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Abstract - The ability to browse vast amounts of scientific data is critical ] M U |t| d | me nsiOnaI Scal | N g (M DS)

to facilitate science discovery. High performance Multidimensional
Scaling (MDS) algorithm makes it a reality by reducing dimensions so
that scientists can gain insight into data set from a 3D visualization space.
As multidimensional scaling requires quadratics order of physical memory
and computation, a major challenge is to design and implement parallel
MDS algorithms that can run on multicore clusters for millions of data
points. Bases on our early work of parallel SMACOF algorithm, the
authors have developed an interpolated approach, majorizing interpolation
MDS (MIMDS). It utilizes the known mapping from a subset of given in-
sample data to effectively reduce computational complexity with minor
cost of approximation. MI-MDS makes it possible to process huge data set
with modest amounts of computation and memory requirements. Our
experimental results show that the quality of interpolated mapping is
comparable to that of the original SMACOF in a million chemical
compounds data, where we construct a configuration of over two-million
out-of-sample data into target dimension space.

Multidimensional scaling (MDS) is a general term for techniques of constructing a mapping for generally high-
dimensional data into a target dimension with respect to the given pairwise proximity information. Mostly, MDS is
used for achieving dimension reduction to visualize high-dimensional or abstract data into Euclidean low-dimensional
space, I.e. 2D or 3D.
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B Parallel MDS via MPI B Parallel Interpolation Approach to MDS (MI-MDS)

Implement an MDS algorithm called SMACOF, which consists of matrix
multiplications and updating status data, in parallel via MPI.
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d Reduce the resource requirements.

Memory:  O(N?) 2 O(n)
Computing: O(N2) = O(nM)
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J Pleasingly Parallel Application.
J Mapping quality is good enough.
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