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Abstract— Heterogeneous parallel system with multi 

processors and accelerators are becoming ubiquitous due to 

better cost-performance and energy-efficiency. These 

heterogeneous processor architectures have different 

instruction sets and are optimized for either task-latency or 

throughput purposes. Challenges occur in regard to 

programmability and performance when executing SPMD 

computations on heterogeneous architectures simultaneously. 

In order to meet these challenges, we implemented a 

MapReduce runtime system to co-process SPMD job on GPUs 

and CPUs on shared memory system. We are proposing a 

heterogeneous MapReduce programming interface for the 

developer and leverage the two-level scheduling approach in 

order to efficiently schedule tasks with heterogeneous 

granularities on the GPUs and CPUs. Experimental results of 

C-means clustering, matrix multiplication and word count 

indicate that using all CPU cores increase the GPU 

performance by 11.5%, 5.1%, and 41.9% respectively. 

Keyword: MapReduce, SPMD, GPU, CUDA, Multi-Level-

Scheduler  

I.  INTRODUCTION 

Heterogeneous parallel systems with multi-core, many-
core processors and accelerators are becoming ubiquitous 
due to better cost-performance and energy-efficiency [1]. In 
low-end HPC systems, a small sized hybrid cluster with only 
tens of GPU cards can provide performance over one 
petaflops, while the same scale CPU cluster can provide one 
teraflops of peak performance. In high-end HPC system, 
Tianhe-1A, a hybrid cluster using Intel CPUs and NVIDA 
GPUs became the fastest supercomputer in 2010. 

Two fundamental measures for processor performance 
are task latency and throughput [1]. The traditional CPU is 
optimized for a lower latency of operations in clock cycles. 
Now this pattern has stalled, as such CPUs are integrating 
more cores within the processor. These multi-core and many-
core CPUs can exploit modest parallel workloads for 
multiple tasks. These parallel tasks can have different 
instructions and work on different types of data sets, or 
MIMD. The current generation of graphical processing units 
(GPUs) contains massively simple processing cores that are 
optimized for computation that contain single-instruction, 
multiple threads, or SIMT. GPUs sacrifice single thread 
execution speed in order to achieve aggregated high 
throughput across all of the threads.  

The NVIDIA‟s CUDA [2] and Khronos Group OpenCL 
[3] are the current and most widely used GPU programming 

tools. Both CUDA and OpenCL claim to translate source 
code into binaries run on CPUs and GPUs. However, these 
generated binary codes cannot run on CPUs and GPUs 
simultaneously. The CPU cores are idle while doing GPU 
computation, or vice versa. Figure 1 shows programmability 
challenges of how to map the SPMD computation to the 
CPUs and GPUs simultaneously. NVIDIA use the 
terminology SIMT, “Single Instruction, Multiple Threads”, 
to present the programming model on GPU. The SIMT can 
be considered a hybrid between vector processing and 
hardware threads. To write SIMT codes, CUDA developers 
need calculate the thread indices and carefully arrange 
memory access pattern. Our work bridges this gap between 
SIMT and SPMD by providing a high-level MapReduce 
programming interface to developers and hides the 
implementation details from developers. The SPMD style 
computations are already presented on CPUs by using many 
programming tools such as Pthreads, and OpenMP. To co-
process SPMD computation on GPUs and CPUs, we need 
find the intersection of GPU and CPU SPMD applications 
first. The applications should have enough computation so as 
to keep GPUs busy. In addition, their input data size should 
be fit in both GPU and CPU memory. Most important, these 
SPMD applications should be those whose major 
computation can be partitioned into parallel sub-tasks with 
arbitrary granularities because the proper task processing 
granularities on GPU and CPU are different. Some 
applications in linear algebra, data mining can meet above 
requirements, such as DGEMM, FFT, Kmeans, SVM, which 
have had the implementations for both CPU and GPU. 

 
Figure 1: Co-processing SPMD on CPUs and GPUs 

We also need a programming model that can present the 
SPMD computation on both GPUs and CPUs. The 
MapReduce [4] programming model originated at Google, 
and it has been successfully applied to large classes of 



SPMD applications on shared memory, and distributed 
memory systems. What‟s more, the recent researches proved 
that executing MapReduce computation on GPU is not only 
feasible and but also practice. Developing the MapReduce 
program is easy because the MapReduce runtime hides the 
implementation details such as data movement, task 
scheduling and work load balance from the developers. 
However, most state-of-the-art MapReduce implementations 
are designed to run tasks solely on CPUs or GPUs, rather 
than on CPUs and GPUs simultaneously, which is one of the 
differences between our researches with other related work.  

Performance is another challenge faced when running 
programs on GPUs and CPUs simultaneously as they have 
different types of instruction sets. In addition, CPUs prefer to 
process coarse granularity tasks rather than the massive fine 
grained tasks favored by GPU cards. These challenges 
require software to coordinate the parallelism properly in 
order to achieve good performance. Even if the SPMD jobs 
can be split into tasks with arbitrary granularity, workload 
balance, task scheduling overheads issues still need to be 
elaborately solved. In addition, the process of mapping the 
SPMD computation to GPUs and CPUs should be as 
automated as possible due to the various types of hardware 
configurations of the CPU and GPU devices.  

We have implemented a parallel runtime system, with the 
code name Panda, to co-process SPMD computation on 
modern NVIDIA Fermi GPUs and Intel Xeon CPUs on 
shared memory system. We are proposing a heterogeneous 
GPU/CPU parallel programming model for mapping SPMD 
computation with heterogeneous task granularity on GPU 
and CPUs devices. We implemented the two-level-scheduler 
[5] to efficiently schedule tasks with heterogeneous 
granularity on GPUs and CPUs. We also implemented an 
auto tuning component to adaptively assign the proper 
computation workload to GPUs and CPUs devices. In order 
to evaluate Panda runtime system, we implemented three 
applications including C-means clustering, matrix-matrix 
multiplication and word count using Panda. We make the 
comprehensive performance comparison between Panda with 
CUDA, Mars [6], Phoenix [7], OpenACC [8] and MAGMA.  

The rest of the paper is organized as follows. We gave a 
brief overview of the related work in section 2. We illustrate 
the design and implementation of Panda in section 3. In 
section 4, we introduce three Panda applications and evaluate 
their performance. We make the conclusion in section 5.    

II. RELATED WORK 

A. High-Level Interface on GPUs 

The early MapReduce library for GPUs included the 
following research projects: In 2008, Bingsheng published 
the seminal research paper on Mars. The Mars MapReduce 
framework was developed for a single Nvidia G80 GPU and 
they reported up to 16x speedup over the 4-core CPU-based 
implementation for six common web mining applications. 
However, Mars cannot run on multiple GPUs and it does not 
support to run on GPU and CPU simultaneously. This 
project was the first to show the GPU potential for 
MapReduce.  

OpenACC is a state-of-the-art framework that provides 
OpenMP style syntax and can translate C or Fortran source 
code into a low-level code, such as CUDA, or OpenCL. A 
growing number of vendors support OpenACC as developers 
can easily reuse their existing codes. However, OpenACC 
cannot run tasks on GPUs and CPUs simultaneously. In 
addition, if the parallel algorithm of application is complex, 
OpenACC may not perform well as expect.   

Existing technologies for high-level programming 
interfaces for accelerators falling into two categories: 1) 
using a library such as Mars, Qilin [9] to compose low-level 
GPU and CPU codes. 2)  compiling a sub-set of a high-level 
programming such as OpenACC [8], Accelerate [10], and 
Harlan [17] langue into a low-level code that is run on GPU 
and CPU devices. The second technology supports richer 
control flow and significantly simplifies the programming 
development on different accelerator devices. However, this 
approach usually incurs the extra overhead during compiling 
time and runtime, and it prevents developers from using low-
level CUDA/OpenCL code to optimize application 
performance themselves. Panda follows the idea in the first 
category. However, instead of providing the unified API, 
Panda are proposing the heterogeneous GPU/CPU parallel 
programming API to compose low-level code that run on 
GPUs and CPUs. 

B. Scheduling on Heterogeneous Devices 

There are large numbers of studies about task scheduling 
on distributed heterogeneous computing resources. GridWay 
presented by the Globus Alliance can split entire job into 
several sub-jobs, and assign each sub-job to one distributed 
resource manager for the further processing. Falkon [11] use 
a multi-level scheduling strategy to schedule massive, 
independent tasks on the HPC system. The first level was 
used to allocate resources, while the second level dispatched 
the tasks to their assigned resources.  

Recently, there are also several runtime systems can 
schedule and execute SPMD jobs on GPUs and CPUs. The 
Qilin system can map SPMD computations onto GPUs and 
CPUs, and they reported good results of DGEMM using 
adaptive mapping strategy. Their job is similar to us in terms 
of scheduling SPMD tasks on GPU and CPU 
simultaneously; however their auto tuning scheduler need 
maintains a database to build a performance model in order 
to schedule proper workload to GPUs and CPUs. This 
approach usually works well for applications which have 
regular computation and memory access pattern. Our auto 
tuning scheduler make the scheduling decision based on the 
performance results of a set of small testing jobs. It does not 
need build performance model and therefore works for the 
larger problem classes and more heterogeneous devices. The 
Uintah system [13] implements the CPU and GPU tasks as 
C++ methods and it models hybrid GPU and CPU tasks as 
DAG. The hybrid CPU-GPU scheduler assigns tasks to 
CPUs for processing when all GPU nodes are busy and there 
are CPU cores idle. They reported good speedup 
performance of radiation modeling applications on GPU 
cluster. The Panda framework leveraged two-level 
scheduling strategy where the CPU tasks scheduler and GPU 



tasks scheduler are embedded within first level scheduler. 
The two-level scheduler assigns tasks to both GPUs and 
CPUs in order to increase resource utilization and decrease 
job run time. MAGMA [14][15] is a collection of linear 
algebra libraries for heterogeneous architectures. It models 
the linear algebra computation tasks as a DAG. The 
scheduler schedules small non-parallelizable linear algebra 
computation on the CPU, and schedules larger more 
parallelized ones, often Level 3 BLAS, on the GPU. The 
Panda scheduler is designed for scheduling flat MapReduce 
style computation on GPUs and CPUs. 

  

III. PANDA ARCHITECTURE 

Programmability and performance are two challenges 

faced when designing and implementing a parallel runtime 

system on heterogeneous devices. In this section we will 

illustrate our design idea and the implementation details of 

the Panda framework. 

A. Design 

1) Heterogeneous MapReduceBased Scheme 
Figure 2 illustrates the heterogeneous MapReduce based 

scheme for co-processing SPMD computation on CPUs and 
GPUs on shared memory system. The Map and Reduce 
functions present two computation steps of SPMD 
applications. Some SPMD applications only have the Map 
stage. Further, the heterogeneous MapReduce based scheme 
support both GPU and CPU interface. The developers need 
implement at least one of GPU and CPU versions, or both 
GPU and CPU versions for Map and Reduce functions. This 
design decision is based on two reasons. First, the proper 
granularities of SPMD tasks on GPU and CPU are different 
from each other. CPU prefers to process coarser granularity 
than GPU does [9][12]. Thus, developers may implement 
different MapReduce functions to efficiently process tasks 
with heterogeneous granularities. The second reason is based 
on a well-known agreement that different applications favor 
different type of hardware resources. Therefore, instead of 
providing the unique MapReduce programming interface, we 
allow developers implement either the GPU or CPU versions 
of MapReduce functions based on above two reasons. 

By providing high-level MapReduce based programming 
interface, Panda hides runtime implementation and 
optimization details from developers such as data movement 
across levels of memory hierarchy, scheduling tasks over 
heterogeneous devices, and management of multiple GPU 
contexts. We also provide several optimization strategies in 
runtime level include auto tuning, region based memory 
management, iterative support, local combining. We expect 
to leave developers the flexibility to write optimized 
MapReduce code for different devices, while hiding the 
implementation details from them as much as possible. 

 
Figure 2: Panda Heterogeneous MapReduce Based Scheme 

 

2) Multi-levele Scheduling 
The innovation of our work is to run heterogeneous 

MapReduce tasks on GPUs and CPUs simultaneously. Panda 
enable above function by providing the two-level scheduling 
strategy [11][18]. The first-level scheduler splits the SPMD 
job into several sub-jobs, each of which was assigned to one 
GPU or multi-core CPUs. The second-level schedulers 
include the CPU tasks scheduler and GPU tasks scheduler, 
which are embedded within first-level scheduler. They 
further split the sub-jobs into many tasks to be run on the 
assigned GPU and CPU resources.  

The second design challenge is to determine how to 
properly map SPMD computations onto GPUs and CPUs 
because they favor different task granularities. Several 
approaches exist by which to schedule MapReduce tasks on 
GPUs and CPUs. For example, one can construct the 
homogenous MapReduce tasks with same data block sizes 
and then assign a different number of MapReduce tasks to 
the CPUs and GPUs. The problem with this approach is that 
task granularity could be too fine for the CPUs or too coarse 
for GPUs, either case can lead to a workload imbalance issue 
during computations. Although one can adjust task 
granularity by group/split tasks after the initial task 
partitioning, such an action introduce extra programming 
efforts from developers and increase the performance 
overhead. With our two-level scheduling approach, because 
the CPU scheduler and GPU scheduler are independent from 
each other, they can split the sub-jobs into tasks with 
heterogeneous granularities that are suitable to run on GPU 
and CPU respectively. As compared with other approaches, 
this approach is simple and can be extended to other devices. 

 

B. Implementation 

The runtime framework consists of three components: 
programming interfaces, a job scheduler, and the backend 
utility as shown in Figure 3. The programming interfaces 
consist of the framework provided API and user 
implemented API. The job scheduler implemented the two-



level scheduling strategy discussed in Section 3.1.2. The 
backend utility is implemented with C/C++ and CUDA 
language and it is used to run the MapReduce tasks on GPUs 
and CPUs. Currently, it supports the CUDA based GPU 
device and multi core CPUs as the backend. 

 

 
Figure 3: Runtime Framework 

 
From developer perspective, the work flow of a typical 

Panda job consists of three main stages: job configuration, 
Map, and Reduce. In the job configuration stage, users can 
specify the parameters to be used to configure sub-jobs and 
tasks. These parameters include the number of CPU and 
GPU resources; the type and number of Map and Reduce 
tasks that used in the computation. The Panda framework 
will split the entire job into several sub-jobs whose number is 
equal to total number of GPU and CPU devices. The 
workload distribution ratio between these sub-jobs can be 
specified by the users or determined by an auto tuning 
mechanism provided by the Panda framework. Developers 
can further divide sub-jobs into MapReduce tasks with 
different granularities that run on different devices. The 
granularity of these tasks depends on several factors, 
including 1) the number of MapReduce tasks specified by 
the users; 2) the computation capability features of the 
devices, such as the number of cores, and memory size and 
3) the computation features of the applications such as being 
computation or memory intensive. 

In the Map stage, the GPU and CPU backend utilities get 
a set of input keyvalue pairs from Panda two-level-scheduler, 
and invoke the map() functions that implemented by 
developers to process assigned keyvalue pairs. The map() 
functions generate a set of intermediate keyvalue pairs in 
GPU and CPU memory separately, which will be copied to 
CPU memory after all map tasks are complete. Then Panda 
shuffle all these intermediate key/value pairs in CPU 
memory so that the pairs with the same key are stored 
consecutively. In the Reduce stage, the two-level-scheduler 
divides the shuffled intermediate key/value pairs into several 
chunks, each of which will be assigned to GPU or CPU 
backend utility. Then the backend utility invokes the 
reduce() functions to process assigned keyvalue pairs. After 
the reduce computation is complete, Panda copies the results 
of all of the Reduce tasks in the CPUs and GPUs into the 
memory of the CPUs so that these results can be further 
processed by the users. 

C. API  

Similar to the existing MapReduce framework such as 
Mars and Phoenix, Panda has two kinds of APIs: user-
implemented APIs, which the users should implement; and 
system-provided APIs, which the users can use as library 
calls. Table 1 illustrates the three types of MapReduce based 
API supported by Panda runtime framework. The three types 
of MapReduce based APIs include: gpu_host_mapreduce, 
gpu_device_mapreduce, and cpu_mapreduce. For example, 
gpu_host_map(..), gpu_device_map() and cpu_map(..) are 
the three types of the map function. The gpu_host_map() is a 
user defined CUDA host function that invoke CUDA global 
function or other CUDA based libraries such as MAGMA. 
gpu_device_map() is a user defined CUDA kernel function 
that perform CUDA code or invoke other kernel functions. 
cpu_map() is the user defined C/C++ function. Users need 
implement at least one type of map(), reduce(), and 
compare() functions; the combiner() function is optional. For 
most applications, the source code for the CPU and GPU 
versions of the user-implemented APIs are similar due to two 
reasons. The first reason is that CUDA support the C/C++ 
syntax and grammar; one can compile C/C++ source code 
with nvcc. The second reason is that the Panda framework 
hides some GPU specific work for the users, such as data 
staging between the CPU and GPU memory; threads and 
blocks indices calculation. 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

Table 1: Panda MapReduce Based API:  

Function Type Function Illustration 

 

C/C++ 

Function 

void cpu_map(KEY  *key, VAL *val, int keySize, ..) CPU Map function using C/C++ 

void cpu_reduce(KEY  *key, VAL *val, int keySize, …) CPU Reduce function using C/C++ 

void cpu_combiner(KEY *KEY, VAL_Arr *val, int keySize, 

int valSize) 

CPU Combiner function using C/C++.  

Used for partial aggregation. 

Int cpu_comare(KEY  *key1, VAL *val1, .., KEY  *key2, 

VAL *val2, int KeySize1, int KeySize2, int valSize1,…) 

CPU Compare function using C/C++. 

Used for shuffling key/value pairs. 

 

CUDA 

Device 

Function 

__device__ void gpu_device_map(KEY  *key, …) GPU Map using CUDA device function. 

__device__ void gpu__device_reduce(KEY  *key, …) GPU Reduce using CUDA device function. 

__device__ void gpu_device_combiner(KEY  *key, …) GPU Combiner using CUDA device function. 

__device__ Int gpu_device_compare(KEY  *key, …) GPU Compare using CUDA device function. 

 

CUDA  

Host  

Function 

__host__ void gpu_host_map(KEY  *key, …) GPU Map using CUDA host function. 

__host__ void gpu_host_reduce(KEY  *key, …) GPU Reduce CUDA host function. 

__host__ void gpu_host_combiner(KEY  *key, …) GPU Combiner CUDA host function. 

__host__ void gpu_host_compare(KEY  *key, …) GPU Compare CUDA host function. 

 

    
Figure 4: User Implemented cpu_reduce and 
gpu_device_reduce functions for word count and 
gpu_host_map function for matrix multiplication. 

 
Figure 4 show the user implemented cpu_reduce() and 

gpu_device_reduce() functions for the word count 
application and gpu_host_map() function for the matrix 
multiplication application, which invoke MAGMA as 
library. As shown in Figure 4, Panda simplified the 
development of the SPMD MapReduce program on the GPU 
and CPU devices. Nevertheless, Panda leave users the 
flexibility of either making advanced optimizations in the 
kernel function themselves, or leveraging third party highly 
tuned linear algebra library, such as MAGMA.  

D. Threading and Memory Models 

In Panda runtime, there are four steps to map the SPMD 
computation to CPU cores or GPU cores. These steps 
include 1) from job into sub-jobs; 2) from sub-job into map 
tasks; 3) from map tasks into CUDA and CPU threads; 4) 
from CUDA threads and CPU threads into GPU/CPU cores. 

Panda runtime leverages the Pthreads to manage the GPU 
and CPU devices. It spawns one Pthread to manage each 
GPU device and one Pthread to manage all of the CPU cores 
in the same machine. For example, if there are two GPUs 
and 12 CPU cores on one machine, then Panda will spawn 
two threads to manage the two GPUs and one thread to 
manage the 12 CPU cores. Panda also uses Pthreads to 
manage the CPU cores; and leverages the CUDA kernel 
threads to manage the GPU cores. In order to increase the 
resource utilization of the CPU/GPU cores, Panda usually 
spawn multiple threads for each CPU/GPU core. For each 
CPU core, it can spawn between one and four Pthreads. For 
each GPU core, Panda can spawn between two and 16 
CUDA threads. GPU need enough tasks to keep most cores 
busy with computation. In addition, without enough threads 
to switch between, the GPU won‟t be able to hide its high 
latencies. CPU has much less hardware threading than GPU, 
and it depends on other technologies such as cache hierarchy, 
speculative prefetching to keep CPU cores busy; too many 
small tasks will increase the overhead of context switch, 
which is expensive in CPU. Therefore, the resource 
utilization of both CPU and GPU cores are increased because 
Panda can assign proper number of Pthreads and CUDA 
threads to the OS kernel and CUDA runtime. In addition, in 
order to accommodate processing large numbers of map 
tasks, each CUDA thread or CPU Pthread is usually required 
to process multiple map tasks. This requirement is met by 
striding the total number of threads within the for loop 
iteration. Therefore the workload balance requirement is 
likely to be satisfied as well.  

Equation 1 illustrates the threading, internal processes, 
and external processes running pattern for Panda GPU/CPU 
tasks. EP is always equal to 1, as we only discuss single 

A. 

void cpu_reduce(void *KEY, val_t *VAL…){ 

int count = 0; 

for (int i=0;i<valCount;i++){ 

count += *(int *)(VAL[i].val); 

}//calcualte word occurence 

EmitCPUReduceOutput(KEY,&count,keySize,…); 

}//cpu version of reduce function 

 

B. 

__device__ void gpu_device_reduce(void *KEY){ 

int count = 0; 

for (int i=0;i<valCount;i++){ 

count += *(int *)(VAL[i].val); 

}// calcualte word occurence 

EmitGPUDeviceReduceOutput(…); 

}//gpu version of reduce function 

 

C. 

__host__ void gpu_host_map(…){ 

dgemm_kernel<<<grid, threads>>>(..); 

EmitGPUHostMapOutput(KEY,keySize,…); 

}// gpu host function invoke MAGMA code 



machine in this paper. For CPU, paper [33] reports that using 
more number of internal processes than CPU threads can 
deliver good performance. For GPU, GT is equal to 1 when 
running the gpu_host_mapreduce function, which means it 
uses one C++ function to invoke CUDA or MAGMA code. 
This approach is leveraged by Utah work[13]. However, 
when invoking the gpu_device_mapreduce function, the 
proper number of GT is equal to or several times bigger than 
number of GPU cores. This approach is used by Mars. Panda 
support both approaches, and we will prove that the former 
approach can give better performance for GPU applications.  

 
(CTxIP + GTxG) x EP   (Eq.1) 
 
G   #GPU Cards 
GT #GPU Threads 
CT #CPU Threads 
IP   #Internal Processes 
EP  #External Processes 
 
CPUs and GPUs have different levels of memory 

hierarchy; therefore, copying data between them is not trivial 
work and needs elaborate effort in order to achieve a good 
performance. Panda can achieve the data movement between 
the GPU and CPU memory spaces without the effort of 
developers. However, we assume that all of the input data are 
already in the CPU memory. In the Map stage, the input data 
for the CPU Map tasks are copied from the user memory 
space to the runtime memory space in CPU. The input data 
of GPU Map tasks are copied from the user memory in the 
CPU to the runtime memory space in GPU. After the Map 
stage, all of the intermediate key/value pairs will be copied 
to the runtime memory space in CPU in order to create 
shuffling. The Reduce stage has a similar memory 
management process.  

E. Optimization 

1) Auto Tuning 
Workload balance is critical to performance when 

running SPMD tasks on heterogeneous resources. Difficulty 
occurs when determining the proper workload distribution 
among the heterogeneous devices. Panda provides an auto 
tuning utility that can be used to find the near optimal 
workload distribution for heterogeneous devices. Panda uses 
a straightforward, mature auto tuning technology that has 
already been adopted by other frameworks such as ATLAS 
[19]. Similarly, Panda picks up a set of parameters that affect 
job performance and genera a serial of small test jobs by 
sweeping the selected parameters. Then, it runs the generated 
test jobs and picks up the parameters that have the best 
performance. Some approaches attempt to solve the 
workload balance issue by making heuristic models to guide 
work load distribution based on CPU speed, cache size, and 
memory bandwidth. These approaches avoid the overhead of 
running many tests jobs, but usually only works well for 
certain classes of applications or hardware. Our approach 
requires extra overhead, but is more likely to be adaptive to 
various types of devices. In addition, it is only worthwhile to 
use the auto tuning facility if the application is compute-

intensive. Thus, the overhead of seeking the best runtime 
parameters is not problematic when compared with the long 
job running time.    

2) Region-based Memory Management 

Region-based memory management [20] is a type of 

memory management in which each allocated object is 

assigned to a region, which, typically, is a single contiguous 

range of memory space. Two advantages exist to adopting 

this technology in the Panda framework. First, although the 

latest CUDA runtime supports dynamically allocating the 

buffer in the GPU global memory using the malloc 

operation, the aggregated overhead of the malloc operation 

can kill the performance if many small memory allocation 

requests exist. For example, the word count MapReduce job 

can generate a large number of intermediate key/value pairs 

in the Map stage. Instead of dynamically allocating memory 

for each generated key/value, Panda allocates a block of 

memory for each CUDA thread, whose size should be big 

enough to serve many small memory allocations. When the 

block is filled, the runtime will double the size of the block 

and copy the data to a new block. The old block will be 

deallocated. The second advantage is that the collection of 

allocated objects in the region can be deallocated all at once. 

For example, Panda can simply deallocate a block of GPU 

memory assigned to each CUDA thread after copying the 

intermediate key/value pairs to the CPU, in which case, 

there would be no need to traverse all of the key/value pairs. 

3) Iterative Support 

A set of iterative applications, such as Kmeans, exist that 

have loop invariant data during the iterations [21][29]. It is 

costive for the GPU program to copy these loop invariant 

data between the CPU and GPU memories over the 

iterations. In order to eliminate the data staging overhead, 

Panda enables the program to cache loop invariant data in 

the GPU memory over iterations. The performance results in 

the next section indicate that the caching loop invariant data 

causes an increase in performance. Currently, Panda support 

the iterative computation on only one GPU because of the 

difficulty to maintain multiple GPU contexts between 

iterations. We will support iterative computation on multiple 

GPUs in the next release.    

4) Local Combiner 

If the Reduce function is associative (commutatively is 

not necessary), then one can apply the partial aggregation 

operation to a subset of the Map output by using a local 

combiner function. In Panda, if the above requirement for 

the Reduce function is satisfied and local combiner is 

supplied, then Panda will perform a partial aggregation to 

the intermediate key/value pairs generated by each CUDA 

thread and CPU Pthread (each thread usually processes 

multiple Map tasks). The gpu_combiner() function are 

performed within GPU memory so that the file staging 

overhead between CPU and GPU is minimized. 



IV. APPLICATIONS AND EVALUATION 

This section evaluates the Panda runtime using three 

sample applications on different experimental environments. 

Table 2 illustrates configuration of GPU and CPU devices 

that used in this paper. All the NVIDIA GPU cards listed in 

Table 2 support computation capability 2.x. The numbers of 

cores on Keeneland [22] and Delta [23] machine are 12 and 

24 with hyper thread enabled. The user implemented API 

are written in CUDA and C/C++, and compiled by nvcc 4.2 

and gcc 4.4.6, respectively. 

 

Table 2: Hardware Description 

Machine 
Name 

Keeneland Delta Basalt 

GPU Type M2050 C2070 T430 

GPUs/Node 3 2 1 

GPU Memory 6 GB 6 GB 1 GB 

Cores/GPU 512 448 96 

CPU Type Intel Xeon 
5660 

Intel Xeon 
5660 

Intel I5-
2400 

CPU Speed 2.80 GHz 2.80 GHz 3.10 GHz 

Cores/CPU 12 Cores 24 Cores 4 Cores 

CPU Memory 24 GB 16 GB  4 GB 

Operating 
System 

Red Hat 

Enterprise 
Red Hat 

Enterprise 
Red Hat 

Enterprise 

CUDA  4.2 4.2 4.2 

GCC 4.4.6 4.4.6 4.4.6 

A. C-means Clustering using Panda 

The computational demands of the multivariate 

clustering grow rapidly; therefore clustering for large data 

sets is very time consuming on a single CPU. Fuzzy C-

means is an algorithm of clustering that allows one element 

to belong to two or more clusters with different 

probabilities. The C-means application [24][25] is 

frequently used in multivariate clustering, such as 

flowcytometry clustering [24]. The algorithm is based on a 

minimization of the following objective function: 

  (Eq. 1) 
M is a real number greater than 1, while N is the number 

of elements. Uij is the value of the membership of Xi in 
cluster Cj. ||Xi-Cj|| is the norm expressing the similarity 
between the measured and the center. The Xi is the ith of the 
d-dimensional measured data; Cj is the d-dimension center 
of the cluster. The fuzzy partitioning is performed using an 
iterative optimization of the objective function as shown 
above. Within each iteration, the algorithm updates the 
membership Uij and the cluster centers the Cj using the 
following functions: 

   (Eq. 2) 

   (Eq. 3) 
 

 
Figure 5: C-means MapReduce Algorithm 

 

   The iteration will stop when , 
where 'e' is a termination criterion between 0 and 1, and „k‟ 
is the iteration steps. Figure 5 shows the alogirhtm of C-
means MapReduce application. 

 
Figure 6:  a. Cmeans (left) and Kmeans (right) clustering 
results for Lymphocytes data set after project 4D into 3D 
using MDS SMACOF. Lymphocytes data set [35] (22014 
points, 4 dimensions, 5 clusters)  
 
Table 3: Average Width Over Clusters and Points using 
Different Clustering Approaches.  

Clustering Approaches Average Width Over 
Clusters and Points 

C-means MapReduce Algorithm: 

Configure: 

 1) Copy data from the CPU to GPU memory 

Map function: 

 2) Calculate the distance matrix  

 3) Calculate the membership matrix 

 4) Update the centers kernel 

Reduce function: 

 5) Aggregate the partial cluster centers and compute 

final cluster centers. 

 6) Compute the difference between the current cluster 

centers and previous iteration.  

Main program: 

 7) The iteration will stop when the difference is smaller 

than predefined threshold or it will go to next iteration. 

 8) Compute the cluster distance and memberships 

using final centers.  

 



Kmeans 2.1479 

Cmeans (hard classes) 2.1789 

Cmeans (soft classes) 1.175019 

Flame (finit mixture model) 2.1754 

Determinstic Annealing 2.1478 

 
 

 
Figure 7: Performance of Different Task Granularity of 

Panda C-means Jobs on GPU and CPU. 
   We implemented C-means MapReduce application using 
Panda on GPU and CPU. The input matrices listed in Figure 
5 were copied into CPU and GPU memory in advance. The 
„key‟ object of Panda C-means MapReduce task contains the 
indices bound of input matrices, while the „value‟ object 
stores the pointers of input matrices in GPU or CPU memory. 
The event matrix is cached in GPU memory in order to avoid 
data staging overhead over iterations. The Map function 
calcuate and distence and membership matrices, and then 
multiply the distence matrix with mebership matrix to 
calcuate new cluster centers. The Reduce function aggregate 
partial cluster centers and calcuate the final cluster centers.  
Figure 7 shows peformance of Panda C-means jobs with 
different number of mappers using GPU and CPU on Delta 
machine. The parameters of C-means job are 1 million 
events, 100 dimensions, 10 clusers, 1 iteration. The number 
of GPU cores and CPU cores on Delta machine are 448 and 
24 (with hyper-thread eanbled). The results indicate that the 
optimal number of mappers of C-means job using GPU or 
CPU are 2000 and 24 respectively. It is obvious that C-
means GPU implementation prefered finer task grunaulitry 
as compared to CPU implmentation. 
   We also study the work load balance issue of Panda C-
means job on GPUs and CPUs by mapping different ratio of 
workload to GPUs and CPUs. Figure 8 shows the time of 
Panda C-means job using GPU only, CPU only, and 
GPU+CPU with different workload distribution ratios. The 
cross point, point 0.1 in x-axis, of two lines plotted in Figure 
9 is the optimal workload distribution among GPU and CPU. 
The time of C-means job is largely determined by calculating 
distance and membership matrix, which are computation 
steps 2)~4) in Figure 5. The computation of update centers 
can be considered as the matrix-vector multiplication of 

distance matrix and membership matrix. Therefor the C-
means computation can be partitioned into some parallel 
sub-tasks that run on CPU and GPU, and the optimal 
workload distribution between CPU and GPU is at the point 
when the tasks on CPU and GPU get completed at the same 
time. The similar conclusions are also reported in papers 
study workload distribution issue of the matrix-matrix 
multiplication on GPU and CPU [26] 

 
Figure 8: Effect of workload distribution on Panda C-means 
on GPU and CPU on Delta machine. For job only using CPU, 
the value X on x-axis means X percentage of workload is 
mapped to CPU. For job only using GPU, the value X means 
(1-X) percentage of work is mapped to GPU. For job using 
both GPU+CPU, the value X means X percentage of work 
was mapped to CPU, and the remain (1-X) percentage of 
work was mapped to GPU. 

 
Figure 9: Performance of C-means jobs using Panda and 

OpenACC on 1 GPU with/without cache loop invariant data. 

   The C-means algorithm is of iterative computation steps, 

however, elements of event matrix are not changed during 

iterations. It is costive to copy events matrix from GPU 

memory to CPU memory over iterations. One can avoid this 

overhead by caching loop invariant data in GPU memory. In 

OpenACC, developers can add “#pragma acc cache (list)” 

directive at the top of a loop. The elements or sub-arrays in 

the list are cached in software-managed data cache. In 

Panda, developers can specify the “iterative_support” option 

when configuration GPU sub-jobs to indicate the runtime to 

copy cache loop invariant data in GPU memory once, and 

reuse it over iterations. Figure 9 shows the performance of 



C-means jobs using Panda and OpenACC with/without 

using caching. The OpenACC and Panda can achieve up to 

the speedup of 3.14x and 1.15x when using cache for large 

input data.  

 
Figure 10: Relative Speedup of C-means Jobs on Delta 

Machine Using Panda-1GPU-DeviceMap, Panda-1GPU-

DeviceMap+24CPU, Panda-1GPU-HostMap, CUDA 

1GPU, Mars-1GPU, and OpenACC-1GPU, Using OpenMP 

24CPU as the Baseline Performance.   

 

Figure 10 shows the relative speedup performances of 

C-means jobs using different runtime environments as 

compared to the performance of using OpenMP on 24 CPU 

cores. The parameters of C-means jobs are 100 dimensions, 

10 clusters, 10 iterations, and number of events range from 

1 million to 7 million. The results indicate that Panda-

1GPU-DeviceMap is up to 1.97x and 2.46 x faster than 

Mars-1GPU and OpenACC-1GPU implementation for large 

input dataset. The CUDA-1GPU is 1.66x, 1.51x and, 1.12x 

faster than Panda-1GPU-DeviceMap, Panda-1GPU-

DeviceMap+24CPU, and Panda-1GPU-HostMap 

implementations respectively. Actually, the Panda-1GPU-

HostMap implementation invoked the CUDA Cmeans code 

directly, and the performance gap between them is mainly 

due to the Panda runtime overhead. For multiple GPU 

results, the Panda-2GPU-DeviceMap and Panda-1GPU-

DeviceMap+24CPU improve the performance by 1.88x and 

1.115x as compared with Panda-1GPU-DeviceMap. CUDA-

2GPU is 1.8x faster than Panda-2GPU-2DeviceMap because 

it leveraged benefit of coalescing memory access and no 

need to care about scheduling and synchronization overhead 

on GPUs and CPUs. However, developing Panda C-means 

MapReduce program requires less programming effort. The 

number of code lines of CUDA C-means source code file is 

more than 850, while the user-implemented code lines of 

Panda C-means is 270. Table 3 shows the size of the source 

code of all the three applications using CUDA and Panda. 

 

Table 4: number of code lines using CUDA and Panda 

Apps Other Panda 

Cmeans CUDA 850+ gpu_device_map 230+  

gpu_device_reduce 40 

gpu_host_map 800+ 

gpu_host_reduce 60 

cpu_map 190+ 

cpu_reduce 40 

Dgemm CUDA 310+ 

MAGMA 30+ 

gpu_device_map 110+  

gpu_device_reduce 0 

gpu_host_map 20+ 

gpu_host_reduce 0 

cpu_map 70+  

cpu_reduce 0 

Word 

count 

Mars  110+ 

Phoenix 80+  

gpu_device_map 25    

gpu_device_reduce 5 

gpu_device_combine 5 

cpu_map 25 

cpu_reduce 5 

cpu_combin 5 

B. Matrix Multiplication using Panda 

The matrix-matrix multiplication is a fundamental kernel 
[27][28] widely applicable in scientific computing and data 
mining. The computation can be partitioned into parallel 
subtasks with arbitrary granularity, which makes it another 
good sample application by which to evaluate Panda 
framework on GPUs and CPUs. The matrix-matrix 
multiplication is defined as A * B = C (Eq. 4). 

   (Eq. 4) 

We implemented dense matrix-matrix multiplication 

application using Panda on CPU and GPU. The computation 

only consists of map stage, no shuffle or reduce stage is 

included. Both implementations for CPU and GPU utilize 

the blocking algorithm in order to enhance cache and shared 

memory utilization. In order to achieve better overall flops 

performance on GPU, we optimized gpu_map() function by 

coalescing the memory access of reading matrix blocks. If 

one block is too big to fit in GPU shared memory, we split 

that big block into some sub-blocks and process these sub-

blocks sequentially. The computation of each sub-block is 

performed in parallel by CUDA threads within same block. 

In order to achieve better flops performance on CPU, the 

cpu_map() function is compiled with g++ with O3 enabled. 
 

 
Figure 11: Speedup Performance of Matrix Multiplicaiton 
Jobs with Different Workload Distribution among CPU and 
GPU on Keeneland, Delta, and Basalt machines. Value X on 
x-axis presents X% of workload of job is assigned to CPU 



for the processing, and the remain 1-X% of workload of job 
is assigned to GPU. 
   Figure 11 shows the speedup performance of 5000x5000 
matrix multiplication job with different workload distriubion 
among CPU and GPU. The optimal workload distribution 
among CPU and GPU are 25%, 15%, and 10% when running 
the same job on Basalt, Delta, and Keenleand machines. 
Similar to the workload distribution analysis in Figure 8, the 
optimal workload distribution among GPU and CPU should 
be in proportion to the computation capability of CPU and 
GPU as shown in Table 1. As shown in Figure 11, machine 
with faster GPU card prefer to assign more workload to GPU.  

 
Figure 12: Speedup Performance of Matrix Multiplication 
Jobs using Panda-1GPU-HostMap, Panda-1GPU-
DeviceMap, Panda-1GPU-DeviceMap+24CPU, MAGAMA-
1GPU, MAGMA-1GPU+24CPU, and CUDA-1GPU 
implementations on Delta machine. 
 

Figure 12 shows the speedup performance of matrix 

multiplication jobs using Panda-1GPU-DeviceMap, Panda-

1GPU-HostMap, Panda-24CPU, Panda-1GPU-

DeviceMap+24CPU, MAGMA-1GPU, MAGMA-

1GPU+24CPU, CUDA-1GPU, Mars-1GPU, and Phoenix-

24CPU. The CUDA-1GPU implementation is around 

1.52~1.94x faster than Panda-1GPU-DeviceMap for large 

matrices sizes. The Mars and Phoenix crashed when the 

matrices sizes larger than 5000 and 3000 respectively. For 

3000x3000 matrix multiplication job, Panda-1GPU-

DeviceMap achieves the speedup of 15.86x, and 7.68x over 

Phoenix and Mars respectively. Panda-1GPU-HostMap is 

only a little slower than CUDA-1GPU for large matrices. 

Panda 1GPU-DeviceMap+24CPU improve the performance 

by 5.1% over Panda-1GPU on average. The workload 

distribution among GPU and CPU is 90/10 as calculated by 

auto tuning utility. MAGMA-1GPU+24CPU increase the 

performance by 7.2% over MAGMA-1GPU, where the 

workload distribution among GPU and CPU is determined 

by its auto tuning utility.  

C. Word Count using Panda 

Word Count computes statistics about word occurrences 

in text documents. Its input data is a collection of text, 

which can be partitioned into arbitrary granularity tasks. 

Therefore, word count is another typical SPMD application 

to be used to evaluate performance of Panda framework on 

GPUs and CPUs. In this section, we study the task 

granularity and workload balance issue of the Panda word 

Count on GPUs and CPUs. In addition, we compare the 

results with those implemented using Mars and Phoenix.  

 
Figure 13: Performance of Panda Word Count with 

Different Chunk Sizes on Keeneland and Delta Machines. 

 

For our test cases, we used randomly generated text of 

100 words whose length was between 5 and 10. The size of 

the input text files ranged from 10MB to 200MB. In one 

Panda Word Count job, the input text file was loaded into 

memory and then it was split into several in-memory sub-

files, each of which is assigned to one GPU or multi-core 

CPU for processing. And the assigned sub-file will be 

further split into some chunks, each of which presents input 

record of one Map task. The chunk size is specified by 

developers in the job configuration stage. Figure 13 shows 

the job time of Panda word count with different chunk sizes 

using only the CPU or GPU on the Keeneland and Delta 

machines. The results indicate that the optimal chunk size of 

Panda word count on GPUs is 16KB. Small chunk sizes can 

generate too many small map tasks which can increase 

scheduling overhead, while large chunk sizes may not 

generate enough map tasks to fully utilize all the GPU cores. 

In addition, few larger tasks are more likely to lead to 

workload imbalance issue. We also noticed that the 

performance of Panda word count using CPUs is not 

sensitive to the changes of chuck sizes because CPU has the 

sophisticated memory caching mechanism.  

 



Figure 14: Effect of workload distribution on Panda 

wordcount jobs using 150MB text file on Keeneland 

machine. For Panda job only using CPU, the value X on x-

axis means X percentage of work load is mapped to CPU. 

For Panda job only using GPU, the value X means (1-X) 

percentage of work mapped to GPU. For Panda job using 

both GPU and CPU, the value X means X percentage of 

work was mapped to CPU, and the remain (1-X) percentage 

of work is mapped to GPU. 

 

We also studied the workload balance issue of the Panda 

Word Count on the GPUs and CPUs by mapping the 

different ratios of workload to the GPUs and CPUs. Figure 

14 shows the job running time of word count job using 

Panda-1GPU, Panda-24CPU, and Panda-1GPU+24CPU 

with different workload distribution ratios. In Figure 14, the 

cross point, 0.5 in the x-axis, of the two lines plotted by 

Panda-1GPU and Panda-24CPU jobs is the theory optimal 

workload distribution among GPU and CPU. However, the 

practical optimal workload distribution ratio is at point 0.65 

in x-axis. This means the workload distribution rule worked 

for the cases showed in Figure 8 and 10 could not be applied 

in the case showed in Figure 14 because Panda word count 

shuffles many small intermediate key/value pairs after Map 

stage, which incurs significant synchronization overhead 

among GPU and CPU. Therefore the Panda word count job 

prefers to assign more workload to run on the CPU device 

in order to decrease the synchronization overhead.  

 
Figure 15: Performance of Word Count Job Using Panda-

1GPU, Panda-24CPU, Panda-1GPU+24CPU, Mars-1GPU, 

Phoenix-24CPU on Delta Machine.   

 

Figure 15 shows the performance of word count jobs 

using Panda-1GPU, Panda-24CPU, Panda-1GPU+24CPU, 

Mars-1GPU, Phoenix-24CPU on the Delta machine. The 

results indicate that Panda has 2.28x speedup over Mars, as 

Mars needs an extra run to calculate the buffer indices, 

which double the job running time. Another reason is that 

Panda supports the local combining on GPU and CPU 

device, which contributes around 40% performance 

improvement for the test input data set. We also noticed that 

Phoenix outperform Panda with a speedup of 4.63x due to 

the better CPU memory management. Another reason is that 

our cpu_map() function are compiled using nvcc, and while 

Phoenix using g++. A benchmark test of sequential word 

count program shown that the g++ generated binary code is 

around 2 times faster nvcc generated binary code. In the C-

means, and matrix multiplicaion applications, the cpu_map() 

functions were compiled with g++ with O3 enabled. This 

result proved our argument that map functions should be 

implemented and optimzed for different devices sperattely.    

I. SUMMARY AND CONCLUSION 

The heterogeneous accelerator devices are becoming 

ubiquitous. However, programmability and performance 

challenges exist when developers want to make good 

utilization of these heterogeneous devices. In order to meet 

the challenges, we are proposing heterogeneous MapReduce 

model and a two-level scheduling strategy. A general 

purpose runtime with MapReduce interface for running 

SPMD computation on GPUs and CPUs is given. 

Experimental results of C-means clustering, matrix 

multiplication, and word count, indicate that using all CPU 

cores increase the GPU performance by 11.5%, 5.1%, and 

41.9% respectively. For some application scenarios, using 

Panda to run SPMD job can increase device utilization, and 

decrease job running time. 

We also found that for some application scenarios, Panda 

gpu_device_mapreduce functions may not performance as 

well as other runtime technologies. For example, Phoenix 

give better performance for word count, CUDA, and 

MAGMA are faster for Matrix Multiplication. The point is 

that if there are many threading code exist in SPMD 

application, it should be processed by tools such as Pthreads 

and OpenMP on CPUs, if there are many vector code exist 

in SPMD application, it should be processed by tools such 

as cuBLAS and MAGMA. Simply using threading code to 

process matrix algebra applications , such as Matrix 

Multiplication and C-means will not give good performance 

as it does not leveraged the vector processing instruction set. 

Therefore, we found that using Panda gpu_host_mapreduce 

functions can give 90% performance as compared with 

CUDA Cmeans and MAGMA applications. However, 

utilizing these vector processing programming model such 

as CUDA and Intel vector processing language will also 

increase the programmability for developers. Panda leave 

the flexibility to developers to choose whether implement 

the vector optimization code in the Map and Reduce 

function themselves. We made the design goal on trade-off 

between programmability and performance, which is in 

between OpenACC and CUDA.  

The lessons we learned in Panda work include that the 

source code optimized for one device architecture properly 

won‟t perform well in others. Sometimes, it is necessary for 

developers to implement different codes or algorithm for 

different device architectures in order to get better 

performance. Second, adaptively scheduling tasks with 

heterogeneous granularities on GPU and CPU is another 

issue affects overall job performance. For applications that 



have regular pattern of memory access, computation, and 

synchronization; the heuristic workload distribution model 

studied in paper[26] is the feasible solution. However, our 

proposed auto tuning approach showed the applicability to 

wider class of applications and devices at the cost of 

running some small tests jobs.  

 

The future work of Panda could be: 

1. Extend the framework to multiple nodes. 

2. Extend the framework to other backend or 

accelerators, such as OpenCL, MIC.  

3. Run MPMD computation on heterogeneous devices.  
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