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ABSTRACT 
As in many fields the data deluge impacts all aspects of Life 
Sciences from chemistry data in PubChem; genetic sequence data 
through health records. This data demands analysis and mining 
algorithms that are both high performance and robust. Further 
although some of the data can be usefully viewed as points in a 
vector space; for others it is better just to consider relationships 
defined just by dissimilarities between points. We develop parallel 
algorithms for both pairwise (no vectors) and vector based 
clustering using deterministic annealing for robustness and 
present preliminary results on medical record and gene sequence 
studies. We compare MPI and threading on multicore systems 
with up to 24 cores on an individual system and 128 cores on an 8 
node cluster. In our analysis of performance and ease of 
programming, we note MPI is particularly effective in 
MapReduce scenarios and although threading is efficient at the 
times when MPI needs send and receive, it can have significant 
synchronization overhead due to runtime fluctuations on 
Windows. 

Categories and Subject Descriptors 
D.1.3 [Programming Techniques]: Parallel Programming – MPI, 
Threading, CCR, multicore; I.5.3 [Pattern Recognition]: 
Clustering – Deterministic Annealing; J.3 [Life and Medical 
Sciences]; G.3 [Probability and Statistics] Statistical Software 

General Terms 
Algorithms, Performance 

Keywords 
Parallel and distributed algorithms, Software environments, 
Programming frameworks and language/compiler support. 

1. INTRODUCTION 
Data intensive science is of growing importance as data volumes 
from instruments, sensors, digital documents and simulations 
increase exponentially in a trend that is expected to continue. This 
has prompted much research and large scale deployments for both 
science and particularly the commercial information retrieval 
field. In the Grid community such data intensive applications are 
typically implemented as workflows [1] while MapReduce [2] in 
Information Retrieval and Mashups [3] in a broad community 
represent related ways of integrating distributed data analysis or 
data mining filters.  Such workflow, “MapReduction” or mash-up 
of filters is a successful paradigm and earlier we have suggested 
that it be extended to parallel computing. This implies that both 
parallel and distributed computing can be considered as 
orchestrations of coarse grain filters. This model applies to a 
Biologist using Taverna [1] to link Internet resources with a 
graphical interface or to composite signal processing system built 

using Matlab with a scripting interface. As the data volumes grow, 
one needs to address the scalability of both the integrating 
workflow and the underlying filter. There are important cases 
where this straightforward. In particle physics the filters are 
pleasingly parallel over the underlying event dataset. In 
information retrieval, one supports independent data-parallel maps 
plus reductions. In such cases, scaling of the filters can be 
addressed using the workflow engine itself. However in general, 
one will need to parallelize the filters and this is problem 
discussed here. When the filters are linear algebra, one can 
straightforwardly scale using SCALAPACk or equivalent 
libraries. Matlab has also parallelized these and other algorithms. 
However many important algorithms are only available (as a 
service) in sequential form and so our project is identifying key 
data analysis algorithms and developing parallel versions. One 
typical example is “multiple sequence alignment” MSA (see 
reviews in [4] and [5] for example) where one takes sets of 
sequences and translates the component features to globally 
optimize their alignment. Here several implementation (for 
example CLUSTALW, MUSCLE, T-COFFEE and DIALIGN) 
are popular and available in open source fashion but only in 
sequential versions. Current progressive alignment algorithms 
scale like N4 for N sequences and a few thousand sequences take 
several days to align. There are already sequence sets with N over 
100,000 and continuing improvement in sequencing technology 
will give much larger sets. Parallel implementations of such 
algorithms should be valuable as are of course new algorithms of 
improved performance and robustness. As part of our suite of 
parallel filters for MSA, we have so far (partially) completed 
MDS (Multi dimensional scaling) reported in [6] and clustering. 
The latter has been discussed earlier by us [7-11] but here we 
extend our results to larger systems – single workstations with 16 
and 24 cores and a 128 core (8 nodes with 16 cores each) cluster. 
Further we study a significantly different clustering approach that 
only uses pairwise distances (dissimilarities between points) and 
so can be applied to cases where vectors are not easily available. 
This is common in biology where a sequences can have mutual 
distances determined by Needleman-Wunsch or Smith-Waterman 
algorithms [4] but will not have a vector representation until after 
they have been aligned by MSA. Our MDS algorithm also only 
uses pairwise distances and so it and the new clustering method 
can be applied broadly. Both our original vector-based (VECDA) 
and the new pairwise distance (PWDA) clustering algorithms use 
deterministic annealing to obtain robust results. VECDA was 
introduced by Rose and Fox almost 30 years ago [12] and has a 
good reputation [13] and there is no clearly better clustering 
approach. The pairwise extension PWDA was developed by 
Hofmann and Buhmann [14] around 10 years ago but does not 
seem to have used in spite of its attractive features – robustness 
and applicability to data without vector representation.  



We use C# on Windows platforms in our research as one of our 
motivations is to develop data mining software that can be used 
on future multicore clients. We also expect managed code (C#, 
Java) to be important in future analysis environments. This choice 
allows seamless environments stretching from a Windows client 
to backend high performance environments. In section 2 we 
discuss our hybrid MPI/Threading environment and the hardware 
platforms. Section 3 describes the PWDA and VECDA algorithms 
and their parallelization. Section 4 contains a preliminary 
performance analysis with results spanning individual 8, 16 and 
24 core workstations with largest parallelism seen on a cluster of 
eight 16 core AMD Barcelona workstations. Our conclusions are 
in Section 5. 

2. PARALLEL SOFTWARE AND 
HARDWARE ENVIRONMENTS 
2.1 Hardware Systems  
There’re two set of clusters that provide different combinations of 
hardware system and serve as our test environments. The 
“Barcelona” cluster has increasing number of cores for compute 
nodes ─ four 8 core, two 16 core, and one 24 core. The “Madrid” 
cluster is a homogenous model that consists of eight 16 core 
compute nodes.  Both clusters have quad-core AMD Opteron 
processor-based servers from Dell except for its latest 24 core 
model that uses 6-core Intel Xeon E7450 processor. Cluster nodes 
are connected by 1 GbE onboard NICs with 10 Gigabit switch. 

Table 1. Machines used 
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Head 
Node (1) 

Dell PowerEdge T605  workstation, 
1 AMD Quad Core Opteron 2356 at 2.3GHz, 
L2 Cache 2x1MB,  Memory 8 GB, 
Windows Server HPC Edition (Service Pack 1) 

Compute 
node (4) 

Dell PowerEdge 2970, 
2  AMD Quad Core Opteron 2356 at 2.3GHz, 
4×512K L2 Cache, Memory 16 GB, 
Windows Server 2003 Enterprise x64 bit Edition 

Compute 
node (2) 

Dell PowerEdge R905, 
4  AMD Quad Core Opteron 8356 at 2.3GHz, 
4×512K L2 Cache, Memory 16 GB, 
Windows Server HPC Edition (Service Pack 1) 

Compute 
node (1) 

Dell PowerEdge R900, 
4 Intel Six Core Xeon E7450 at 2.4GHz,  
12 M L2 Cache,  Memory 48GB, 
Windows Server HPC Edition (Service Pack 1) 
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Head 

Node (1) 

Dell PowerEdge T605  workstation, 
1 AMD Quad Core Opteron 2356 at 2.3GHz, 
L2 Cache 2x1MB,  Memory 8 GB, 
Windows Server HPC Edition (Service Pack 1) 

Compute 
node (8) 

Dell PowerEdge R905,  
4 AMD Quad Core Opteron 8356 at 2.3GHz,  
4x512K Cache, Memory 16 GB,  
Windows Server HPC Edition (Service Pack 1) 

 

2.2 Software Environments 
All the algorithms were explicitly written for arbitrary MPI and 
threading parallelism. As our software is C#, we used the 
MPI.NET (version 1.0) environment [15] which is a C# wrapper 
around Microsoft’s MPI and offers full functionality and 
performed excellently on our problems. 

The Microsoft CCR (Concurrency and Computation Runtime) 
threading environment has been described in earlier papers [7-10]. 
We used version 2.0. We note that it is flexible and high 

performance and easily supports two modes. In the first short 
lived threads are spawned dynamically and execute independent 
tasks before terminating at a synchronization point. In the second 
mode, we adopt a model where CCR threads [11,12] are used 
more like MPI processes and are long lived with rendezvous 
synchronization points from time to time. We term these the 
short-lived and long-lived threading modes in section 4.  

In the hybrid model allowing both MPI and Threading, MPI is 
always used between nodes but each node can be any number of 
MPI processes that themselves run a set of threads. In the results 
given here, the product of the number of MPI processes per node 
and the number of threads per node was always less than equal to 
the number of cores on the node. Note that decreasing number of 
MPI processes, increases the message size and decreases the 
number of messages for a given problem/overall parallelism. This 
increases performance but in this case processing the message 
does not exploit the several cores available to each MPI process.  

We use the term parallel unit to refer to either thread or process in 
what follows. We let P be the total number of parallel units – this 
is number of MPI processes multiplied into the number of threads 
per process. 

3. CLUSTERING ALGORITHMS 
3.1 Clustering Algorithms 
Clustering can be viewed as a optimization problem that 
determines a set of K clusters by minimizing 

HVEC =  i=1
N k=1

K Mi(k) DVEC(i,k)   (1) 

where DVEC(i,k) is the distance between point i and cluster center 
k.  Mi(k) is the probability that point i belongs to cluster k. This is 
the vector version and one obtains the pairwise distance model 
with: 

HPW = 0.5 i=1
N j=1

N D(i, j) k=1
K Mi(k) Mj(k) / C(k) (2) 

and C(k) = i=1
N Mi(k)   is the expected number of points in the 

k’th cluster. Equation (1) requires one be able to calculate the 
distance between a point i and the cluster center k and this is only 
possible when one knows the vectors corresponding to the points 
i. (2) reduces to (1) when one inserts vector formulae and drops 
terms i=1

N j=1
N DVEC(i,k) DVEC(j,k) k=1

K Mi(k) Mj(k)  that 
average to zero. 

We minimize (1) or (2) as a function of cluster centers (1) and 
cluster assignments Mi(k) (in both cases). One can derive 
deterministic annealing from an informatics theoretic [13] or 
physics formalism [14]. In latter case one smoothes out the cost 
function (1) or (2) by averaging with the Gibbs distribution exp(-
H/T). This implies in a physics language that one is minimizing 
not H but the free energy at temperature T and entropy S 

 F = H-TS     (3) 

For VECDA and Hamiltonian H given by equation (1), one can do 
this averaging exactly.  

 Mi(k) = exp( - DVEC(i,k)/T )  / Zi                (4) 

 Zi =  k exp( - DVEC(i,k)/T )     (5) 

 F = - T i=1
N log [Zi] / N   (6) 

For the case (2) where only distances are known, the integrals 
with the Gibbs function are intractable analytically as the degrees 
of freedom Mi(k) appear quadratically in the exponential. In the 
more familiar simulated annealing approach to optimization, these 



integrals are effectively performed by Monte Carlo. This implies 
simulated annealing is always applicable but is usually very slow. 
The applicability of deterministic annealing was enhanced by the 
observation in [14] that one can use an approximate Hamiltonian 
H0 and average with exp(-H0/T). For (2), one uses the form 
motivated by the VECDA formalism (4). 

 H0 = i=1
N k=1

K Mi(k) i(k)   (7) 

 Mi(k)  exp( -i(k)/T ) with k=1
K Mi(k) =1 (8) 

i(k) are new degrees of freedom. This averaging removes local 
minima and is designed so that at high temperatures one starts 
with one cluster. As temperature is lowered one minimizes (3) 
with respective to degrees of freedom. A critical observation of 
Rose [13] allows one to determine when to introduce new 
clusters. As in usual expectation maximization (steepest descent) 
the first derivative of (3) is set to zero to find new estimates for 
Mi(k) or other parameters (cluster centers for VECDA). Then one 
looks at the second derivative  of F to find instabilities that are 
resolved by splitting clusters. One does not examine the full 
matrix but the submatrices coming from restricting  to variations 
of the parameters of a single cluster with the K-1 other clusters 
fixed and two clusters placed at location of clusters whose 
stability one investigates. As temperature is lowered one finds that 
clusters naturally split and one can easily understand this from the 
analytic form for . The previous work [14] on PWDA was 
incomplete and did not consider calculation of  but rather only 
assumed an a priori fixed number of clusters. We have completed 
the formalism and implemented it in parallel. Note we only need 
to find the single lowest eigenvalue of  (restricted to varying one 
cluster). This is implemented as power (Arnoldi) method. One 
splits the cluster if its restricted  has a negative eigenvalue and 
this is smallest – minimized over all clusters.  

The formalism for VECDA can be found in our earlier work and 
[Rose98]. Here we just give results for the more complex PWDA 
and use it to illustrate both methods. We let indices k   runs 
over clusters from 1 to K while i j   run over data points from 1 
to N. Mi(k) has already been given in equation (8). Then one 
calculates: 

A(k) = - 0.5 i=1
N j=1

N D(i, j) Mi(k) Mj(k) / C(k)2  (9a) 

B(k) =  i=1
N D(i, ) Mi(k) / C(k)   (9b) 

C(k) = i=1
N Mi(k)     (9c) 

Allowing the estimate (k) = (B(k) + A(k))  (10)          
which minimizes F of equation (6). The NKNK  second 
derivative matrix  is given by 

{,}{,} = (1/T)  {M()  - M() M() } + 
(M() M() / T2) {k=1

K [- 2A(k) - B(k) - B(k) + D(,)] 
[M(k) -  k ] [M(k) - k]/C( k)}   (11) 

Equations (9) and (10) followed by (8) represent the basic steepest 
descent iteration that is performed at fixed temperature until the 
estimate for (k) is converged. Note steepest descent is a 
reasonable approach for deterministic annealing as one has 
smoothed the cost function to remove (some) local minima. Then 
one decides whether to split a cluster from the eigenvalues of  as 
discussed above. If splitting is not called for, one reduces the 
temperature and repeats equations (8) through (11). There is an 
elegant method of deciding when to stop based on the fractional 
freezing factors (k) 

(k) = i=1
N Mi(k) (1 - Mi(k)) / C(k)   (12) 

As temperatures are lowered after final split, then the Mi(k) tend 
to either 0 or 1 so (k) tends to zero. We currently stop when all 
the freezing factors are < 0.002 but obviously this precise value is 
ad-hoc. 
 

3.2 Multi-scale and Deterministic Annealing 
Deterministic annealing can be considered as a multi-scale 
approach as quantities are weighted by exp (-D/T)  for distances D 
and temperature T. Thus at a given temperature T, the algorithm is 
only sensitive to distances D larger than or of order T. One starts 
at high temperatures (determined by largest distance scale in 
problem) and reduce temperature (typically by 1% each iteration) 
until you reach either the distance scale or number of clusters 
desired. As explained in original papers [12], clusters emerge as 
phase transitions as one lowers the temperature and need not be 
put in by hand.  

3.3 Geometric Structure and Visualization 

Figure 1. 4000 Patient Records with 8 clusters from PWDA 

 

 

 

 

Figure 2. 4500 ALU pairwise aligned Gene Sequences with 10 
clusters from PWDA 

We are using our software in fashion illustrated in figures 1 and 2. 
The original data is clustered with VECDA (see earlier papers for 
examples) or PWDA and then visualized by mapping points to 3D 



with MDS [6] and visualizing with a 3D viewer written in 
DirectX. As a next step, we will allow users to select regions 
either from clustering or MDS and drill down into the substructure 
in this region. Like the simpler linear principal component 
analysis, MDS of a sub-region is generally totally different from 
that of full space. We note here that deterministic annealing can 
also be used to avoid local minima in MDS. We will report our 
extensions of the original approach in [18] and comparison with 
Newton’s method for MDS [19] elsewhere. 

 

Figure 3. Gene Sequences data of Figure 2 mapped by a 
dimension reduction function before MDS. 

Clustering in high dimensions d is not intuitive geometrically as 
the volume of a cluster of radius R is proportional to R(d+1) 
implying that a cluster occupying 0.1% of total volume has a 
radius reduced by only a factor 0.99 from that of overall space 
with d=1000 (a value typical of gene sequences). These 
conceptual difficulties are avoided by the pairwise approach. One 
does see the original high dimension when projecting points to 3D 
for visualization as they tend to appear on surface of the lower 
dimensional space. This can be avoided as discussed in [22] by a 
mapping Distance D  f(D) where f is a monotonic function 
designed so that the transformed distances f(D) are distributed 
uniformly in a lower dL dimensional space. We experimented with 
dL = 2 and 4 where the mapping is analytically easy but found it 
not improve the visualization. Typical results are shown in figure 
3 that maps data of figure 2 to 2 dimensions before applying MDS 
– the clustering is still performed on original unmapped data. 
Certainly the tendency in figure 2 to be at edge of visualization 
volume is removed but data understanding does not seem 
improved. This approach finds an effective dimension deff for 
original data by comparing mean and standard deviation of all the 
inter-point distances D(i,j)  with those in a dimension deff. This 
determines an effective dimension deff of 40-50 for sequence data 
and about 5 for medical record data.; in each case deff is a 
dimension smaller than that of underlying vector space. This is 
not surprising as data is a very special correlated set of points. 

3.4 Parallelism 
The parallelism for clustering is straightforward data parallelism 
with the N points divided equally between the P parallel units. 
This is the basis of most MapReduce algorithms and clustering 
was proposed as a MapReduce application in [20]. We have in 
fact compared simple (K-means) clustering between versions and 
MapReduce and MPI in [21] and VECDA should be more suitable 

for MapReduce as it is more computation at each iteration 
(MapReduce has greater overhead than MPI on communication 
and synchronization). VECDA only uses reduction, barrier and 
broadcast operations in MPI and in fact MPI implementation of 
this algorithm is substantially simpler than the threaded version. 
Reduction, Barrier and Broadcast are all single statements in MPI 
but require several statements – especially for reduction – in the 
threaded case. Reduction is not difficult in threaded case but 
requires care with many opportunities for incorrect or inefficient 
implementations. 

PWDA is also data parallel over points and its O(N2) structure 
gives it similarities to other O(N2) algorithms such as those for 
particle dynamics. We divide the points between parallel units. 
Each MPI process also stores the distances D(i, j)  for all points i 
for which process is responsible. Of course the threads inside this 
process can share all these distances stored in common memory of 
a multicore node. There are subtle algorithms familiar from N-
body particle dynamics where a factor of 2 in storage (and in 
computation) is saved by using the symmetry D(i, j)  = D(j, i)  but 
this did not seem useful in this case. The MPI parallel algorithm 
now needs MPI_SENDRECV to exchange information about the 
distributed vectors; i.e. one needs to know about all components 
of vectors Mi Bi and the vector Ai iterated in finding maximal 
eigenvectors. This exchange of information can be done with a 
ring structure as again used in O(N2) particle dynamics problems. 
We measured the separate times in the four components of MPI – 
namely SENDRECV, Reduction, and Broadcast and only the first 
two are significant reaching 5-25% of total time with Broadcast 
typically less than 0.1% of execution time. SENDRECV is 
typically 2 to 3 times reduction but the latter is a non trivial 
overhead (often 5-10%).  

3.5 Computational Complexity 
The vector and pairwise clustering methods have very different 
and complementary computational complexities. VECDA 
execution time is proportional to N d2 for N points – each of 
dimension d. PWDA has an execution time proportional to N2. 
PWDA can rapidly become a supercomputer computation. For 
example with 4500 sequence datapoints and 8 clusters, the 
sequential execution time is about 15 hours on a core of the 
systems used in our benchmarks. A direct clustering with PWDA 
of half million points (relevant even today) would naturally use 
around 5000 cores (100 points per core) with pure MPI 
parallelization. The hybrid threading-MPI parallelism could 
support more cores as discussed in Sec 2.2.  

We note that currently some 40-70% of the computation time is 
used in deciding whether to split clusters in PWDA; there are 
probably significantly better less time expensive algorithms here. 
The runs of VECDA reported here correspond to a low dimension 
space d = 2 for which negligible time is spent in splitting decision. 
The second derivative matrices are of size NKNK for PWDA 
and of size dKdK for VECDA. These are full matrices but as 
power method for determining maximal eigenvalues is used the 
computation is proportional to to the square of the matrix 
dimension. For computations reported here, the annealing uses 
from 1000-10,000 temperature steps while each eigenvalue 
determination uses 10-200 iterations. 

4. PERFORMANCE 
4.1 Applications 



We used three sample applications in the research reported here 
and expect other publications to address the domain specific 
scientific results. Here we just use them to study the algorithms 
and their performance. The first application was a collection of 
1500, 3000 and 4500 ALU sequences where the clustering is 
designed to understand gene families as discussed before in [23]. 
Results from this are seen in figures 2 and 3 but not used in 
performance study. The second application came from medical 
informatics [24] and consisted of up to 36,000 medical records 
each of which had 30 properties connected to a study of childhood 
obesity. These properties were normalized uniformly and used to 
define a vector for each patient record consisting of continuous 
and binary data. These are combined to form a Euclidean distance 
between each patient record. As shown already in figure 1, this 
data shows striking structure after being clustered and projected 
by MDS to 3D. The third application was a Monte Carlo 
collection of ten Gaussian clusters in two dimensions; various 
dataset sizes were used and here we use results from datasets with 
10 clusters – each containing 20,000 or 40,000 data points. We 
used the latter of scaled speedup studies of VECDA where 
problem size is increased proportional to the number of nodes. 
This is achieved by trivial replication of points as this ensures an 
execution time exactly proportional to the number of points. This 
is an artificial example but similar in architecture to the census 
data clustering reported in [8] 

4.2 Approach 
As in earlier papers [7-10], rather than plot speed-up, we present 
results in terms of an overhead f(n,P) where different overhead 
effects are naturally additive. Further in simple cases the overhead 
only depends on the grain size n = N/P in our case. Putting T(n,P) 
as the execution time on P parallel units, we can define 

Overhead f(n,P) = (PT(n,P)-T(Pn,1))/T(Pn,1)       (13)               
and efficiency  = 1/(1+f) and Speed-up = P  (14) 

We note that the overhead is approximately 1 – the efficiency . 

4.3 Performance Results 
We obtain generally good speed-up (low overhead) in our 
measurements with however some surprising results.  

 
Figure 4. Measurements of parallel overhead for samples of 
2000 and 4000 element patient data on 8, 16 and 24 cores on a 
single workstation with thread-based parallelism 

In figure 4, we show some simple runs on the 8, 16 and 24 core 
workstations in the Barcelona cluster of table 1. The highest 
overhead is 0.16 on 24 cores but even this corresponds to a 

speedup of 20.7 on the 24 core workstation. This data as expected 
(and seen in all our runs) shows the overhead increasing as data 
set sizes decrease. Figure 5 shows an effect that we will see in 
more detail later. This looks at execution time for a largish 10,000 
element patient record data for different mechanisms for the 
parallelism. Namely we achieve 24 way parallelism (on the 24 
core workstation) with different choices of MPI and threading.  

Figure 5. 24 way parallel runs on 24 core Dell Intel 
workstation for different choices of MPI and Thread 
parallelism for 10,000 element patient data. 

The poorest performance is seen for the case of pure thread 
parallelism – 24 threads and no MPI (just the one process). This 
pure threading case is about 25% slower than the other choices – 
corresponding to 24 MPI processes(no extra threading), 12 MPI 
processes (each of 2 threads), 6 MPI processes (each of 4 threads), 
and finally 4 MPI processes (each of 6 threads). We have 
discussed the overhead of threading in our earlier papers and 
noted that Windows (the operating system used in all our results) 
has overheads that limit the speed up obtainable with threads.  

Figure 6. Measurements from [8] showing 5 to 10% runtime 
fluctuations on an 8 core workstation. The results are plotted 
as a function of number of simultaneous threads from 1 to 8 
and for three different dataset sizes. 
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Figure 7. Parallel Overhead for VECDA using long lived 
threads run on 128 core Madrid Cluster in table 1. The results 
achieve a given parallelism by choosing number of nodes, MPI 
processes per node and threads per MPI process. The number 
of threads increases as you move from left to right for given 
level of parallelism. 

In particular as discussed in [9], thread execution times fluctuate 
substantially with figure 6 showing standard deviations from 5 to 
10% on a simple kernel representative of the VECDA clustering 
algorithm.  

The identical code (translated from C# to C) shows order of 
magnitude lower fluctuations when run under Linux [ICCS] with 
interesting systematics even in Linux case. These fluctuations can 
give significant parallel overheads as parallel algorithms used in 
VECDA and PWDA like those in most scientific algorithms 
requires iterative thread synchronization at the rendezvous points. 
Here the execution time will be the maximum over that of all the 
simultaneous fluctuating threads and so increase as this number 
increases. As described in the earlier papers we have always seen 
this and reported this effect to Microsoft. We found that these 
fluctuations were the only sizeable new form of parallel overhead 
compared to those well known from traditional parallel computing 
i.e. in addition to load imbalance and communication overhead. 
We did note the possible of extra overheads due to different 
threads interfering on a single cache line but our current software 
is coded to avoid this. Note that the fluctuation effect is larger in 
the work reported here compared to our previous papers as we are 
looking here at many more simultaneous threads. Note that the 
effect does not just reflect the number of threads per process but 
also the total number of threads because the threads are 
synchronized not just within a process but between all processes 
as MPI calls will synchronize all the threads in the job. Thus it is 
interesting to examine this effect on the full 128 core Madrid 
cluster as this could even be a model for performance of future 
much larger core individual workstations.  

Note that our current clusters of table 1 only have 10 gigabit 
Ethernet connections and we will extend our work with a new 
Infiniband connected 24 core node Windows cluster. This should 

allow more sensitive examination of this thread synchronization 
problem. We note that VECDA and PWDA differ somewhat in 
this respect. VECDA only uses reduction (dominant use), 
broadcast and barrier MPI operations and so has particularly fast 
MPI synchronization. PWDA also has MPI_SENDRECV 
(exchange of data between processes) which increases the MPI 
synchronization time and could be expected to mask the thread 
synchronization effect. 

We see an interesting demonstration of this effect in figure 7 
which shows the parallel overhead for 44 different choices of 
nodes (from 1 to 8), MPI processes per node (from 1 to 16) and 
threads per node (from 1 to 16 divided by MPI processes per 
node). The results are divided into groups corresponding to a 
given total parallelism. For each group, the number of threads 
increases as we move from left to right. For example in the 128 
way parallel group, there are five entries with the leftmost being 
16 MPI processes per node on 8 nodes (a total of 128 MPI 
processes) and the rightmost 16 threads on each of 8 nodes (a total 
of 8 MPI processes). We find an incredibly efficient pure MPI 
version – an overhead of just 0.08 (efficiency 92%) for 128 way 
parallelism whereas the rightmost case of 16 threads has a 0.63 
overhead (61% efficiency). All cases with 16 threads per node 
show a high overhead that slowly increases as the node count 
increases. For example the case of 16 threads on one node has an 
overhead of 0.51. Note that in this we use scaled speedup i.e. the 
problem size increases directly according to number of parallel 
units. This ensures that the inner execution scenarios are identical 
in all 44 cases reported in figure 7. We achieve this by replicating 
a base point set as one can easily see that leads to same 
mathematical problem but with a work that increases properly as 
number of execution units increases. 

Figure 8 shows similar results for the execution of PWDA on the 
Madrid cluster for the Patient data set with 10,000 elements – the 
same one used in figure 5.  Generally MPI parallelism 
outperforms thread parallelism but the effect is not as large as that 
in figure 7. Part if not all of this difference is due to the 
substantially higher MPI overhead which is largely due to 
MPI_SENDRECV which is not used in the VECDA parallel 
algorithm in figure 7.  
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Figure 8. Parallel Overhead for PWDA run on 128 core 
Madrid Cluster in table 1. The results achieve a given 
parallelism by choosing number of nodes, MPI processes per 
node and threads per MPI process. The number of threads 
increases as you move from left to right for given level of 
parallelism. 

The MPI overhead is such that this problem set size is best suited 
to systems with 64 or smaller levels of parallelism. For example 
for the cases of 16 MPI processes on 4 nodes or 8 MPI processes 
on 8 nodes, we find an overhead of 0.18 entirely described by 
MPI overheads (that were measured during  run) that were 28% 
MPI_REDUCE and the remainder MPI_SENDRECV as 
broadcast time was negligible. The threaded implementations of 
64 way parallelism have about twice the overhead of case where 
MPI is used on the node. Figure 8 shows more variation than 
figure 7 (see for example 48 way parallelism group) because we 
now see significant increase in overheads as we increase the 
number of nodes with the 6 node cases of 48 way parallelism 
showing more overhead than 3 node case. Our near future work 
includes improving the clarity of figures with extended patterns 
for runs, re-ordering within groups and improving statistics by 
averaging over several runs for each scenario.   

To investigate this effect further we carefully re-implemented the 
VECDA code replacing long threads by short lived threads 
spawned at each new parallel section. In figure 9, we compare the 
two versions of VECDA on the Barcelona cluster of table 1. The 
results have similar structure to figure 7 except the long lived 
VECDA-LL code (solid lines) has lower overheads than the 
newer short lived thread VECDA-SL code (dotted lines). We had 
hoped that the high overheads seen in figures 7, 8 and 9 for 
patterns with many threads might have been some glitch in the 
rather tricky long lived code. However our results support the 
correctness of the original code and suggest that as expected it is 
better to use long lived threads. This short lived threading 

approach was also used in all PWDA results presented here but 
the results of figure 9 suggest that we should re-implement with 
long lived threads and use that choice in our ongoing work. 

5. CONCLUSIONS 
We believe that libraries or collections of services implementing 
the best available algorithms in high performance parallel versions 
will be essential for many fields to exploit the data deluge. Our 
work has presented two complementary approaches to clustering – 
pairwise and vector based that together cover a broad range of 
problems. We have shown good parallel performance with as 
expected a given problem size running well up to a certain level of 
parallelism. We have shown significant impact on performance of 
different implementations. MPI outperforms threaded codes on 
Windows while a long lived threading with rendezvous 
synchronization outperforms a simpler model with short lived 
threads spawned afresh at each parallel section.  
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Figure 9. Parallel Overhead for VECDA using long lived 
threads (solid) or short lived threads (dotted lines) run on 32 
core Barcelona Cluster in table 1. The results achieve a given 
parallelism by choosing number of nodes, MPI processes per 
node and threads per MPI process. The number of threads 
increases as you move from left to right for given level of 
parallelism. 
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