units)")

plt.ylabel("Y	-	label	(units)")

plt.title("A	clever	Title	for	your	Figure")

plt.plot(x,cos,	label="cosine")

plt.legend(loc='upper	right')

import	numpy	as	np

import	matplotlib.pyplot	as	plt

x	=	np.linspace(-np.pi,	np.pi,	16)

cos	=	np.cos(x)

sin	=	np.sin(x)

plt.plot(x,cos,	label="cosine")

plt.plot(x,sin,	label="sine")

plt.xlabel("X	-	label	(units)")

plt.ylabel("Y	-	label	(units)")

plt.title("A	clever	Title	for	your	Figure")

plt.legend(loc='upper	right')

plt.show()

import	matplotlib.pyplot	as	plt

x	=	['	Toyota	Prius',

					'Tesla	Roadster	',

					'	Bugatti	Veyron',

					'	Honda	Civic	',

					'	Lamborghini	Aventador	']

horse_power	=	[120,	288,	1200,	158,	695]

x_pos	=	[i	for	i,	_	in	enumerate(x)]

plt.bar(x_pos,	horse_power,	color='green')

plt.xlabel("Car	Model")

plt.ylabel("Horse	Power	(Hp)")

plt.title("Horse	Power	for	Selected	Cars")

You	 can	 customize	 plots	 further	 by	 using	 plt.style.use(),	 in	 python	 3.	 If	 you
provide	 the	following	command	inside	a	python	command	shell	you	will	see	a
list	of	available	styles.

An	example	of	using	a	predefined	style	is	shown	next.

Up	to	this	point	we	have	only	showcased	how	to	display	figures	through	python
output,	 however	 web	 browsers	 are	 a	 popular	 way	 to	 display	 figures.	 One
example	is	Bokeh,	 the	following	lines	can	be	entered	in	a	python	shell	and	the
figure	is	outputted	to	a	browser.

7.4	DOCOPTS	☁�
When	we	want	to	design	commandline	arguments	for	python	programs	we	have
many	 options.	 However,	 as	 our	 approach	 is	 to	 create	 documentation	 first,
docopts	provides	also	a	good	apprach	for	Python.	The	code	for	it	is	located	at

https://github.com/docopt/docopt

It	can	be	installed	with

A	sample	programs	are	located	at

https://github.com/docopt/docopt/blob/master/examples/options_example.py

A	sample	program	of	using	doc	opts	for	our	purposes	loks	as	follows

plt.xticks(x_pos,	x)

plt.show()

print(plt.style.available)

plt.style.use('seaborn')

from	bokeh.io	import	show

from	bokeh.plotting	import	figure

x_values	=	[1,	2,	3,	4,	5]

y_values	=	[6,	7,	2,	3,	6]

p	=	figure()

p.circle(x=x_values,	y=y_values)

show(p)

$	pip	install	docopt

https://github.com/cloudmesh-community/book/blob/master/chapters/prg/python/python-docopts.md
https://github.com/docopt/docopt
https://github.com/docopt/docopt/blob/master/examples/options_example.py

Another	 good	 feature	 of	 using	 docopts	 is	 that	 we	 can	 use	 the	 same	 verbal
description	in	other	programming	languages	as	showcased	in	this	book.

7.5	OPENCV	☁�

	Learning	Objectives

Provide	some	simple	calculations	so	we	can	test	cloud	services.
Show	case	some	elementary	OpenCV	functions
Show	an	environmental	image	analysis	application	using	Secchi	disks

OpenCV	 (Open	Source	Computer	Vision	Library)	 is	 a	 library	 of	 thousands	 of
algorithms	for	various	applications	in	computer	vision	and	machine	learning.	It
has	 C++,	 C,	 Python,	 Java	 and	 MATLAB	 interfaces	 and	 supports	 Windows,
Linux,	Android	and	Mac	OS.	 In	 this	 section,	we	will	 explain	basic	 features	of
this	library,	including	the	implementation	of	a	simple	example.

7.5.1	Overview

OpenCV	has	countless	functions	for	image	and	videos	processing.	The	pipeline
starts	 with	 reading	 the	 images,	 low-level	 operations	 on	 pixel	 values,
preprocessing	e.g.	denoising,	and	then	multiple	steps	of	higher-level	operations

"""Cloudmesh	VM	management

Usage:

		cm-go	vm	start	NAME	[--cloud=CLOUD]

		cm-go	vm	stop	NAME	[--cloud=CLOUD]

		cm-go	set	--cloud=CLOUD

		cm-go	-h	|	--help

		cm-go	--version

Options:

		-h	--help					Show	this	screen.

		--version					Show	version.

		--cloud=CLOUD		The	name	of	the	cloud.

		--moored						Moored	(anchored)	mine.

		--drifting				Drifting	mine.

ARGUMENTS:

		NAME					The	name	of	the	VM`

"""

from	docopt	import	docopt

if	__name__	==	'__main__':

				arguments	=	docopt(__doc__,	version='1.0.0rc2')

				print(arguments)

https://github.com/cloudmesh-community/book/blob/master/chapters/prg/python/opencv/opencv.md

which	 vary	 depending	 on	 the	 application.	OpenCV	 covers	 the	whole	 pipeline,
especially	providing	a	large	set	of	library	functions	for	high-level	operations.	A
simpler	 library	 for	 image	 processing	 in	 Python	 is	 Scipy’s	 multi-dimensional
image	processing	package	(scipy.ndimage).

7.5.2	Installation

OpenCV	 for	 Python	 can	 be	 installed	 on	 Linux	 in	 multiple	 ways,	 namely
PyPI(Python	 Package	 Index),	 Linux	 package	 manager	 (apt-get	 for	 Ubuntu),
Conda	package	manager,	and	also	building	from	source.	You	are	recommended
to	use	PyPI.	Here’s	the	command	that	you	need	to	run:

This	was	tested	on	Ubuntu	16.04	with	a	fresh	Python	3.6	virtual	environment.	In
order	to	test,	import	the	module	in	Python	command	line:

If	 it	does	not	raise	an	error,	 it	 is	 installed	correctly.	Otherwise,	 try	 to	solve	the
error.

For	installation	on	Windows,	see:

https://docs.opencv.org/3.0-
beta/doc/py_tutorials/py_setup/py_setup_in_windows/py_setup_in_windows.html#install-
opencv-python-in-windows

Note	that	building	from	source	can	take	a	long	time	and	may	not	be	feasible	for
deploying	to	limited	platforms	such	as	Raspberry	Pi.

7.5.3	A	Simple	Example

In	this	example,	an	image	is	loaded.	A	simple	processing	is	performed,	and	the
result	is	written	to	a	new	image.

7.5.3.1	Loading	an	image

$	pip	install	opencv-python

import	cv2

%matplotlib	inline

import	cv2

https://docs.opencv.org/3.0-beta/doc/py_tutorials/py_setup/py_setup_in_windows/py_setup_in_windows.html#install-opencv-python-in-windows

The	image	was	downloaded	from	USC	standard	database:

http://sipi.usc.edu/database/database.php?volume=misc&image=9

7.5.3.2	Displaying	the	image

The	 image	 is	 saved	 in	 a	numpy	array.	Each	pixel	 is	 represented	with	3	values
(R,G,B).	This	provides	you	with	access	to	manipulate	the	image	at	the	level	of
single	 pixels.	 You	 can	 display	 the	 image	 using	 imshow	 function	 as	 well	 as
Matplotlib’s	imshow	function.

You	can	display	the	image	using	imshow	function:

or	you	can	use	Matplotlib.	If	you	have	not	installed	Matplotlib	before,	install	it
using:

Now	you	can	use:

which	results	in	Figure	1

Figure	1:	Image	display

img	=	cv2.imread('images/opencv/4.2.01.tiff')

cv2.imshow('Original',img)

cv2.waitKey(0)

cv2.destroyAllWindows()

$	pip	install	matplotlib

import	matplotlib.pyplot	as	plt

plt.imshow(img)

http://sipi.usc.edu/database/database.php?volume=misc&image=9

7.5.3.3	Scaling	and	Rotation

Scaling	(resizing)	the	image	relative	to	different	axis

which	results	in	Figure	2

Figure	2:	Scaling	and	rotation

Rotation	of	the	image	for	an	angle	of	t

which	results	in	Figure	3

res	=	cv2.resize(img,

																	None,

																	fx=1.2,

																	fy=0.7,

																	interpolation=cv2.INTER_CUBIC)

plt.imshow(res)

rows,cols,_	=	img.shape

t	=	45

M	=	cv2.getRotationMatrix2D((cols/2,rows/2),t,1)

dst	=	cv2.warpAffine(img,M,(cols,rows))

plt.imshow(dst)

Figure	3:	image

7.5.3.4	Gray-scaling

which	results	in	+Figure	4

Figure	4:	Gray	sacling

7.5.3.5	Image	Thresholding

which	results	in	Figure	5

img2	=	cv2.cvtColor(img,	cv2.COLOR_BGR2GRAY)

plt.imshow(img2,	cmap='gray')

ret,thresh	=				cv2.threshold(img2,127,255,cv2.THRESH_BINARY)

plt.subplot(1,2,1),	plt.imshow(img2,	cmap='gray')

plt.subplot(1,2,2),	plt.imshow(thresh,	cmap='gray')

Figure	5:	Image	Thresholding

7.5.3.6	Edge	Detection

Edge	detection	using	Canny	edge	detection	algorithm

which	results	in	Figure	6

Figure	6:	Edge	detection

7.5.4	Additional	Features

OpenCV	 has	 implementations	 of	 many	 machine	 learning	 techniques	 such	 as
KMeans	and	Support	Vector	Machines,	that	can	be	put	into	use	with	only	a	few
lines	 of	 code.	 It	 also	 has	 functions	 especially	 for	 video	 analysis,	 feature
detection,	object	recognition	and	many	more.	You	can	find	out	more	about	them
in	their	website

[OpenCV](https://docs.opencv.org/3.0-beta/index.html	 was	 initially	 developed

edges	=	cv2.Canny(img2,100,200)

plt.subplot(121),plt.imshow(img2,cmap	=	'gray')

plt.subplot(122),plt.imshow(edges,cmap	=	'gray')

https://docs.opencv.org/3.0-beta/index.html

for	 C++	 and	 still	 has	 a	 focus	 on	 that	 language,	 but	 it	 is	 still	 one	 of	 the	most
valuable	image	processing	libraries	in	Python.

7.6	SECCHI	DISK	☁�
We	are	developing	an	autonomous	robot	boat	that	you	can	be	part	of	developing
within	this	class.	The	robot	bot	is	actually	measuring	turbidity	or	water	clarity.
Traditionally	this	has	been	done	with	a	Secchi	disk.	The	use	of	the	Secchi	disk	is
as	follows:

1.	 Lower	the	Secchi	disk	into	the	water.
2.	 Measure	the	point	when	you	can	no	longer	see	it
3.	 Record	the	depth	at	various	levels	and	plot	in	a	geographical	3D	map

One	 of	 the	 things	we	 can	 do	 is	 take	 a	 video	 of	 the	measurement	 instead	 of	 a
human	recording	them.	Than	we	can	analyse	the	video	automatically	to	see	how
deep	 a	 disk	was	 lowered.	This	 is	 a	 classical	 image	 analysis	 program.	You	 are
encouraged	to	identify	algorithms	that	can	identify	the	depth.	The	most	simplest
seems	to	be	to	do	a	histogram	at	a	variety	of	depth	steps,	and	measure	when	the
histogram	no	 longer	changes	significantly.	The	depth	at	 that	 image	will	be	 the
measurement	we	look	for.

Thus	 if	we	 analyse	 the	 images	we	 need	 to	 look	 at	 the	 image	 and	 identify	 the
numbers	on	the	measuring	tape,	as	well	as	the	visibility	of	the	disk.

To	 show	 case	 how	 such	 a	 disk	 looks	 like	 we	 refer	 to	 the	 image	 showcasing
different	 Secchi	 disks.	 For	 our	 purpose	 the	 black-white	 contrast	 Secchi	 disk
works	well.	See	Figure	7

https://github.com/cloudmesh-community/book/blob/master/chapters/prg/python/opencv/secchi.md

Figure	 7:	 Secchi	 disk	 types.	 A	 marine	 style	 on	 the	 left	 and	 the
freshwater	version	on	the	right	wikipedia.

More	information	about	Secchi	Disk	can	be	found	at:

https://en.wikipedia.org/wiki/Secchi/_disk

We	have	included	next	a	couple	of	examples	while	using	some	obviously	useful
OpenCV	methods.	Surprisingly,	the	use	of	the	edge	detection	that	comes	in	mind
first	 to	 identify	 if	 we	 still	 can	 see	 the	 disk,	 seems	 to	 complicated	 to	 use	 for
analysis.	We	at	this	time	believe	the	histogram	will	be	sufficient.

Please	inspect	our	examples.

7.6.1	Setup	for	OSX

First	 lest	 setup	 the	OpenCV	environment	 for	OSX.	Naturally	you	will	have	 to
update	the	versions	based	on	your	versions	of	python.	When	we	tried	the	install
of	 OpenCV	 on	 MacOS,	 the	 setup	 was	 slightly	 more	 complex	 than	 other
packages.	 This	 may	 have	 changed	 by	 now	 and	 if	 you	 have	 improved
instructions,	 pleas	 elt	 us	 know.	 However	 we	 do	 not	 want	 to	 install	 it	 via
Anaconda	out	of	the	obvious	reason	that	anaconda	installs	to	many	other	things.
import	os,	sys

from	os.path	import	expanduser

https://en.wikipedia.org/wiki/Secchi/_disk

7.6.2	Step	1:	Record	the	video

Record	the	video	on	the	robot

We	have	actually	done	this	for	you	and	will	provide	you	with	images	and	videos
if	you	are	interested	in	analyzing	them.	See	Figure	8

7.6.3	Step	2:	Analyse	the	images	from	the	Video

For	now	we	just	selected	4	images	from	the	video

os.path

home	=	expanduser("~")

sys.path.append('/usr/local/Cellar/opencv/3.3.1_1/lib/python3.6/site-packages/')

sys.path.append(home	+	'/.pyenv/versions/OPENCV/lib/python3.6/site-packages/')

import	cv2

cv2.__version__

!	pip	install	numpy	>	tmp.log

!	pip	install	matplotlib	>>	tmp.log

%matplotlib	inline

import	cv2

import	matplotlib.pyplot	as	plt

img1	=	cv2.imread('secchi/secchi1.png')

img2	=	cv2.imread('secchi/secchi2.png')

img3	=	cv2.imread('secchi/secchi3.png')

img4	=	cv2.imread('secchi/secchi4.png')

figures	=	[]

fig	=	plt.figure(figsize=(18,	16))

for	i	in	range(1,13):

				figures.append(fig.add_subplot(4,3,i))

count	=	0

for	img	in	[img1,img2,img3,img4]:

				figures[count].imshow(img)

				color	=	('b','g','r')

				for	i,col	in	enumerate(color):

								histr	=	cv2.calcHist([img],[i],None,[256],[0,256])

								figures[count+1].plot(histr,color	=	col)

				figures[count+2].hist(img.ravel(),256,[0,256])

				count	+=	3

print("Legend")

print("First	column	=	image	of	Secchi	disk")

print("Second	column	=	histogram	of	colors	in	image")

print("Third	column	=	histogram	of	all	values")

plt.show()

Figure	8:	Histogram

7.6.3.1	Image	Thresholding

See	Figure	9,	Figure	10,	Figure	11,	Figure	12
def	threshold(img):

				ret,thresh	=	cv2.threshold(img,150,255,cv2.THRESH_BINARY)

				plt.subplot(1,2,1),	plt.imshow(img,	cmap='gray')

				plt.subplot(1,2,2),	plt.imshow(thresh,	cmap='gray')

threshold(img1)

Figure	9:	Threshold	1

Figure	10:	Threshold	2

Figure	11:	Threshold	3

Figure	12:	Threshold	4

7.6.3.2	Edge	Detection

threshold(img2)

threshold(img3)

threshold(img4)

See	Figure	13,	Figure	14,	Figure	15,	Figure	16,	Figure	17.	Edge	detection	using
Canny	edge	detection	algorithm

Figure	13:	Edge	Detection	1

Figure	14:	Edge	Detection	2

Figure	15:	Edge	Detection	3

def	find_edge(img):

				edges	=	cv2.Canny(img,50,200)

				plt.subplot(121),plt.imshow(img,cmap	=	'gray')

				plt.subplot(122),plt.imshow(edges,cmap	=	'gray')

find_edge(img1)

find_edge(img2)

find_edge(img3)

find_edge(img4)

Figure	16:	Edge	Detection	4

7.6.3.3	Black	and	white

Figure	17:	Back	White	conversion

bw1	=	cv2.cvtColor(img1,	cv2.COLOR_BGR2GRAY)

plt.imshow(bw1,	cmap='gray')

8	DATA

8.1	DATA	FORMATS	☁�

8.1.1	YAML

The	term	YAML	stand	for	“YAML	Ainot	Markup	Language”.	According	to	the
Web	Page	at

http://yaml.org/

“YAML	 is	 a	 human	 friendly	 data	 serialization	 standard	 for	 all	 programming
languages.”	There	are	multiple	versions	of	YAML	existing	and	one	needs	to	take
care	 of	 that	 your	 software	 supports	 the	 right	 version.	 The	 current	 version	 is
YAML	1.2.

YAML	 is	 often	used	 for	 configuration	 and	 in	many	 cases	 can	 also	be	used	 as
XML	replacement.	Important	is	tat	YAM	in	contrast	to	XML	removes	the	tags
while	replacing	them	with	indentation.	This	has	naturally	the	advantage	that	it	is
mor	easily	 to	 read,	however,	 the	 format	 is	 strict	and	needs	 to	adhere	 to	proper
indentation.	 Thus	 it	 is	 important	 that	 you	 check	 your	 YAML	 files	 for
correctness,	either	by	writing	for	example	a	python	program	that	read	your	yaml
file,	or	an	online	YAML	checker	such	as	provided	at

http://www.yamllint.com/

An	 example	 on	 how	 to	 use	 yaml	 in	 python	 is	 provided	 in	 our	 next	 example.
Please	note	that	YAML	is	a	superset	of	JSON.	Originally	YAML	was	designed
as	a	markup	language.	However	as	it	is	not	document	oriented	but	data	oriented
it	has	been	recast	and	it	does	no	longer	classify	itself	as	markup	language.
import	os

import	sys

import	yaml

try:

				yamlFilename	=	os.sys.argv[1]

				yamlFile	=	open(yamlFilename,	"r")

except:

				print("filename	does	not	exist")

				sys.exit()

try:

https://github.com/cloudmesh-community/book/blob/master/chapters/data/formats.md
http://yaml.org/
http://www.yamllint.com/

Resources:

http://yaml.org/
https://en.wikipedia.org/wiki/YAML
http://www.yamllint.com/

8.1.2	JSON

The	term	JSON	stand	for	JavaScript	Object	Notation.	It	is	targeted	as	an	open-
standard	 file	 format	 that	 emphasizes	 on	 integration	 of	 human-readable	 text	 to
transmit	data	objects.	The	data	objects	contain	attribute	value	pairs.	Although	it
originates	 from	 JavaScript,	 the	 format	 itself	 is	 language	 independent.	 It	 uses
brackets	to	allow	organization	of	the	data.	PLease	note	that	YAML	is	a	superset
of	JSON	and	not	all	YAML	documents	can	be	converted	to	JSON.	Furthermore
JSON	does	not	support	comments.	For	these	reasons	we	often	prefer	to	us	YAMl
instead	of	JSON.	However	JSON	data	can	easily	be	translated	to	YAML	as	well
as	XML.

Resources:

https://en.wikipedia.org/wiki/JSON
https://www.json.org/

8.1.3	XML

XML	stands	for	Extensible	Markup	Language.	XML	allows	to	define	documents
with	 the	 help	 of	 a	 set	 of	 rules	 in	 order	 to	 make	 it	 machine	 readable.	 The
emphasize	 here	 is	 on	 machine	 readable	 as	 document	 in	 XML	 can	 become
quickly	 complex	 and	 difficult	 to	 understand	 for	 humans.	 XML	 is	 used	 for
documents	as	well	as	data	structures.

A	tutorial	about	XML	is	available	at

https://www.w3schools.com/xml/default.asp

Resources:

			yaml.load(yamlFile.read())

except:

			print("YAML	file	is	not	valid.")

http://yaml.org/
https://en.wikipedia.org/wiki/YAML
http://www.yamllint.com/
https://en.wikipedia.org/wiki/JSON
https://www.json.org/
https://www.w3schools.com/xml/default.asp

https://en.wikipedia.org/wiki/XML

https://en.wikipedia.org/wiki/XML

9	MONGO

9.1	MONGODB	IN	PYTHON	☁�

	Learning	Objectives

Introduction	to	basic	MongoDB	knowledge
Use	of	MongoDB	via	PyMongo
Use	of	MongoEngine	MongoEngine	and	Object-Document	mapper,
Use	of	Flask-Mongo

In	 today’s	 era,	 NoSQL	 databases	 have	 developed	 an	 enormous	 potential	 to
process	 the	 unstructured	 data	 efficiently.	 Modern	 information	 is	 complex,
extensive,	 and	may	not	have	pre-existing	 relationships.	With	 the	 advent	of	 the
advanced	 search	 engines,	 machine	 learning,	 and	 Artificial	 Intelligence,
technology	 expectations	 to	 process,	 store,	 and	 analyze	 such	 data	 have	 grown
tremendously	[2].	The	NoSQL	database	engines	such	as	MongoDB,	Redis,	and
Cassandra	 have	 successfully	 overcome	 the	 traditional	 relational	 database
challenges	 such	 as	 scalability,	 performance,	 unstructured	 data	 growth,	 agile
sprint	 cycles,	 and	growing	needs	 of	 processing	data	 in	 real-time	with	minimal
hardware	processing	power	[3].	The	NoSQL	databases	are	a	new	generation	of
engines	 that	 do	 not	 necessarily	 require	 SQL	 language	 and	 are	 sometimes	 also
called	Not	Only	SQL	 databases.	However,	most	of	 them	support	various	 third-
party	open	connectivity	drivers	that	can	map	NoSQL	queries	to	SQL’s.	It	would
be	 safe	 to	 say	 that	 although	NoSQL	 databases	 are	 still	 far	 from	 replacing	 the
relational	databases,	they	are	adding	an	immense	value	when	used	in	hybrid	IT
environments	in	conjunction	with	relational	databases,	based	on	the	application
specific	 needs	 [3].	We	 will	 be	 covering	 the	MongoDB	 technology,	 its	 driver
PyMongo,	 its	object-document	mapper	MongoEngine,	 and	 the	Flask-PyMongo
micro-web	framework	that	make	MongoDB	more	attractive	and	user-friendly.

9.1.1	Cloudmesh	MongoDB	Usage	Quickstart

https://github.com/cloudmesh-community/book/blob/master/chapters/data/mongodb.md

Before	you	read	on	we	like	you	to	read	this	quickstart.	The	easiest	way	for	many
of	 the	 activities	 we	 do	 to	 interact	 with	 MongoDB	 is	 to	 use	 our	 cloudmesh
functionality.	This	prelude	section	is	not	intended	to	describe	all	the	details,	but
get	you	started	quickly	while	leveraging	cloudmesh

This	is	done	via	the	cloudmesh	cmd5	and	the	cloudmesh_community/cm	code:

https://cloudmesh-community.github.io/cm/

To	install	mongo	on	for	example	macOS	you	can	use

To	start,	stop	and	see	the	status	of	mongo	you	can	use

To	 add	 an	object	 to	Mongo,	 you	 simply	have	 to	 define	 a	 dict	with	predefined
values	for	kind	and	cloud.	In	future	such	attributes	can	be	passed	to	the	function	to
determine	the	MongoDB	collection.

When	 you	 invoke	 the	 function	 it	will	 automatically	 store	 the	 information	 into
MongoDB.	 Naturally	 this	 requires	 that	 the	 ~/.cloudmesh/cloudmesh.yaml	 file	 is	 properly
configured.

9.1.2	MongoDB

Today	MongoDB	 is	one	of	 leading	NoSQL	database	which	 is	 fully	capable	of
handling	 dynamic	 changes,	 processing	 large	 volumes	 of	 complex	 and
unstructured	data,	easily	using	object-oriented	programming	features;	as	well	as
distributed	 system	 challenges	 [4].	 At	 its	 core,	 MongoDB	 is	 an	 open	 source,
cross-platform,	document	database	mainly	written	in	C++	language.

$	cms	admin	mongo	install

$	cms	admin	mongo	start

$	cms	admin	mongo	stop

$	cms	admin	mongo	status

from	cloudmesh.mongo.DataBaseDecorator	import	DatabaseUpdate

@DatabaseUpdate

def	test():

		data	={

				"kind":	"test",

				"cloud":	"testcloud",

				"value":	"hello"

		}

		return	data

result	=	test()

https://cloudmesh-community.github.io/cm/

9.1.2.1	Installation

MongoDB	can	be	installed	on	various	Unix	Platforms,	including	Linux,	Ubuntu,
Amazon	Linux,	etc	[5].	This	section	focuses	on	installing	MongoDB	on	Ubuntu
18.04	Bionic	Beaver	used	as	a	standard	OS	for	a	virtual	machine	used	as	a	part
of	Big	Data	Application	Class	during	the	2018	Fall	semester.

9.1.2.1.1	Installation	procedure

Before	installing,	it	is	recommended	to	configure	the	non-root	user	and	provide
the	 administrative	 privileges	 to	 it,	 in	 order	 to	 be	 able	 to	 perform	 general
MongoDB	admin	 tasks.	This	can	be	accomplished	by	 login	as	 the	 root	user	 in
the	following	manner	[6].

When	 logged	 in	 as	 a	 regular	 user,	 one	 can	 perform	 actions	 with	 superuser
privileges	by	typing	sudo	before	each	command	[6].

Once	the	user	set	up	is	completed,	one	can	login	as	a	regular	user	(mongoadmin)
and	use	the	following	instructions	to	install	MongoDB.

To	 update	 the	 Ubuntu	 packages	 to	 the	 most	 recent	 versions,	 use	 the	 next
command:

To	install	the	MongoDB	package:

To	check	the	service	and	database	status:

Verifying	the	status	of	a	successful	MongoDB	installation	can	be	confirmed	with
an	output	similar	to	this:

$	adduser	mongoadmin

$	usermod	-aG	sudo	sammy

$	sudo	apt	update

$	sudo	apt	install	-y	mongodb

$	sudo	systemctl	status	mongodb

$	mongodb.service	-	An	object/document-oriented	database

				Loaded:	loaded	(/lib/systemd/system/mongodb.service;	enabled;	vendor	preset:	enabled)

				Active:	**active**	(running)	since	Sat	2018-11-15	07:48:04	UTC;	2min	17s	ago

						Docs:	man:mongod(1)

		Main	PID:	2312	(mongod)

					Tasks:	23	(limit:	1153)

To	verify	 the	configuration,	more	specifically	 the	 installed	version,	 server,	and
port,	use	the	following	command:

Similarly,	to	restart	MongoDB,	use	the	following:

To	 allow	 access	 to	MongoDB	 from	 an	 outside	 hosted	 server	 one	 can	 use	 the
following	command	which	opens	the	fire-wall	connections	[5].

Status	can	be	verified	by	using:

Other	 MongoDB	 configurations	 can	 be	 edited	 through	 the	 /etc/mongodb.conf
files	such	as	port	and	hostnames,	file	paths.

Also,	 to	 complete	 this	 step,	 a	 server’s	 IP	address	must	be	 added	 to	 the	bindIP
value	[5].

MongoDB	 is	 now	 listening	 for	 a	 remote	 connection	 that	 can	 be	 accessed	 by
anyone	with	appropriate	credentials	[5].

9.1.2.2	Collections	and	Documents

Each	 database	 within	 Mongo	 environment	 contains	 collections	 which	 in	 turn
contain	documents.	Collections	and	documents	are	analogous	to	tables	and	rows
respectively	to	the	relational	databases.	The	document	structure	is	in	a	key-value
form	 which	 allows	 storing	 of	 complex	 data	 types	 composed	 out	 of	 field	 and
value	 pairs.	 Documents	 are	 objects	 which	 correspond	 to	 native	 data	 types	 in
many	programming	 languages,	 hence	 a	well	 defined,	 embedded	document	 can

				CGroup:	/system.slice/mongodb.service

											└─2312	/usr/bin/mongod	--unixSocketPrefix=/run/mongodb	--config	/etc/mongodb.conf

$	mongo	--eval	'db.runCommand({	connectionStatus:	1	})'

$	sudo	systemctl	restart	mongodb

$	sudo	ufw	allow	from	your_other_server_ip/32	to	any	port	27017

$	sudo	ufw	status

$	sudo	nano	/etc/mongodb.conf

$	logappend=true

		bind_ip	=	127.0.0.1,your_server_ip

		port	=	27017

help	reduce	expensive	joins	and	improve	query	performance.	The	_id	field	helps
to	identify	each	document	uniquely	[3].

MongoDB	 offers	 flexibility	 to	write	 records	 that	 are	 not	 restricted	 by	 column
types.	The	data	 storage	approach	 is	 flexible	as	 it	 allows	one	 to	 store	data	as	 it
grows	and	to	fulfill	varying	needs	of	applications	and/or	users.	It	supports	JSON
like	binary	points	known	as	BSON	where	data	can	be	stored	without	specifying
the	 type	 of	 data.	Moreover,	 it	 can	 be	 distributed	 to	multiple	machines	 at	 high
speed.	 It	 includes	 a	 sharding	 feature	 that	 partitions	 and	 spreads	 the	 data	 out
across	various	servers.	This	makes	MongoDB	an	excellent	choice	for	cloud	data
processing.	 Its	 utilities	 can	 load	 high	 volumes	 of	 data	 at	 high	 speed	 which
ultimately	 provides	 greater	 flexibility	 and	 availability	 in	 a	 cloud-based
environment	[2].

The	dynamic	schema	structure	within	MongoDB	allows	easy	testing	of	the	small
sprints	 in	 the	Agile	 project	management	 life	 cycles	 and	 research	 projects	 that
require	frequent	changes	to	the	data	structure	with	minimal	downtime.	Contrary
to	this	flexible	process,	modifying	the	data	structure	of	relational	databases	can
be	a	very	tedious	process	[2].

9.1.2.2.1	Collection	example

The	following	collection	example	for	a	person	named	Albert	includes	additional
information	such	as	age,	status,	and	group	[7].

9.1.2.2.2	Document	structure

9.1.2.2.3	Collection	Operations

If	 collection	 does	 not	 exists,	 MongoDB	 database	 will	 create	 a	 collection	 by

{

	name:	"Albert"

	age:	"21"

	status:	"Open"

	group:	["AI"	,	"Machine	Learning"]

}

{

			field1:	value1,

			field2:	value2,

			field3:	value3,

			...

			fieldN:	valueN

}

default.

9.1.2.3	MongoDB	Querying

The	data	retrieval	patterns,	 the	frequency	of	data	manipulation	statements	such
as	 insert,	 updates,	 and	 deletes	 may	 demand	 for	 the	 use	 of	 indexes	 or
incorporating	the	sharding	feature	to	improve	query	performance	and	efficiency
of	 MongoDB	 environment	 [3].	 One	 of	 the	 significant	 difference	 between
relational	databases	and	NoSQL	databases	are	 joins.	 In	 the	 relational	database,
one	can	combine	results	from	two	or	more	tables	using	a	common	column,	often
called	 as	 key.	 The	 native	 table	 contains	 the	 primary	 key	 column	 while	 the
referenced	 table	 contains	 a	 foreign	 key.	 This	 mechanism	 allows	 one	 to	 make
changes	in	a	single	row	instead	of	changing	all	rows	in	the	referenced	table.	This
action	 is	 referred	 to	 as	 normalization.	MongoDB	 is	 a	 document	 database	 and
mainly	contains	denormalized	data	which	means	the	data	is	repeated	instead	of
indexed	over	a	specific	key.	If	the	same	data	is	required	in	more	than	one	table,
it	needs	to	be	repeated.	This	constraint	has	been	eliminated	in	MongoDB’s	new
version	 3.2.	 The	 new	 release	 introduced	 a	 $lookup	 feature	 which	more	 likely
works	as	a	left-outer-join.	Lookups	are	restricted	to	aggregated	functions	which
means	that	data	usually	need	some	type	of	filtering	and	grouping	operations	 to
be	 conducted	 beforehand.	 For	 this	 reason,	 joins	 in	 MongoDB	 require	 more
complicated	 querying	 compared	 to	 the	 traditional	 relational	 database	 joins.
Although	 at	 this	 time,	 lookups	 are	 still	 very	 far	 from	 replacing	 joins,	 this	 is	 a
prominent	 feature	 that	 can	 resolve	 some	 of	 the	 relational	 data	 challenges	 for
MongoDB	[8].	MongoDB	queries	support	 regular	expressions	as	well	as	 range
asks	for	specific	fields	that	eliminate	the	need	of	returning	entire	documents	[3].
MongoDB	 collections	 do	 not	 enforce	 document	 structure	 like	 SQL	 databases
which	is	a	compelling	feature.	However,	it	is	essential	to	keep	in	mind	the	needs
of	the	applications[2].

9.1.2.3.1	Mongo	Queries	examples

The	queries	can	be	executed	from	Mongo	shell	as	well	as	through	scripts.

To	 query	 the	 data	 from	 a	 MongoDB	 collection,	 one	 would	 use	 MongoDB’s

>	db.myNewCollection1.insertOne({	x:	1	})

>	db.myNewCollection2.createIndex({	y:	1	})

find()	method.

The	output	can	be	formatted	by	using	the	pretty()	command.

The	MongoDB	insert	statements	can	be	performed	in	the	following	manner:

“The	$lookup	 command	 performs	 a	 left-outer-join	 to	 an	 unsharded
collection	in	the	same	database	to	filter	in	documents	from	the	joined
collection	for	processing”	[9].

This	operation	is	equivalent	to	the	following	SQL	operation:

To	perform	a	Like	Match	(Regex),	one	would	use	the	following	command:

9.1.2.4	MongoDB	Basic	Functions

When	it	comes	to	the	technical	elements	of	MongoDB,	it	posses	a	rich	interface
for	 importing	 and	 storage	 of	 external	 data	 in	 various	 formats.	 By	 using	 the
Mongo	Import/Export	tool,	one	can	easily	transfer	contents	from	JSON,	CSV,	or
TSV	 files	 into	 a	 database.	 MongoDB	 supports	 CRUD	 (create,	 read,	 update,
delete)	 operations	 efficiently	 and	 has	 detailed	 documentation	 available	 on	 the
product	website.	It	can	also	query	the	geospatial	data,	and	it	is	capable	of	storing
geospatial	 data	 in	 GeoJSON	 objects.	 The	 aggregation	 operation	 of	 the
MongoDB	 process	 data	 records	 and	 returns	 computed	 results.	 MongoDB

>	db.COLLECTION_NAME.find()

>	db.mycol.find().pretty()

>	db.COLLECTION_NAME.insert(document)

$	{

				$lookup:

						{

								from:	<collection	to	join>,

								localField:	<field	from	the	input	documents>,

								foreignField:	<field	from	the	documents	of	the	"from"	collection>,

								as:	<output	array	field>

						}

		}

	$	SELECT	*,	<output	array	field>

			FROM	collection

			WHERE	<output	array	field>	IN	(SELECT	*

																															FROM	<collection	to	join>

																															WHERE	<foreignField>	=	<collection.localField>);`

>	db.products.find({	sku:	{	$regex:	/789$/	}	})

aggregation	framework	is	modeled	on	the	concept	of	data	pipelines	[10].

9.1.2.4.1	Import/Export	functions	examples

To	import	JSON	documents,	one	would	use	the	following	command:

The	 CSV	 import	 uses	 the	 input	 file	 name	 to	 import	 a	 collection,	 hence,	 the
collection	name	is	optional	[10].

“Mongoexport	 is	 a	 utility	 that	 produces	 a	 JSON	 or	 CSV	 export	 of
data	stored	in	a	MongoDB	instance”	[10].

9.1.2.5	Security	Features

Data	security	is	a	crucial	aspect	of	the	enterprise	infrastructure	management	and
is	the	reason	why	MongoDB	provides	various	security	features	such	as	ole	based
access	 control,	 numerous	 authentication	 options,	 and	 encryption.	 It	 supports
mechanisms	 such	 as	 SCRAM,	 LDAP,	 and	 Kerberos	 authentication.	 The
administrator	 can	 create	 role/collection-based	 access	 control;	 also	 roles	 can	 be
predefined	 or	 custom.	 MongoDB	 can	 audit	 activities	 such	 as	 DDL,	 CRUD
statements,	authentication	and	authorization	operations	[11].

9.1.2.5.1	Collection	based	access	control	example

A	user	defined	role	can	contain	the	following	privileges	[11].

9.1.2.6	MongoDB	Cloud	Service

In	 regards	 to	 the	 cloud	 technologies,	 MongoDB	 also	 offers	 fully	 automated
cloud	service	called	Atlas	with	competitive	pricing	options.	Mongo	Atlas	Cloud
interface	 offers	 interactive	 GUI	 for	 managing	 cloud	 resources	 and	 deploying

$	mongoimport	--db	users	--collection	contacts	--file	contacts.json

$	mongoimport	--db	users	--type	csv	--headerline	--file	/opt/backups/contacts.csv

$	mongoexport	--db	test	--collection	traffic	--out	traffic.json

$	privileges:	[

			{	resource:	{	db:	"products",	collection:	"inventory"	},	actions:	["find",	"update"]	},

			{	resource:	{	db:	"products",	collection:	"orders"	},		actions:	["find"]	}

]

applications	 quickly.	 The	 service	 is	 equipped	 with	 geographically	 distributed
instances	 to	 ensure	 no	 single	 point	 failure.	 Also,	 a	 well-rounded	 performance
monitoring	 interface	 allows	 users	 to	 promptly	 detect	 anomalies	 and	 generate
index	 suggestions	 to	 optimize	 the	 performance	 and	 reliability	 of	 the	 database.
Global	 technology	 leaders	 such	 as	 Google,	 Facebook,	 eBay,	 and	 Nokia	 are
leveraging	MongoDB	 and	Atlas	 cloud	 services	 making	MongoDB	 one	 of	 the
most	popular	choices	among	the	NoSQL	databases	[12].

9.1.3	PyMongo

PyMongo	 is	 the	 official	 Python	 driver	 or	 distribution	 that	 allows	work	with	 a
NoSQL	type	database	called	MongoDB	[13].	The	first	version	of	the	driver	was
developed	in	2009	[14],	only	two	years	after	the	development	of	MongoDB	was
started.	This	driver	allows	developers	 to	combine	both	Python’s	versatility	and
MongoDB’s	flexible	schema	nature	into	successful	applications.	Currently,	this
driver	 supports	 MongoDB	 versions	 2.6,	 3.0,	 3.2,	 3.4,	 3.6,	 and	 4.0	 [15].
MongoDB	and	Python	represent	a	compatible	fit	considering	that	BSON	(binary
JSON)	 used	 in	 this	 NoSQL	 database	 is	 very	 similar	 to	 Python	 dictionaries,
which	makes	 the	collaboration	between	the	 two	even	more	appealing	[16].	For
this	reason,	dictionaries	are	the	recommended	tools	to	be	used	in	PyMongo	when
representing	documents	[17].

9.1.3.1	Installation

Prior	 to	 being	 able	 to	 exploit	 the	 benefits	 of	 Python	 and	 MongoDB
simultaneously,	the	PyMongo	distribution	must	be	installed	using	pip.	To	install
it	on	all	platforms,	the	following	command	should	be	used	[18]:
$	python	-m	pip	install	pymongo

Specific	versions	of	PyMongo	can	be	 installed	with	command	 lines	 such	as	 in
our	example	where	the	3.5.1	version	is	installed	[18].

A	single	line	of	code	can	be	used	to	upgrade	the	driver	as	well	[18].

$	python	-m	pip	install	pymongo==3.5.1

$	python	-m	pip	install	--upgrade	pymongo

Furthermore,	 the	 installation	 process	 can	 be	 completed	 with	 the	 help	 of	 the
easy_install	tool,	which	requires	users	to	use	the	following	command	[18].

To	 do	 an	 upgrade	 of	 the	 driver	 using	 this	 tool,	 the	 following	 command	 is
recommended	[18]:

There	 are	 many	 other	 ways	 of	 installing	 PyMongo	 directly	 from	 the	 source,
however,	 they	require	for	C	extension	dependencies	 to	be	 installed	prior	 to	 the
driver	 installation	 step,	 as	 they	 are	 the	 ones	 that	 skim	 through	 the	 sources	 on
GitHub	and	use	the	most	up-to-date	links	to	install	the	driver	[18].

To	check	if	the	installation	was	completed	accurately,	the	following	command	is
used	in	the	Python	console	[19].

If	 the	 command	 returns	 zero	 exceptions	 within	 the	 Python	 shell,	 one	 can
consider	for	the	PyMongo	installation	to	have	been	completed	successfully.

9.1.3.2	Dependencies

The	 PyMongo	 driver	 has	 a	 few	 dependencies	 that	 should	 be	 taken	 into
consideration	prior	to	its	usage.	Currently,	it	supports	CPython	2.7,	3.4+,	PyPy,
and	 PyPy	 3.5+	 interpreters	 [15].	 An	 optional	 dependency	 that	 requires	 some
additional	components	to	be	installed	is	the	GSSAPI	authentication	[15].	For	the
Unix	based	machines,	 it	 requires	pykerberos,	while	 for	 the	Windows	machines
WinKerberos	 is	 needed	 to	 fullfill	 this	 requirement	 [15].	 The	 automatic
installation	 of	 this	 dependency	 can	 be	 done	 simultaneously	 with	 the	 driver
installation,	in	the	following	manner:

Other	 third-party	 dependencies	 such	 as	 ipaddress,	 certifi,	 or	 wincerstore	 are
necessary	for	connections	with	help	of	TLS/SSL	and	can	also	be	simultaneously
installed	along	with	the	driver	installation	[15].

$	python	-m	easy_install	pymongo

$	python	-m	easy_install	-U	pymongo

import	pymongo

$	python	-m	pip	install	pymongo[gssapi]

9.1.3.3	Running	PyMongo	with	Mongo	Deamon

Once	PyMongo	is	 installed,	 the	Mongo	deamon	can	be	run	with	a	very	simple
command	in	a	new	terminal	window	[19].

9.1.3.4	Connecting	to	a	database	using	MongoClient

In	 order	 to	 be	 able	 to	 establish	 a	 connection	with	 a	 database,	 a	MongoClient
class	 needs	 to	 be	 imported,	 which	 sub-sequentially	 allows	 the	 MongoClient
object	to	communicate	with	the	database	[19].

This	command	allows	a	connection	with	a	default,	local	host	through	port	27017,
however,	 depending	 on	 the	 programming	 requirements,	 one	 can	 also	 specify
those	by	listing	them	in	the	client	 instance	or	use	the	same	information	via	the
Mongo	URI	format	[19].

9.1.3.5	Accessing	Databases

Since	 MongoClient	 plays	 a	 server	 role,	 it	 can	 be	 used	 to	 access	 any	 desired
databases	in	an	easy	way.	To	do	that,	one	can	use	two	different	approaches.	The
first	approach	would	be	doing	this	via	 the	attribute	method	where	 the	name	of
the	 desired	 database	 is	 listed	 as	 an	 attribute,	 and	 the	 second	 approach,	 which
would	include	a	dictionary-style	access	[19].	For	example,	to	access	a	database
called	 cloudmesh_community,	 one	would	 use	 the	 following	 commands	 for	 the
attribute	and	for	the	dictionary	method,	respectively.

9.1.3.6	Creating	a	Database

Creating	 a	 database	 is	 a	 straight	 forward	 process.	 First,	 one	 must	 create	 a
MongoClient	object	and	specify	the	connection	(IP	address)	as	well	as	the	name
of	the	database	they	are	trying	to	create	[20].	The	example	of	 this	command	is
presented	in	the	followng	section:

$	mongod

from	pymongo	import	MongoClient

client	=	MongoClient()

db	=	client.cloudmesh_community

db	=	client['cloudmesh_community']

9.1.3.7	Inserting	and	Retrieving	Documents	(Querying)

Creating	 documents	 and	 storing	 data	 using	 PyMongo	 is	 equally	 easy	 as
accessing	and	creating	databases.	In	order	to	add	new	data,	a	collection	must	be
specified	first.	In	this	example,	a	decision	is	made	to	use	the	cloudmesh	group	of
documents.

Once	this	step	is	completed,	data	may	be	inserted	using	the	insert_one()	method,
which	means	 that	 only	 one	 document	 is	 being	 created.	Of	 course,	 insertion	 of
multiple	 documents	 at	 the	 same	 time	 is	 possible	 as	 well	 with	 use	 of	 the
insert_many()	method	[19].	An	example	of	this	method	is	as	follows:

Another	example	of	this	method	would	be	to	create	a	collection.	If	we	wanted	to
create	a	collection	of	students	 in	 the	cloudmesh_community,	we	would	do	 it	 in
the	following	manner:

Retrieving	documents	is	equally	simple	as	creating	them.	The	find_one()	method
can	be	used	to	retrieve	one	document	[19].	An	implementation	of	this	method	is
given	in	the	following	example.

Similarly,	 to	 retieve	 multiple	 documents,	 one	 would	 use	 the	 find()	 method

import	pymongo

client	=	pymongo.MongoClient('mongodb://localhost:27017/')

db	=	client['cloudmesh']

cloudmesh	=	db.cloudmesh

course_info	=	{

					'course':	'Big	Data	Applications	and	Analytics',

					'instructor':	'	Gregor	von	Laszewski',

					'chapter':	'technologies'

}

result	=	cloudmesh.insert_one(course_info)`

student	=	[{'name':	'John',	'st_id':	52642},

				{'name':	'Mercedes',	'st_id':	5717},

				{'name':	'Anna',	'st_id':	5654},

				{'name':	'Greg',	'st_id':	5423},

				{'name':	'Amaya',	'st_id':	3540},

				{'name':	'Cameron',	'st_id':	2343},

				{'name':	'Bozer',	'st_id':	4143},

				{'name':	'Cody',	'price':	2165}]

client	=	MongoClient('mongodb://localhost:27017/')

with	client:

				db	=	client.cloudmesh

				db.students.insert_many(student)

gregors_course	=	cloudmesh.find_one({'instructor':'Gregor	von	Laszewski'})

instead	of	the	 find_one().	For	example,	to	find	all	courses	thought	by	professor
von	Laszewski,	one	would	use	the	following	command:

One	thing	that	users	should	be	cognizant	of	when	using	the	find()	method	is	that
it	 does	not	 return	 results	 in	 an	 array	 format	but	 as	 a	cursor	 object,	which	 is	 a
combination	of	methods	 that	work	 together	 to	help	with	data	querying	[19].	 In
order	to	return	individual	documents,	iteration	over	the	result	must	be	completed
[19].

9.1.3.8	Limiting	Results

When	 it	comes	 to	working	with	 large	databases	 it	 is	always	useful	 to	 limit	 the
number	of	query	 results.	PyMongo	supports	 this	option	with	 its	 limit()	method
[20].	 This	 method	 takes	 in	 one	 parameter	 which	 specifies	 the	 number	 of
documents	to	be	returned	[20].	For	example,	if	we	had	a	collection	with	a	large
number	 of	 cloud	 technologies	 as	 individual	 documents,	 one	 could	modify	 the
query	 results	 to	 return	 only	 the	 top	 10	 technologies.	To	 do	 this,	 the	 following
example	could	be	utilized:

9.1.3.9	Updating	Collection

Updating	 documents	 is	 very	 similar	 to	 inserting	 and	 retrieving	 the	 same.
Depending	 on	 the	 number	 of	 documents	 to	 be	 updated,	 one	 would	 use	 the
update_one()	or	update_many()	method	[20].	Two	parameters	need	to	be	passed
in	the	update_one()	method	for	it	to	successfully	execute.	The	first	argument	is
the	 query	 object	 that	 specifies	 the	 document	 to	 be	 changed,	 and	 the	 second
argument	is	the	object	that	specifies	the	new	value	in	the	document.	An	example
of	the	update_one()	method	in	action	is	the	following:

Updating	 all	 documents	 that	 fall	 under	 the	 same	 criteria	 can	 be	 done	with	 the
update_many	 method	 [20].	 For	 example,	 to	 update	 all	 documents	 in	 which

gregors_course	=	cloudmesh.find({'instructor':'Gregor	von	Laszewski'})

client	=	pymongo.MongoClient('mongodb://localhost:27017/')

				db	=	client['cloudmesh']

				col	=	db['technologies']

				topten	=	col.find().limit(10)

myquery	=	{	'course':	'Big	Data	Applications	and	Analytics'	}

newvalues	=	{	'$set':	{	'course':	'Cloud	Computing'	}	}

course	title	starts	with	letter	B	with	a	different	instructor	information,	we	would
do	the	following:

9.1.3.10	Counting	Documents

Counting	 documents	 can	 be	 done	 with	 one	 simple	 operation	 called
count_documents()	instead	of	using	a	full	query	[21].	For	example,	we	can	count
the	documents	in	the	cloudmesh_commpunity	by	using	the	following	command:

To	create	a	more	specific	count,	one	would	use	a	command	similar	to	this:

This	technology	supports	some	more	advanced	querying	options	as	well.	Those
advanced	 queries	 allow	 one	 to	 add	 certain	 contraints	 and	 narrow	 down	 the
results	 even	 more.	 For	 example,	 to	 get	 the	 courses	 thought	 by	 professor	 von
Laszewski	after	a	certain	date,	one	would	use	the	following	command:

9.1.3.11	Indexing

Indexing	 is	 a	 very	 important	 part	 of	 querying.	 It	 can	 greately	 improve	 query
performance	but	also	add	functionality	and	aide	in	storing	documents	[21].

“To	 create	 a	 unique	 index	 on	 a	 key	 that	 rejects	 documents	 whose
value	for	that	key	already	exists	in	the	index”	[21].

We	need	to	firstly	create	the	index	in	the	following	manner:

client	=	pymongo.MongoClient('mongodb://localhost:27017/')

db	=	client['cloudmesh']

col	=	db['courses']

query	=	{	'course':	{	'$regex':	'^B'	}	}

newvalues	=	{	'$set':	{	'instructor':	'Gregor	von	Laszewski'	}	}

edited	=	col.update_many(query,	newvalues)

cloudmesh	=	count_documents({})

cloudmesh	=	count_documents({'author':	'von	Laszewski'})

d	=	datetime.datetime(2017,	11,	12,	12)

for	course	in	cloudmesh.find({'date':	{'$lt':	d}}).sort('author'):

				pprint.pprint(course)

result	=	db.profiles.create_index([('user_id',	pymongo.ASCENDING)],

unique=True)

sorted(list(db.profiles.index_information()))

This	command	acutally	creates	two	different	indexes.	The	first	one	is	the	*_id*	,
created	by	MongoDB	automatically,	and	the	second	one	is	 the	user_id,	created
by	the	user.

The	purpose	of	 those	 indexes	 is	 to	 cleverly	prevent	 future	 additions	of	 invalid
user_ids	into	a	collection.

9.1.3.12	Sorting

Sorting	on	the	server-side	is	also	avaialable	via	MongoDB.	The	PyMongo	sort()
method	is	equivalent	to	the	SQL	order	by	statement	and	it	can	be	performed	as
pymongo.ascending	 and	pymongo.descending	 [22].	This	method	 is	much	more
efficient	 as	 it	 is	 being	 completed	 on	 the	 server-side,	 compared	 to	 the	 sorting
completed	 on	 the	 client	 side.	 For	 example,	 to	 return	 all	 users	with	 first	 name
Gregor	sorted	in	descending	order	by	birthdate	we	would	use	a	command	such
as	this:

9.1.3.13	Aggregation

Aggregation	operations	are	used	to	process	given	data	and	produce	summarized
results.	 Aggregation	 operations	 collect	 data	 from	 a	 number	 of	 documents	 and
provide	 collective	 results	 by	 grouping	 data.	 PyMongo	 in	 its	 documentation
offers	 a	 separate	 framework	 that	 supports	 data	 aggregation.	 This	 aggregation
framework	can	be	used	to

“provide	projection	capabilities	to	reshape	the	returned	data”	[23].

In	 the	 aggregation	 pipeline,	 documents	 pass	 through	 multiple	 pipeline	 stages
which	 convert	 documents	 into	 result	 data.	 The	 basic	 pipeline	 stages	 include
filters.	 Those	 filters	 act	 like	 document	 transformation	 by	 helping	 change	 the
document	 output	 form.	 Other	 pipelines	 help	 group	 or	 sort	 documents	 with
specific	 fields.	 By	 using	 native	 operations	 from	 MongoDB,	 the	 pipeline
operators	are	efficient	in	aggregating	results.

The	addFields	stage	is	used	to	add	new	fields	into	documents.	It	reshapes	each

users	=	cloudmesh.users.find({'firstname':'Gregor'}).sort(('dateofbirth',	pymongo.DESCENDING))

for	user	in	users:

			print	user.get('email')

document	 in	 stream,	 similarly	 to	 the	 project	 stage.	 The	 output	 document	 will
contain	 existing	 fields	 from	 input	 documents	 and	 the	 newly	 added	 fields	 24].
The	following	example	shows	how	to	add	student	details	into	a	document.

The	bucket	stage	is	used	to	categorize	incoming	documents	into	groups	based	on
specified	 expressions.	 Those	 groups	 are	 called	 buckets	 [24].	 The	 following
example	shows	the	bucket	stage	in	action.

In	 the	 bucketAuto	 stage,	 the	 boundaries	 are	 automatically	 determined	 in	 an
attempt	to	evenly	distribute	documents	into	a	specified	number	of	buckets.	In	the
following	operation,	input	documents	are	grouped	into	four	buckets	according	to
the	values	in	the	price	field	[24].

The	collStats	stage	returns	statistics	regarding	a	collection	or	view	[24].

The	count	 stage	passes	 a	 document	 to	 the	next	 stage	 that	 contains	 the	number
documents	that	were	input	to	the	stage	[24].

		db.cloudmesh_community.aggregate([

	{

								$addFields:	{

								"document.StudentDetails":	{

								$concat:['$document.student.FirstName',	'$document.student.LastName']

												}

								}

				}])

db.user.aggregate([

{	"$group":	{

		"_id":	{

				"city":	"$city",

				"age":	{

						"$let":	{

								"vars":	{

	"age":	{	"$subtract"	:[{	"$year":	new	Date()	},{	"$year":	"$birthDay"	}]	}},

								"in":	{

										"$switch":	{

												"branches":	[

														{	"case":	{	"$lt":	["$$age",	20]	},	"then":	0	},

														{	"case":	{	"$lt":	["$$age",	30]	},	"then":	20	},

														{	"case":	{	"$lt":	["$$age",	40]	},	"then":	30	},

														{	"case":	{	"$lt":	["$$age",	50]	},	"then":	40	},

														{	"case":	{	"$lt":	["$$age",	200]	},	"then":	50	}

]	}		}		}	}	},

		"count":	{	"$sum":	1	}}})

db.artwork.aggregate([

		{

				$bucketAuto:	{

								groupBy:	"$price",

								buckets:	4

				}

		}

])

db.matrices.aggregate([{	$collStats:	{	latencyStats:	{	histograms:	true	}	}

	}])

db.scores.aggregate([{

The	 facet	 stage	 helps	 process	multiple	 aggregation	 pipelines	 in	 a	 single	 stage
[24].

The	 geoNear	 stage	 returns	 an	 ordered	 stream	 of	 documents	 based	 on	 the
proximity	 to	 a	 geospatial	 point.	 The	 output	 documents	 include	 an	 additional
distance	field	and	can	include	a	location	identifier	field	[24].

The	 graphLookup	 stage	 performs	 a	 recursive	 search	 on	 a	 collection.	 To	 each
output	document,	 it	adds	a	new	array	field	that	contains	the	traversal	results	of
the	recursive	search	for	that	document	[24].

The	group	 stage	consumes	 the	document	data	per	each	distinct	group.	 It	has	a
RAM	 limit	 of	 100	MB.	 If	 the	 stage	 exceeds	 this	 limit,	 the	group	 produces	 an
error	[24].

			$match:	{								score:	{										$gt:	80				}	}		},

	{						$count:	"passing_scores"		}])

db.artwork.aggregate([{

			$facet:	{		"categorizedByTags":	[{	$unwind:	"$tags"	},

							{	$sortByCount:	"$tags"	}],		"categorizedByPrice":	[

							//	Filter	out	documents	without	a	price	e.g.,	_id:	7

							{	$match:	{	price:	{	$exists:	1	}	}	},

						{	$bucket:	{	groupBy:	"$price",

										boundaries:	[0,	150,	200,	300,	400],

										default:	"Other",

										output:	{	"count":	{	$sum:	1	},

												"titles":	{	$push:	"$title"	}

										}	}								}],	"categorizedByYears(Auto)":	[

						{	$bucketAuto:	{	groupBy:	"$year",buckets:	4	}

						}]}}])

db.places.aggregate([

	{				$geoNear:	{

						near:	{	type:	"Point",	coordinates:	[-73.99279	,	40.719296]	},

						distanceField:	"dist.calculated",

						maxDistance:	2,

						query:	{	type:	"public"	},

						includeLocs:	"dist.location",

						num:	5,

						spherical:	true

			}		}])

db.travelers.aggregate([

	{

				$graphLookup:	{

							from:	"airports",

							startWith:	"$nearestAirport",

							connectFromField:	"connects",

							connectToField:	"airport",

							maxDepth:	2,

							depthField:	"numConnections",

							as:	"destinations"

				}

	}

])

db.sales.aggregate(

	[

				{

						$group	:	{

									_id	:	{	month:	{	$month:	"$date"	},	day:	{	$dayOfMonth:	"$date"	},

The	 indexStats	 stage	 returns	 statistics	 regarding	 the	 use	 of	 each	 index	 for	 a
collection	[24].

The	 limit	 stage	 is	 used	 for	 controlling	 the	 number	 of	 documents	 passed	 to	 the
next	stage	in	the	pipeline	[24].

The	listLocalSessions	stage	gives	the	session	information	currently	connected	to
mongos	or	mongod	instance	[24].

The	listSessions	stage	lists	out	all	session	that	have	been	active	long	enough	to
propagate	to	the	system.sessions	collection	[24].

The	lookup	stage	is	useful	for	performing	outer	joins	to	other	collections	in	the
same	database	[24].

The	match	stage	is	used	to	filter	the	document	stream.	Only	matching	documents
pass	to	next	stage	[24].

The	project	 stage	 is	 used	 to	 reshape	 the	 documents	 by	 adding	 or	 deleting	 the
fields.

									year:	{	$year:	"$date"	}	},

									totalPrice:	{	$sum:	{	$multiply:	["$price",	"$quantity"]	}	},

									averageQuantity:	{	$avg:	"$quantity"	},

									count:	{	$sum:	1	}

							}

				}

]

)

db.orders.aggregate([{	$indexStats:	{	}	}])

db.article.aggregate(

		{	$limit	:	5	}

)

db.aggregate([{	$listLocalSessions:	{	allUsers:	true	}	}])

	use	config

	db.system.sessions.aggregate([{	$listSessions:	{	allUsers:	true	}	}])

{

			$lookup:

					{

							from:	<collection	to	join>,

							localField:	<field	from	the	input	documents>,

							foreignField:	<field	from	the	documents	of	the	"from"	collection>,

							as:	<output	array	field>

					}

}

db.articles.aggregate(

				[{	$match	:	{	author	:	"dave"	}	}]

)

The	 redact	 stage	 reshapes	 stream	 documents	 by	 restricting	 information	 using
information	stored	in	documents	themselves	[24].

The	replaceRoot	stage	is	used	to	replace	a	document	with	a	specified	embedded
document	[24].

The	sample	 stage	 is	used	 to	 sample	out	data	by	 randomly	selecting	number	of
documents	form	input	[24].

The	skip	stage	skips	specified	initial	number	of	documents	and	passes	remaining
documents	to	the	pipeline	[24].

The	sort	 stage	 is	 useful	while	 reordering	 document	 stream	 by	 a	 specified	 sort
key	[24].

The	 sortByCounts	 stage	 groups	 the	 incoming	 documents	 based	 on	 a	 specified
expression	value	and	counts	documents	in	each	distinct	group	[24].

The	unwind	stage	deconstructs	an	array	field	from	the	input	documents	to	output

db.books.aggregate([{	$project	:	{	title	:	1	,	author	:	1	}	}])

		db.accounts.aggregate(

		[

				{	$match:	{	status:	"A"	}	},

				{

						$redact:	{

								$cond:	{

										if:	{	$eq:	["$level",	5]	},

										then:	"$$PRUNE",

										else:	"$$DESCEND"

								}						}				}]);

		db.produce.aggregate([

			{

					$replaceRoot:	{	newRoot:	"$in_stock"	}

			}

])

		db.users.aggregate(

			[{	$sample:	{	size:	3	}	}]

)

db.article.aggregate(

			{	$skip	:	5	}

);

	db.users.aggregate(

				[

						{	$sort	:	{	age	:	-1,	posts:	1	}	}

]

)

db.exhibits.aggregate(

[{	$unwind:	"$tags"	},		{	$sortByCount:	"$tags"	}])

a	document	for	each	element	[24].

The	out	stage	is	used	to	write	aggregation	pipeline	results	into	a	collection.	This
stage	should	be	the	last	stage	of	a	pipeline	[24].

Another	option	from	the	aggregation	operations	is	the	Map/Reduce	framework,
which	essentially	includes	two	different	functions,	map	and	reduce.	The	first	one
provides	the	key	value	pair	for	each	tag	in	the	array,	while	the	latter	one

“sums	over	all	of	the	emitted	values	for	a	given	key”	[23].

The	last	step	in	the	Map/Reduce	process	it	to	call	the	map_reduce()	function	and
iterate	over	the	results	[23].	The	Map/Reduce	operation	provides	result	data	in	a
collection	or	returns	results	in-line.	One	can	perform	subsequent	operations	with
the	same	input	collection	if	the	output	of	the	same	is	written	to	a	collection	[25].
An	operation	that	produces	results	in	a	in-line	form	must	provide	results	with	in
the	BSON	document	 size	 limit.	The	current	 limit	 for	 a	BSON	document	 is	16
MB.	These	types	of	operations	are	not	supported	by	views	[25].	The	PyMongo’s
API	 supports	 all	 features	 of	 the	 MongoDB’s	 Map/Reduce	 engine	 [26].
Moreover,	Map/Reduce	 has	 the	 ability	 to	 get	more	 detailed	 results	 by	 passing
full_response=True	argument	to	the	map_reduce()	function	[26].

9.1.3.14	Deleting	Documents	from	a	Collection

The	deletion	of	documents	with	PyMongo	 is	 fairly	 straight	 forward.	To	do	 so,
one	 would	 use	 the	 remove()	 method	 of	 the	 PyMongo	 Collection	 object	 [22].
Similarly	to	the	reads	and	updates,	specification	of	documents	to	be	removed	is	a
must.	For	example,	removal	of	the	entire	document	collection	with	a	score	of	1,
would	required	one	to	use	the	following	command:

The	safe	parameter	set	to	True	ensures	the	operation	was	completed	[22].

db.inventory.aggregate([{	$unwind:	"$sizes"	}])

db.inventory.aggregate([{	$unwind:	{	path:	"$sizes"	}	}])

db.books.aggregate([

																		{	$group	:	{	_id	:	"$author",	books:	{	$push:	"$title"	}	}	},

																						{	$out	:	"authors"	}

])

cloudmesh.users.remove({"score":1,	safe=True})

9.1.3.15	Copying	a	Database

Copying	 databases	 within	 the	 same	 mongod	 instance	 or	 between	 different
mongod	servers	 is	made	possible	with	 the	command()	method	after	connecting
to	 the	 desired	 mongod	 instance	 [27].	 For	 example,	 to	 copy	 the	 cloudmesh
database	 and	 name	 the	 new	 database	 cloudmesh_copy,	 one	 would	 use	 the
command()	method	in	the	following	manner:

There	 are	 two	 ways	 to	 copy	 a	 database	 between	 servers.	 If	 a	 server	 is	 not
password-prodected,	 one	 would	 not	 need	 to	 pass	 in	 the	 credentials	 nor	 to
authenticate	 to	 the	 admin	 database	 [27].	 In	 that	 case,	 to	 copy	 a	 database	 one
would	use	the	following	command:

On	 the	 other	 hand,	 if	 the	 server	 where	 we	 are	 copying	 the	 database	 to	 is
protected,	one	would	use	this	command	instead:

9.1.3.16	PyMongo	Strengths

One	 of	 PyMongo	 strengths	 is	 that	 allows	 document	 creation	 and	 querying
natively

“through	 the	 use	 of	 existing	 language	 features	 such	 as	 nested
dictionaries	and	lists”	[22].

For	moderately	 experienced	 Python	 developers,	 it	 is	 very	 easy	 to	 learn	 it	 and
quickly	feel	comfortable	with	it.

“For	 these	 reasons,	 MongoDB	 and	 Python	 make	 a	 powerful
combination	for	rapid,	iterative	development	of	horizontally	scalable

client.admin.command('copydb',

																									fromdb='cloudmesh',

																									todb='cloudmesh_copy')

client.admin.command('copydb',

																									fromdb='cloudmesh',

																									todb='cloudmesh_copy',

																									fromhost='source.example.com')

client	=	MongoClient('target.example.com',

																					username='administrator',

																					password='pwd')

client.admin.command('copydb',

																					fromdb='cloudmesh',

																					todb='cloudmesh_copy',

																					fromhost='source.example.com')

backend	applications”	[22].

According	to	[22],	MongoDB	is	very	applicable	 to	modern	applications,	which
makes	PyMongo	equally	valuable	[22].

9.1.4	MongoEngine

“MongoEngine	is	an	Object-Document	Mapper,	written	in	Python	for
working	with	MongoDB”	[28].

It	 is	 actually	 a	 library	 that	 allows	 a	 more	 advanced	 communication	 with
MongoDB	compared	to	PyMongo.	As	MongoEngine	is	technically	considered	to
be	an	object-document	mapper(ODM),	it	can	also	be	considered	to	be

“equivalent	to	a	SQL-based	object	relational	mapper(ORM)”	[19].

The	primary	 technique	why	one	would	use	 an	ODM	 includes	data	conversion
between	computer	systems	that	are	not	compatible	with	each	other	[29].	For	the
purpose	 of	 converting	 data	 to	 the	 appropriate	 form,	 a	 virtual	 object	 database
must	be	created	within	 the	utilized	programming	 language	[29].	This	 library	 is
also	used	to	define	schemata	for	documents	within	MongoDB,	which	ultimately
helps	with	minimizing	coding	errors	as	well	defining	methods	on	existing	fields
[30].	It	is	also	very	beneficial	to	the	overall	workflow	as	it	tracks	changes	made
to	the	documents	and	aids	in	the	document	saving	process	[31].

9.1.4.1	Installation

The	installation	process	for	this	technology	is	fairly	simple	as	it	is	considered	to
be	a	library.	To	install	it,	one	would	use	the	following	command	[32]:

A	bleeding-edge	version	of	MongoEngine	can	be	installed	directly	from	GitHub
by	first	cloning	the	repository	on	the	local	machine,	virtual	machine,	or	cloud.

9.1.4.2	Connecting	to	a	database	using	MongoEngine

Once	 installed,	 MongoEngine	 needs	 to	 be	 connected	 to	 an	 instance	 of	 the

$	pip	install	mongoengine

mongod,	 similarly	 to	 PyMongo	 [33].	 The	 connect()	 function	 must	 be	 used	 to
successfully	 complete	 this	 step	 and	 the	 argument	 that	 must	 be	 used	 in	 this
function	is	the	name	of	the	desired	database	[33].	Prior	to	using	this	function,	the
function	name	needs	to	be	imported	from	the	MongoEngine	library.

Similarly	to	the	MongoClient,	MongoEngine	uses	the	local	host	and	port	27017
by	 default,	 however,	 the	 connect()	 function	 also	 allows	 specifying	 other	 hosts
and	port	arguments	as	well	[33].

Other	 types	 of	 connections	 are	 also	 supported	 (i.e.	 URI)	 and	 they	 can	 be
completed	by	providing	the	URI	in	the	connect()	function	[33].

9.1.4.3	Querying	using	MongoEngine

To	query	MongoDB	using	MongoEngine	an	objects	attribute	 is	used,	which	is,
technically,	 a	 part	 of	 the	 document	 class	 [34].	 This	 attribute	 is	 called	 the
QuerySetManager	which	in	return

“creates	a	new	QuerySet	object	on	access”	[34].

To	be	able	to	access	individual	documents	from	a	database,	this	object	needs	to
be	 iterated	 over.	 For	 example,	 to	 return/print	 all	 students	 in	 the
cloudmesh_community	 object	 (database),	 the	 following	 command	 would	 be
used.

MongoEngine	 also	 has	 a	 capability	 of	 query	 filtering	 which	 means	 that	 a
keyword	 can	 be	 used	 within	 the	 called	 QuerySet	 object	 to	 retrieve	 specific
information	 [34].	 Let	 us	 say	 one	 would	 like	 to	 iterate	 over
cloudmesh_community	students	that	are	natives	of	Indiana.	To	achieve	this,	one
would	use	the	following	command:

This	library	also	allows	the	use	of	all	operators	except	for	the	equality	operator

from	mongoengine	import	connect

connect('cloudmesh_community')

connect('cloudmesh_community',	host='196.185.1.62',	port=16758)

for	user	in	cloudmesh_community.objects:

			print	cloudmesh_community.student

indy_students	=	cloudmesh_community.objects(state='IN')

in	 its	queries,	 and	moreover,	has	 the	capability	of	handling	string	queries,	geo
queries,	list	querying,	and	querying	of	the	raw	PyMongo	queries	[34].

The	 string	 queries	 are	 useful	 in	 performing	 text	 operations	 in	 the	 conditional
queries.	A	query	 to	 find	 a	 document	 exactly	matching	 and	with	 state	ACTIVE
can	be	performed	in	the	following	manner:

The	query	to	retrieve	document	data	for	names	that	start	with	a	case	sensitive	AL
can	be	written	as:

To	perform	an	exact	same	query	for	the	non-key-sensitive	AL	one	would	use	the
following	command:

The	MongoEngine	allows	data	extraction	of	geographical	locations	by	using	Geo
queries.	The	geo_within	operator	checks	if	a	geometry	is	within	a	polygon.

The	list	query	looks	up	the	documents	where	the	specified	fields	matches	exactly
to	the	given	value.	To	match	all	pages	that	have	the	word	coding	as	an	item	in
the	tags	list	one	would	use	the	following	query:

Overall,	it	would	be	safe	to	say	that	MongoEngine	has	good	compatibility	with
Python.	 It	 provides	 different	 functions	 to	 utilize	 Python	 easily	 with
MongoDBand	 which	 makes	 this	 pair	 even	 more	 attractive	 to	 application
developers.

9.1.5	Flask-PyMongo

“Flask	is	a	micro-web	framework	written	in	Python”	[35].

db.cloudmesh_community.find(State.exact("ACTIVE"))

db.cloudmesh_community.find(Name.startswith("AL"))

db.cloudmesh_community.find(Name.istartswith("AL"))

		cloudmesh_community.objects(

												point__geo_within=[[[40,	5],	[40,	6],	[41,	6],	[40,	5]]])

		cloudmesh_community.objects(

												point__geo_within={"type":	"Polygon",

																	"coordinates":	[[[40,	5],	[40,	6],	[41,	6],	[40,	5]]]})

		class	Page(Document):

					tags	=	ListField(StringField())

		Page.objects(tags='coding')

It	was	developed	after	Django,	and	 it	 is	very	pythonic	 in	nature	which	 implies
that	it	is	explicitly	the	targeting	the	Python	user	community.	It	is	lightweight	as
it	does	not	require	additional	tools	or	libraries	and	hence	is	classified	as	a	Micro-
Web	framework.	It	is	often	used	with	MongoDB	using	PyMongo	connector,	and
it	 treats	 data	 within	 MongoDB	 as	 searchable	 Python	 dictionaries.	 The
applications	such	as	Pinterest,	LinkedIn,	and	the	community	web	page	for	Flask
are	 using	 the	Flask	 framework.	Moreover,	 it	 supports	 various	 features	 such	 as
the	 RESTful	 request	 dispatching,	 secure	 cookies,	 Google	 app	 engine
compatibility,	and	integrated	support	for	unit	testing,	etc	[35].	When	it	comes	to
connecting	to	a	database,	the	connection	details	for	MongoDB	can	be	passed	as	a
variable	or	configured	in	PyMongo	constructor	with	additional	arguments	such
as	username	and	password,	if	required.	It	is	important	that	versions	of	both	Flask
and	MongoDB	are	compatible	with	each	other	to	avoid	functionality	breaks	[36].

9.1.5.1	Installation

Flask-PyMongo	can	be	installed	with	an	easy	command	such	as	this:

PyMongo	can	be	added	in	the	following	manner:

9.1.5.2	Configuration

There	are	two	ways	to	configure	Flask-PyMongo.	The	first	way	would	be	to	pass
a	MongoDB	URI	to	the	PyMongo	constructor,	while	the	second	way	would	be	to

“assign	it	to	the	MONGO_URI	Flask	confiuration	variable”	[36].

9.1.5.3	Connection	to	multiple	databases/servers

Multiple	 PyMongo	 instances	 can	 be	 used	 to	 connect	 to	 multiple	 databases	 or
database	 servers.	 To	 achieve	 this,	 once	 would	 use	 a	 command	 similar	 to	 the
following:

$	pip	install	Flask-PyMongo

		from	flask	import	Flask

		from	flask_pymongo	import	PyMongo

		app	=	Flask(__name__)

		app.config["MONGO_URI"]	=	"mongodb://localhost:27017/cloudmesh_community"

		mongo	=	PyMongo(app)

9.1.5.4	Flask-PyMongo	Methods

Flask-PyMongo	 provides	 helpers	 for	 some	 common	 tasks.	One	 of	 them	 is	 the
Collection.find_one_or_404	method	shown	in	the	following	example:

This	 method	 is	 very	 similar	 to	 the	 MongoDB’s	 find_one()	 method,	 however,
instead	of	returning	None	it	causes	a	404	Not	Found	HTTP	status	[36].

Similarly,	the	PyMongo.send_file	and	PyMongo.save_file	methods	work	on	 the
file-like	objects	and	save	them	to	GridFS	using	the	given	file	name	[36].

9.1.5.5	Additional	Libraries

Flask-MongoAlchemy	and	Flask-MongoEngine	are	 the	additional	 libraries	 that
can	be	used	 to	connect	 to	a	MongoDB	database	while	using	enhanced	features
with	 the	 Flask	 app.	 The	 Flask-MongoAlchemy	 is	 used	 as	 a	 proxy	 between
Python	 and	 MongoDB	 to	 connect.	 It	 provides	 an	 option	 such	 as	 server	 or
database	based	authentication	to	connect	to	MongoDB.	While	the	default	 is	set
server	 based,	 to	 use	 a	 database-based	 authentication,	 the	 config	 value
MONGOALCHEMY_SERVER_AUTH	parameter	must	be	set	to	False	[37].

Flask-MongoEngine	 is	 the	 Flask	 extension	 that	 provides	 integration	 with	 the
MongoEngine.	 It	 handles	 connection	 management	 for	 the	 apps.	 It	 can	 be
installed	through	pip	and	set	up	very	easily	as	well.	The	default	configuration	is
set	 to	 the	 local	 host	 and	 port	 27017.	 For	 the	 custom	 port	 and	 in	 cases	where
MongoDB	 is	 running	 on	 another	 server,	 the	 host	 and	 port	 must	 be	 explicitly
specified	in	connect	strings	within	the	MONGODB_SETTINGS	dictionary	with
app.config,	 along	with	 the	 database	 username	 and	 password,	 in	 cases	where	 a
database	authentication	is	enabled.	The	URI	style	connections	are	also	supported
and	supply	 the	URI	as	 the	host	 in	 the	MONGODB_SETTINGS	 dictionary	with
app.config.	There	are	various	custom	query	sets	that	are	available	within	Flask-

		app	=	Flask(__name__)

		mongo1	=	PyMongo(app,	uri="mongodb://localhost:27017/cloudmesh_community_one")

		mongo2	=	PyMongo(app,	uri="mongodb://localhost:27017/cloudmesh_community_two")

		mongo3	=	PyMongo(app,	uri=

								"mongodb://another.host:27017/cloudmesh_community_Three")

		@app.route("/user/<username>")

		def	user_profile(username):

						user	=	mongo.db.cloudmesh_community.find_one_or_404({"_id":	username})

						return	render_template("user.html",	user=user)

Mongoengine	that	are	attached	to	Mongoengine’s	default	queryset	[38].

9.1.5.6	Classes	and	Wrappers

Attributes	 such	 as	 cx	 and	 db	 in	 the	 PyMongo	 objects	 are	 the	 ones	 that	 help
provide	access	to	the	MongoDB	server	[36].	To	achieve	this,	one	must	pass	the
Flask	app	to	the	constructor	or	call	init_app()	[36].

“Flask-PyMongo	 wraps	 PyMongo’s	 MongoClient,	 Database,	 and
Collection	classes,	and	overrides	their	attribute	and	item	accessors”
[36].

This	 type	 of	 wrapping	 allows	 Flask-PyMongo	 to	 add	 methods	 to	 Collection
while	at	the	same	time	allowing	a	MongoDB-style	dotted	expressions	in	the	code
[36].

Flask-PyMongo	 creates	 connectivity	 between	 Python	 and	 Flask	 using	 a
MongoDB	database	and	supports

“extensions	 that	 can	 add	 application	 features	 as	 if	 they	 were
implemented	in	Flask	itself”	[39],

hence,	 it	 can	be	used	 as	 an	 additional	Flask	 functionality	 in	Python	 code.	The
extensions	 are	 there	 for	 the	 purpose	 of	 supporting	 form	 validations,
authentication	 technologies,	 object-relational	 mappers	 and	 framework	 related
tools	which	ultimately	adds	a	lot	of	strength	to	this	micro-web	framework	[39].
One	of	the	main	reasons	and	benefits	why	it	is	frequently	used	with	MongoDB	is
its	capability	of	adding	more	control	over	databases	and	history	[39].

9.2	MONGOENGINE	☁�
9.2.1	Introduction

MongoEngine	 is	a	document	mapper	 for	working	with	mongoldb	with	python.
To	 be	 able	 to	 use	 mongo	 engine	 MongodD	 should	 be	 already	 installed	 and

type(mongo.cx)

type(mongo.db)

type(mongo.db.cloudmesh_community)

https://github.com/cloudmesh-community/book/blob/master/chapters/data/mongoengine.md

running.

9.2.2	Install	and	connect

Mongoengine	can	be	installed	by	running:

This	will	install	six,	pymongo	and	mongoengine.

To	 connect	 to	 mongoldb	 use	 connect	 ()	 function	 by	 specifying	 mongoldb
instance	name.	You	don’t	need	to	go	to	mongo	shell	but	this	can	be	done	from
unix	 shell	 or	 cmd	 line.	 In	 this	 case	 we	 are	 connecting	 to	 a	 database	 named
student_db.

If	mongodb	 is	 running	on	a	port	different	 from	default	port	 ,	port	number	and
host	 need	 to	 be	 specified.	 If	 mongoldb	 needs	 authentication	 username	 and
password	need	to	be	specified.

9.2.3	Basics

Mongodb	does	not	enforce	schemas.	Comparing	to	RDBMS,	Row	in	mongoldb
is	 called	 a	 “document”	 and	 table	 can	 be	 compared	 to	Collection.	 Defining	 a
schema	is	helpful	as	it	minimizes	coding	error’s.	To	define	a	schema	we	create	a
class	that	inherits	from	document.

⷏�	TODO:	Can	you	fix	the	code	sections	and	look	at	the	examples	we	provided.

Fields	 are	 not	mandatory	 but	 if	 needed,	 set	 the	 required	 keyword	 argument	 to
True.	 There	 are	 multiple	 values	 available	 for	 field	 types.	 Each	 field	 can	 be
customized	by	by	keyword	argument.	If	each	student	is	sending	text	messages	to
Universities	central	database	,	these	can	be	stored	using	Mongodb.	Each	text	can
have	different	data	types,	some	might	have	images	or	some	might	have	url’s.	So
we	can	create	a	class	text	and	link	it	to	student	by	using	Reference	field	(similar

				$	pip	install	mongo	engine

from	mongo	engine	import	*	connect	(‘student_db’)

from	mongoengine	import	*

class	Student(Document):

				first_name	=	StringField(max_length=50)

				last_name	=	StringField(max_length=50)

to	foreign	key	in	RDBMS).

MongoDb	 supports	 adding	 tags	 to	 individual	 texts	 rather	 then	 storing	 them
separately	 and	 then	 having	 them	 referenced.Similarly	 Comments	 can	 also	 be
stored	directly	in	a	Text.

For	accessing	data:	if	we	need	to	get	titles.

Searching	texts	with	tags.

class	Text(Document):

				title	=	StringField(max_length=120,	required=True)

				author	=	ReferenceField(Student)

				meta	=	{'allow_inheritance':	True}

class	OnlyText(Text):

				content	=	StringField()

class	ImagePost(Text):

				image_path	=	StringField()

class	LinkPost(Text):

				link_url	=	StringField()

class	Text(Document):

				title	=	StringField(max_length=120,	required=True)

				author	=	ReferenceField(User)

				tags	=	ListField(StringField(max_length=30))

				comments	=	ListField(EmbeddedDocumentField(Comment))

for	text	in	OnlyText.objects:

				print(text.title)

for	text	in	Text.objects(tags='mongodb'):

				print(text.title)

10	OTHER

10.1	WORD	COUNT	WITH	PARALLEL	PYTHON	☁�
We	 will	 demonstrate	 Python’s	 multiprocessing	 API	 for	 parallel	 computation	 by
writing	 a	 program	 that	 counts	 how	 many	 times	 each	 word	 in	 a	 collection	 of
documents	appear.

10.1.1	Generating	a	Document	Collection

Before	we	begin,	let	us	write	a	script	that	will	generate	document	collections	by
specifying	 the	 number	 of	 documents	 and	 the	 number	 of	words	 per	 document.
This	will	make	benchmarking	straightforward.

To	 keep	 it	 simple,	 the	 vocabulary	 of	 the	 document	 collection	 will	 consist	 of
random	numbers	rather	than	the	words	of	an	actual	language:
'''Usage:	generate_nums.py	[-h]	NUM_LISTS	INTS_PER_LIST	MIN_INT	MAX_INT	DEST_DIR

Generate	random	lists	of	integers	and	save	them

as	1.txt,	2.txt,	etc.

Arguments:

			NUM_LISTS						The	number	of	lists	to	create.

			INTS_PER_LIST		The	number	of	integers	in	each	list.

			MIN_NUM								Each	generated	integer	will	be	>=	MIN_NUM.

			MAX_NUM								Each	generated	integer	will	be	<=	MAX_NUM.

			DEST_DIR							A	directory	where	the	generated	numbers	will	be	stored.

Options:

		-h	--help

'''

from	__future__	import	print_function

import	os,	random,	logging

from	docopt	import	docopt

def	generate_random_lists(num_lists,

																										ints_per_list,	min_int,	max_int):

				return	[[random.randint(min_int,	max_int)	\

								for	i	in	range(ints_per_list)]	for	i	in	range(num_lists)]

if	__name__	==	'__main__':

			args	=	docopt(__doc__)

			num_lists,	ints_per_list,	min_int,	max_int,	dest_dir	=	[

						int(args['NUM_LISTS']),

						int(args['INTS_PER_LIST']),

						int(args['MIN_INT']),

						int(args['MAX_INT']),

						args['DEST_DIR']

]

			if	not	os.path.exists(dest_dir):

https://github.com/cloudmesh-community/book/blob/master/chapters/prg/python/python-wordcount.md

Notice	 that	we	 are	 using	 the	 docopt	module	 that	 you	 should	 be	 familiar	 with
from	the	Section	[Python	DocOpts](#s-python-docopts}	to	make	the	script	easy
to	run	from	the	command	line.

You	can	generate	a	document	collection	with	this	script	as	follows:

10.1.2	Serial	Implementation

A	first	serial	implementation	of	wordcount	is	straightforward:

						os.makedirs(dest_dir)

			lists	=	generate_random_lists(num_lists,

																																	ints_per_list,

																																	min_int,

																																	max_int)

			curr_list	=	1

			for	lst	in	lists:

						with	open(os.path.join(dest_dir,	'%d.txt'	%	curr_list),	'w')	as	f:

					f.write(os.linesep.join(map(str,	lst)))

		curr_list	+=	1

			logging.debug('Numbers	written.')

python	generate_nums.py	1000	10000	0	100	docs-1000-10000

'''Usage:	wordcount.py	[-h]	DATA_DIR

Read	a	collection	of	.txt	documents	and	count	how	many	times	each	word

appears	in	the	collection.

Arguments:

		DATA_DIR		A	directory	with	documents	(.txt	files).

Options:

		-h	--help

'''

from	__future__	import	division,	print_function

import	os,	glob,	logging

from	docopt	import	docopt

logging.basicConfig(level=logging.DEBUG)

def	wordcount(files):

			counts	=	{}

			for	filepath	in	files:

						with	open(filepath,	'r')	as	f:

					words	=	[word.strip()	for	word	in	f.read().split()]

					for	word	in	words:

								if	word	not	in	counts:

											counts[word]	=	0

								counts[word]	+=	1

			return	counts

if	__name__	==	'__main__':

			args	=	docopt(__doc__)

			if	not	os.path.exists(args['DATA_DIR']):

						raise	ValueError('Invalid	data	directory:	%s'	%	args['DATA_DIR'])

			counts	=	wordcount(glob.glob(os.path.join(args['DATA_DIR'],	'*.txt')))

			logging.debug(counts)

https://pypi.python.org/pypi/docopt

10.1.3	Serial	Implementation	Using	map	and	reduce

We	 can	 improve	 the	 serial	 implementation	 in	 anticipation	 of	 parallelizing	 the
program	by	making	use	of	Python’s	map	and	reduce	functions.

In	 short,	 you	 can	 use	 map	 to	 apply	 the	 same	 function	 to	 the	 members	 of	 a
collection.	For	example,	to	convert	a	list	of	numbers	to	strings,	you	could	do:

We	 can	 use	 reduce	 to	 apply	 the	 same	 function	 cumulatively	 to	 the	 items	 of	 a
sequence.	For	example,	to	find	the	total	of	the	numbers	in	our	list,	we	could	use	
reduce	as	follows:

We	can	simplify	this	even	more	by	using	a	lambda	function:

You	can	read	more	about	Python’s	lambda	function	in	the	docs.

With	this	in	mind,	we	can	reimplement	the	wordcount	example	as	follows:

import	random

nums	=	[random.randint(1,	2)	for	_	in	range(10)]

print(nums)

[2,	1,	1,	1,	2,	2,	2,	2,	2,	2]

print(map(str,	nums))

['2',	'1',	'1',	'1',	'2',	'2',	'2',	'2',	'2',	'2']

def	add(x,	y):

				return	x	+	y

print(reduce(add,	nums))

17

print(reduce(lambda	x,	y:	x	+	y,	nums))

17

'''Usage:	wordcount_mapreduce.py	[-h]	DATA_DIR

Read	a	collection	of	.txt	documents	and	count	how

many	times	each	word

appears	in	the	collection.

Arguments:

			DATA_DIR		A	directory	with	documents	(.txt	files).

Options:

			-h	--help

'''

from	__future__	import	division,	print_function

import	os,	glob,	logging

from	docopt	import	docopt

logging.basicConfig(level=logging.DEBUG)

def	count_words(filepath):

			counts	=	{}

			with	open(filepath,	'r')	as	f:

						words	=	[word.strip()	for	word	in	f.read().split()]

https://docs.python.org/2.7/tutorial/controlflow.html#lambda-expressions

10.1.4	Parallel	Implementation

Drawing	on	 the	previous	 implementation	using	 map	and	 reduce,	we	 can	 parallelize
the	implementation	using	Python’s	multiprocessing	API:

10.1.5	Benchmarking

		for	word	in	words:

					if	word	not	in	counts:

								counts[word]	=	0

					counts[word]	+=	1

		return	counts

def	merge_counts(counts1,	counts2):

			for	word,	count	in	counts2.items():

						if	word	not	in	counts1:

					counts1[word]	=	0

		counts1[word]	+=	counts2[word]

			return	counts1

if	__name__	==	'__main__':

			args	=	docopt(__doc__)

			if	not	os.path.exists(args['DATA_DIR']):

						raise	ValueError('Invalid	data	directory:	%s'	%	args['DATA_DIR'])

						per_doc_counts	=	map(count_words,

																											glob.glob(os.path.join(args['DATA_DIR'],

																											'*.txt')))

			counts	=	reduce(merge_counts,	[{}]	+	per_doc_counts)

			logging.debug(counts)

'''Usage:	wordcount_mapreduce_parallel.py	[-h]	DATA_DIR	NUM_PROCESSES

Read	a	collection	of	.txt	documents	and	count,	in	parallel,	how	many

times	each	word	appears	in	the	collection.

Arguments:

			DATA_DIR							A	directory	with	documents	(.txt	files).

			NUM_PROCESSES		The	number	of	parallel	processes	to	use.

Options:

			-h	--help

'''

from	__future__	import	division,	print_function

import	os,	glob,	logging

from	docopt	import	docopt

from	wordcount_mapreduce	import	count_words,	merge_counts

from	multiprocessing	import	Pool

logging.basicConfig(level=logging.DEBUG)

if	__name__	==	'__main__':

			args	=	docopt(__doc__)

			if	not	os.path.exists(args['DATA_DIR']):

						raise	ValueError('Invalid	data	directory:	%s'	%	args['DATA_DIR'])

			num_processes	=	int(args['NUM_PROCESSES'])

			pool	=	Pool(processes=num_processes)

			per_doc_counts	=	pool.map(count_words,

																													glob.glob(os.path.join(args['DATA_DIR'],

																													'*.txt')))

			counts	=	reduce(merge_counts,	[{}]	+	per_doc_counts)

			logging.debug(counts)

To	time	each	of	the	examples,	enter	it	into	its	own	Python	file	and	use	Linux’s	
time	command:

The	output	contains	 the	 real	 run	 time	and	 the	user	 run	 time.	 real	 is	wall	 clock
time	-	time	from	start	to	finish	of	the	call.	user	is	the	amount	of	CPU	time	spent
in	 user-mode	 code	 (outside	 the	 kernel)	within	 the	 process,	 that	 is,	 only	 actual
CPU	time	used	in	executing	the	process.

10.1.6	Excersises

E.python.wordcount.1:

Run	 the	 three	different	programs	 (serial,	 serial	w/	map	and	reduce,
parallel)	and	answer	the	following	questions:

1.	 Is	 there	 any	 performance	 difference	 between	 the	 different
versions	of	the	program?

2.	 Does	user	time	significantly	differ	from	real	time	for	any	of	the
versions	of	the	program?

3.	 Experiment	with	different	numbers	of	processes	for	the	parallel
example,	 starting	 with	 1.	 What	 is	 the	 performance	 gain	 when
you	goal	from	1	to	2	processes?	From	2	to	3?	When	do	you	stop
seeing	 improvement?	 (this	 will	 depend	 on	 your	 machine
architecture)

10.1.7	References

Map,	Filter	and	Reduce
multiprocessing	API

10.2	NUMPY	☁�
NumPy	is	a	popular	library	that	is	used	by	many	other	Python	packages	such	as
Pandas,	 SciPy,	 and	 scikit-learn.	 It	 provides	 a	 fast,	 simple-to-use	 way	 of
interacting	 with	 numerical	 data	 organized	 in	 vectors	 and	 matrices.	 In	 this
section,	we	will	provide	a	short	introduction	to	NumPy.

$	time	python	wordcount.py	docs-1000-10000

http://book.pythontips.com/en/latest/map_filter.html
https://docs.python.org/2/library/multiprocessing.html
https://github.com/cloudmesh-community/book/blob/master/chapters/prg/python/numpy/numpy.md

10.2.1	Installing	NumPy

The	 most	 common	 way	 of	 installing	 NumPy,	 if	 it	 wasn’t	 included	 with	 your
Python	installation,	is	to	install	it	via	pip:

If	NumPy	has	already	been	installed,	you	can	update	to	the	most	recent	version
using:

You	can	verify	that	NumPy	is	installed	by	trying	to	use	it	in	a	Python	program:

Note	that,	by	convention,	we	import	NumPy	using	the	alias	‘np’	-	whenever	you
see	 ‘np’	 sprinkled	 in	 example	 Python	 code,	 it’s	 a	 good	 bet	 that	 it	 is	 using
NumPy.

10.2.2	NumPy	Basics

At	 its	 core,	 NumPy	 is	 a	 container	 for	 n-dimensional	 data.	 Typically,	 1-
dimensional	 data	 is	 called	 an	 array	 and	 2-dimensional	 data	 is	 called	 a	matrix.
Beyond	2-dimenions	would	be	considered	a	multidimensional	array.	Examples
where	you’ll	encounter	these	dimenions	may	include:

1	 Dimensional:	 time	 series	 data	 such	 as	 audio,	 stock	 prices,	 or	 a	 single
observation	in	a	dataset.
2	 Dimensional:	 connectivity	 data	 between	 network	 nodes,	 user-product
recommendations,	and	database	tables.
3+	 Dimensional:	 network	 latency	 between	 nodes	 over	 time,	 video
(RGB+time),	and	version	controlled	datasets.

All	 of	 these	 data	 can	 be	 placed	 into	 NumPy’s	 array	 object,	 just	 with	 varying
dimensions.

10.2.3	Data	Types:	The	Basic	Building	Blocks

Before	we	delve	into	arrays	and	matrices,	we	will	start	off	with	the	most	basic

$	pip	install	numpy

$	pip	install	-U	numpy

import	numpy	as	np

element	 of	 those:	 a	 single	 value.	 NumPy	 can	 represent	 data	 utilizing	 many
different	standard	datatypes	such	as	uint8	(an	8-bit	usigned	 integer),	 float64	(a
64-bit	float),	or	str	(a	string).	An	exhaustive	listing	can	be	found	at:

https://docs.scipy.org/doc/numpy-1.15.0/user/basics.types.html

Before	moving	on,	it	is	important	to	know	about	the	tradeoff	made	when	using
different	datatypes.	For	example,	a	uint8	can	only	contain	values	between	0	and
255.	This,	however,	contrasts	with	float64	which	can	express	any	value	from	+/-
1.80e+308.	So	why	wouldn’t	we	just	always	use	float64s?	Though	they	allow	us
to	be	more	expressive	in	terms	of	numbers,	they	also	consume	more	memory.	If
we	were	working	with	 a	12	megapixel	 image,	 for	 example,	 storing	 that	 image
using	uint8	values	would	require	3000	*	4000	*	8	=	96	million	bits,	or	91.55	MB
of	 memory.	 If	 we	 were	 to	 store	 the	 same	 image	 utilizing	 float64,	 our	 image
would	consume	8	 times	as	much	memory:	768	million	bits	or	732.42	MB.	It’s
important	 use	 the	 right	 datatype	 for	 the	 job	 to	 avoid	 consuming	 unneccessary
resources	or	slowing	down	processing.

Finally,	while	NumPy	will	conveniently	convert	between	datatypes,	one	must	be
aware	of	overflows	when	using	smaller	datatypes.	For	example:

In	 this	 example,	 it	 makes	 sense	 that	 6+7=13.	 But	 how	 does	 13+245=2?	 Put
simply,	 the	 object	 type	 (uint8)	 simply	 ran	 out	 of	 space	 to	 store	 the	 value	 and
wrapped	 back	 around	 to	 the	 beginning.	 An	 8-bit	 number	 is	 only	 capable	 of
storing	2^8,	or	256,	unique	values.	An	operation	that	results	in	a	value	above	that
range	will	‘overflow’	and	cause	the	value	to	wrap	back	around	to	zero.	Likewise,
anything	below	that	range	will	‘underflow’	and	wrap	back	around	to	the	end.	In
our	 example,	 13+245	 became	 258,	which	was	 too	 large	 to	 store	 in	 8	 bits	 and
wrapped	back	around	to	0	and	ended	up	at	2.

NumPy	will,	 generally,	 try	 to	 avoid	 this	 situation	 by	 dynamically	 retyping	 to
whatever	datatype	will	support	the	result:

a	=	np.array([6],	dtype=np.uint8)

print(a)

>>>[6]

a	=	a	+	np.array([7],	dtype=np.uint8)

print(a)

>>>[13]

a	=	a	+	np.array([245],	dtype=np.uint8)

print(a)

>>>[2]

a	=	a	+	260

https://docs.scipy.org/doc/numpy-1.15.0/user/basics.types.html

Here,	our	addition	caused	our	array,	‘a’,	to	be	upscaled	to	use	uint16	instead	of
uint8.	 Finally,	 NumPy	 offers	 convenience	 functions	 akin	 to	 Python’s	 range()
function	to	create	arrays	of	sequential	numbers:

We	can	use	this	function	to	also	generate	parameters	spaces	that	can	be	iterated
on:

10.2.4	Arrays:	Stringing	Things	Together

With	 our	 knowledge	 of	 datatypes	 in	 hand,	 we	 can	 begin	 to	 explore	 arrays.
Simply	 put,	 arrays	 can	 be	 thought	 of	 as	 a	 sequence	 of	 values	 (not	 neccesarily
numbers).	Arrays	are	1	dimensional	and	can	be	created	and	accessed	simply:

Arrays	 (and,	 later,	matrices)	are	zero-indexed.	This	makes	 it	 convenient	when,
for	example,	using	Python’s	range()	function	to	iterate	through	an	array:

Arrays	are,	also,	mutable	and	can	be	changed	easily:

NumPy	 also	 includes	 incredibly	 powerful	 broadcasting	 features.	This	makes	 it
very	 simple	 to	 perform	 mathematical	 operations	 on	 arrays	 that	 also	 makes

print(test)

>>>[262]

X	=	np.arange(0.2,1,.1)

print(X)

>>>array([0.2,	0.3,	0.4,	0.5,	0.6,	0.7,	0.8,	0.9],	dtype=float32)

P	=	10.0	**	np.arange(-7,1,1)

print(P)

for	x,p	in	zip(X,P):

				print('%f,	%f'	%	(x,	p))

a	=	np.array([1,	2,	3])

print(type(a))

>>><class	'numpy.ndarray'>

print(a)

>>>[1	2	3]

print(a.shape)

>>>(3,)

a[0]

>>>1

for	i	in	range(3):

				print(a[i])

>>>1

>>>2

>>>3

a[0]	=	42

print(a)

>>>array([42,	2,	3])

intuitive	sense:

Arrays	can	also	interact	with	other	arrays:

In	 this	 example,	 the	 result	 of	 multiplying	 together	 two	 arrays	 is	 to	 take	 the
element-wise	product	while	multiplying	by	a	constant	will	multiply	each	element
in	 the	 array	 by	 that	 constant.	 NumPy	 supports	 all	 of	 the	 basic	 mathematical
operations:	 addition,	 subtraction,	 multiplication,	 division,	 and	 powers.	 It	 also
includes	an	extensive	suite	of	mathematical	functions,	such	as	log()	and	max(),
which	are	covered	later.

10.2.5	Matrices:	An	Array	of	Arrays

Matrices	 can	 be	 thought	 of	 as	 an	 extension	 of	 arrays	 -	 rather	 than	 having	 one
dimension,	matrices	have	2	(or	more).	Much	like	arrays,	matrices	can	be	created
easily	within	NumPy:

Accessing	individual	elements	is	similar	to	how	we	did	it	for	arrays.	We	simply
need	to	pass	in	a	number	of	arguments	equal	to	the	number	of	dimensions:

In	 this	 example,	 our	 first	 index	 selected	 the	 row	 and	 the	 second	 selected	 the
column	-	giving	us	our	result	of	3.	Matrices	can	be	extending	out	to	any	number
of	dimensions	by	simply	using	more	indices	to	access	specific	elements	(though
use-cases	beyond	4	may	be	somewhat	rare).

Matrices	support	all	of	the	normal	mathematial	functions	such	as	+,	-,	*,	and	/.	A
special	note:	the	*	operator	will	result	in	an	element-wise	multiplication.	Using
@	or	np.matmul()	for	matrix	multiplication:

a	*	3

>>>array([3,	6,	9])

a**2

>>>array([1,	4,	9],	dtype=int32)

b	=	np.array([2,	3,	4])

print(a	*	b)

>>>array([2,		6,	12])

m	=	np.array([[1,	2],	[3,	4]])

print(m)

>>>[[1	2]

>>>	[3	4]]

m[1][0]

>>>3

More	complex	mathematical	functions	can	typically	be	found	within	the	NumPy
library	itself:

A	 full	 listing	 can	 be	 found	 at:
https://docs.scipy.org/doc/numpy/reference/routines.math.html

10.2.6	Slicing	Arrays	and	Matrices

As	 one	 can	 imagine,	 accessing	 elements	 one-at-a-time	 is	 both	 slow	 and	 can
potentially	 require	 many	 lines	 of	 code	 to	 iterate	 over	 every	 dimension	 in	 the
matrix.	 Thankfully,	 NumPy	 incorporate	 a	 very	 powerful	 slicing	 engine	 that
allows	us	to	access	ranges	of	elements	easily:

The	 ‘:’	value	 tells	NumPy	 to	select	all	elements	 in	 the	given	dimension.	Here,
we’ve	 requested	 all	 elements	 in	 the	 first	 row.	 We	 can	 also	 use	 indexing	 to
request	elements	within	a	given	range:

Here,	we	asked	NumPy	 to	give	us	elements	4	 through	7	 (ranges	 in	Python	are
inclusive	at	the	start	and	non-inclusive	at	the	end).	We	can	even	go	backwards:

In	the	previous	example,	the	negative	value	is	asking	NumPy	to	return	the	last	5
elements	of	 the	array.	Had	 the	argument	been	‘:-5’,	NumPy	would’ve	returned
everything	BUT	the	last	five	elements:

Becoming	 more	 familiar	 with	 NumPy’s	 accessor	 conventions	 will	 allow	 you
write	more	efficient,	clearer	code	as	it	is	easier	to	read	a	simple	one-line	accessor

print(m-m)

print(m*m)

print(m/m)

print(np.sin(x))

print(np.sum(x))

m[1,	:]

>>>array([3,	4])

a	=	np.arange(0,	10,	1)

print(a)

>>>[0	1	2	3	4	5	6	7	8	9]

a[4:8]

>>>array([4,	5,	6,	7])

a[-5:]

>>>array([5,	6,	7,	8,	9])

a[:-5]

>>>array([0,	1,	2,	3,	4])

than	 it	 is	 a	 multi-line,	 nested	 loop	 when	 extracting	 values	 from	 an	 array	 or
matrix.

10.2.7	Useful	Functions

The	 NumPy	 library	 provides	 several	 convenient	 mathematical	 functions	 that
users	 can	 use.	 These	 functions	 provide	 several	 advantages	 to	 code	written	 by
users:

They	 are	 open	 source	 typically	 have	 multiple	 contributors	 checking	 for
errors.
Many	 of	 them	 utilize	 a	 C	 interface	 and	will	 run	much	 faster	 than	 native
Python	code.
They’re	written	to	very	flexible.

NumPy	arrays	and	matrices	contain	many	useful	aggregating	functions	such	as
max(),	min(),	mean(),	 etc	 These	 functions	 are	 usually	 able	 to	 run	 an	 order	 of
magnitude	faster	than	looping	through	the	object,	so	it’s	important	to	understand
what	functions	are	available	to	avoid	‘reinventing	the	wheel.’	In	addition,	many
of	 the	 functions	 are	 able	 to	 sum	 or	 average	 across	 axes,	 which	 make	 them
extremely	 useful	 if	 your	 data	 has	 inherent	 grouping.	 To	 return	 to	 a	 previous
example:

In	 this	example,	we	created	a	2x2	matrix	containing	 the	numbers	1	 through	4.
The	sum	of	 the	matrix	 returned	 the	element-wise	addition	of	 the	entire	matrix.
Summing	 across	 axis	 0	 (rows)	 returned	 a	 new	 array	 with	 the	 element-wise
addition	across	each	row.	Likewise,	summing	across	axis	1	(columns)	returned
the	columnar	summation.

10.2.8	Linear	Algebra

Perhaps	 one	 of	 the	 most	 important	 uses	 for	 NumPy	 is	 its	 robust	 support	 for

m	=	np.array([[1,	2],	[3,	4]])

print(m)

>>>[[1	2]

>>>	[3	4]]

m.sum()

>>>10

m.sum(axis=1)

>>>[3,	7]

m.sum(axis=0)

>>>[4,	6]

Linear	 Algebra	 functions.	 Like	 the	 aggregation	 functions	 described	 in	 the
previous	 section,	 these	 functions	 are	 optimized	 to	 be	 much	 faster	 than	 user
implementations	and	can	utilize	processesor	level	features	to	provide	very	quick
computations.	 These	 functions	 can	 be	 accessed	 very	 easily	 from	 the	 NumPy
package:

Included	 in	 within	 np.linalg	 are	 functions	 for	 calculating	 the
Eigendecomposition	of	square	matrices	and	symmetric	matrices.	Finally,	to	give
a	quick	example	of	how	easy	 it	 is	 to	 implement	algorithms	 in	NumPy,	we	can
easily	use	it	to	calculate	the	cost	and	gradient	when	using	simple	Mean-Squared-
Error	(MSE):

Finally,	 more	 advanced	 functions	 are	 easily	 available	 to	 users	 via	 the	 linalg
library	of	NumPy	as:

10.2.9	NumPy	Resources

https://docs.scipy.org/doc/numpy
http://cs231n.github.io/python-numpy-tutorial/#numpy
https://docs.scipy.org/doc/numpy-1.15.1/reference/routines.linalg.html
https://en.wikipedia.org/wiki/Mean_squared_error

10.3	SCIPY	☁�
SciPy	 is	 a	 library	 built	 around	 numpy	 and	 has	 a	 number	 of	 off-the-shelf
algorithms	and	operations	implemented.	These	include	algorithms	from	calculus
(such	 as	 integration),	 statistics,	 linear	 algebra,	 image-processing,	 signal

a	=	np.array([[1,	2],	[3,	4]])

b	=	np.array([[5,	6],	[7,	8]])

print(np.matmul(a,	b))

>>>[[19	22]

				[43	50]]

cost	=	np.power(Y	-	np.matmul(X,	weights)),	2).mean(axis=1)

gradient	=	np.matmul(X.T,	np.matmul(X,	weights)	-	y)

from	numpy	import	linalg

A	=	np.diag((1,2,3))

w,v	=	linalg.eig(A)

print	('w	=',	w)

print	('v	=',	v)

https://docs.scipy.org/doc/numpy
http://cs231n.github.io/python-numpy-tutorial/#numpy
https://docs.scipy.org/doc/numpy-1.15.1/reference/routines.linalg.html
https://en.wikipedia.org/wiki/Mean_squared_error
https://github.com/cloudmesh-community/book/blob/master/chapters/prg/python/scipy/scipy.md

processing,	machine	learning.

To	 achieve	 this,	 SciPy	 bundels	 a	 number	 of	 useful	 open-source	 software	 for
mathematics,	science,	and	engineering.	It	includes	the	following	packages:

NumPy,

for	managing	N-dimensional	arrays

SciPy	library,

to	access	fundamental	scientific	computing	capabilities

Matplotlib,

to	conduct	2D	plotting

IPython,

for	an	Interactive	console	(see	jupyter)

Sympy,

for	symbolic	mathematics

pandas,

for	providing	data	structures	and	analysis

10.3.1	Introduction

First	 we	 add	 the	 usual	 scientific	 computing	 modules	 with	 the	 typical
abbreviations,	 including	 sp	 for	 scipy.	 We	 could	 invoke	 scipy’s	 statistical
package	as	sp.stats,	but	for	the	sake	of	laziness	we	abbreviate	that	too.

Now	we	create	some	random	data	to	play	with.	We	generate	100	samples	from	a

import	numpy	as	np	#	import	numpy

import	scipy	as	sp	#	import	scipy

from	scipy	import	stats	#	refer	directly	to	stats	rather	than	sp.stats

import	matplotlib	as	mpl	#	for	visualization

from	matplotlib	import	pyplot	as	plt	#	refer	directly	to	pyplot

																																					#	rather	than	mpl.pyplot

Gaussian	distribution	centered	at	zero.

How	many	elements	are	in	the	set?

What	is	the	mean	(average)	of	the	set?

What	is	the	minimum	of	the	set?

What	is	the	maximum	of	the	set?

We	can	use	the	scipy	functions	too.	What’s	the	median?

What	about	the	standard	deviation	and	variance?

Isn’t	the	variance	the	square	of	the	standard	deviation?

How	 close	 are	 the	 measures?	 The	 differences	 are	 close	 as	 the	 following
calculation	shows

How	does	this	look	as	a	histogram?	See	Figure	18,	Figure	19,	Figure	20

s	=	sp.randn(100)

print	('There	are',len(s),'elements	in	the	set')

print	('The	mean	of	the	set	is',s.mean())

print	('The	minimum	of	the	set	is',s.min())

print	('The	maximum	of	the	set	is',s.max())

print	('The	median	of	the	set	is',sp.median(s))

print	('The	standard	deviation	is',sp.std(s),

							'and	the	variance	is',sp.var(s))

				print	('The	square	of	the	standard	deviation	is',sp.std(s)**2)

				print	('The	difference	is',abs(sp.std(s)**2	-	sp.var(s)))

				print	('And	in	decimal	form,	the	difference	is	%0.16f'	%

											(abs(sp.std(s)**2	-	sp.var(s))))

plt.hist(s)	#	yes,	one	line	of	code	for	a	histogram

plt.show()

Figure	18:	Histogram	1

Let	us	add	some	titles.

Figure	19:	Histogram	2

Typically	 we	 do	 not	 include	 titles	 when	 we	 prepare	 images	 for	 inclusion	 in
LaTeX.	There	we	use	the	caption	to	describe	what	the	figure	is	about.

plt.clf()	#	clear	out	the	previous	plot

plt.hist(s)

plt.title("Histogram	Example")

plt.xlabel("Value")

plt.ylabel("Frequency")

plt.show()

plt.clf()	#	clear	out	the	previous	plot

plt.hist(s)

plt.xlabel("Value")

Figure	20:	Histogram	3

Let	 us	 try	 out	 some	 linear	 regression,	 or	 curve	 fitting.	 See	 @#fig:scipy-
output_30_0

plt.ylabel("Frequency")

plt.show()

import	random

def	F(x):

				return	2*x	-	2

def	add_noise(x):

				return	x	+	random.uniform(-1,1)

X	=	range(0,10,1)

Y	=	[]

for	i	in	range(len(X)):

				Y.append(add_noise(X[i]))

plt.clf()	#	clear	out	the	old	figure

plt.plot(X,Y,'.')

plt.show()

Figure	21:	Result	1

Now	let’s	try	linear	regression	to	fit	the	curve.

What	is	the	slope	and	y-intercept	of	the	fitted	curve?

Now	let’s	see	how	well	the	curve	fits	the	data.	We’ll	call	the	fitted	curve	F’.

To	 save	 images	 into	 a	 PDF	 file	 for	 inclusion	 into	 LaTeX	 documents	 you	 can
save	the	images	as	follows.	Other	formats	such	as	png	are	also	possible,	but	the
quality	is	naturally	not	sufficient	for	inclusion	in	papers	and	documents.	For	that

m,	b,	r,	p,	est_std_err	=	stats.linregress(X,Y)

print	('The	slope	is',m,'and	the	y-intercept	is',	b)

def	Fprime(x):	#	the	fitted	curve

				return	m*x	+	b

X	=	range(0,10,1)

Yprime	=	[]

for	i	in	range(len(X)):

				Yprime.append(Fprime(X[i]))

plt.clf()	#	clear	out	the	old	figure

#	the	observed	points,	blue	dots

plt.plot(X,	Y,	'.',	label='observed	points')

#	the	interpolated	curve,	connected	red	line

plt.plot(X,	Yprime,	'r-',	label='estimated	points')

plt.title("Linear	Regression	Example")	#	title

plt.xlabel("x")	#	horizontal	axis	title

plt.ylabel("y")	#	vertical	axis	title

#	legend	labels	to	plot

plt.legend(['obsered	points',	'estimated	points'])

#	comment	out	so	that	you	can	save	the	figure

#plt.show()

you	certainly	want	 to	use	PDF.	The	save	of	 the	figure	has	 to	occur	before	you
use	the	show()	command.	See	Figure	22

Figure	22:	Result	2

10.3.2	References

For	more	 information	about	SciPy	we	 recommend	 that	you	visit	 the	 following
link

https://www.scipy.org/getting-started.html#learning-to-work-with-scipy

Additional	material	and	inspiration	for	this	section	are	from

[]	“Getting	Started	guide”	https://www.scipy.org/getting-started.html

[]	Prasanth.	“Simple	statistics	with	SciPy.”	Comfort	at	1	AU.	February
28,	 2011.	 https://oneau.wordpress.com/2011/02/28/simple-statistics-with-
scipy/.

[]	 SciPy	 Cookbook.	 Lasted	 updated:	 2015.	 http://scipy-
cookbook.readthedocs.io/.

plt.savefig("regression.pdf",	bbox_inches='tight')

plt.savefig('regression.png')

plt.show()

https://www.scipy.org/getting-started.html#learning-to-work-with-scipy
https://www.scipy.org/getting-started.html
https://oneau.wordpress.com/2011/02/28/simple-statistics-with-scipy/
http://scipy-cookbook.readthedocs.io/

	create	bibtex	entries

10.4	SCIKIT-LEARN	☁�

	Learning	Objectives

Exploratory	data	analysis
Pipeline	to	prepare	data
Full	learning	pipeline
Fine	tune	the	model
Significance	tests

10.4.1	Introduction	to	Scikit-learn

Scikit	 learn	is	a	Machine	Learning	specific	 library	used	in	Python.	Library	can
be	used	for	data	mining	and	analysis.	It	is	built	on	top	of	NumPy,	matplotlib	and
SciPy.	Scikit	Learn	features	Dimensionality	reduction,	clustering,	regression	and
classification	algorithms.	It	also	features	model	selection	using	grid	search,	cross
validation	and	metrics.

Scikit	learn	also	enables	users	to	preprocess	the	data	which	can	then	be	used	for
machine	learning	using	modules	like	preprocessing	and	feature	extraction.

In	this	section	we	demonstrate	how	simple	it	is	to	use	k-means	in	scikit	learn.

10.4.2	Installation

If	you	already	have	a	working	installation	of	numpy	and	scipy,	the	easiest	way	to
install	scikit-learn	is	using	pip

10.4.3	Supervised	Learning

$	pip	install	numpy

$	pip	install	scipy	-U

$	pip	install	-U	scikit-learn

https://github.com/cloudmesh-community/book/blob/master/chapters/prg/python/scikit-learn/scikit-learn.md

Supervised	Learning	is	used	in	machine	learning	when	we	already	know	a	set	of
output	predictions	based	on	 input	 characteristics	 and	based	on	 that	we	need	 to
predict	the	target	for	a	new	input.	Training	data	is	used	to	train	the	model	which
then	can	be	used	to	predict	the	output	from	a	bounded	set.

Problems	can	be	of	two	types

1.	 Classification	:	Training	data	belongs	to	three	or	four	classes/categories	and
based	on	 the	 label	we	want	 to	predict	 the	class/category	for	 the	unlabeled
data.

2.	 Regression	 :	 Training	 data	 consists	 of	 vectors	without	 any	 corresponding
target	values.	Clustering	can	be	used	for	these	type	of	datasets	to	determine
discover	 groups	 of	 similar	 examples.	 Another	 way	 is	 density	 estimation
which	determine	the	distribution	of	data	within	the	input	space.	Histogram
is	the	most	basic	form.

10.4.4	Unsupervised	Learning

Unsupervised	Learning	 is	used	 in	machine	 learning	when	we	have	 the	 training
set	available	but	without	any	corresponding	target.	The	outcome	of	the	problem
is	to	discover	groups	within	the	provided	input.	It	can	be	done	in	many	ways.

Few	of	them	are	listed	here

1.	 Clustering	:	Discover	groups	of	similar	characteristics.
2.	 Density	 Estimation	 :	 Finding	 the	 distribution	 of	 data	within	 the	 provided

input	or	changing	 the	data	 from	a	high	dimensional	 space	 to	 two	or	 three
dimension.

10.4.5	Building	a	end	to	end	pipeline	for	Supervised	machine
learning	using	Scikit-learn

A	data	pipeline	is	a	set	of	processing	components	that	are	sequenced	to	produce
meaningful	data.	Pipelines	are	commonly	used	in	Machine	learning,	since	there
is	lot	of	data	transformation	and	manipulation	that	needs	to	be	applied	to	make
data	useful	 for	machine	 learning.	All	 components	 are	 sequenced	 in	 a	way	 that
the	 output	 of	 one	 component	 becomes	 input	 for	 the	 next	 and	 each	 of	 the
component	is	self	contained.	Components	interact	with	each	other	using	data.

Even	if	a	component	breaks,	the	downstream	component	can	run	normally	using
the	 last	 output.	 Sklearn	 provide	 the	 ability	 to	 build	 pipelines	 that	 can	 be
transformed	and	modeled	for	machine	learning.

10.4.6	Steps	for	developing	a	machine	learning	model

1.	 Explore	the	domain	space
2.	 Extract	the	problem	definition
3.	 Get	the	data	that	can	be	used	to	make	the	system	learn	to	solve	the	problem

definition.
4.	 Discover	and	Visualize	the	data	to	gain	insights
5.	 Feature	engineering	and	prepare	the	data
6.	 Fine	tune	your	model
7.	 Evaluate	your	solution	using	metrics
8.	 Once	proven	launch	and	maintain	the	model.

10.4.7	Exploratory	Data	Analysis

Example	project	=	Fraud	detection	system

First	step	is	to	load	the	data	into	a	dataframe	in	order	for	a	proper	analysis	to	be
done	on	the	attributes.

Perform	the	basic	analysis	on	the	data	shape	and	null	value	information.

Here	is	the	example	of	few	of	the	visual	data	analysis	methods.

10.4.7.1	Bar	plot

A	bar	chart	or	graph	is	a	graph	with	rectangular	bars	or	bins	that	are	used	to	plot
categorical	values.	Each	bar	in	the	graph	represents	a	categorical	variable	and	the
height	of	the	bar	is	proportional	to	the	value	represented	by	it.

data	=	pd.read_csv('dataset/data_file.csv')

data.head()

print(data.shape)

print(data.info())

data.isnull().values.any()

Bar	graphs	are	used:

To	make	comparisons	between	variables	To	visualize	any	trend	in	the	data,	i.e.,
they	 show	 the	 dependence	 of	 one	 variable	 on	 another	 Estimate	 values	 of	 a
variable

Figure	23:	Example	of	scikit-learn	barplots

10.4.7.2	Correlation	between	attributes

Attributes	in	a	dataset	can	be	related	based	on	differnt	aspects.

Examples	include	attributes	dependent	on	another	or	could	be	loosely	or	tightly
coupled.	Also	example	includes	two	variables	can	be	associated	with	a	third	one.

In	order	to	understand	the	relationship	between	attributes,	correlation	represents
the	best	visual	way	to	get	an	insight.	Positive	correlation	meaning	both	attributes
moving	into	the	same	direction.	Negative	correlation	refers	to	opposte	directions.
One	 attributes	 values	 increase	 results	 in	 value	 decrease	 for	 other.	 Zero

plt.ylabel('Transactions')

plt.xlabel('Type')

data.type.value_counts().plot.bar()

correlation	is	when	the	attributes	are	unrelated.

Figure	24:	scikit-learn	correlation	array

10.4.7.3	Histogram	Analysis	of	dataset	attributes

A	histogram	consists	of	a	set	of	counts	that	represent	the	number	of	times	some

#	compute	the	correlation	matrix

corr	=	data.corr()

#	generate	a	mask	for	the	lower	triangle

mask	=	np.zeros_like(corr,	dtype=np.bool)

mask[np.triu_indices_from(mask)]	=	True

#	set	up	the	matplotlib	figure

f,	ax	=	plt.subplots(figsize=(18,	18))

#	generate	a	custom	diverging	color	map

cmap	=	sns.diverging_palette(220,	10,	as_cmap=True)

#	draw	the	heatmap	with	the	mask	and	correct	aspect	ratio

sns.heatmap(corr,	mask=mask,	cmap=cmap,	vmax=.3,

												square=True,

												linewidths=.5,	cbar_kws={"shrink":	.5},	ax=ax);

event	occurred.

Figure	25:	scikit-learn

10.4.7.4	Box	plot	Analysis

Box	 plot	 analysis	 is	 useful	 in	 detecting	 whether	 a	 distribution	 is	 skewed	 and
detect	outliers	in	the	data.

%matplotlib	inline

data.hist(bins=30,	figsize=(20,15))

plt.show()

fig,	axs	=	plt.subplots(2,	2,	figsize=(10,	10))

tmp	=	data.loc[(data.type	==	'TRANSFER'),	:]

a	=	sns.boxplot(x	=	'isFlaggedFraud',	y	=	'amount',	data	=	tmp,	ax=axs[0][0])

axs[0][0].set_yscale('log')

b	=	sns.boxplot(x	=	'isFlaggedFraud',	y	=	'oldbalanceDest',	data	=	tmp,	ax=axs[0][1])

axs[0][1].set(ylim=(0,	0.5e8))

c	=	sns.boxplot(x	=	'isFlaggedFraud',	y	=	'oldbalanceOrg',	data=tmp,	ax=axs[1][0])

axs[1][0].set(ylim=(0,	3e7))

d	=	sns.regplot(x	=	'oldbalanceOrg',	y	=	'amount',	data=tmp.loc[(tmp.isFlaggedFraud	==1),	:],	ax=axs[1][1])

plt.show()

Figure	26:	scikit-learn

10.4.7.5	Scatter	plot	Analysis

The	 scatter	 plot	 displays	 values	 of	 two	 numerical	 variables	 as	 Cartesian
coordinates.
plt.figure(figsize=(12,8))

sns.pairplot(data[['amount',	'oldbalanceOrg',	'oldbalanceDest',	'isFraud']],	hue='isFraud')

Figure	27:	scikit-learn	scatter	plots

10.4.8	Data	Cleansing	-	Removing	Outliers

If	the	transaction	amount	is	lower	than	5	percent	of	the	all	the	transactions	AND
does	not	exceed	USD	3000,	we	will	exclude	it	from	our	analysis	to	reduce	Type
1	costs	If	the	transaction	amount	is	higher	than	95	percent	of	all	the	transactions
AND	 exceeds	 USD	 500000,	 we	 will	 exclude	 it	 from	 our	 analysis,	 and	 use	 a
blanket	review	process	for	such	transactions	(similar	to	isFlaggedFraud	column
in	original	dataset)	to	reduce	Type	2	costs
low_exclude	=	np.round(np.minimum(fin_samp_data.amount.quantile(0.05),	3000),	2)

high_exclude	=	np.round(np.maximum(fin_samp_data.amount.quantile(0.95),	500000),	2)

###Updating	Data	to	exclude	records	prone	to	Type	1	and	Type	2	costs

low_data	=	fin_samp_data[fin_samp_data.amount	>	low_exclude]

data	=	low_data[low_data.amount	<	high_exclude]

10.4.9	Pipeline	Creation

Machine	learning	pipeline	is	used	to	help	automate	machine	learning	workflows.
They	operate	by	 enabling	 a	 sequence	of	data	 to	be	 transformed	and	correlated
together	 in	 a	 model	 that	 can	 be	 tested	 and	 evaluated	 to	 achieve	 an	 outcome,
whether	positive	or	negative.

10.4.9.1	Defining	DataFrameSelector	to	separate	Numerical	and	Categorical
attributes

Sample	function	to	seperate	out	Numerical	and	categorical	attributes.

10.4.9.2	Feature	Creation	/	Additional	Feature	Engineering

During	EDA	we	identified	that	there	are	transactions	where	the	balances	do	not
tally	after	the	transaction	is	completed.We	believe	this	could	potentially	be	cases
where	fraud	is	occurring.	To	account	for	this	error	in	the	transactions,	we	define
two	 new	 features“errorBalanceOrig”	 and	 “errorBalanceDest”,	 calculated	 by
adjusting	 the	amount	with	 the	before	and	after	balances	 for	 the	Originator	and
Destination	accounts.

Below,	we	create	a	function	that	allows	us	to	create	these	features	in	a	pipeline.

from	sklearn.base	import	BaseEstimator,	TransformerMixin

#	Create	a	class	to	select	numerical	or	categorical	columns

#	since	Scikit-Learn	doesn't	handle	DataFrames	yet

class	DataFrameSelector(BaseEstimator,	TransformerMixin):

				def	__init__(self,	attribute_names):

								self.attribute_names	=	attribute_names

				def	fit(self,	X,	y=None):

								return	self

				def	transform(self,	X):

								return	X[self.attribute_names].values

from	sklearn.base	import	BaseEstimator,	TransformerMixin

#	column	index

amount_ix,	oldbalanceOrg_ix,	newbalanceOrig_ix,	oldbalanceDest_ix,	newbalanceDest_ix	=	0,	1,	2,	3,	4

class	CombinedAttributesAdder(BaseEstimator,	TransformerMixin):

				def	__init__(self):	#	no	*args	or	**kargs

								pass

				def	fit(self,	X,	y=None):

								return	self		#	nothing	else	to	do

				def	transform(self,	X,	y=None):

								errorBalanceOrig	=	X[:,newbalanceOrig_ix]	+		X[:,amount_ix]	-		X[:,oldbalanceOrg_ix]

								errorBalanceDest	=	X[:,oldbalanceDest_ix]	+		X[:,amount_ix]-		X[:,newbalanceDest_ix]

								return	np.c_[X,	errorBalanceOrig,	errorBalanceDest]

10.4.10	Creating	Training	and	Testing	datasets

Training	set	includes	the	set	of	input	examples	that	the	model	will	be	fit	into or
trained	 on by	 adjusting	 the	 parameters.	 Testing	 dataset	 is	 critical	 to	 test	 the
generalizability	 of	 the	 model	 .	 By	 using	 this	 set,	 we	 can	 get	 the	 working
accuracy	of	our	model.

Testing	set	should	not	be	exposed	to	model	unless	model	training	has	not	been
completed.	This	way	the	results	from	testing	will	be	more	reliable.

10.4.11	Creating	pipeline	for	numerical	and	categorical	attributes

Identifying	columns	with	Numerical	and	Categorical	characteristics.

10.4.12	Selecting	the	algorithm	to	be	applied

Algorithim	selection	primarily	depends	on	the	objective	you	are	trying	to	solve
and	what	kind	of	dataset	is	available.	There	are	differnt	type	of	algorithms	which
can	be	applied	and	we	will	look	into	few	of	them	here.

10.4.12.1	Linear	Regression

This	 algorithm	 can	 be	 applied	 when	 you	 want	 to	 compute	 some	 continuous
value.	To	predict	some	future	value	of	a	process	which	is	currently	running,	you

from	sklearn.model_selection	import	train_test_split

X_train,	X_test,	y_train,	y_test	=	train_test_split(X,y,test_size=0.30,	random_state=42,	stratify=y)

X_train_num	=	X_train[["amount","oldbalanceOrg",	"newbalanceOrig",	"oldbalanceDest",	"newbalanceDest"]]

X_train_cat	=	X_train[["type"]]

X_model_col	=	["amount","oldbalanceOrg",	"newbalanceOrig",	"oldbalanceDest",	"newbalanceDest","type"]

from	sklearn.pipeline	import	Pipeline

from	sklearn.preprocessing	import	StandardScaler

from	sklearn.preprocessing	import	Imputer

num_attribs	=	list(X_train_num)

cat_attribs	=	list(X_train_cat)

num_pipeline	=	Pipeline([

								('selector',	DataFrameSelector(num_attribs)),

								('attribs_adder',	CombinedAttributesAdder()),

								('std_scaler',	StandardScaler())

])

cat_pipeline	=	Pipeline([

								('selector',	DataFrameSelector(cat_attribs)),

								('cat_encoder',	CategoricalEncoder(encoding="onehot-dense"))

])

can	go	with	regression	algorithm.

Examples	where	linear	regression	can	used	are	:

1.	 Predict	the	time	taken	to	go	from	one	place	to	another
2.	 Predict	the	sales	for	a	future	month
3.	 Predict	sales	data	and	improve	yearly	projections.

10.4.12.2	Logistic	Regression

This	algorithm	can	be	used	to	perform	binary	classification.	It	can	be	used	if	you
want	a	probabilistic	framework.	Also	in	case	you	expect	to	receive	more	training
data	 in	 the	 future	 that	 you	 want	 to	 be	 able	 to	 quickly	 incorporate	 into	 your
model.

1.	 Customer	churn	prediction.
2.	 Credit	Scoring	&	Fraud	Detection	which	is	our	example	problem	which	we

are	trying	to	solve	in	this	chapter.
3.	 Calculating	the	effectiveness	of	marketing	campaigns.

10.4.12.3	Decision	trees

Decision	 trees	 handle	 feature	 interactions	 and	 they’re	 non-parametric.	 Doesnt

from	sklearn.linear_model	import	LinearRegression

from	sklearn.preprocessing	import	StandardScaler

import	time

scl=	StandardScaler()

X_train_std	=	scl.fit_transform(X_train)

X_test_std	=	scl.transform(X_test)

start	=	time.time()

lin_reg	=	LinearRegression()

lin_reg.fit(X_train_std,	y_train)	#SKLearn's	linear	regression

y_train_pred	=	lin_reg.predict(X_train_std)

train_time	=	time.time()-start

from	sklearn.linear_model	import	LogisticRegression

from	sklearn.model_selection	import	train_test_split

X_train,	_,	y_train,	_	=	train_test_split(X_train,	y_train,	stratify=y_train,	train_size=subsample_rate,	random_state=42)

X_test,	_,	y_test,	_	=	train_test_split(X_test,	y_test,	stratify=y_test,	train_size=subsample_rate,	random_state=42)

model_lr_sklearn	=	LogisticRegression(multi_class="multinomial",	C=1e6,	solver="sag",	max_iter=15)

model_lr_sklearn.fit(X_train,	y_train)

y_pred_test	=	model_lr_sklearn.predict(X_test)

acc	=	accuracy_score(y_test,	y_pred_test)

results.loc[len(results)]	=	["LR	Sklearn",	np.round(acc,	3)]

results

support	online	learning	and	the	entire	tree	needs	to	be	rebuild	when	new	traning
dataset	comes	in.	Memory	consumption	is	very	high.

Can	be	used	for	the	following	cases

1.	 Investment	decisions
2.	 Customer	churn
3.	 Banks	loan	defaulters
4.	 Build	vs	Buy	decisions
5.	 Sales	lead	qualifications

10.4.12.4	K	Means

This	algorithm	is	used	when	we	are	not	aware	of	the	labels	and	one	needs	to	be
created	based	on	 the	 features	of	objects.	Example	will	be	 to	divide	a	group	of
people	into	differnt	subgroups	based	on	common	theme	or	attribute.

The	main	disadvantage	of	K-mean	is	that	you	need	to	know	exactly	the	number
of	clusters	or	groups	which	is	required.	It	takes	a	lot	of	iteration	to	come	up	with
the	best	K.

10.4.12.5	Support	Vector	Machines

from	sklearn.tree	import	DecisionTreeRegressor

dt	=	DecisionTreeRegressor()

start	=	time.time()

dt.fit(X_train_std,	y_train)

y_train_pred	=	dt.predict(X_train_std)

train_time	=	time.time()	-	start

start	=	time.time()

y_test_pred	=	dt.predict(X_test_std)

test_time	=	time.time()	-	start

from	sklearn.neighbors	import	KNeighborsClassifier

from	sklearn.model_selection	import	train_test_split,	GridSearchCV,	PredefinedSplit

from	sklearn.metrics	import	accuracy_score

X_train,	_,	y_train,	_	=	train_test_split(X_train,	y_train,	stratify=y_train,	train_size=subsample_rate,	random_state=42)

X_test,	_,	y_test,	_	=	train_test_split(X_test,	y_test,	stratify=y_test,	train_size=subsample_rate,	random_state=42)

model_knn_sklearn	=	KNeighborsClassifier(n_jobs=-1)

model_knn_sklearn.fit(X_train,	y_train)

y_pred_test	=	model_knn_sklearn.predict(X_test)

acc	=	accuracy_score(y_test,	y_pred_test)

results.loc[len(results)]	=	["KNN	Arbitary	Sklearn",	np.round(acc,	3)]

results

SVM	 is	 a	 supervised	 ML	 technique	 and	 used	 for	 pattern	 recognition	 and
classification	 problems when	 your	 data	 has	 exactly	 two	 classes.	 Its	 popular	 in
text	classification	problems.

Few	cases	where	SVM	can	be	used	is

1.	 Detecting	persons	with	common	diseases.
2.	 Hand-written	character	recognition
3.	 Text	categorization
4.	 Stock	market	price	prediction

10.4.12.6	Naive	Bayes

Naive	Bayes	is	used	for	large	datasets.This	algoritm	works	well	even	when	we
have	a	limited	CPU	and	memory	available.	This	works	by	calculating	bunch	of
counts.	It	requires	less	training	data.	The	algorthim	cant	learn	interation	between
features.

Naive	Bayes	can	be	used	in	real-world	applications	such	as:

1.	 Sentiment	analysis	and	text	classification
2.	 Recommendation	systems	like	Netflix,	Amazon
3.	 To	mark	an	email	as	spam	or	not	spam
4.	 Face	recognition

10.4.12.7	Random	Forest

Ranmdon	forest	is	similar	to	Decision	tree.	Can	be	used	for	both	regression	and
classification	problems	with	large	data	sets.

Few	case	where	it	can	be	applied.

1.	 Predict	patients	for	high	risks.
2.	 Predict	parts	failures	in	manufacturing.
3.	 Predict	loan	defaulters.

from	sklearn.ensemble	import	RandomForestRegressor

forest	=	RandomForestRegressor(n_estimators	=	400,	criterion='mse',random_state=1,	n_jobs=-1)

start	=	time.time()

forest.fit(X_train_std,	y_train)

10.4.12.8	Neural	networks

Neural	 network	 works	 based	 on	 weights	 of	 connections	 between	 neurons.
Weights	 are	 trained	 and	 based	 on	 that	 the	 neural	 network	 can	 be	 utilized	 to
predict	the	class	or	a	quantity.	They	are	resource	and	memory	intensive.

Few	cases	where	it	can	be	applied.

1.	 Applied	to	unsupervised	learning	tasks,	such	as	feature	extraction.
2.	 Extracts	 features	 from	 raw	 images	 or	 speech	 with	 much	 less	 human

intervention

10.4.12.9	Deep	Learning	using	Keras

Keras	 is	 most	 powerful	 and	 easy-to-use	 Python	 libraries	 for	 developing	 and
evaluating	 deep	 learning	 models.	 It	 has	 the	 efficient	 numerical	 computation
libraries	Theano	and	TensorFlow.

10.4.12.10	XGBoost

XGBoost	stands	for	eXtreme	Gradient	Boosting.	XGBoost	is	an	implementation
of	 gradient	 boosted	 decision	 trees	 designed	 for	 speed	 and	 performance.	 It	 is
engineered	for	efficiency	of	compute	time	and	memory	resources.

10.4.13	Scikit	Cheat	Sheet

Scikit	learning	has	put	a	very	indepth	and	well	explained	flow	chart	to	help	you
choose	the	right	algorithm	that	I	find	very	handy.

y_train_pred	=	forest.predict(X_train_std)

train_time	=	time.time()	-	start

start	=	time.time()

y_test_pred	=	forest.predict(X_test_std)

test_time	=	time.time()	-	start

Figure	28:	scikit-learn

10.4.14	Parameter	Optimization

Machine	learning	models	are	parameterized	so	that	their	behavior	can	be	tuned
for	a	given	problem.	These	models	can	have	many	parameters	and	 finding	 the
best	combination	of	parameters	can	be	treated	as	a	search	problem.

A	parameter	is	a	configurationthat	is	part	of	the	model	and	values	can	be	derived
from	the	given	data.

1.	 Required	by	the	model	when	making	predictions.
2.	 Values	define	the	skill	of	the	model	on	your	problem.
3.	 Estimated	or	learned	from	data.
4.	 Often	not	set	manually	by	the	practitioner.
5.	 Often	saved	as	part	of	the	learned	model.

10.4.14.1	Hyperparameter	optimization/tuning	algorithms

Grid	search	is	an	approach	to	hyperparameter	tuning	that	will	methodically	build
and	evaluate	a	model	for	each	combination	of	algorithm	parameters	specified	in

a	grid.

Random	 search	 provide	 a	 statistical	 distribution	 for	 each	 hyperparameter	 from
which	values	may	be	randomly	sampled.

10.4.15	Experiments	with	Keras	(deep	learning),	XGBoost,	and
SVM	(SVC)	compared	to	Logistic	Regression(Baseline)

10.4.15.1	Creating	a	parameter	grid

10.4.15.2	Implementing	Grid	search	with	models	and	also	creating	metrics
from	each	of	the	model.

grid_param	=	[

																[{			#LogisticRegression

																			'model__penalty':['l1','l2'],

																			'model__C':	[0.01,	1.0,	100]

																}],

																[{#keras

																				'model__optimizer':	optimizer,

																				'model__loss':	loss

																}],

																[{		#SVM

																			'model__C'	:[0.01,	1.0,	100],

																			'model__gamma':	[0.5,	1],

																			'model__max_iter':[-1]

																}],

																[{			#XGBClassifier

																				'model__min_child_weight':	[1,	3,	5],

																				'model__gamma':	[0.5],

																				'model__subsample':	[0.6,	0.8],

																				'model__colsample_bytree':	[0.6],

																				'model__max_depth':	[3]

																}]

]

Pipeline(memory=None,

					steps=[('preparation',	FeatureUnion(n_jobs=None,

							transformer_list=[('num_pipeline',	Pipeline(memory=None,

					steps=[('selector',	DataFrameSelector(attribute_names=['amount',	'oldbalanceOrg',	'newbalanceOrig',	'oldbalanceDest'

										tol=0.0001,	verbose=0,	warm_start=False))])

from	sklearn.metrics	import	mean_squared_error

from	sklearn.metrics	import	classification_report

from	sklearn.metrics	import	f1_score

from	xgboost.sklearn	import	XGBClassifier

from	sklearn.svm	import	SVC

test_scores	=	[]

#Machine	Learning	Algorithm	(MLA)	Selection	and	Initialization

MLA	=	[

								linear_model.LogisticRegression(),

								keras_model,

								SVC(),

								XGBClassifier()

10.4.15.3	Results	table	from	the	Model	evaluation	with	metrics.

]

#create	table	to	compare	MLA	metrics

MLA_columns	=	['Name',	'Score',	'Accuracy_Score','ROC_AUC_score','final_rmse','Classification_error','Recall_Score','Precision_Score'

MLA_compare	=	pd.DataFrame(columns	=	MLA_columns)

Model_Scores	=	pd.DataFrame(columns	=	['Name','Score'])

row_index	=	0

for	alg	in	MLA:

				#set	name	and	parameters

				MLA_name	=	alg.__class__.__name__

				MLA_compare.loc[row_index,	'Name']	=	MLA_name

				#MLA_compare.loc[row_index,	'Parameters']	=	str(alg.get_params())

				full_pipeline_with_predictor	=	Pipeline([

								("preparation",	full_pipeline),		#	combination	of	numerical	and	categorical	pipelines

								("model",	alg)

])

				grid_search	=	GridSearchCV(full_pipeline_with_predictor,	grid_param[row_index],	cv=4,	verbose=2,	scoring='f1',	return_train_score

				grid_search.fit(X_train[X_model_col],	y_train)

				y_pred	=	grid_search.predict(X_test)

				MLA_compare.loc[row_index,	'Accuracy_Score']	=	np.round(accuracy_score(y_pred,	y_test),	3)

				MLA_compare.loc[row_index,	'ROC_AUC_score']	=	np.round(metrics.roc_auc_score(y_test,	y_pred),3)

				MLA_compare.loc[row_index,'Score']	=	np.round(grid_search.score(X_test,	y_test),3)

				negative_mse	=	grid_search.best_score_

				scores	=	np.sqrt(-negative_mse)

				final_mse	=	mean_squared_error(y_test,	y_pred)

				final_rmse	=	np.sqrt(final_mse)

				MLA_compare.loc[row_index,	'final_rmse']	=	final_rmse

				confusion_matrix_var	=	confusion_matrix(y_test,	y_pred)

				TP	=	confusion_matrix_var[1,	1]

				TN	=	confusion_matrix_var[0,	0]

				FP	=	confusion_matrix_var[0,	1]

				FN	=	confusion_matrix_var[1,	0]

				MLA_compare.loc[row_index,'Classification_error']	=	np.round(((FP	+	FN)	/	float(TP	+	TN	+	FP	+	FN)),	5)

				MLA_compare.loc[row_index,'Recall_Score']	=	np.round(metrics.recall_score(y_test,	y_pred),	5)

				MLA_compare.loc[row_index,'Precision_Score']	=	np.round(metrics.precision_score(y_test,	y_pred),	5)

				MLA_compare.loc[row_index,'F1_Score']	=	np.round(f1_score(y_test,y_pred),	5)

				MLA_compare.loc[row_index,	'mean_test_score']	=	grid_search.cv_results_['mean_test_score'].mean()

				MLA_compare.loc[row_index,	'mean_fit_time']	=	grid_search.cv_results_['mean_fit_time'].mean()

				Model_Scores.loc[row_index,'MLA	Name']	=	MLA_name

				Model_Scores.loc[row_index,'ML	Score']	=	np.round(metrics.roc_auc_score(y_test,	y_pred),3)

				#Collect	Mean	Test	scores	for	statistical	significance	test

				test_scores.append(grid_search.cv_results_['mean_test_score'])

				row_index+=1

Figure	29:	scikit-learn

10.4.15.4	ROC	AUC	Score

AUC	-	ROC	curve	 is	a	performance	measurement	for	classification	problem	at
various	 thresholds	 settings.	 ROC	 is	 a	 probability	 curve	 and	 AUC	 represents
degree	 or	 measure	 of	 separability.	 It	 tells	 how	 much	 model	 is	 capable	 of
distinguishing	 between	 classes.	 Higher	 the	 AUC,	 better	 the	 model	 is	 at
predicting	0s	as	0s	and	1s	as	1s.

Figure	30:	scikit-learn

Figure	31:	scikit-learn

10.4.16	K-means	in	scikit	learn.

10.4.16.1	Import

10.4.17	K-means	Algorithm

In	this	section	we	demonstrate	how	simple	it	is	to	use	k-means	in	scikit	learn.

10.4.17.1	Import

10.4.17.2	Create	samples

				from	time	import	time

				import	numpy	as	np

				import	matplotlib.pyplot	as	plt

				from	sklearn	import	metrics

				from	sklearn.cluster	import	KMeans

				from	sklearn.datasets	import	load_digits

				from	sklearn.decomposition	import	PCA

				from	sklearn.preprocessing	import	scale

				np.random.seed(42)

				digits	=	load_digits()

				data	=	scale(digits.data)

10.4.17.3	Create	samples

10.4.17.4	Visualize

See	Figure	32

				np.random.seed(42)

				digits	=	load_digits()

				data	=	scale(digits.data)

				n_samples,	n_features	=	data.shape

				n_digits	=	len(np.unique(digits.target))

				labels	=	digits.target

				sample_size	=	300

				print("n_digits:	%d,	\t	n_samples	%d,	\t	n_features	%d"	%	(n_digits,	n_samples,	n_features))

				print(79	*	'_')

				print('%	9s'	%	'init'	'				time		inertia				homo			compl		v-meas					ARI	AMI		silhouette')

				print("n_digits:	%d,	\t	n_samples	%d,	\t	n_features	%d"

										%	(n_digits,	n_samples,	n_features))

				print(79	*	'_')

				print('%	9s'	%	'init'

										'				time		inertia				homo			compl		v-meas					ARI	AMI		silhouette')

				def	bench_k_means(estimator,	name,	data):

								t0	=	time()

								estimator.fit(data)

								print('%	9s			%.2fs				%i			%.3f			%.3f			%.3f			%.3f			%.3f				%.3f'

														%	(name,	(time()	-	t0),	estimator.inertia_,

																	metrics.homogeneity_score(labels,	estimator.labels_),

																	metrics.completeness_score(labels,	estimator.labels_),

																	metrics.v_measure_score(labels,	estimator.labels_),

																	metrics.adjusted_rand_score(labels,	estimator.labels_),

																	metrics.adjusted_mutual_info_score(labels,		estimator.labels_),

																	metrics.silhouette_score(data,	estimator.labels_,metric='euclidean',sample_size=sample_size)))

				bench_k_means(KMeans(init='k-means++',	n_clusters=n_digits,	n_init=10),	name="k-means++",	data=data)

				bench_k_means(KMeans(init='random',	n_clusters=n_digits,	n_init=10),	name="random",	data=data)

																	metrics.silhouette_score(data,	estimator.labels_,

																																										metric='euclidean',

																																										sample_size=sample_size)))

				bench_k_means(KMeans(init='k-means++',	n_clusters=n_digits,	n_init=10),

																		name="k-means++",	data=data)

				bench_k_means(KMeans(init='random',	n_clusters=n_digits,	n_init=10),

																		name="random",	data=data)

				#	in	this	case	the	seeding	of	the	centers	is	deterministic,	hence	we	run	the

				#	kmeans	algorithm	only	once	with	n_init=1

				pca	=	PCA(n_components=n_digits).fit(data)

				bench_k_means(KMeans(init=pca.components_,n_clusters=n_digits,	n_init=1),name="PCA-based",	data=data)

				print(79	*	'_')

				bench_k_means(KMeans(init=pca.components_,

																									n_clusters=n_digits,	n_init=1),

																		name="PCA-based",

																		data=data)

10.4.17.5	Visualize

See	Figure	32

Figure	32:	Result

				print(79	*	'_')

				reduced_data	=	PCA(n_components=2).fit_transform(data)

				kmeans	=	KMeans(init='k-means++',	n_clusters=n_digits,	n_init=10)

				kmeans.fit(reduced_data)

				#	Step	size	of	the	mesh.	Decrease	to	increase	the	quality	of	the	VQ.

				h	=	.02					#	point	in	the	mesh	[x_min,	x_max]x[y_min,	y_max].

				#	Plot	the	decision	boundary.	For	that,	we	will	assign	a	color	to	each

				x_min,	x_max	=	reduced_data[:,	0].min()	-	1,	reduced_data[:,	0].max()	+	1

				y_min,	y_max	=	reduced_data[:,	1].min()	-	1,	reduced_data[:,	1].max()	+	1

				xx,	yy	=	np.meshgrid(np.arange(x_min,	x_max,	h),	np.arange(y_min,	y_max,	h))

				#	Obtain	labels	for	each	point	in	mesh.	Use	last	trained	model.

				Z	=	kmeans.predict(np.c_[xx.ravel(),	yy.ravel()])

				#	Put	the	result	into	a	color	plot

				Z	=	Z.reshape(xx.shape)

				plt.figure(1)

				plt.clf()

				plt.imshow(Z,	interpolation='nearest',

															extent=(xx.min(),	xx.max(),	yy.min(),	yy.max()),

															cmap=plt.cm.Paired,

															aspect='auto',	origin='lower')

				plt.plot(reduced_data[:,	0],	reduced_data[:,	1],	'k.',	markersize=2)

				#	Plot	the	centroids	as	a	white	X

				centroids	=	kmeans.cluster_centers_

				plt.scatter(centroids[:,	0],	centroids[:,	1],

																marker='x',	s=169,	linewidths=3,

																color='w',	zorder=10)

				plt.title('K-means	clustering	on	the	digits	dataset	(PCA-reduced	data)\n'

														'Centroids	are	marked	with	white	cross')

				plt.xlim(x_min,	x_max)

				plt.ylim(y_min,	y_max)

				plt.xticks(())

				plt.yticks(())

				plt.show()

10.5	DASK	-	RANDOM	FOREST	FEATURE	DETECTION	☁�

10.5.1	Setup

First	 we	 need	 our	 tools.	 pandas	 gives	 us	 the	 DataFrame,	 very	 similar	 to	 R’s
DataFrames.	The	DataFrame	is	a	structure	that	allows	us	to	work	with	our	data
more	easily.	It	has	nice	features	for	slicing	and	transformation	of	data,	and	easy
ways	to	do	basic	statistics.

numpy	has	some	very	handy	functions	that	work	on	DataFrames.

10.5.2	Dataset

We	 are	 using	 a	 dataset	 about	 the	 wine	 quality	 dataset,	 archived	 at	 UCI’s
Machine	Learning	Repository	(http://archive.ics.uci.edu/ml/index.php).

Now	we	will	load	our	data.	pandas	makes	it	easy!

Like	 in	 R,	 there	 is	 a	 .describe()	 method	 that	 gives	 basic	 statistics	 for	 every
column	in	the	dataset.

fixed	acidity volatile
acidity citric	acid residual

sugar chlorides

count 1599.000000 1599.000000 1599.000000 1599.000000 1599.000000
mean 8.319637 0.527821 0.270976 2.538806 0.087467
std 1.741096 0.179060 0.194801 1.409928 0.047065
min 4.600000 0.120000 0.000000 0.900000 0.012000
25% 7.100000 0.390000 0.090000 1.900000 0.070000

import	pandas	as	pd

import	numpy	as	np

#	red	wine	quality	data,	packed	in	a	DataFrame

red_df	=	pd.read_csv('winequality-red.csv',sep=';',header=0,	index_col=False)

#	white	wine	quality	data,	packed	in	a	DataFrame

white_df	=	pd.read_csv('winequality-white.csv',sep=';',header=0,index_col=False)

#	rose?	other	fruit	wines?	plum	wine?	:(

#	for	red	wines

red_df.describe()

https://github.com/cloudmesh-community/book/blob/master/chapters/prg/python/random-forest/random-forest.md

50% 7.900000 0.520000 0.260000 2.200000 0.079000

75% 9.200000 0.640000 0.420000 2.600000 0.090000
max 15.900000 1.580000 1.000000 15.500000 0.611000

fixed	acidity volatile
acidity citric	acid residual

sugar chlorides

count 4898.000000 4898.000000 4898.000000 4898.000000 4898.000000
mean 6.854788 0.278241 0.334192 6.391415 0.045772
std 0.843868 0.100795 0.121020 5.072058 0.021848
min 3.800000 0.080000 0.000000 0.600000 0.009000
25% 6.300000 0.210000 0.270000 1.700000 0.036000
50% 6.800000 0.260000 0.320000 5.200000 0.043000
75% 7.300000 0.320000 0.390000 9.900000 0.050000
max 14.200000 1.100000 1.660000 65.800000 0.346000

Sometimes	it	is	easier	to	understand	the	data	visually.	A	histogram	of	the	white
wine	quality	data	citric	acid	samples	is	shown	next.	You	can	of	course	visualize
other	 columns’	 data	 or	 other	 datasets.	 Just	 replace	 the	DataFrame	 and	 column
name	(see	Figure	33).

#	for	white	wines

white_df.describe()

import	matplotlib.pyplot	as	plt

def	extract_col(df,col_name):

				return	list(df[col_name])

col	=	extract_col(white_df,'citric	acid')	#	can	replace	with	another	dataframe	or	column

plt.hist(col)

#TODO:	add	axes	and	such	to	set	a	good	example

plt.show()

Figure	33:	Histogram

10.5.3	Detecting	Features

Let	us	try	out	a	some	elementary	machine	learning	models.	These	models	are	not
always	 for	 prediction.	 They	 are	 also	 useful	 to	 find	 what	 features	 are	 most
predictive	of	a	variable	of	interest.	Depending	on	the	classifier	you	use,	you	may
need	to	transform	the	data	pertaining	to	that	variable.

10.5.3.1	Data	Preparation

Let	us	assume	we	want	to	study	what	features	are	most	correlated	with	pH.	pH
of	course	is	real-valued,	and	continuous.	The	classifiers	we	want	to	use	usually
need	 labeled	 or	 integer	 data.	Hence,	we	will	 transform	 the	 pH	 data,	 assigning
wines	with	pH	higher	than	average	as	hi	(more	basic	or	alkaline)	and	wines	with
pH	lower	than	average	as	lo	(more	acidic).
#	refresh	to	make	Jupyter	happy

red_df	=	pd.read_csv('winequality-red.csv',sep=';',header=0,	index_col=False)

white_df	=	pd.read_csv('winequality-white.csv',sep=';',header=0,index_col=False)

#TODO:	data	cleansing	functions	here,	e.g.	replacement	of	NaN

#	if	the	variable	you	want	to	predict	is	continuous,	you	can	map	ranges	of	values

#	to	integer/binary/string	labels

#	for	example,	map	the	pH	data	to	'hi'	and	'lo'	if	a	pH	value	is	more	than	or

#	less	than	the	mean	pH,	respectively

M	=	np.mean(list(red_df['pH']))	#	expect	inelegant	code	in	these	mappings

Lf	=	lambda	p:	int(p	<	M)*'lo'	+	int(p	>=	M)*'hi'	#	some	C-style	hackery

#	create	the	new	classifiable	variable

red_df['pH-hi-lo']	=	map(Lf,list(red_df['pH']))

#	and	remove	the	predecessor

del	red_df['pH']

Now	we	 specify	which	 dataset	 and	 variable	 you	want	 to	 predict	 by	 assigning
vlues	to	SELECTED_DF	and	TARGET_VAR,	respectively.

We	like	to	keep	a	parameter	file	where	we	specify	data	sources	and	such.	This
lets	me	create	generic	analytics	code	that	is	easy	to	reuse.

After	we	have	specified	what	dataset	we	want	to	study,	we	split	the	training	and
test	datasets.	We	 then	scale	 (normalize)	 the	data,	which	makes	most	classifiers
run	better.

Now	we	pick	a	classifier.	As	you	can	see,	 there	are	many	 to	 try	out,	and	even
more	in	scikit-learn’s	documentation	and	many	examples	and	tutorials.	Random
Forests	 are	 data	 science	workhorses.	They	 are	 the	go-to	method	 for	most	 data
scientists.	 Be	 careful	 relying	 on	 them	 though–they	 tend	 to	 overfit.	We	 try	 to
avoid	overfitting	by	separating	the	training	and	test	datasets.

10.5.4	Random	Forest

Now	we	will	test	it	out	with	the	default	parameters.

Note	that	this	code	is	boilerplate.	You	can	use	it	interchangeably	for	most	scikit-

from	sklearn.model_selection	import	train_test_split

from	sklearn.preprocessing	import	StandardScaler

from	sklearn	import	metrics

#	make	selections	here	without	digging	in	code

SELECTED_DF	=	red_df	#	selected	dataset

TARGET_VAR	=	'pH-hi-lo'	#	the	predicted	variable

#	generate	nameless	data	structures

df	=	SELECTED_DF

target	=	np.array(df[TARGET_VAR]).ravel()

del	df[TARGET_VAR]	#	no	cheating

#TODO:	data	cleansing	function	calls	here

#	split	datasets	for	training	and	testing

X_train,	X_test,	y_train,	y_test	=	train_test_split(df,target,test_size=0.2)

#	set	up	the	scaler

scaler	=	StandardScaler()

scaler.fit(X_train)

#	apply	the	scaler

X_train	=	scaler.transform(X_train)

X_test	=	scaler.transform(X_test)

#	pick	a	classifier

from	sklearn.tree	import	DecisionTreeClassifier,DecisionTreeRegressor,ExtraTreeClassifier,ExtraTreeRegressor

from	sklearn.ensemble	import	RandomForestClassifier,ExtraTreesClassifier

clf	=	RandomForestClassifier()

learn	models.

Now	output	the	results.	For	Random	Forests,	we	get	a	feature	ranking.	Relative
importances	 usually	 exponentially	 decay.	 The	 first	 few	 highly-ranked	 features
are	usually	the	most	important.

Feature	ranking:

fixed	 acidity	 0.269778	 citric	 acid	 0.171337	 density	 0.089660	 volatile	 acidity
0.088965	 chlorides	 0.082945	 alcohol	 0.080437	 total	 sulfur	 dioxide	 0.067832
sulphates	0.047786	free	sulfur	dioxide	0.042727	residual	sugar	0.037459	quality
0.021075

Sometimes	it’s	easier	to	visualize.	We’ll	use	a	bar	chart.	See	Figure	34

#	test	it	out

model	=	clf.fit(X_train,y_train)

pred	=	clf.predict(X_test)

conf_matrix	=	metrics.confusion_matrix(y_test,pred)

var_score	=	clf.score(X_test,y_test)

#	the	results

importances	=	clf.feature_importances_

indices	=	np.argsort(importances)[::-1]

#	for	the	sake	of	clarity

num_features	=	X_train.shape[1]

features	=	map(lambda	x:	df.columns[x],indices)

feature_importances	=	map(lambda	x:	importances[x],indices)

print	'Feature	ranking:\n'

for	i	in	range(num_features):

				feature_name	=	features[i]

				feature_importance	=	feature_importances[i]

				print	'%s%f'	%	(feature_name.ljust(30),	feature_importance)

plt.clf()

plt.bar(range(num_features),feature_importances)

plt.xticks(range(num_features),features,rotation=90)

plt.ylabel('relative	importance	(a.u.)')

plt.title('Relative	importances	of	most	predictive	features')

plt.show()

Figure	34:	Result

10.5.5	Acknowledgement

This	notebook	was	developed	by	Juliette	Zerick	and	Gregor	von	Laszewski

10.6	PARALLEL	COMPUTING	IN	PYTHON	☁�
In	this	module	we	will	review	the	available	Python	modules	that	can	be	used	for
parallel	 computing.	 The	 parallel	 computing	 can	 be	 in	 form	 of	 either	 multi-
threading	or	multi-processing.	In	multi-threading	approach,	the	threads	run	in	the
same	 shared	 memory	 heap	 whereas	 in	 case	 of	 multi-processing,	 the	 memory
heaps	 of	 processes	 are	 separate	 and	 independent,	 therefore	 the	 communication
between	the	processes	are	a	little	bit	more	complex.

10.6.1	Multi-threading	in	Python

Threading	in	Python	is	perfect	for	I/O	operations	where	the	process	is	expected
to	 be	 idle	 regularly,	 e.g.	 web	 scraping.	 This	 is	 a	 very	 useful	 feature	 because

import	dask.dataframe	as	dd

red_df	=	dd.read_csv('winequality-red.csv',sep=';',header=0)

white_df	=	dd.read_csv('winequality-white.csv',sep=';',header=0)

https://github.com/cloudmesh-community/book/blob/master/chapters/prg/python/python-parallel.md

several	 applications	 and	 script	 might	 spend	 the	 majority	 of	 their	 runtime	 on
waiting	 for	 network	 or	 data	 I/O.	 In	 several	 cases,	 e.g.	 web	 scraping,	 the
resources,	 i.e.	 downloading	 from	 different	 websites,	 are	 most	 of	 the	 time
independent.	Therefore	the	processor	can	download	in	parallel	and	join	the	result
at	the	end.

10.6.1.1	Thread	vs	Threading

There	are	two	built-in	modules	in	Python	that	are	related	to	threading,	namely	
thread	and	threading.	The	former	module	is	deprecated	for	sometime	in	Python	2,	and	in	
Python	3	it	is	renamed	to	_thread	for	the	sake	of	backwards	incompatibilities.	The	_thread
module	provides	low-level	threading	API	for	multi-threading	in	Python,	whereas
the	module	threading	builds	a	high-level	threading	interface	on	top	of	it.

The	Thread()	is	the	main	method	of	the	threading	module,	the	two	important	arguments
of	 which	 are	 target,	 for	 specifying	 the	 callable	 object,	 and	 args	 to	 pass	 the
arguments	for	the	target	callable.	We	illustrate	these	in	the	following	example:

This	is	the	output	of	the	previous	example:

In	case	you	are	not	familiar	with	the	if	__name__	==	'__main__:'	statement,	what	it	does	is
basically	making	sure	that	the	code	nested	under	this	condition	will	be	run	only
if	you	run	your	module	as	a	program	and	it	will	not	run	in	case	your	module	is
imported	in	another	file.

10.6.1.2	Locks

As	mentioned	prior,	the	memory	space	is	shared	between	the	threads.	This	is	at

import	threading

def	hello_thread(thread_num):

				print	("Hello	from	Thread	",	thread_num)

if	__name__	==	'__main__':

				for	thread_num	in	range(5):

								t	=	threading.Thread(target=hello_thread,arg=(thread_num,))

								t.start()

In	[1]:	%run	threading.py

Hello	from	Thread		0

Hello	from	Thread		1

Hello	from	Thread		2

Hello	from	Thread		3

Hello	from	Thread		4

the	 same	 time	 beneficial	 and	 problematic:	 it	 is	 beneficial	 in	 a	 sense	 that	 the
communication	 between	 the	 threads	 becomes	 easy,	 however,	 you	 might
experience	 strange	 outcome	 if	 you	 let	 several	 threads	 change	 same	 variable
without	caution,	e.g.	thread	2	changes	variable	x	while	thread	1	is	working	with
it.	This	is	when	lock	comes	into	play.	Using	lock,	you	can	allow	only	one	thread	to
work	with	a	variable.	In	other	words,	only	a	single	thread	can	hold	the	lock.	If	the
other	 threads	need	 to	work	with	 that	variable,	 they	have	 to	wait	until	 the	other
thread	is	done	and	the	variable	is	“unlocked”.

We	illustrate	this	with	a	simple	example:

Suppose	we	want	 to	print	multiples	of	3	between	1	and	12,	 i.e.	3,	6,	9	and	12.
For	the	sake	of	argument,	we	try	to	do	this	using	2	threads	and	a	nested	for	loop.
Then	we	create	a	global	variable	called	counter	and	we	initialize	it	with	0.	Then
whenever	 each	 of	 the	 incrementer1	 or	 incrementer2	 functions	 are	 called,	 the	 counter	 is
incremented	by	3	 twice	 (counter	 is	 incremented	by	6	 in	 each	 function	call).	 If
you	run	the	previous	code,	you	should	be	really	lucky	if	you	get	the	following	as
part	of	your	output:

The	reason	is	the	conflict	that	happens	between	threads	while	incrementing	the	

import	threading

global	counter

counter	=	0

def	incrementer1():

				global	counter

				for	j	in	range(2):

								for	i	in	range(3):

												counter	+=	1

												print("Greeter	1	incremented	the	counter	by	1")

								print	("Counter	is	%d"%counter)

def	incrementer2():

				global	counter

				for	j	in	range(2):

								for	i	in	range(3):

												counter	+=	1

												print("Greeter	2	incremented	the	counter	by	1")

								print	("Counter	is	now	%d"%counter)

if	__name__	==	'__main__':

				t1	=	threading.Thread(target	=	incrementer1)

				t2	=	threading.Thread(target	=	incrementer2)

				t1.start()

				t2.start()

Counter	is	now	3

Counter	is	now	6

Counter	is	now	9

Counter	is	now	12

counter	 in	 the	nested	for	 loop.	As	you	probably	noticed,	 the	first	 level	for	 loop	is
equivalent	of	adding	3	 to	 the	counter	and	 the	conflict	 that	might	happen	 is	not
effective	 on	 that	 level	 but	 the	 nested	 for	 loop.	Accordingly,	 the	 output	 of	 the
previous	code	is	different	in	every	run.	This	is	an	example	output:

We	 can	 fix	 this	 issue	 using	 a	 lock:	 whenever	 one	 of	 the	 function	 is	 going	 to
increment	the	value	by	3,	it	will	acquire()	the	lock	and	when	it	is	done	the	function
will	release()	the	lock.	This	mechanism	is	illustrated	in	the	following	code:

No	matter	how	many	times	you	run	this	code,	the	output	would	always	be	in	the
correct	order:

$	python3	lock_example.py

Greeter	1	incremented	the	counter	by	1

Greeter	1	incremented	the	counter	by	1

Greeter	1	incremented	the	counter	by	1

Counter	is	4

Greeter	2	incremented	the	counter	by	1

Greeter	2	incremented	the	counter	by	1

Greeter	1	incremented	the	counter	by	1

Greeter	2	incremented	the	counter	by	1

Greeter	1	incremented	the	counter	by	1

Counter	is	8

Greeter	1	incremented	the	counter	by	1

Greeter	2	incremented	the	counter	by	1

Counter	is	10

Greeter	2	incremented	the	counter	by	1

Greeter	2	incremented	the	counter	by	1

Counter	is	12

import	threading

increment_by_3_lock	=	threading.Lock()

global	counter

counter	=	0

def	incrementer1():

				global	counter

				for	j	in	range(2):

								increment_by_3_lock.acquire(True)

								for	i	in	range(3):

												counter	+=	1

												print("Greeter	1	incremented	the	counter	by	1")

								print	("Counter	is	%d"%counter)

								increment_by_3_lock.release()

def	incrementer2():

				global	counter

				for	j	in	range(2):

								increment_by_3_lock.acquire(True)

								for	i	in	range(3):

												counter	+=	1

												print("Greeter	2	incremented	the	counter	by	1")

								print	("Counter	is	%d"%counter)

								increment_by_3_lock.release()

if	__name__	==	'__main__':

				t1	=	threading.Thread(target	=	incrementer1)

				t2	=	threading.Thread(target	=	incrementer2)

				t1.start()

				t2.start()

$	python3	lock_example.py

Using	 the	 Threading	 module	 increases	 both	 the	 overhead	 associated	 with	 thread
management	as	well	as	the	complexity	of	the	program	and	that	is	why	in	many
situations,	employing	multiprocessing	module	might	be	a	better	approach.

10.6.2	Multi-processing	in	Python

We	 already	 mentioned	 that	 multi-threading	 might	 not	 be	 sufficient	 in	 many
applications	and	we	might	need	to	use	multiprocessing	sometime,	or	better	to	say	most
of	 the	 times.	 That	 is	 why	 we	 are	 dedicating	 this	 subsection	 to	 this	 particular
module.	This	module	provides	you	with	an	API	for	spawning	processes	the	way
you	 spawn	 threads	 using	 threading	 module.	 Moreover,	 there	 are	 some
functionalities	 that	 are	 not	 even	 available	 in	 threading	 module,	 e.g.	 the	 Pool	 class
which	allows	you	to	run	a	batch	of	jobs	using	a	pool	of	worker	processes.

10.6.2.1	Process

Similar	to	threading	module	which	was	employing	thread	(aka	_thread)	under	the	hood,	
multiprocessing	employs	the	Process	class.	Consider	the	following	example:

In	 this	 example,	 after	 importing	 the	 Process	module	we	created	 a	 greeter()	 function

Greeter	1	incremented	the	counter	by	1

Greeter	1	incremented	the	counter	by	1

Greeter	1	incremented	the	counter	by	1

Counter	is	3

Greeter	1	incremented	the	counter	by	1

Greeter	1	incremented	the	counter	by	1

Greeter	1	incremented	the	counter	by	1

Counter	is	6

Greeter	2	incremented	the	counter	by	1

Greeter	2	incremented	the	counter	by	1

Greeter	2	incremented	the	counter	by	1

Counter	is	9

Greeter	2	incremented	the	counter	by	1

Greeter	2	incremented	the	counter	by	1

Greeter	2	incremented	the	counter	by	1

Counter	is	12

from	multiprocessing	import	Process

import	os

def	greeter	(name):

				proc_idx	=	os.getpid()

				print	("Process	{0}:	Hello	{1}!".format(proc_idx,name))

if	__name__	==	'__main__':

				name_list	=	['Harry',	'George',	'Dirk',	'David']

				process_list	=	[]

				for	name_idx,	name	in	enumerate(name_list):

								current_process	=	Process(target=greeter,	args=(name,))

								process_list.append(current_process)

								current_process.start()

				for	process	in	process_list:

								process.join()

that	takes	a	name	and	greets	that	person.	It	also	prints	the	pid	(process	identifier)	of
the	process	that	is	running	it.	Note	that	we	used	the	os	module	to	get	the	pid.	In	the
bottom	of	the	code	after	checking	the	__name__='__main__'	condition,	we	create	a	series
of	Processes	and	start	them.	Finally	in	the	last	for	loop	and	using	the	join	method,	we
tell	 Python	 to	wait	 for	 the	 processes	 to	 terminate.	 This	 is	 one	 of	 the	 possible
outputs	of	the	code:

10.6.2.2	Pool

Consider	the	Pool	class	as	a	pool	of	worker	processes.	There	are	several	ways	for
assigning	jobs	to	the	Pool	class	and	we	will	introduce	the	most	important	ones	in
this	 section.	 These	 methods	 are	 categorized	 as	 blocking	 or	 non-blocking.	 The	 former
means	 that	 after	 calling	 the	 API,	 it	 blocks	 the	 thread/process	 until	 it	 has	 the
result	or	answer	ready	and	the	control	returns	only	when	the	call	completes.	In
the	non-blockin	on	the	other	hand,	the	control	returns	immediately.

10.6.2.2.1	Synchronous	Pool.map()

We	illustrate	the	Pool.map	method	by	re-implementing	our	previous	greeter	example
using	Pool.map:

As	you	can	see,	we	have	seven	names	here	but	we	do	not	want	to	dedicate	each
greeting	 to	a	 separate	process.	 Instead	we	do	 the	whole	 job	of	“greeting	seven
people”	using	“two	processes”.	We	create	a	pool	of	3	processes	with	Pool(processes=3)
syntax	 and	 then	 we	 map	 an	 iterable	 called	 names	 to	 the	 greeter	 function	 using	
pool.map(greeter,names).	As	we	expected,	the	greetings	in	the	output	will	be	printed	from
three	different	processes:

$	python3	process_example.py

Process	23451:	Hello	Harry!

Process	23452:	Hello	George!

Process	23453:	Hello	Dirk!

Process	23454:	Hello	David!

from	multiprocessing	import	Pool

import	os

def	greeter(name):

				pid	=	os.getpid()

				print("Process	{0}:	Hello	{1}!".format(pid,name))

if	__name__	==	'__main__':

				names	=	['Jenna',	'David','Marry',	'Ted','Jerry','Tom','Justin']

				pool	=	Pool(processes=3)

				sync_map	=	pool.map(greeter,names)

				print("Done!")

Note	 that	 Pool.map()	 is	 in	 blocking	 category	 and	 does	 not	 return	 the	 control	 to	 your
script	until	it	is	done	calculating	the	results.	That	is	why	Done!	is	printed	after	all	of
the	greetings	are	over.

10.6.2.2.2	Asynchronous	Pool.map_async()

As	 the	 name	 implies,	 you	 can	 use	 the	 map_async	 method,	 when	 you	 want	 assign
many	 function	 calls	 to	 a	 pool	 of	 worker	 processes	 asynchronously.	 Note	 that
unlike	 map,	 the	 order	 of	 the	 results	 is	 not	 guaranteed	 (as	 oppose	 to	 map)	 and	 the
control	is	returned	immediately.	We	now	implement	the	previous	example	using	
map_async:

As	 you	 probably	 noticed,	 the	 only	 difference	 (clearly	 apart	 from	 the	 map_async

method	name)	is	calling	the	 wait()	method	in	 the	 last	 line.	The	 wait()	method	 tells
your	script	to	wait	for	the	result	of	map_async	before	terminating:

Note	 that	 the	 order	 of	 the	 results	 are	 not	 preserved.	Moreover,	 Done!	 is	 printer
before	 any	of	 the	 results,	meaning	 that	 if	we	do	not	 use	 the	 wait()	method,	 you
probably	will	not	see	the	result	at	all.

$	python	poolmap_example.py

Process	30585:	Hello	Jenna!

Process	30586:	Hello	David!

Process	30587:	Hello	Marry!

Process	30585:	Hello	Ted!

Process	30585:	Hello	Jerry!

Process	30587:	Hello	Tom!

Process	30585:	Hello	Justin!

Done!

from	multiprocessing	import	Pool

import	os

def	greeter(name):

				pid	=	os.getpid()

				print("Process	{0}:	Hello	{1}!".format(pid,name))

if	__name__	==	'__main__':

				names	=	['Jenna',	'David','Marry',	'Ted','Jerry','Tom','Justin']

				pool	=	Pool(processes=3)

				async_map	=	pool.map_async(greeter,names)

				print("Done!")

				async_map.wait()

$	python	poolmap_example.py

Done!

Process	30740:	Hello	Jenna!

Process	30741:	Hello	David!

Process	30740:	Hello	Ted!

Process	30742:	Hello	Marry!

Process	30740:	Hello	Jerry!

Process	30741:	Hello	Tom!

Process	30742:	Hello	Justin!

10.6.2.3	Locks

The	way	multiprocessing	module	implements	locks	is	almost	identical	to	the	way	the	
threading	module	does.	After	importing	Lock	from	multiprocessing	all	you	need	to	do	is	to	
acquire	it,	do	some	computation	and	then	release	the	lock.	We	will	clarify	the	use	of	
Lock	by	providing	an	example	in	next	section	about	process	communication.

10.6.2.4	Process	Communication

Process	 communication	 in	 multiprocessing	 is	 one	 of	 the	 most	 important,	 yet
complicated,	features	for	better	use	of	this	module.	As	oppose	to	threading,	the	Process
objects	 will	 not	 have	 access	 to	 any	 shared	 variable	 by	 default,	 i.e.	 no	 shared
memory	space	between	the	processes	by	default.	This	effect	is	illustrated	in	the
following	example:

Probably	 you	 already	 noticed	 that	 this	 is	 almost	 identical	 to	 our	 example	 in	
threading	section.	Now,	take	a	look	at	the	strange	output:

As	you	can	see,	it	is	as	if	the	processes	does	not	see	each	other.	Instead	of	having
two	processes	one	counting	 to	6	and	 the	other	counting	from	6	 to	12,	we	have

from	multiprocessing	import	Process,	Lock,	Value

import	time

global	counter

counter	=	0

def	incrementer1():

				global	counter

				for	j	in	range(2):

								for	i	in	range(3):

												counter	+=	1

								print	("Greeter1:	Counter	is	%d"%counter)

def	incrementer2():

				global	counter

				for	j	in	range(2):

								for	i	in	range(3):

												counter	+=	1

								print	("Greeter2:	Counter	is	%d"%counter)

if	__name__	==	'__main__':

				t1	=	Process(target	=	incrementer1)

				t2	=	Process(target	=	incrementer2)

				t1.start()

				t2.start()

$	python	communication_example.py

Greeter1:	Counter	is	3

Greeter1:	Counter	is	6

Greeter2:	Counter	is	3

Greeter2:	Counter	is	6

two	processes	counting	to	6.

Nevertheless,	 there	 are	 several	 ways	 that	 Processes	 from	 multiprocessing	 can
communicate	with	each	other,	including	Pipe,	Queue,	Value,	Array	and	Manager.	Pipe	and	 Queue
are	 appropriate	 for	 inter-process	message	 passing.	 To	 be	more	 specific,	 Pipe	 is
useful	 for	 process-to-process	 scenarios	 while	 Queue	 is	 more	 appropriate	 for
processes-toprocesses	ones.	Value	and	Array	are	both	used	to	provide	a	synchronized
access	to	a	shared	data	(very	much	like	shared	memory)	and	Managers	can	be	used
on	different	data	types.	In	the	following	sub-sections,	we	cover	both	Value	and	Array
since	they	are	both	lightweight,	yet	useful,	approaches.

10.6.2.4.1	Value

The	 following	 example	 re-implements	 the	 broken	 example	 in	 the	 previous
section.	We	fix	the	strange	output,	by	using	both	Lock	and	Value:

The	 usage	 of	 Lock	 object	 in	 this	 example	 is	 identical	 to	 the	 example	 in	 threading
section.	The	usage	of	 counter	 is	on	 the	other	hand	 the	novel	part.	First,	note	 that
counter	is	not	a	global	variable	anymore	and	instead	it	is	a	Value	which	returns	a	
ctypes	 object	 allocated	 from	 a	 shared	 memory	 between	 the	 processes.	 The	 first
argument	 'i'	 indicates	 a	 signed	 integer,	 and	 the	 second	 argument	 defines	 the

from	multiprocessing	import	Process,	Lock,	Value

import	time

increment_by_3_lock	=	Lock()

def	incrementer1(counter):

				for	j	in	range(3):

								increment_by_3_lock.acquire(True)

								for	i	in	range(3):

												counter.value	+=	1

												time.sleep(0.1)

								print	("Greeter1:	Counter	is	%d"%counter.value)

								increment_by_3_lock.release()

def	incrementer2(counter):

				for	j	in	range(3):

								increment_by_3_lock.acquire(True)

								for	i	in	range(3):

												counter.value	+=	1

												time.sleep(0.05)

								print	("Greeter2:	Counter	is	%d"%counter.value)

								increment_by_3_lock.release()

if	__name__	==	'__main__':

				counter	=	Value('i',0)

				t1	=	Process(target	=	incrementer1,	args=(counter,))

				t2	=	Process(target	=	incrementer2	,	args=(counter,))

				t2.start()

				t1.start()

initialization	value.	In	this	case	we	are	assigning	a	signed	integer	in	the	shared
memory	 initialized	 to	 size	 0	 to	 the	 counter	 variable.	We	 then	modified	 our	 two
functions	and	pass	this	shared	variable	as	an	argument.	Finally,	we	change	the
way	we	increment	the	counter	since	counter	is	not	an	Python	integer	anymore	but	a	
ctypes	 signed	 integer	where	we	 can	 access	 its	 value	 using	 the	 value	 attribute.	The
output	of	the	code	is	now	as	we	expected:

The	last	example	related	to	parallel	processing,	illustrates	the	use	of	both	Value	and
Array,	as	well	as	a	 technique	 to	pass	multiple	arguments	 to	a	 function.	Note	 that
the	Process	object	does	not	accept	multiple	arguments	for	a	function	and	therefore
we	 need	 this	 or	 similar	 techniques	 for	 passing	multiple	 arguments.	 Also,	 this
technique	can	also	be	used	when	you	want	to	pass	multiple	arguments	to	map	or	
map_async:

$	python	mp_lock_example.py

Greeter2:	Counter	is	3

Greeter2:	Counter	is	6

Greeter1:	Counter	is	9

Greeter1:	Counter	is	12

from	multiprocessing	import	Process,	Lock,	Value,	Array

import	time

from	ctypes	import	c_char_p

increment_by_3_lock	=	Lock()

def	incrementer1(counter_and_names):

				counter=		counter_and_names[0]

				names	=	counter_and_names[1]

				for	j	in	range(2):

								increment_by_3_lock.acquire(True)

								for	i	in	range(3):

												counter.value	+=	1

												time.sleep(0.1)

								name_idx	=	counter.value//3	-1

								print	("Greeter1:	Greeting	{0}!	Counter	is	{1}".format(names.value[name_idx],counter.value))

								increment_by_3_lock.release()

def	incrementer2(counter_and_names):

				counter=		counter_and_names[0]

				names	=	counter_and_names[1]

				for	j	in	range(2):

								increment_by_3_lock.acquire(True)

								for	i	in	range(3):

												counter.value	+=	1

												time.sleep(0.05)

								name_idx	=	counter.value//3	-1

								print	("Greeter2:	Greeting	{0}!	Counter	is	{1}".format(names.value[name_idx],counter.value))

								increment_by_3_lock.release()

if	__name__	==	'__main__':

				counter	=	Value('i',0)

				names	=	Array	(c_char_p,4)

				names.value	=	['James','Tom','Sam',	'Larry']

				t1	=	Process(target	=	incrementer1,	args=((counter,names),))

				t2	=	Process(target	=	incrementer2	,	args=((counter,names),))

				t2.start()

				t1.start()

In	this	example	we	created	a	multiprocessing.Array()	object	and	assigned	it	to	a	variable
called	names.	As	we	mentioned	before,	the	first	argument	is	the	ctype	data	type	and
since	we	want	to	create	an	array	of	strings	with	length	of	4	(second	argument),
we	imported	the	c_char_p	and	passed	it	as	the	first	argument.

Instead	 of	 passing	 the	 arguments	 separately,	we	merged	 both	 the	 Value	 and	 Array
objects	 in	 a	 tuple	 and	passed	 the	 tuple	 to	 the	 functions.	We	 then	modified	 the
functions	 to	 unpack	 the	 objects	 in	 the	 first	 two	 lines	 in	 the	 both	 functions.
Finally	 we	 changed	 the	 print	 statement	 in	 a	 way	 that	 each	 process	 greets	 a
particular	name.	The	output	of	the	example	is:

10.7	DASK	☁�
Dask	 is	 a	 python-based	 parallel	 computing	 library	 for	 analytics.	 Parallel
computing	is	a	type	of	computation	in	which	many	calculations	or	the	execution
of	processes	are	carried	out	simultaneously.	Large	problems	can	often	be	divided
into	smaller	ones,	which	can	then	be	solved	concurrently.

Dask	is	composed	of	two	components:

1.	 Dynamic	 task	 scheduling	 optimized	 for	 computation.	 This	 is	 similar	 to
Airflow,	 Luigi,	 Celery,	 or	 Make,	 but	 optimized	 for	 interactive
computational	workloads.

2.	 Big	Data	collections	 like	 parallel	 arrays,	 dataframes,	 and	 lists	 that	 extend
common	interfaces	like	NumPy,	Pandas,	or	Python	iterators	to	larger-than-
memory	or	distributed	environments.	These	parallel	collections	run	on	top
of	the	dynamic	task	schedulers.

Dask	emphasizes	the	following	virtues:

Familiar:	 Provides	 parallelized	 NumPy	 array	 and	 Pandas	 DataFrame
objects.
Flexible:	Provides	a	 task	 scheduling	 interface	 for	more	custom	workloads
and	integration	with	other	projects.

$	python3	mp_lock_example.py

Greeter2:	Greeting	James!	Counter	is	3

Greeter2:	Greeting	Tom!	Counter	is	6

Greeter1:	Greeting	Sam!	Counter	is	9

Greeter1:	Greeting	Larry!	Counter	is	12

https://github.com/cloudmesh-community/book/blob/master/chapters/prg/python/dask/dask.md

Native:	 Enables	 distributed	 computing	 in	 Pure	 Python	with	 access	 to	 the
PyData	stack.
Fast:	Operates	with	 low	overhead,	 low	 latency,	 and	minimal	 serialization
necessary	for	fast	numerical	algorithms
Scales	up:	Runs	resiliently	on	clusters	with	1000s	of	cores
Scales	down:	Trivial	to	set	up	and	run	on	a	laptop	in	a	single	process
Responsive:	Designed	with	interactive	computing	in	mind	it	provides	rapid
feedback	and	diagnostics	to	aid	humans

The	 section	 is	 structured	 in	 a	 number	 of	 subsections	 addressing	 the	 following
topics:

Foundations:

an	explanation	of	what	Dask	is,	how	it	works,	and	how	to	use	lower	level
primitives	 to	 set	 up	 computations.	 Casual	 users	 may	 wish	 to	 skip	 this
section,	although	we	consider	it	useful	knowledge	for	all	users.

Distributed	Features:

information	 on	 running	Dask	 on	 the	 distributed	 scheduler,	which	 enables
scale-up	to	distributed	settings	and	enhanced	monitoring	of	task	operations.
The	 distributed	 scheduler	 is	 now	 generally	 the	 recommended	 engine	 for
executing	task	work,	even	on	single	workstations	or	laptops.

Collections:

convenient	abstractions	giving	a	familiar	feel	to	big	data.

Bags:

Python	iterators	with	a	functional	paradigm,	such	as	found	in	func/iter-tools
and	 toolz	 -	 generalize	 lists/generators	 to	 big	 data;	 this	 will	 seem	 very
familiar	to	users	of	PySpark’s	RDD

Array:

massive	multi-dimensional	numerical	data,	with	Numpy	functionality

Dataframe:

massive	tabular	data,	with	Pandas	functionality

10.7.1	How	Dask	Works

Dask	is	computation	tool	for	larger-than-memory	datasets,	parallel	execution	or
delayed/background	execution.

We	can	summarize	the	basics	of	Dask	as	follows:

process	data	 that	does	not	 fit	 into	memory	by	breaking	 it	 into	blocks	and
specifying	task	chains
parallelize	execution	of	tasks	across	cores	and	even	nodes	of	a	cluster
move	computation	to	the	data	rather	than	the	other	way	around,	to	minimize
communication	overheads

We	use	for-loops	 to	build	basic	 tasks,	Python	 iterators,	and	 the	Numpy	(array)
and	 Pandas	 (dataframe)	 functions	 for	 multi-dimensional	 or	 tabular	 data,
respectively.

Dask	allows	us	 to	construct	a	prescription	for	 the	calculation	we	want	 to	carry
out.	A	module	named	Dask.delayed	lets	us	parallelize	custom	code.	It	is	useful
whenever	 our	 problem	 doesn’t	 quite	 fit	 a	 high-level	 parallel	 object	 like
dask.array	 or	 dask.dataframe	 but	 could	 still	 benefit	 from	 parallelism.
Dask.delayed	works	by	delaying	our	function	evaluations	and	putting	them	into
a	dask	graph.	Here	is	a	small	example:

Here	we	have	used	the	delayed	annotation	to	show	that	we	want	these	functions
to	operate	lazily	-	to	save	the	set	of	inputs	and	execute	only	on	demand.

10.7.2	Dask	Bag

from	dask	import	delayed

@delayed

def	inc(x):

				return	x	+	1

@delayed

def	add(x,	y):

				return	x	+	y

Dask-bag	 excels	 in	 processing	 data	 that	 can	 be	 represented	 as	 a	 sequence	 of
arbitrary	 inputs.	 We’ll	 refer	 to	 this	 as	 “messy”	 data,	 because	 it	 can	 contain
complex	 nested	 structures,	 missing	 fields,	 mixtures	 of	 data	 types,	 etc.	 The
functional	 programming	 style	 fits	 very	 nicely	 with	 standard	 Python	 iteration,
such	as	can	be	found	in	the	itertools	module.

Messy	 data	 is	 often	 encountered	 at	 the	 beginning	 of	 data	 processing	 pipelines
when	large	volumes	of	raw	data	are	first	consumed.	The	initial	set	of	data	might
be	JSON,	CSV,	XML,	or	any	other	format	that	does	not	enforce	strict	structure
and	datatypes.	For	this	reason,	the	initial	data	massaging	and	processing	is	often
done	with	Python	lists,	dicts,	and	sets.

These	 core	 data	 structures	 are	 optimized	 for	 general-purpose	 storage	 and
processing.	Adding	 streaming	 computation	with	 iterators/generator	 expressions
or	libraries	like	itertools	or	toolz	let	us	process	large	volumes	in	a	small	space.	If
we	 combine	 this	 with	 parallel	 processing	 then	 we	 can	 churn	 through	 a	 fair
amount	of	data.

Dask.bag	is	a	high	level	Dask	collection	to	automate	common	workloads	of	this
form.	In	a	nutshell

You	can	create	a	Bag	from	a	Python	sequence,	from	files,	from	data	on	S3,	etc..

Bag	objects	hold	 the	standard	functional	API	found	in	projects	 like	 the	Python
standard	library,	toolz,	or	pyspark,	including	map,	filter,	groupby,	etc..

As	 with	 Array	 and	 DataFrame	 objects,	 operations	 on	 Bag	 objects	 create	 new
bags.	Call	the	.compute()	method	to	trigger	execution.

dask.bag	=	map,	filter,	toolz	+	parallel	execution

#	each	element	is	an	integer

import	dask.bag	as	db

b	=	db.from_sequence([1,	2,	3,	4,	5,	6,	7,	8,	9,	10])

#	each	element	is	a	text	file	of	JSON	lines

import	os

b	=	db.read_text(os.path.join('data',	'accounts.*.json.gz'))

#	Requires	`s3fs`	library

#	each	element	is	a	remote	CSV	text	file

b	=	db.read_text('s3://dask-data/nyc-taxi/2015/yellow_tripdata_2015-01.csv')

def	is_even(n):

				return	n	%	2	==	0

b	=	db.from_sequence([1,	2,	3,	4,	5,	6,	7,	8,	9,	10])

For	more	details	on	Dask	Bag	check	https://dask.pydata.org/en/latest/bag.html

10.7.3	Concurrency	Features

Dask	 supports	 a	 real-time	 task	 framework	 that	 extends	 Python’s
concurrent.futures	interface.	This	interface	is	good	for	arbitrary	task	scheduling,
like	dask.delayed,	but	is	immediate	rather	than	lazy,	which	provides	some	more
flexibility	 in	 situations	 where	 the	 computations	 may	 evolve	 over	 time.	 These
features	 depend	 on	 the	 second	 generation	 task	 scheduler	 found	 in
dask.distributed	(which,	despite	its	name,	runs	very	well	on	a	single	machine).

Dask	allows	us	 to	simply	construct	graphs	of	 tasks	with	dependencies.	We	can
find	 that	 graphs	 can	 also	 be	 created	 automatically	 for	 us	 using	 functional,
Numpy	or	Pandas	syntax	on	data	collections.	None	of	this	would	be	very	useful,
if	 there	weren’t	also	a	way	 to	execute	 these	graphs,	 in	a	parallel	and	memory-
aware	way.	Dask	comes	with	four	available	schedulers:

dask.threaded.get:	a	scheduler	backed	by	a	thread	pool
dask.multiprocessing.get:	a	scheduler	backed	by	a	process	pool
dask.async.get_sync:	a	synchronous	scheduler,	good	for	debugging
distributed.Client.get:	 a	 distributed	 scheduler	 for	 executing	 graphs	 on	 multiple
machines.

Here	is	a	simple	program	for	dask.distributed	library:

For	 more	 details	 on	 Concurrent	 Features	 by	 Dask	 check
https://dask.pydata.org/en/latest/futures.html

10.7.4	Dask	Array

c	=	b.filter(is_even).map(lambda	x:	x	**	2)

c

#	blocking	form:	wait	for	completion	(which	is	very	fast	in	this	case)

c.compute()

from	dask.distributed	import	Client

client	=	Client('scheduler:port')

futures	=	[]

for	fn	in	filenames:

				future	=	client.submit(load,	fn)

				futures.append(future)

summary	=	client.submit(summarize,	futures)

summary.result()

https://dask.pydata.org/en/latest/bag.html
https://dask.pydata.org/en/latest/futures.html

Dask	 arrays	 implement	 a	 subset	 of	 the	NumPy	 interface	 on	 large	 arrays	 using
blocked	 algorithms	 and	 task	 scheduling.	 These	 behave	 like	 numpy	 arrays,	 but
break	a	massive	job	into	tasks	that	are	then	executed	by	a	scheduler.	The	default
scheduler	uses	threading	but	you	can	also	use	multiprocessing	or	distributed	or
even	serial	processing	(mainly	for	debugging).	You	can	tell	the	dask	array	how
to	break	the	data	into	chunks	for	processing.

For	 more	 details	 on	 Dask	 Array	 check
https://dask.pydata.org/en/latest/array.html

10.7.5	Dask	DataFrame

A	 Dask	 DataFrame	 is	 a	 large	 parallel	 dataframe	 composed	 of	 many	 smaller
Pandas	dataframes,	split	along	the	index.	These	pandas	dataframes	may	live	on
disk	 for	 larger-than-memory	 computing	 on	 a	 single	 machine,	 or	 on	 many
different	machines	 in	 a	 cluster.	Dask.dataframe	 implements	 a	 commonly	 used
subset	 of	 the	 Pandas	 interface	 including	 elementwise	 operations,	 reductions,
grouping	operations,	joins,	timeseries	algorithms,	and	more.	It	copies	the	Pandas
interface	for	 these	operations	exactly	and	so	should	be	very	familiar	 to	Pandas
users.	Because	Dask.dataframe	operations	merely	coordinate	Pandas	operations
they	usually	exhibit	similar	performance	characteristics	as	are	found	in	Pandas.
To	run	the	following	code,	save	‘student.csv’	file	in	your	machine.

import	dask.array	as	da

f	=	h5py.File('myfile.hdf5')

x	=	da.from_array(f['/big-data'],	chunks=(1000,	1000))

x	-	x.mean(axis=1).compute()

import	pandas	as	pd

df	=	pd.read_csv('student.csv')

d	=	df.groupby(df.HID).Serial_No.mean()

print(d)

ID

101					1

102					2

104					3

105					4

106					5

107					6

109					7

111					8

201					9

202				10

Name:	Serial_No,	dtype:	int64

import	dask.dataframe	as	dd

df	=	dd.read_csv('student.csv')

dt	=	df.groupby(df.HID).Serial_No.mean().compute()

print	(dt)

ID

101					1.0

https://dask.pydata.org/en/latest/array.html

For	 more	 details	 on	 Dask	 DataFrame	 check
https://dask.pydata.org/en/latest/dataframe.html

10.7.6	Dask	DataFrame	Storage

Efficient	 storage	 can	 dramatically	 improve	 performance,	 particularly	 when
operating	repeatedly	from	disk.

Decompressing	 text	 and	 parsing	 CSV	 files	 is	 expensive.	 One	 of	 the	 most
effective	 strategies	 with	 medium	 data	 is	 to	 use	 a	 binary	 storage	 format	 like
HDF5.

Create	data	if	we	don’t	have	any

First	we	read	our	csv	data	as	before.

CSV	 and	 other	 text-based	 file	 formats	 are	 the	most	 common	 storage	 for	 data
from	many	sources,	because	they	require	minimal	pre-processing,	can	be	written
line-by-line	and	are	human-readable.	Since	Pandas’	read_csv	is	well-optimized,
CSVs	 are	 a	 reasonable	 input,	 but	 far	 from	 optimized,	 since	 reading	 required
extensive	text	parsing.

HDF5	 and	 netCDF	 are	 binary	 array	 formats	 very	 commonly	 used	 in	 the
scientific	realm.

102					2.0

104					3.0

105					4.0

106					5.0

107					6.0

109					7.0

111					8.0

201					9.0

202				10.0

Name:	Serial_No,	dtype:	float64

#	be	sure	to	shut	down	other	kernels	running	distributed	clients

from	dask.distributed	import	Client

client	=	Client()

from	prep	import	accounts_csvs

accounts_csvs(3,	1000000,	500)

import	os

filename	=	os.path.join('data',	'accounts.*.csv')

filename

import	dask.dataframe	as	dd

df_csv	=	dd.read_csv(filename)

df_csv.head()

https://dask.pydata.org/en/latest/dataframe.html

Pandas	 contains	 a	 specialized	 HDF5	 format,	 HDFStore.	 The
dd.DataFrame.to_hdf	 method	 works	 exactly	 like	 the	 pd.DataFrame.to_hdf
method.

For	 more	 information	 of	 Dask	 DataFrame	 Storage,	 click
http://dask.pydata.org/en/latest/dataframe-create.html

10.7.7	Links

https://dask.pydata.org/en/latest/
http://matthewrocklin.com/blog/work/2017/10/16/streaming-dataframes-1
http://people.duke.edu/~ccc14/sta-663-2017/18A_Dask.html
https://www.kdnuggets.com/2016/09/introducing-dask-parallel-
programming.html
https://pypi.python.org/pypi/dask/
https://www.hdfgroup.org/2015/03/hdf5-as-a-zero-configuration-ad-hoc-
scientific-database-for-python/
https://github.com/dask/dask-tutorial

target	=	os.path.join('data',	'accounts.h5')

target

%time	df_csv.to_hdf(target,	'/data')

df_hdf	=	dd.read_hdf(target,	'/data')

df_hdf.head()

http://dask.pydata.org/en/latest/dataframe-create.html
https://dask.pydata.org/en/latest/
http://matthewrocklin.com/blog/work/2017/10/16/streaming-dataframes-1
http://people.duke.edu/~ccc14/sta-663-2017/18A_Dask.html
https://www.kdnuggets.com/2016/09/introducing-dask-parallel-programming.html
https://pypi.python.org/pypi/dask/
https://www.hdfgroup.org/2015/03/hdf5-as-a-zero-configuration-ad-hoc-scientific-database-for-python/
https://github.com/dask/dask-tutorial

11	APPLICATIONS

11.1	FINGERPRINT	MATCHING	☁�

	Please	note	that	NIST	has	temporarily	removed	the	Fingerprint
data	set.	We	unfortunately	do	not	have	a	copy	of	 the	dataste.	 If	you
have	one,	please	notify	us	—

Python	is	a	flexible	and	popular	language	for	running	data	analysis	pipelines.	In
this	section	we	will	implement	a	solution	for	a	fingerprint	matching.

11.1.1	Overview

Fingerprint	 recognition	 refers	 to	 the	 automated	 method	 for	 verifying	 a	 match
between	two	fingerprints	and	that	is	used	to	identify	individuals	and	verify	their
identity.	 Fingerprints	 (Figure	 35)	 are	 the	most	 widely	 used	 form	 of	 biometric
used	to	identify	individuals.

Figure	35:	Fingerprints

The	automated	fingerprint	matching	generally	required	the	detection	of	different
fingerprint	features	(aggregate	characteristics	of	ridges,	and	minutia	points)	and
then	 the	use	of	 fingerprint	matching	algorithm,	which	can	do	both	one-to-	one
and	 one-to-	 many	 matching	 operations.	 Based	 on	 the	 number	 of	 matches	 a

https://github.com/cloudmesh-community/book/blob/master/chapters/prg/python/fingerprint/fingerprint.md

proximity	score	(distance	or	similarity)	can	be	calculated.

We	use	the	following	NIST	dataset	for	the	study:

Special	 Database	 14	 -	 NIST	 Mated	 Fingerprint	 Card	 Pairs	 2.
(http://www.nist.gov/itl/iad/ig/special_dbases.cfm)

11.1.2	Objectives

Match	 the	 fingerprint	 images	 from	 a	 probe	 set	 to	 a	 gallery	 set	 and	 report	 the
match	scores.

11.1.3	Prerequisites

For	this	work	we	will	use	the	following	algorithms:

MINDTCT:	The	NIST	minutiae	detector,	which	automatically	 locates	and
records	 ridge	 ending	 and	 bifurcations	 in	 a	 fingerprint	 image.
(http://www.nist.gov/itl/iad/ig/nbis.cfm)
BOZORTH3:	A	NIST	fingerprint	matching	algorithm,	which	is	a	minutiae
based	fingerprint-matching	algorithm.	It	can	do	both	one-to-	one	and	one-
to-	many	matching	operations.	(http://www.nist.gov/itl/iad/ig/nbis.cfm)

In	order	to	follow	along,	you	must	have	the	NBIS	tools	which	provide	mindtct	and	
bozorth3	 installed.	 If	 you	 are	 on	 Ubuntu	 16.04	 Xenial,	 the	 following	 steps	 will
accomplish	this:

11.1.4	Implementation

1.	 Fetch	the	fingerprint	images	from	the	web
2.	 Call	out	to	external	programs	to	prepare	and	compute	the	match	scoreds
3.	 Store	the	results	in	a	database
4.	 Generate	a	plot	to	identify	likely	matches.

$	sudo	apt-get	update	-qq

$	sudo	apt-get	install	-y	build-essential	cmake	unzip

$	wget	"http://nigos.nist.gov:8080/nist/nbis/nbis_v5_0_0.zip"

$	unzip	-d	nbis	nbis_v5_0_0.zip

$	cd	nbis/Rel_5.0.0

$./setup.sh	/usr/local	--without-X11

$	sudo	make

http://www.nist.gov/itl/iad/ig/special_dbases.cfm
http://www.nist.gov/itl/iad/ig/nbis.cfm
http://www.nist.gov/itl/iad/ig/nbis.cfm

we	will	be	interacting	with	the	operating	system	and	manipulating	files	and	their
pathnames.

Some	general	usefull	utilities

Using	the	attrs	library	provides	some	nice	shortcuts	to	defining	objects

we	will	 be	 randomly	 dividing	 the	 entire	 dataset,	 based	 on	 user	 input,	 into	 the
probe	and	gallery	stets

we	will	 need	 to	 call	 out	 to	 the	NBIS	 software.	we	will	 also	 be	 using	multiple
processes	to	take	advantage	of	all	the	cores	on	our	machine

As	for	plotting,	we	will	use	matplotlib,	though	there	are	many	alternatives.

Finally,	we	will	write	the	results	to	a	database.

11.1.5	Utility	functions

Next,	we	will	define	some	utility	functions:

from	__future__	import	print_function

import	urllib

import	zipfile

import	hashlib

import	os.path

import	os

import	sys

import	shutil

import	tempfile

import	itertools

import	functools

import	types

from	pprint	import	pprint

import	attr

import	sys

import	random

import	subprocess

import	multiprocessing

import	matplotlib.pyplot	as	plt

import	pandas	as	pd

import	numpy	as	np

import	sqlite3

11.1.6	Dataset

we	will	now	define	some	global	parameters

First,	the	fingerprint	dataset

def	take(n,	iterable):

				"Returns	a	generator	of	the	first	**n**	elements	of	an	iterable"

				return	itertools.islice(iterable,	n)

def	zipWith(function,	*iterables):

				"Zip	a	set	of	**iterables**	together	and	apply	**function**	to	each	tuple"

				for	group	in	itertools.izip(*iterables):

								yield	function(*group)

def	uncurry(function):

				"Transforms	an	N-arry	**function**	so	that	it	accepts	a	single	parameter	of	an	N-tuple"

				@functools.wraps(function)

				def	wrapper(args):

								return	function(*args)

				return	wrapper

def	fetch_url(url,	sha256,	prefix='.',	checksum_blocksize=2**20,	dryRun=False):

				"""Download	a	url.

				:param	url:	the	url	to	the	file	on	the	web

				:param	sha256:	the	SHA-256	checksum.	Used	to	determine	if	the	file	was	previously	downloaded.

				:param	prefix:	directory	to	save	the	file

				:param	checksum_blocksize:	blocksize	to	used	when	computing	the	checksum

				:param	dryRun:	boolean	indicating	that	calling	this	function	should	do	nothing

				:returns:	the	local	path	to	the	downloaded	file

				:rtype:

				"""

				if	not	os.path.exists(prefix):

								os.makedirs(prefix)

				local	=	os.path.join(prefix,	os.path.basename(url))

				if	dryRun:	return	local

				if	os.path.exists(local):

								print	('Verifying	checksum')

								chk	=	hashlib.sha256()

								with	open(local,	'rb')	as	fd:

												while	True:

																bits	=	fd.read(checksum_blocksize)

																if	not	bits:	break

																chk.update(bits)

								if	sha256	==	chk.hexdigest():

												return	local

				print	('Downloading',	url)

				def	report(sofar,	blocksize,	totalsize):

								msg	=	'{}%\r'.format(100	*	sofar	*	blocksize	/	totalsize,	100)

								sys.stderr.write(msg)

				urllib.urlretrieve(url,	local,	report)

				return	local

DATASET_URL	=	'https://s3.amazonaws.com/nist-srd/SD4/NISTSpecialDatabase4GrayScaleImagesofFIGS.zip'

DATASET_SHA256	=	'4db6a8f3f9dc14c504180cbf67cdf35167a109280f121c901be37a80ac13c449'

We’ll	define	how	to	download	the	dataset.	This	function	is	general	enough	that	it
could	be	used	to	retrieve	most	files,	but	we	will	default	it	to	use	the	values	from
previous.

11.1.7	Data	Model

we	 will	 define	 some	 classes	 so	 we	 have	 a	 nice	 API	 for	 working	 with	 the
dataflow.	 We	 set	 slots=True	 so	 that	 the	 resulting	 objects	 will	 be	 more	 space-
efficient.

11.1.7.1	Utilities

11.1.7.1.1	Checksum

The	 checksum	 consists	 of	 the	 actual	 hash	 value	 (value)	 as	 well	 as	 a	 string
representing	the	hashing	algorithm.	The	validator	enforces	that	the	algorith	can
only	be	one	of	the	listed	acceptable	methods

def	prepare_dataset(url=None,	sha256=None,	prefix='.',	skip=False):

				url	=	url	or	DATASET_URL

				sha256	=	sha256	or	DATASET_SHA256

				local	=	fetch_url(url,	sha256=sha256,	prefix=prefix,	dryRun=skip)

				if	not	skip:

								print	('Extracting',	local,	'to',	prefix)

								with	zipfile.ZipFile(local,	'r')	as	zip:

												zip.extractall(prefix)

				name,	_	=	os.path.splitext(local)

				return	name

def	locate_paths(path_md5list,	prefix):

				with	open(path_md5list)	as	fd:

								for	line	in	itertools.imap(str.strip,	fd):

												parts	=	line.split()

												if	not	len(parts)	==	2:	continue

												md5sum,	path	=	parts

												chksum	=	Checksum(value=md5sum,	kind='md5')

												filepath	=	os.path.join(prefix,	path)

												yield	Path(checksum=chksum,	filepath=filepath)

def	locate_images(paths):

				def	predicate(path):

								_,	ext	=	os.path.splitext(path.filepath)

								return	ext	in	['.png']

				for	path	in	itertools.ifilter(predicate,	paths):

								yield	image(id=path.checksum.value,	path=path)

@attr.s(slots=True)

class	Checksum(object):

		value	=	attr.ib()

		kind	=	attr.ib(validator=lambda	o,	a,	v:	v	in	'md5	sha1	sha224	sha256	sha384	sha512'.split())

11.1.7.1.2	Path

Paths	refer	to	an	image's	filepath	and	associated	Checksum.	We	get	the	checksum	"for
"free"	since	the	MD5	hash	is	provided	for	each	image	in	the	dataset.

11.1.7.1.3	Image

The	start	of	the	data	pipeline	is	the	image.	An	image	has	an	id	(the	md5	hash)	and
the	path	to	the	image.

11.1.7.2	Mindtct

The	next	step	in	the	pipeline	is	 to	apply	the	 mindtct	program	from	NBIS.	A	 mindtct
object	therefore	represents	the	results	of	applying	mindtct	on	an	image.	The	xyt	output
is	needed	fo	r	the	next	step,	and	the	image	attribute	represents	the	image	id.

We	need	a	way	to	construct	a	mindtct	object	from	an	image	object.	A	straightforward
way	 of	 doing	 this	 would	 be	 to	 have	 a	 from_image	 @staticmethod	 or	 @classmethod,	 but	 that
doesn't	work	well	with	multiprocessing	as	top-level	functions	work	best	as	they	need
to	be	serialized.

@attr.s(slots=True)

class	Path(object):

				checksum	=	attr.ib()

				filepath	=	attr.ib()

@attr.s(slots=True)

class	image(object):

				id	=	attr.ib()

				path	=	attr.ib()

@attr.s(slots=True)

class	mindtct(object):

				image	=	attr.ib()

				xyt	=	attr.ib()

				def	pretty(self):

								d	=	dict(id=self.image.id,	path=self.image.path)

								return	pprint(d)

def	mindtct_from_image(image):

				imgpath	=	os.path.abspath(image.path.filepath)

				tempdir	=	tempfile.mkdtemp()

				oroot	=	os.path.join(tempdir,	'result')

				cmd	=	['mindtct',	imgpath,	oroot]

				try:

								subprocess.check_call(cmd)

								with	open(oroot	+	'.xyt')	as	fd:

												xyt	=	fd.read()

								result	=	mindtct(image=image.id,	xyt=xyt)

11.1.7.3	Bozorth3

The	final	 step	 in	 the	pipeline	 is	 running	 the	 bozorth3	 from	NBIS.	The	 bozorth3	 class
represents	the	match	being	done:	tracking	the	ids	of	the	probe	and	gallery	images
as	well	as	the	match	score.

Since	we	will	be	writing	these	instance	out	to	a	database,	we	provide	some	static
methods	 for	 SQL	 statements.	 While	 there	 are	 many	 Object-Relational-Model
(ORM)	 libraries	 available	 for	 Python,	 this	 approach	 keeps	 the	 current
implementation	simple.

In	order	to	work	well	with	multiprocessing,	we	define	a	class	representuing	the	input
paramaters	 to	 bozorth3	 and	 a	 helper	 function	 to	 run	 bozorth3.	 This	way	 the	 pipeline
definition	can	be	kept	simple	to	a	map	to	create	the	input	and	then	a	map	to	run	the
program.

As	NBIS	 bozorth3	 can	 be	 called	 to	 compare	 one-to-one	 or	 one-to-many,	we	will
also	dynamically	choose	between	 these	approaches	depending	on	 if	 the	gallery
attribute	is	a	list	or	a	single	object.

								return	result

				finally:

								shutil.rmtree(tempdir)

@attr.s(slots=True)

class	bozorth3(object):

				probe	=	attr.ib()

				gallery	=	attr.ib()

				score	=	attr.ib()

				@staticmethod

				def	sql_stmt_create_table():

								return	'CREATE	TABLE	IF	NOT	EXISTS	bozorth3'	\

													+	'(probe	TEXT,	gallery	TEXT,	score	NUMERIC)'

				@staticmethod

				def	sql_prepared_stmt_insert():

								return	'INSERT	INTO	bozorth3	VALUES	(?,	?,	?)'

				def	sql_prepared_stmt_insert_values(self):

								return	self.probe,	self.gallery,	self.score

@attr.s(slots=True)

class	bozorth3_input(object):

				probe	=	attr.ib()

				gallery	=	attr.ib()

				def	run(self):

								if	isinstance(self.gallery,	mindtct):

												return	bozorth3_from_one_to_one(self.probe,	self.gallery)

								elif	isinstance(self.gallery,	types.ListType):

												return	bozorth3_from_one_to_many(self.probe,	self.gallery)

								else:

												raise	ValueError('Unhandled	type	for	gallery:	{}'.format(type(gallery)))

The	 next	 is	 the	 top-level	 function	 to	 running	 bozorth3.	 It	 accepts	 an	 instance	 of	
bozorth3_input.	 The	 is	 implemented	 as	 a	 simple	 top-level	wrapper	 so	 that	 it	 can	 be
easily	passed	to	the	multiprocessing	library.

11.1.7.3.1	Running	Bozorth3

There	 are	 two	 cases	 to	 handle:	 1.	One-to-one	 probe	 to	 gallery	 sets	 1.	One-to-
many	probe	to	gallery	sets

Both	 approaches	 are	 implemented	 next.	 The	 implementations	 follow	 the	 same
pattern:	1.	Create	a	temporary	directory	within	with	to	work	1.	Write	the	probe
and	 gallery	 images	 to	 files	 in	 the	 temporary	 directory	 1.	 Call	 the	 bozorth3

executable	 1.	 The	 match	 score	 is	 written	 to	 stdout	 which	 is	 captured	 and	 then
parsed.	1.	Return	a	bozorth3	 instance	for	each	match	1.	Make	sure	to	clean	up	the
temporary	directory

11.1.7.3.1.1	One-to-one

11.1.7.3.1.2	One-to-many

def	run_bozorth3(input):

				return	input.run()

def	bozorth3_from_one_to_one(probe,	gallery):

				tempdir	=	tempfile.mkdtemp()

				probeFile	=	os.path.join(tempdir,	'probe.xyt')

				galleryFile	=	os.path.join(tempdir,	'gallery.xyt')

				with	open(probeFile,			'wb')	as	fd:	fd.write(probe.xyt)

				with	open(galleryFile,	'wb')	as	fd:	fd.write(gallery.xyt)

				cmd	=	['bozorth3',	probeFile,	galleryFile]

				try:

								result	=	subprocess.check_output(cmd)

								score	=	int(result.strip())

								return	bozorth3(probe=probe.image,	gallery=gallery.image,	score=score)

				finally:

								shutil.rmtree(tempdir)

def	bozorth3_from_one_to_many(probe,	galleryset):

				tempdir	=	tempfile.mkdtemp()

				probeFile	=	os.path.join(tempdir,	'probe.xyt')

				galleryFiles	=	[os.path.join(tempdir,	'gallery%d.xyt'	%	i)

																				for	i,_	in	enumerate(galleryset)]

				with	open(probeFile,	'wb')	as	fd:	fd.write(probe.xyt)

				for	galleryFile,	gallery	in	itertools.izip(galleryFiles,	galleryset):

								with	open(galleryFile,	'wb')	as	fd:	fd.write(gallery.xyt)

				cmd	=	['bozorth3',	'-p',	probeFile]	+	galleryFiles

				try:

								result	=	subprocess.check_output(cmd).strip()

								scores	=	map(int,	result.split('\n'))

11.1.8	Plotting

For	plotting	we	will	operate	only	on	the	database.	we	will	select	a	small	number
of	 probe	 images	 and	 plot	 the	 score	 between	 them	 and	 the	 rest	 of	 the	 gallery
images.

The	mk_short_labels	helper	function	will	be	defined	next.

The	image	ids	are	long	hash	strings.	In	ordere	to	minimize	the	amount	of	space
on	 the	 figure	 the	 labels	occupy,	we	provide	a	helper	 function	 to	create	a	 short
label	that	still	uniquely	identifies	each	probe	image	in	the	selected	sample

11.1.9	Putting	it	all	Together

First,	set	up	a	temporary	directory	in	which	to	work:

Next	we	download	and	extract	the	fingerprint	images	from	NIST:

								return	[bozorth3(probe=probe.image,	gallery=gallery.image,	score=score)

															for	score,	gallery	in	zip(scores,	galleryset)]

				finally:

								shutil.rmtree(tempdir)

def	plot(dbfile,	nprobes=10):

				conn	=	sqlite3.connect(dbfile)

				results	=	pd.read_sql(

								"SELECT	DISTINCT	probe	FROM	bozorth3	ORDER	BY	score	LIMIT	'%s'"	%	nprobes,

								con=conn

)

				shortlabels	=	mk_short_labels(results.probe)

				plt.figure()

				for	i,	probe	in	results.probe.iteritems():

								stmt	=	'SELECT	gallery,	score	FROM	bozorth3	WHERE	probe	=	?	ORDER	BY	gallery	DESC'

								matches	=	pd.read_sql(stmt,	params=(probe,),	con=conn)

								xs	=	np.arange(len(matches),	dtype=np.int)

								plt.plot(xs,	matches.score,	label='probe	%s'	%	shortlabels[i])

				plt.ylabel('Score')

				plt.xlabel('Gallery')

				plt.legend(bbox_to_anchor=(0,	0,	1,	-0.2))

				plt.show()

def	mk_short_labels(series,	start=7):

				for	size	in	xrange(start,	len(series[0])):

								if	len(series)	==	len(set(map(lambda	s:	s[:size],	series))):

												break

				return	map(lambda	s:	s[:size],	series)

pool	=	multiprocessing.Pool()

prefix	=	'/tmp/fingerprint_example/'

if	not	os.path.exists(prefix):

				os.makedirs(prefix)

%%time

dataprefix	=	prepare_dataset(prefix=prefix)

Next	we	will	 configure	 the	 location	 of	 of	 the	MD5	 checksum	 file	 that	 comes
with	the	download

Load	the	images	from	the	downloaded	files	to	start	the	analysis	pipeline

We	can	 examine	one	of	 the	 loaded	 image.	Note	 that	 image	 is	 refers	 to	 the	MD5
checksum	that	came	with	the	image	and	the	xyt	attribute	represents	the	raw	image
data.

For	 example	 purposes	we	will	 only	 a	 use	 a	 small	 percentage	 of	 the	 database,
randomly	selected,	for	pur	probe	and	gallery	datasets.

We	can	now	compute	 the	matching	scores	between	 the	probe	and	gallery	sets.
This	will	use	all	cores	available	on	this	workstation.

Verifying	checksum	Extracting

/tmp/fingerprint_example/NISTSpecialDatabase4GrayScaleImagesofFIGS.zip

to	/tmp/fingerprint_example/	CPU	times:	user	3.34	s,	sys:	645	ms,

total:	3.99	s	Wall	time:	4.01	s

md5listpath	=	os.path.join(prefix,	'NISTSpecialDatabase4GrayScaleImagesofFIGS/sd04/sd04_md5.lst')

%%time

print('Loading	images')

paths	=	locate_paths(md5listpath,	dataprefix)

images	=	locate_images(paths)

mindtcts	=	pool.map(mindtct_from_image,	images)

print('Done')

Loading	images	Done	CPU	times:	user	187	ms,	sys:	17	ms,	total:	204	ms

Wall	time:	1min	21s

print(mindtcts[0].image)

print(mindtcts[0].xyt[:50])

98b15d56330cb17f1982ae79348f711d	14	146	214	6	25	238	22	37	25	51	180	20

30	332	214

perc_probe	=	0.001

perc_gallery	=	0.1

%%time

print('Generating	samples')

probes		=	random.sample(mindtcts,	int(perc_probe			*	len(mindtcts)))

gallery	=	random.sample(mindtcts,	int(perc_gallery	*	len(mindtcts)))

print('|Probes|	=',	len(probes))

print('|Gallery|=',	len(gallery))

Generating	samples	=	4	=	400	CPU	times:	user	2	ms,	sys:	0	ns,	total:	2

ms	Wall	time:	993	µs

%%time

print('Matching')

input	=	[bozorth3_input(probe=probe,	gallery=gallery)

									for	probe	in	probes]

bozorth3s	=	pool.map(run_bozorth3,	input)

bozorth3s	is	now	a	list	of	lists	of	bozorth3	instances.

Now	add	the	results	to	the	database

We	now	plot	the	results.	Figure	36

Matching	CPU	times:	user	19	ms,	sys:	1	ms,	total:	20	ms	Wall	time:	1.07

s

print('|Probes|		=',	len(bozorth3s))

print('|Gallery|	=',	len(bozorth3s[0]))

print('Result:',	bozorth3s[0][0])

=	4	=	400	Result:	bozorth3(probe='caf9143b268701416fbed6a9eb2eb4cf',

gallery='22fa0f24998eaea39dea152e4a73f267',	score=4)

dbfile	=	os.path.join(prefix,	'scores.db')

conn	=	sqlite3.connect(dbfile)

cursor	=	conn.cursor()

cursor.execute(bozorth3.sql_stmt_create_table())

<sqlite3.Cursor	at	0x7f8a2f677490>

%%time

for	group	in	bozorth3s:

				vals	=	map(bozorth3.sql_prepared_stmt_insert_values,	group)

				cursor.executemany(bozorth3.sql_prepared_stmt_insert(),	vals)

				conn.commit()

				print('Inserted	results	for	probe',	group[0].probe)

Inserted	results	for	probe	caf9143b268701416fbed6a9eb2eb4cf	Inserted

results	for	probe	55ac57f711eba081b9302eab74dea88e	Inserted	results	for

probe	4ed2d53db3b5ab7d6b216ea0314beb4f	Inserted	results	for	probe

20f68849ee2dad02b8fb33ecd3ece507	CPU	times:	user	2	ms,	sys:	3	ms,	total:

5	ms	Wall	time:	3.57	ms

plot(dbfile,	nprobes=len(probes))

Figure	36:	Result

11.2	NIST	PEDESTRIAN	AND	FACE	DETECTION	⷏�	☁�

No

Pedestrian	 and	 Face	 Detection	 uses	 OpenCV	 to	 identify	 people	 standing	 in	 a
picture	 or	 a	 video	 and	 NIST	 use	 case	 in	 this	 document	 is	 built	 with	 Apache
Spark	and	Mesos	clusters	on	multiple	compute	nodes.

The	 example	 in	 this	 tutorial	 deploys	 software	 packages	 on	 OpenStack	 using
Ansible	with	its	roles.	See	Figure	37,	Figure	38,	Figure	39,	Figure	40

cursor.close()

https://github.com/cloudmesh-community/book/blob/master/chapters/prg/python/facedetection/facedetection.md

Figure	37:	Original

Figure	38:	Pedestrian	Detected

Figure	39:	Original

Figure	40:	Pedestrian	and	Face/eyes	Detected

11.2.0.1	Introduction

Human	 (pedestrian)	 detection	 and	 face	 detection	 have	 been	 studied	 during	 the
last	several	years	and	models	for	them	have	improved	along	with	Histograms	of
Oriented	 Gradients	 (HOG)	 for	 Human	 Detection	 [1].	 OpenCV	 is	 a	 Computer
Vision	 library	 including	 the	 SVM	 classifier	 and	 the	 HOG	 object	 detector	 for
pedestrian	detection	and	INRIA	Person	Dataset	[2]	is	one	of	popular	samples	for
both	 training	and	 testing	purposes.	 In	 this	document,	we	deploy	Apache	Spark
on	 Mesos	 clusters	 to	 train	 and	 apply	 detection	 models	 from	 OpenCV	 using
Python	API.

11.2.0.1.1	INRIA	Person	Dataset

This	dataset	contains	positive	and	negative	images	for	training	and	test	purposes
with	annotation	files	for	upright	persons	in	each	image.	288	positive	test	images,
453	 negative	 test	 images,	 614	 positive	 training	 images	 and	 1218	 negative
training	 images	 are	 included	 along	 with	 normalized	 64x128	 pixel	 formats.
970MB	dataset	is	available	to	download	[3].

11.2.0.1.2	HOG	with	SVM	model

Histogram	of	Oriented	Gradient	(HOG)	and	Support	Vector	Machine	(SVM)	are
used	 as	 object	 detectors	 and	 classifiers	 and	 built-in	 python	 libraries	 from
OpenCV	provide	these	models	for	human	detection.

11.2.0.1.3	Ansible	Automation	Tool

Ansible	 is	 a	 python	 tool	 to	 install/configure/manage	 software	 on	 multiple
machines	 with	 JSON	 files	 where	 system	 descriptions	 are	 defined.	 There	 are
reasons	why	we	use	Ansible:

Expandable:	Leverages	Python	(default)	but	modules	can	be	written	in	any
language

Agentless:	no	setup	required	on	managed	node

Security:	Allows	deployment	from	user	space;	uses	ssh	for	authentication

Flexibility:	only	requires	ssh	access	to	privileged	user

Transparency:	YAML	Based	script	files	express	the	steps	of	installing	and
configuring	software

Modularity:	 Single	Ansible	 Role	 (should)	 contain	 all	 required	 commands
and	variables	to	deploy	software	package	independently

Sharing	and	portability:	roles	are	available	from	source	(github,	bitbucket,
gitlab,	etc)	or	the	Ansible	Galaxy	portal

We	 use	 Ansible	 roles	 to	 install	 software	 packages	 for	 Humand	 and	 Face
Detection	 which	 requires	 to	 run	 OpenCV	 Python	 libraries	 on	 Apache	 Mesos
with	a	cluster	configuration.	Dataset	is	also	downloaded	from	the	web	using	an
ansible	role.

11.2.0.2	Deployment	by	Ansible

Ansible	 is	 to	 deploy	 applications	 and	 build	 clusters	 for	 batch-processing	 large
datasets	 towards	 target	machines	 e.g.	VM	 instances	on	OpenStack	and	we	use
ansible	roles	with	include	directive	to	organize	layers	of	big	data	software	stacks
(BDSS).	 Ansible	 provides	 abstractions	 by	 Playbook	 Roles	 and	 reusability	 by
Include	 statements.	We	 define	X	 application	 in	X	Ansible	 Role,	 for	 example,
and	use	include	statements	to	combine	with	other	applications	e.g.	Y	or	Z.	The
layers	 exist	 in	 sub	 directories	 (see	 next)	 to	 add	 modularity	 to	 your	 Ansible

deployment.	 For	 example,	 there	 are	 five	 roles	 used	 in	 this	 example	 that	 are
Apache	 Mesos	 in	 a	 scheduler	 layer,	 Apache	 Spark	 in	 a	 processing	 layer,	 a
OpenCV	library	in	an	application	layer,	INRIA	Person	Dataset	in	a	dataset	layer
and	 a	 python	 script	 for	 human	 and	 face	detection	 in	 an	 analytics	 layer.	 If	 you
have	an	additional	software	package	to	add,	you	can	simply	add	a	new	role	in	a
main	ansible	playbook	with	include	directive.	With	this,	your	Ansible	playbook
maintains	simple	but	flexible	to	add	more	roles	without	having	a	large	single	file
which	is	getting	difficult	to	read	when	it	deploys	more	applications	on	multiple
layers.	The	main	Ansible	playbook	runs	Ansible	roles	in	order	which	look	like:

Directory	 names	 e.g.	 sched,	 proc,	 data,	 or	 anlys	 indicate	 BDSS	 layers	 like:	 -
sched:	 scheduler	 layer	 -	 proc:	 data	 processing	 layer	 -	 apps:	 application	 layer	 -
data:	dataset	layer	-	anlys:	analytics	layer	and	two	digits	in	the	filename	indicate
an	order	of	roles	to	be	run.

11.2.0.3	Cloudmesh	for	Provisioning

It	 is	 assumed	 that	 virtual	 machines	 are	 created	 by	 cloudmesh,	 the	 cloud
management	software.	For	example	on	OpenStack,
cm	cluster	create	-N=6

command	starts	a	set	of	virtual	machine	instances.	The	number	of	machines	and
groups	 for	 clusters	 e.g.	 namenodes	 and	 datanodes	 are	 defined	 in	 the	 Ansible
inventory	 file,	 a	 list	 of	 target	 machines	 with	 groups,	 which	 will	 be	 generated
once	machines	are	ready	to	use	by	cloudmesh.	Ansible	roles	install	software	and
dataset	on	virtual	clusters	after	that	stage.

11.2.0.4	Roles	Explained	for	Installation

Mesos	 role	 is	 installed	 first	 as	 a	 scheduler	 layer	 for	masters	 and	 slaves	where
mesos-master	 runs	 on	 the	 masters	 group	 and	 mesos-slave	 runs	 on	 the	 slaves
group.	Apache	Zookeeper	 is	 included	 in	 the	mesos	role	 therefore	mesos	slaves
find	 an	 elected	mesos	 leader	 for	 the	 coordination.	 Spark,	 as	 a	 data	 processing

```

include:	sched/00-mesos.yml

include:	proc/01-spark.yml

include:	apps/02-opencv.yml

include:	data/03-inria-dataset.yml

Include:	anlys/04-human-face-detection.yml

```


layer,	provides	two	options	for	distributed	job	processing,	batch	job	processing
via	 a	 cluster	 mode	 and	 real-time	 processing	 via	 a	 client	 mode.	 The	 Mesos
dispatcher	runs	on	a	masters	group	to	accept	a	batch	job	submission	and	Spark
interactive	shell,	which	is	the	client	mode,	provides	real-time	processing	on	any
node	in	the	cluster.	Either	way,	Spark	is	installed	later	to	detect	a	master	(leader)
host	for	a	job	submission.	Other	roles	for	OpenCV,	INRIA	Person	Dataset	and
Human	and	Face	Detection	Python	applications	are	followed	by.

The	following	software	are	expected	in	the	stacks	according	to	the	github:

mesos	cluster	(master,	worker)

spark	(with	dispatcher	for	mesos	cluster	mode)

openCV

zookeeper

INRIA	Person	Dataset

Detection	Analytics	in	Python

[1]	Dalal,	Navneet,	and	Bill	Triggs.	“Histograms	of	oriented	gradients	 for
human	detection.”	2005	IEEE	Computer	Society	Conference	on	Computer
Vision	and	Pattern	Recognition	(CVPR’05).	Vol.	1.	IEEE,

2005.	[pdf]

[2]	http://pascal.inrialpes.fr/data/human/

[3]	ftp://ftp.inrialpes.fr/pub/lear/douze/data/INRIAPerson.tar

[4]	https://docs.python.org/2/library/configparser.html

11.2.0.4.1	Server	groups	for	Masters/Slaves	by	Ansible	inventory

We	may	separate	compute	nodes	in	two	groups:	masters	and	workers	therefore
Mesos	 masters	 and	 zookeeper	 quorums	 manage	 job	 requests	 and	 leaders	 and
workers	 run	 actual	 tasks.	 Ansible	 needs	 group	 definitions	 in	 their	 inventory

https://github.com/futuresystems/pedestrian-and-face-detection
http://pascal.inrialpes.fr/data/human/
ftp://ftp.inrialpes.fr/pub/lear/douze/data/INRIAPerson.tar
https://docs.python.org/2/library/configparser.html

therefore	software	installation	associated	with	a	proper	part	can	be	completed.

Example	of	Ansible	Inventory	file	(inventory.txt)

11.2.0.5	Instructions	for	Deployment

The	 following	 commands	 complete	 NIST	 Pedestrian	 and	 Face	 Detection
deployment	on	OpenStack.

11.2.0.5.1	Cloning	Pedestrian	Detection	Repository	from	Github

Roles	are	included	as	submodules	which	require	--recursive	option	to	checkout	them
all.

Change	the	following	variable	with	actual	ip	addresses:

Create	a	inventory.txt	file	with	the	variable	in	your	local	directory.

Add	ansible.cfg	file	with	options	for	ssh	host	key	checking	and	login	name.

Check	accessibility	by	ansible	ping	like:

[masters]

10.0.5.67

10.0.5.68

10.0.5.69

[slaves]

10.0.5.70

10.0.5.71

10.0.5.72

$	git	clone	--recursive	https://github.com/futuresystems/pedestrian-and-face-detection.git

sample_inventory="""[masters]

10.0.5.67

10.0.5.68

10.0.5.69

[slaves]

10.0.5.70

10.0.5.71

10.0.5.72"""

!printf	"$sample_inventory"	>	inventory.txt

!cat	inventory.txt

ansible_config="""[defaults]

host_key_checking=false

remote_user=ubuntu"""

!printf	"$ansible_config"	>	ansible.cfg

!cat	ansible.cfg

!ansible	-m	ping	-i	inventory.txt	all

Make	sure	 that	you	have	a	correct	ssh	key	 in	your	account	otherwise	you	may
encounter	‘FAILURE’	in	the	previous	ping	test.

11.2.0.5.2	Ansible	Playbook

We	 use	 a	 main	 ansible	 playbook	 to	 deploy	 software	 packages	 for	 NIST
Pedestrian	 and	 Face	 detection	 which	 includes:	 -	 mesos	 -	 spark	 -zookeeper	 -
opencv	-	INRIA	Person	dataset	-	Python	script	for	the	detection

The	installation	may	take	30	minutes	or	an	hour	to	complete.

11.2.0.6	OpenCV	in	Python

Before	we	 run	 our	 code	 for	 this	 project,	 let’s	 try	OpenCV	 first	 to	 see	 how	 it
works.

11.2.0.6.1	Import	cv2

Let	 us	 import	 opencv	 python	module	 and	we	will	 use	 images	 from	 the	 online
database	 image-net.org	 to	 test	 OpenCV	 image	 recognition.	 See	 Figure	 41,
Figure	42

Let	us	download	a	mailbox	image	with	a	red	color	to	see	if	opencv	identifies	the
shape	with	a	color.	The	example	file	in	this	tutorial	is:

100	167k	100	167k	0	0	686k	0	–:–:–	–:–:–	–:–:–	684k

!cd	pedestrian-and-face-detection/	&&	ansible-playbook	-i	../inventory.txt	site.yml

import	cv2

$	curl	http://farm4.static.flickr.com/3061/2739199963_ee78af76ef.jpg	>	mailbox.jpg

%matplotlib	inline

from	IPython.display	import	Image

mailbox_image	=	"mailbox.jpg"

Image(filename=mailbox_image)

Figure	41:	Mailbox	image

You	 can	 try	 other	 images.	 Check	 out	 the	 image-net.org	 for	 mailbox	 images:
http://image-net.org/synset?wnid=n03710193

11.2.0.6.2	Image	Detection

Just	for	a	test,	let’s	try	to	detect	a	red	color	shaped	mailbox	using	opencv	python
functions.

There	are	key	functions	that	we	use:	*	cvtColor:	to	convert	a	color	space	of	an
image	 *	 inRange:	 to	 detect	 a	 mailbox	 based	 on	 the	 range	 of	 red	 color	 pixel
values	 *	 np.array:	 to	 define	 the	 range	 of	 red	 color	 using	 a	Numpy	 library	 for
better	calculation	*	findContours:	to	find	a	outline	of	the	object	*	bitwise_and:	to
black-out	the	area	of	contours	found
				import	numpy	as	np

				import	matplotlib.pyplot	as	plt

				#	imread	for	loading	an	image

				img	=	cv2.imread(mailbox_image)

				#	cvtColor	for	color	conversion

				hsv	=	cv2.cvtColor(img,cv2.COLOR_BGR2HSV)

				#	define	range	of	red	color	in	hsv

				lower_red1	=	np.array([0,	50,	50])

				upper_red1	=	np.array([10,	255,	255])

				lower_red2	=	np.array([170,	50,	50])

				upper_red2	=	np.array([180,	255,	255])

				#	threshold	the	hsv	image	to	get	only	red	colors

				mask1	=	cv2.inRange(hsv,	lower_red1,	upper_red1)

				mask2	=	cv2.inRange(hsv,	lower_red2,	upper_red2)

http://image-net.org/synset?wnid=n03710193

Figure	42:	Masked	image

The	red	color	mailbox	is	left	alone	in	the	image	which	we	wanted	to	find	in	this
example	by	opencv	functions.	You	can	try	other	images	with	different	colors	to
detect	 the	 different	 shape	 of	 objects	 using	 findContours	 and	 inRange	 from
opencv.

For	more	information,	see	the	next	useful	links.

contours	 features:
http://docs.opencv.org/3.1.0/dd/d49/tutorial/_py/_contour/_features.html

contours:
http://docs.opencv.org/3.1.0/d4/d73/tutorial/_py/_contours/_begin.html

				mask	=	mask1	+	mask2

				#	find	a	red	color	mailbox	from	the	image

				im2,	contours,hierarchy	=	cv2.findContours(mask,	cv2.RETR_TREE,	cv2.CHAIN_APPROX_SIMPLE)

				#	bitwise_and	to	remove	other	areas	in	the	image	except	the	detected	object

				res	=	cv2.bitwise_and(img,	img,	mask	=	mask)

				#	turn	off	-	x,	y	axis	bar

				plt.axis("off")

				#	text	for	the	masked	image

				cv2.putText(res,	"masked	image",	(20,300),	cv2.FONT_HERSHEY_SIMPLEX,	2,	(255,255,255))

				#	display

				plt.imshow(cv2.cvtColor(res,	cv2.COLOR_BGR2RGB))

				plt.show()

http://docs.opencv.org/3.1.0/dd/d49/tutorial/_py/_contour/_features.html
http://docs.opencv.org/3.1.0/d4/d73/tutorial/_py/_contours/_begin.html

red	color	in	hsv:	http://stackoverflow.com/questions/30331944/finding-red-
color-using-python-opencv

inrange:
http://docs.opencv.org/master/da/d97/tutorial/_threshold/_inRange.html

inrange:	 http://docs.opencv.org/3.0-
beta/doc/py/_tutorials/py/_imgproc/py/_colorspaces/py/_colorspaces.html

numpy:	 http://docs.opencv.org/3.0-
beta/doc/py/_tutorials/py/_core/py/_basic/_ops/py/_basic/_ops.html

11.2.0.7	Human	and	Face	Detection	in	OpenCV

11.2.0.7.1	INRIA	Person	Dataset

We	use	 INRIA	Person	dataset	 to	 detect	 upright	 people	 and	 faces	 in	 images	 in
this	example.	Let	us	download	it	first.

100	969M	100	969M	0	0	8480k	0	0:01:57	0:01:57	–:–:–	12.4M

11.2.0.7.2	Face	Detection	using	Haar	Cascades

This	 section	 is	 prepared	 based	 on	 the	 opencv-python	 tutorial:
http://docs.opencv.org/3.1.0/d7/d8b/tutorial/_py/_face/_detection.html#gsc.tab=0

There	is	a	pre-trained	classifier	for	face	detection,	download	it	from	here:

100	908k	100	908k	0	0	2225k	0	–:–:–	–:–:–	–:–:–	2259k

This	 classifier	XML	 file	will	 be	 used	 to	 detect	 faces	 in	 images.	 If	 you	 like	 to
create	 a	 new	 classifier,	 find	 out	 more	 information	 about	 training	 from	 here:
http://docs.opencv.org/3.1.0/dc/d88/tutorial/_traincascade.html

$	curl	ftp://ftp.inrialpes.fr/pub/lear/douze/data/INRIAPerson.tar	>	INRIAPerson.tar

$	tar	xvf	INRIAPerson.tar	>	logfile	&&	tail	logfile

$	curl	https://raw.githubusercontent.com/opencv/opencv/master/data/haarcascades/haarcascade_frontalface_default.xml	>	haarcascade_frontalface_default.xml

http://stackoverflow.com/questions/30331944/finding-red-color-using-python-opencv
http://docs.opencv.org/master/da/d97/tutorial/_threshold/_inRange.html
http://docs.opencv.org/3.0-beta/doc/py/_tutorials/py/_imgproc/py/_colorspaces/py/_colorspaces.html
http://docs.opencv.org/3.0-beta/doc/py/_tutorials/py/_core/py/_basic/_ops/py/_basic/_ops.html
http://docs.opencv.org/3.1.0/d7/d8b/tutorial/_py/_face/_detection.html#gsc.tab=0
http://docs.opencv.org/3.1.0/dc/d88/tutorial/_traincascade.html

11.2.0.7.3	Face	Detection	Python	Code	Snippet

Now,	 we	 detect	 faces	 from	 the	 first	 five	 images	 using	 the	 classifier.	 See
Figure	 43,	 Figure	 44,	 Figure	 45,	 Figure	 46,	 Figure	 47,	 Figure	 48,	 Figure	 49,
Figure	50,	Figure	51,	Figure	52,	Figure	53
#	import	the	necessary	packages

from	__future__	import	print_function

import	numpy	as	np

import	cv2

from	os	import	listdir

from	os.path	import	isfile,	join

import	matplotlib.pyplot	as	plt

mypath	=	"INRIAPerson/Test/pos/"

face_cascade	=	cv2.CascadeClassifier('haarcascade_frontalface_default.xml')

onlyfiles	=	[join(mypath,	f)	for	f	in	listdir(mypath)	if	isfile(join(mypath,	f))]

cnt	=	0

for	filename	in	onlyfiles:

				image	=	cv2.imread(filename)

				image_grayscale	=	cv2.cvtColor(image,	cv2.COLOR_BGR2GRAY)

				faces	=	face_cascade.detectMultiScale(image_grayscale,	1.3,	5)

				if	len(faces)	==	0:

								continue

				cnt_faces	=	1

				for	(x,y,w,h)	in	faces:

								cv2.rectangle(image,(x,y),(x+w,y+h),(255,0,0),2)

								cv2.putText(image,	"face"	+	str(cnt_faces),	(x,y-10),	cv2.FONT_HERSHEY_SIMPLEX,	1,	(0,0,0),	2)

								plt.figure()

								plt.axis("off")

								plt.imshow(cv2.cvtColor(image[y:y+h,	x:x+w],	cv2.COLOR_BGR2RGB))

								cnt_faces	+=	1

				plt.figure()

				plt.axis("off")

				plt.imshow(cv2.cvtColor(image,	cv2.COLOR_BGR2RGB))

				cnt	=	cnt	+	1

				if	cnt	==	5:

								break

Figure	43:	Example

Figure	44:	Example

Figure	45:	Example

Figure	46:	Example

Figure	47:	Example

Figure	48:	Example

Figure	49:	Example

Figure	50:	Example

Figure	51:	Example

Figure	52:	Example

Figure	53:	Example

11.2.0.8	Pedestrian	Detection	using	HOG	Descriptor

We	will	use	Histogram	of	Oriented	Gradients	(HOG)	to	detect	a	upright	person
from	 images.	 See	 Figure	 54,	 Figure	 55,	 Figure	 56,	 Figure	 57,	 Figure	 58,
Figure	59,	Figure	60,	Figure	61,	Figure	62,	Figure	63

11.2.0.8.1	Python	Code	Snippet

#	initialize	the	HOG	descriptor/person	detector

hog	=	cv2.HOGDescriptor()

hog.setSVMDetector(cv2.HOGDescriptor_getDefaultPeopleDetector())

cnt	=	0

for	filename	in	onlyfiles:

				img	=	cv2.imread(filename)

				orig	=	img.copy()

				gray	=	cv2.cvtColor(img,	cv2.COLOR_BGR2GRAY)

				#	detect	people	in	the	image

				(rects,	weights)	=	hog.detectMultiScale(img,	winStride=(8,	8),

				padding=(16,	16),	scale=1.05)

				#	draw	the	final	bounding	boxes

				for	(x,	y,	w,	h)	in	rects:

								cv2.rectangle(img,	(x,	y),	(x	+	w,	y	+	h),	(0,	255,	0),	2)

				plt.figure()

				plt.axis("off")

				plt.imshow(cv2.cvtColor(orig,	cv2.COLOR_BGR2RGB))

				plt.figure()

				plt.axis("off")

				plt.imshow(cv2.cvtColor(img,	cv2.COLOR_BGR2RGB))

				cnt	=	cnt	+	1

				if	cnt	==	5:

Figure	54:	Example

Figure	55:	Example

								break

Figure	56:	Example

Figure	57:	Example

Figure	58:	Example

Figure	59:	Example

Figure	60:	Example

Figure	61:	Example

Figure	62:	Example

Figure	63:	Example

11.2.0.9	Processing	by	Apache	Spark

INRIA	Person	dataset	provides	100+	 images	and	Spark	can	be	used	 for	 image

processing	in	parallel.	We	load	288	images	from	“Test/pos”	directory.

Spark	 provides	 a	 special	 object	 ‘sc’	 to	 connect	 between	 a	 spark	 cluster	 and
functions	in	python	code.	Therefore,	we	can	run	python	functions	in	parallel	to
detet	objects	in	this	example.

map	 function	 is	 used	 to	 process	 pedestrian	 and	 face	 detection	 per	 image
from	the	parallelize()	function	of	‘sc’	spark	context.

collect	fonction	merges	results	in	an	array.

def	apply_batch(imagePath):	import	cv2	import	numpy	as	np	#	initialize	the
HOG	 descriptor/person	 detector	 hog	 =	 cv2.HOGDescriptor()
hog.setSVMDetector(cv2.HOGDescriptor_getDefaultPeopleDetector())
image	 =	 cv2.imread(imagePath)	 #	 detect	 people	 in	 the	 image	 (rects,
weights)	 =	 hog.detectMultiScale(image,	 winStride=(8,	 8),	 padding=(16,
16),	scale=1.05)	#	draw	the	final	bounding	boxes	for	(x,	y,	w,	h)	 in	rects:
cv2.rectangle(image,	(x,	y),	(x	+	w,	y	+	h),	(0,	255,	0),	2)	return	image

11.2.0.9.1	Parallelize	in	Spark	Context

The	list	of	image	files	is	given	to	parallelize.

11.2.0.9.2	Map	Function	(apply_batch)

The	‘apply_batch’	function	that	we	created	previously	is	given	to	map	function
to	process	in	a	spark	cluster.

11.2.0.9.3	Collect	Function

The	result	of	each	map	process	is	merged	to	an	array.

11.2.0.10	Results	for	100+	images	by	Spark	Cluster

pd	=	sc.parallelize(onlyfiles)

pdc	=	pd.map(apply_batch)

result	=	pdc.collect()

for	image	in	result:

				plt.figure()

				plt.axis("off")

				plt.imshow(cv2.cvtColor(image,	cv2.COLOR_BGR2RGB))

12	REFERENCES

☁�

[1]	L.	Richardson,	“Beautiful	soup	python	package	overview.”	Web	Page,	2019
[Online].	Available:	https://www.crummy.com/software/BeautifulSoup/bs4/doc/

[2]	C.	WODEHOUSE,	“Should	you	use	mongodb?	A	look	at	the	leading	nosql
database.”	 Web	 Page,	 2018	 [Online].	 Available:
https://www.upwork.com/hiring/data/should-you-use-mongodb-a-look-at-the-
leading-nosql-database/

[3]	Guru99,	 “Introduction	 to	mongodb.”	Web	Page,	 2018	 [Online].	Available:
https://www.guru99.com/mongodb-tutorials.html#1

[4]	 MongoDB,	 “Https://www.mongodb.com/.”	 Web	 Page,	 2018	 [Online].
Available:	https://docs.mongodb.com/manual/introduction/

[5]	M.	Papiernik,	“How	to	 install	mongodb	on	ubuntu	18.04.”	Web	Page,	Jun-
2018	 [Online].	 Available:
https://www.digitalocean.com/community/tutorials/how-to-install-mongodb-on-
ubuntu-18-04

[6]	J.	Ellingwood,	“Initial	server	setup	with	ubuntu	18.04.”	Web	Page,	Apr-2018
[Online].	 Available:	 https://www.digitalocean.com/community/tutorials/initial-
server-setup-with-ubuntu-18-04

[7]	MongoDB,	Databases	and	collections,	4.0	ed.	New	York,	New	York,	USA:
MongoDB	 Inc,	 2008	 [Online].	 Available:
https://docs.mongodb.com/manual/core/databases-and-collections/

[8]	J.	M.	Craig	Buckler,	“Using	joins	in	mongodb	nosql	databases.”	Web	Page,
Sep-2016	 [Online].	 Available:	 https://www.sitepoint.com/using-joins-in-
mongodb-nosql-databases/

[9]	 MongoDB,	 Lookup	 (aggregation),	 3.2	 ed.	 New	 York	 City,	 New	 York,
United	 States:	 MongoDB	 Inc,	 2008	 [Online].	 Available:

https://github.com/cloudmesh-community/book/blob/master/chapters/empty.md
https://www.crummy.com/software/BeautifulSoup/bs4/doc/
https://www.upwork.com/hiring/data/should-you-use-mongodb-a-look-at-the-leading-nosql-database/
https://www.guru99.com/mongodb-tutorials.html#1
https://docs.mongodb.com/manual/introduction/
https://www.digitalocean.com/community/tutorials/how-to-install-mongodb-on-ubuntu-18-04
https://www.digitalocean.com/community/tutorials/initial-server-setup-with-ubuntu-18-04
https://docs.mongodb.com/manual/core/databases-and-collections/
https://www.sitepoint.com/using-joins-in-mongodb-nosql-databases/

https://docs.mongodb.com/manual/reference/operator/aggregation/lookup/

[10]	MongoDB,	MongoDB	 package	 components	 -	 mongoexport,	 4.0	 ed.	 New
York	City,	New	York,	United	States:	MongoDB	Inc,	2008	[Online].	Available:
https://docs.mongodb.com/manual/reference/program/mongoexport/

[11]	MongoDB,	 Security,	 4.0	 ed.	 New	 York	 City,	 New	 York,	 United	 States:
MongoDB	 Inc,	 2008	 [Online].	 Available:
https://docs.mongodb.com/manual/security/

[12]	 MongoDB,	 “MongoDB	 atlas.”	 Web	 Page,	 2018	 [Online].	 Available:
https://www.mongodb.com/cloud/atlas

[13]	I.	MongoDB,	“PyMongo	3.7.1	documentation.”	Web	Page,	2008	[Online].
Available:	https://api.mongodb.com/python/current/api

[14]	A.	 J.	 J.	 Davis,	 “Announcing	 pymongo3.”	Web	 Page,	Apr-2015	 [Online].
Available:	https://emptysqua.re/blog/announcing-pymongo-3/

[15]	 M.	 Dirolf,	 “PyMongo.”	 Web	 Page,	 Jul-2018	 [Online].	 Available:
https://github.com/mongodb/mongo-python-driver

[16]	 N.	 Leite,	 “MongoDB	 and	 python.”	 Web	 Page,	 Mar-2015	 [Online].
Available:	https://www.slideshare.net/NorbertoLeite/mongodb-and-python

[17]	V.	Oleynik,	 “How	 do	 you	 use	mongodb	with	 python?”	Web	 Page,	Mar-
2017	 [Online].	 Available:	 https://gearheart.io/blog/how-do-you-use-mongodb-
with-python/

[18]	 I.	 MongoDB,	 “Installing	 /	 upgrading.”	 Web	 pages,	 2008	 [Online].
Available:	http://api.mongodb.com/python/current/installation.html

[19]	 R.	 Python,	 “Introduction	 to	 mongodb	 and	 python.”	 Web	 Page,	 2016
[Online].	 Available:	 https://realpython.com/introduction-to-mongodb-and-
python/

[20]	W3Schools,	“Python	mongodb	create	database.”	Web	Page,	1999	[Online].
Available:	https://www.w3schools.com/python/python_mongodb_create_db.asp

https://docs.mongodb.com/manual/reference/operator/aggregation/lookup/
https://docs.mongodb.com/manual/reference/program/mongoexport/
https://docs.mongodb.com/manual/security/
https://www.mongodb.com/cloud/atlas
https://api.mongodb.com/python/current/api
https://emptysqua.re/blog/announcing-pymongo-3/
https://github.com/mongodb/mongo-python-driver
https://www.slideshare.net/NorbertoLeite/mongodb-and-python
https://gearheart.io/blog/how-do-you-use-mongodb-with-python/
http://api.mongodb.com/python/current/installation.html
https://realpython.com/introduction-to-mongodb-and-python/
https://www.w3schools.com/python/python_mongodb_create_db.asp

[21]	I.	MongoDB,	“PyMongo	3.7.1	documentation.”	Web	Page,	2008	[Online].
Available:	https://api.mongodb.com/python/current/tutorial.html

[22]	 N.	 O’Higgins,	 PyMongo	 &	 python.	 O’Reilly,	 2011	 [Online].	 Available:
http://img105.job1001.com/upload/adminnew/2015-04-07/1428393873-
MHKX3LN.pdf

[23]	I.	MongoDB,	“PyMongo	3.7.1	documentation.”	Web	Page,	2008	[Online].
Available:	https://api.mongodb.com/python/current/examples/aggregation.html

[24]	 MongoDB,	 “PyMongo	 3.7.2	 documenation.”	 Web	 Page,	 2008	 [Online].
Available:	 https://docs.mongodb.com/manual/reference/operator/aggregation-
pipeline/

[25]	 MongoDB,	 “PyMongo	 3.7.2	 documenation.”	 Web	 Page,	 2008	 [Online].
Available:	https://docs.mongodb.com/manual/core/map-reduce/

[26]	 MongoDB,	 “PyMongo	 v2.0	 documentation.”	 Web	 Page,	 2008	 [Online].
Available:	https://api.mongodb.com/python/2.0/examples/map_reduce.html

[27]	 MongoDB,	 “PyMongo	 3.7.2	 documenation.”	 Web	 Page,	 2008	 [Online].
Available:	https://api.mongodb.com/python/current/examples/copydb.html

[28]	 MongoEngine,	 “MongoEngine	 user	 documentation.”	 Web	 Page,	 2009
[Online].	Available:	http://docs.mongoengine.org/

[29]	 Wikipedia,	 “Object-relational	 mapping.”	 Web	 Page,	 May-2009	 [Online].
Available:	https://en.wikipedia.org/wiki/Object-relational_mapping

[30]	 MongoDB,	 “Flask-mongoengine.”	 Web	 Page,	 2008	 [Online].	 Available:
http://docs.mongoengine.org/guide/defining-documents.html

[31]	 MongoEngine,	 “User	 guide:	 Document	 instances.”	 Web	 Page,	 2009
[Online].	 Available:	 http://docs.mongoengine.org/guide/document-
instances.html

[32]	 MongoEngine,	 “2.1	 installing	 mongoengine.”	 Web	 Page,	 2009	 [Online].
Available:	http://docs.mongoengine.org/guide/installing.html

https://api.mongodb.com/python/current/tutorial.html
http://img105.job1001.com/upload/adminnew/2015-04-07/1428393873-MHKX3LN.pdf
https://api.mongodb.com/python/current/examples/aggregation.html
https://docs.mongodb.com/manual/reference/operator/aggregation-pipeline/
https://docs.mongodb.com/manual/core/map-reduce/
https://api.mongodb.com/python/2.0/examples/map_reduce.html
https://api.mongodb.com/python/current/examples/copydb.html
http://docs.mongoengine.org/
https://en.wikipedia.org/wiki/Object-relational_mapping
http://docs.mongoengine.org/guide/defining-documents.html
http://docs.mongoengine.org/guide/document-instances.html
http://docs.mongoengine.org/guide/installing.html

[33]	MongoEngine,	 “2.2	 connection	 to	 mongodb.”	Web	 Page,	 2009	 [Online].
Available:	http://docs.mongoengine.org/guide/connecting.html

[34]	MongoEngine,	“User	guide	2.5.	Querying	 the	database.”	Web	Page,	2009
[Online].	Available:	http://docs.mongoengine.org/guide/querying.html

[35]	Wikipedia,	“Flask	(web	framework).”	Web	Page,	2010	[Online].	Available:
https://en.wikipedia.org/wiki/Flask_(web_framework)

[36]	 MongoDB,	 “Flask-pymongo.”	 Web	 Page,	 2008	 [Online].	 Available:
https://flask-pymongo.readthedocs.io/en/latest/

[37]	MongoDB,	“Flask	mongoalchemy.”	Web	Page,	2008	 [Online].	Available:
https://pythonhosted.org/Flask-MongoAlchemy/

[38]	 MongoDB,	 “Flask-mongoengine.”	 Web	 Page,	 2008	 [Online].	 Available:
http://docs.mongoengine.org/projects/flask-mongoengine/en/latest/

[39]	 Wikipedia,	 “Flask	 (web	 framework).”	 Web	 Page,	 Oct-2018	 [Online].
Available:	https://en.wikipedia.org/wiki/Flask_(web_framework)

http://docs.mongoengine.org/guide/connecting.html
http://docs.mongoengine.org/guide/querying.html
https://en.wikipedia.org/wiki/Flask_(web_framework)
https://flask-pymongo.readthedocs.io/en/latest/
https://pythonhosted.org/Flask-MongoAlchemy/
http://docs.mongoengine.org/projects/flask-mongoengine/en/latest/
https://en.wikipedia.org/wiki/Flask_(web_framework)

	1 PREFACE
	1.1 Disclaimer ☁️
	1.1.1 Acknowledgment
	1.1.2 Extensions

	2 INTRODUCTION
	2.1 Introduction to Python ☁️
	2.1.1 References

	3 INSTALATION
	3.1 Python 3.7.4 Installation ☁️
	3.1.1 Hardware
	3.1.2 Prerequisits Ubuntu 19.04
	3.1.3 Prerequisits macOS
	3.1.3.1 Installation from Apple App Store
	3.1.3.2 Installation from python.org
	3.1.3.3 Installation from Hoembrew

	3.1.4 Prerequisits Ubuntu 18.04
	3.1.5 Prerequisite Windows 10
	3.1.5.1 Linux Subsystem Install

	3.1.6 Prerequisit venv
	3.1.7 Install Python 3.7 via Anaconda
	3.1.7.1 Download conda installer
	3.1.7.2 Install conda
	3.1.7.3 Install Python 3.7.4 via conda

	3.2 Multi-Version Python Installation ☁️
	3.2.1 Disabling wrong python installs
	3.2.2 Managing 2.7 and 3.7 Python Versions without Pyenv
	3.2.3 Managing Multiple Python Versions with Pyenv
	3.2.3.1 Installation pyenv via Homebrew
	3.2.3.2 Install pyenv on Ubuntu 18.04
	3.2.3.3 Using pyenv
	3.2.3.3.1 Using pyenv to Install Different Python Versions
	3.2.3.3.2 Switching Environments

	3.2.3.4 Updating Python Version List
	3.2.3.4.1 Updating to a new version of Python with pyenv

	3.2.4 Anaconda and Miniconda and Conda
	3.2.4.1 Miniconda
	3.2.4.2 Anaconda

	3.2.5 Exercises

	4 FIRST STEPS
	4.1 Interactive Python ☁️
	4.1.1 REPL (Read Eval Print Loop)
	4.1.2 Interpreter
	4.1.3 Python 3 Features in Python 2

	4.2 Editors ☁️
	4.2.1 Pycharm
	4.2.2 Python in 45 minutes

	4.3 Google Colab ☁️
	4.3.1 Introduction to Google Colab
	4.3.2 Programming in Google Colab
	4.3.3 Benchamrking in Google Colab with Cloudmesh

	5 LANGUAGE
	5.1 Language ☁️
	5.1.1 Statements and Strings
	5.1.2 Comments
	5.1.3 Variables
	5.1.4 Data Types
	5.1.4.1 Booleans
	5.1.4.2 Numbers

	5.1.5 Module Management
	5.1.5.1 Import Statement
	5.1.5.2 The from … import Statement

	5.1.6 Date Time in Python
	5.1.7 Control Statements
	5.1.7.1 Comparison
	5.1.7.2 Iteration

	5.1.8 Datatypes
	5.1.8.1 Lists
	5.1.8.2 Sets
	5.1.8.3 Removal and Testing for Membership in Sets
	5.1.8.4 Dictionaries
	5.1.8.5 Dictionary Keys and Values
	5.1.8.6 Counting with Dictionaries

	5.1.9 Functions
	5.1.10 Classes
	5.1.11 Modules
	5.1.12 Lambda Expressions
	5.1.12.1 map
	5.1.12.2 dictionary

	5.1.13 Iterators
	5.1.14 Generators
	5.1.14.1 Generators with function
	5.1.14.2 Generators using for loop
	5.1.14.3 Generators with List Comprehension
	5.1.14.4 Why to use Generators?

	6 CLOUDMESH
	6.1 Introduction ☁️
	6.2 Installation ☁️
	6.2.1 Prerequisite
	6.2.2 Basic Install

	6.3 Output ☁️
	6.3.1 Console
	6.3.2 Banner
	6.3.3 Heading
	6.3.4 VERBOSE
	6.3.5 Using print and pprint

	6.4 Dictionaries ☁️
	6.4.1 Dotdict
	6.4.2 FlatDict
	6.4.3 Printing Dicts

	6.5 Shell ☁️
	6.6 StopWatch ☁️
	6.7 Cloudmesh Command Shell ☁️
	6.7.1 CMD5
	6.7.1.1 Resources
	6.7.1.2 Installation from source
	6.7.1.3 Execution
	6.7.1.4 Create your own Extension
	6.7.1.5 Bug: Quotes

	6.8 Exercises ☁️
	6.8.1 Cloudmesh Common
	6.8.2 Cloudmesh Shell

	7 LIBRARIES
	7.1 Python Modules ☁️
	7.1.1 Updating Pip
	7.1.2 Using pip to Install Packages
	7.1.3 GUI
	7.1.3.1 GUIZero
	7.1.3.2 Kivy

	7.1.4 Formatting and Checking Python Code
	7.1.5 Using autopep8
	7.1.6 Writing Python 3 Compatible Code
	7.1.7 Using Python on FutureSystems
	7.1.8 Ecosystem
	7.1.8.1 pypi
	7.1.8.2 Alternative Installations

	7.1.9 Resources
	7.1.9.1 Jupyter Notebook Tutorials

	7.1.10 Exercises

	7.2 Data Management ☁️
	7.2.1 Formats
	7.2.1.1 Pickle
	7.2.1.2 Text Files
	7.2.1.3 CSV Files
	7.2.1.4 Excel spread sheets
	7.2.1.5 YAML
	7.2.1.6 JSON
	7.2.1.7 XML
	7.2.1.8 RDF
	7.2.1.9 PDF
	7.2.1.10 HTML
	7.2.1.11 ConfigParser
	7.2.1.12 ConfigDict

	7.2.2 Encryption
	7.2.3 Database Access
	7.2.4 SQLite
	7.2.4.1 Exercises 🅾️

	7.3 Plotting with matplotlib ☁️
	7.4 DocOpts ☁️
	7.5 OpenCV ☁️
	7.5.1 Overview
	7.5.2 Installation
	7.5.3 A Simple Example
	7.5.3.1 Loading an image
	7.5.3.2 Displaying the image
	7.5.3.3 Scaling and Rotation
	7.5.3.4 Gray-scaling
	7.5.3.5 Image Thresholding
	7.5.3.6 Edge Detection

	7.5.4 Additional Features

	7.6 Secchi Disk ☁️
	7.6.1 Setup for OSX
	7.6.2 Step 1: Record the video
	7.6.3 Step 2: Analyse the images from the Video
	7.6.3.1 Image Thresholding
	7.6.3.2 Edge Detection
	7.6.3.3 Black and white

	8 DATA
	8.1 Data Formats ☁️
	8.1.1 YAML
	8.1.2 JSON
	8.1.3 XML

	9 MONGO
	9.1 MongoDB in Python ☁️
	9.1.1 Cloudmesh MongoDB Usage Quickstart
	9.1.2 MongoDB
	9.1.2.1 Installation
	9.1.2.1.1 Installation procedure

	9.1.2.2 Collections and Documents
	9.1.2.2.1 Collection example
	9.1.2.2.2 Document structure
	9.1.2.2.3 Collection Operations

	9.1.2.3 MongoDB Querying
	9.1.2.3.1 Mongo Queries examples

	9.1.2.4 MongoDB Basic Functions
	9.1.2.4.1 Import/Export functions examples

	9.1.2.5 Security Features
	9.1.2.5.1 Collection based access control example

	9.1.2.6 MongoDB Cloud Service

	9.1.3 PyMongo
	9.1.3.1 Installation
	9.1.3.2 Dependencies
	9.1.3.3 Running PyMongo with Mongo Deamon
	9.1.3.4 Connecting to a database using MongoClient
	9.1.3.5 Accessing Databases
	9.1.3.6 Creating a Database
	9.1.3.7 Inserting and Retrieving Documents (Querying)
	9.1.3.8 Limiting Results
	9.1.3.9 Updating Collection
	9.1.3.10 Counting Documents
	9.1.3.11 Indexing
	9.1.3.12 Sorting
	9.1.3.13 Aggregation
	9.1.3.14 Deleting Documents from a Collection
	9.1.3.15 Copying a Database
	9.1.3.16 PyMongo Strengths

	9.1.4 MongoEngine
	9.1.4.1 Installation
	9.1.4.2 Connecting to a database using MongoEngine
	9.1.4.3 Querying using MongoEngine

	9.1.5 Flask-PyMongo
	9.1.5.1 Installation
	9.1.5.2 Configuration
	9.1.5.3 Connection to multiple databases/servers
	9.1.5.4 Flask-PyMongo Methods
	9.1.5.5 Additional Libraries
	9.1.5.6 Classes and Wrappers

	9.2 Mongoengine ☁️
	9.2.1 Introduction
	9.2.2 Install and connect
	9.2.3 Basics

	10 OTHER
	10.1 Word Count with Parallel Python ☁️
	10.1.1 Generating a Document Collection
	10.1.2 Serial Implementation
	10.1.3 Serial Implementation Using map and reduce
	10.1.4 Parallel Implementation
	10.1.5 Benchmarking
	10.1.6 Excersises
	10.1.7 References

	10.2 NumPy ☁️
	10.2.1 Installing NumPy
	10.2.2 NumPy Basics
	10.2.3 Data Types: The Basic Building Blocks
	10.2.4 Arrays: Stringing Things Together
	10.2.5 Matrices: An Array of Arrays
	10.2.6 Slicing Arrays and Matrices
	10.2.7 Useful Functions
	10.2.8 Linear Algebra
	10.2.9 NumPy Resources

	10.3 Scipy ☁️
	10.3.1 Introduction
	10.3.2 References

	10.4 Scikit-learn ☁️
	10.4.1 Introduction to Scikit-learn
	10.4.2 Installation
	10.4.3 Supervised Learning
	10.4.4 Unsupervised Learning
	10.4.5 Building a end to end pipeline for Supervised machine learning using Scikit-learn
	10.4.6 Steps for developing a machine learning model
	10.4.7 Exploratory Data Analysis
	10.4.7.1 Bar plot
	10.4.7.2 Correlation between attributes
	10.4.7.3 Histogram Analysis of dataset attributes
	10.4.7.4 Box plot Analysis
	10.4.7.5 Scatter plot Analysis

	10.4.8 Data Cleansing - Removing Outliers
	10.4.9 Pipeline Creation
	10.4.9.1 Defining DataFrameSelector to separate Numerical and Categorical attributes
	10.4.9.2 Feature Creation / Additional Feature Engineering

	10.4.10 Creating Training and Testing datasets
	10.4.11 Creating pipeline for numerical and categorical attributes
	10.4.12 Selecting the algorithm to be applied
	10.4.12.1 Linear Regression
	10.4.12.2 Logistic Regression
	10.4.12.3 Decision trees
	10.4.12.4 K Means
	10.4.12.5 Support Vector Machines
	10.4.12.6 Naive Bayes
	10.4.12.7 Random Forest
	10.4.12.8 Neural networks
	10.4.12.9 Deep Learning using Keras
	10.4.12.10 XGBoost

	10.4.13 Scikit Cheat Sheet
	10.4.14 Parameter Optimization
	10.4.14.1 Hyperparameter optimization/tuning algorithms

	10.4.15 Experiments with Keras (deep learning), XGBoost, and SVM (SVC) compared to Logistic Regression(Baseline)
	10.4.15.1 Creating a parameter grid
	10.4.15.2 Implementing Grid search with models and also creating metrics from each of the model.
	10.4.15.3 Results table from the Model evaluation with metrics.
	10.4.15.4 ROC AUC Score

	10.4.16 K-means in scikit learn.
	10.4.16.1 Import

	10.4.17 K-means Algorithm
	10.4.17.1 Import
	10.4.17.2 Create samples
	10.4.17.3 Create samples
	10.4.17.4 Visualize
	10.4.17.5 Visualize

	10.5 Dask - Random Forest Feature Detection ☁️
	10.5.1 Setup
	10.5.2 Dataset
	10.5.3 Detecting Features
	10.5.3.1 Data Preparation

	10.5.4 Random Forest
	10.5.5 Acknowledgement

	10.6 Parallel Computing in Python ☁️
	10.6.1 Multi-threading in Python
	10.6.1.1 Thread vs Threading
	10.6.1.2 Locks

	10.6.2 Multi-processing in Python
	10.6.2.1 Process
	10.6.2.2 Pool
	10.6.2.2.1 Synchronous Pool.map()
	10.6.2.2.2 Asynchronous Pool.map_async()

	10.6.2.3 Locks
	10.6.2.4 Process Communication
	10.6.2.4.1 Value

	10.7 Dask ☁️
	10.7.1 How Dask Works
	10.7.2 Dask Bag
	10.7.3 Concurrency Features
	10.7.4 Dask Array
	10.7.5 Dask DataFrame
	10.7.6 Dask DataFrame Storage
	10.7.7 Links

	11 APPLICATIONS
	11.1 Fingerprint Matching ☁️
	11.1.1 Overview
	11.1.2 Objectives
	11.1.3 Prerequisites
	11.1.4 Implementation
	11.1.5 Utility functions
	11.1.6 Dataset
	11.1.7 Data Model
	11.1.7.1 Utilities
	11.1.7.1.1 Checksum
	11.1.7.1.2 Path
	11.1.7.1.3 Image

	11.1.7.2 Mindtct
	11.1.7.3 Bozorth3
	11.1.7.3.1 Running Bozorth3
	11.1.7.3.1.1 One-to-one
	11.1.7.3.1.2 One-to-many

	11.1.8 Plotting
	11.1.9 Putting it all Together

	11.2 NIST Pedestrian and Face Detection 🅾️ ☁️
	11.2.0.1 Introduction
	11.2.0.1.1 INRIA Person Dataset
	11.2.0.1.2 HOG with SVM model
	11.2.0.1.3 Ansible Automation Tool

	11.2.0.2 Deployment by Ansible
	11.2.0.3 Cloudmesh for Provisioning
	11.2.0.4 Roles Explained for Installation
	11.2.0.4.1 Server groups for Masters/Slaves by Ansible inventory

	11.2.0.5 Instructions for Deployment
	11.2.0.5.1 Cloning Pedestrian Detection Repository from Github
	11.2.0.5.2 Ansible Playbook

	11.2.0.6 OpenCV in Python
	11.2.0.6.1 Import cv2
	11.2.0.6.2 Image Detection

	11.2.0.7 Human and Face Detection in OpenCV
	11.2.0.7.1 INRIA Person Dataset
	11.2.0.7.2 Face Detection using Haar Cascades
	11.2.0.7.3 Face Detection Python Code Snippet

	11.2.0.8 Pedestrian Detection using HOG Descriptor
	11.2.0.8.1 Python Code Snippet

	11.2.0.9 Processing by Apache Spark
	11.2.0.9.1 Parallelize in Spark Context
	11.2.0.9.2 Map Function (apply_batch)
	11.2.0.9.3 Collect Function

	11.2.0.10 Results for 100+ images by Spark Cluster

	12 REFERENCES

