
Parallel Data Mining for Medical Informatics
Xiaohong Qiu

UITS, Indiana University
501 N. Morton St., Suite 211

Bloomington, IN 47404

1-812-8550804

xqiu@indiana.edu

Geoffrey Fox
School of Informatics, Indiana

University 919 E. 10th St., Rm. 226A
Bloomington, IN 47405

1-812-8567977

gcf@indiana.edu

ABSTRACT
As in many fields the data deluge impacts all aspects of Life
Sciences from chemistry data in PubChem; genetic sequence data
through health records. This data demands analysis and mining
algorithms that are both high performance and robust. Further
although some of the data can be usefully viewed as points in a
vector space; for others it is better just to consider relationships
defined just by dissimilarities between points. We develop parallel
algorithms for both pairwise (no vectors) and vector based
clustering using deterministic annealing for robustness and
present preliminary results on medical record and gene sequence
studies. We compare MPI and threading on multicore systems
with up to 24 cores on an individual system and 128 cores on an 8
node cluster. In our analysis of performance and ease of
programming, we note MPI is particularly effective in
MapReduce scenarios and although threading is efficient at the
times when MPI needs send and receive, it can have significant
synchronization overhead due to runtime fluctuations on
Windows.

Categories and Subject Descriptors
D.1.3 [Programming Techniques]: Parallel Programming – MPI,
Threading, CCR, multicore; I.5.3 [Pattern Recognition]:
Clustering – Deterministic Annealing; J.3 [Life and Medical
Sciences]; G.3 [Probability and Statistics] Statistical Software

General Terms
Algorithms, Performance

Keywords
Parallel and distributed algorithms, Software environments,
Programming frameworks and language/compiler support.

1. INTRODUCTION
Data intensive science is of growing importance as data volumes
from instruments, sensors, digital documents and simulations
increase exponentially in a trend that is expected to continue. This
has prompted much research and large scale deployments for both
science and particularly the commercial information retrieval
field. In the Grid community such data intensive applications are
typically implemented as workflows [1] while MapReduce [2] in
Information Retrieval and Mashups [3] in a broad community
represent related ways of integrating distributed data analysis or
data mining filters. Such workflow, “MapReduction” or mash-up
of filters is a successful paradigm and earlier we have suggested
that it be extended to parallel computing. This implies that both
parallel and distributed computing can be considered as
orchestrations of coarse grain filters. This model applies to a
Biologist using Taverna [1] to link Internet resources with a
graphical interface or to composite signal processing system built

using Matlab with a scripting interface. As the data volumes grow,
one needs to address the scalability of both the integrating
workflow and the underlying filter. There are important cases
where this straightforward. In particle physics the filters are
pleasingly parallel over the underlying event dataset. In
information retrieval, one supports independent data-parallel maps
plus reductions. In such cases, scaling of the filters can be
addressed using the workflow engine itself. However in general,
one will need to parallelize the filters and this is problem
discussed here. When the filters are linear algebra, one can
straightforwardly scale using SCALAPACk or equivalent
libraries. Matlab has also parallelized these and other algorithms.
However many important algorithms are only available (as a
service) in sequential form and so our project is identifying key
data analysis algorithms and developing parallel versions. One
typical example is “multiple sequence alignment” MSA (see
reviews in [4] and [5] for example) where one takes sets of
sequences and translates the component features to globally
optimize their alignment. Here several implementation (for
example CLUSTALW, MUSCLE, T-COFFEE and DIALIGN)
are popular and available in open source fashion but only in
sequential versions. Current progressive alignment algorithms
scale like N4 for N sequences and a few thousand sequences take
several days to align. There are already sequence sets with N over
100,000 and continuing improvement in sequencing technology
will give much larger sets. Parallel implementations of such
algorithms should be valuable as are of course new algorithms of
improved performance and robustness. As part of our suite of
parallel filters for MSA, we have so far (partially) completed
MDS (Multi dimensional scaling) reported in [6] and clustering.
The latter has been discussed earlier by us [7-11] but here we
extend our results to larger systems – single workstations with 16
and 24 cores and a 128 core (8 nodes with 16 cores each) cluster.
Further we study a significantly different clustering approach that
only uses pairwise distances (dissimilarities between points) and
so can be applied to cases where vectors are not easily available.
This is common in biology where a sequences can have mutual
distances determined by Needleman-Wunsch or Smith-Waterman
algorithms [4] but will not have a vector representation until after
they have been aligned by MSA. Our MDS algorithm also only
uses pairwise distances and so it and the new clustering method
can be applied broadly. Both our original vector-based (VECDA)
and the new pairwise distance (PWDA) clustering algorithms use
deterministic annealing to obtain robust results. VECDA was
introduced by Rose and Fox almost 30 years ago [12] and has a
good reputation [13] and there is no clearly better clustering
approach. The pairwise extension PWDA was developed by
Hofmann and Buhmann [14] around 10 years ago but does not
seem to have used in spite of its attractive features – robustness
and applicability to data without vector representation.

We use C# on Windows platforms in our research as one of our
motivations is to develop data mining software that can be used
on future multicore clients. We also expect managed code (C#,
Java) to be important in future analysis environments. This choice
allows seamless environments stretching from a Windows client
to backend high performance environments. In section 2 we
discuss our hybrid MPI/Threading environment and the hardware
platforms. Section 3 describes the PWDA and VECDA algorithms
and their parallelization. Section 4 contains a preliminary
performance analysis with results spanning individual 8, 16 and
24 core workstations with largest parallelism seen on a cluster of
eight 16 core AMD Barcelona workstations. Our conclusions are
in Section 5.

2. PARALLEL SOFTWARE AND
HARDWARE ENVIRONMENTS
2.1 Hardware Systems
There’re two set of clusters that provide different combinations of
hardware system and serve as our test environments. The
“Barcelona” cluster has increasing number of cores for compute
nodes ─ four 8 core, two 16 core, and one 24 core. The “Madrid”
cluster is a homogenous model that consists of eight 16 core
compute nodes. Both clusters have quad-core AMD Opteron
processor-based servers from Dell except for its latest 24 core
model that uses 6-core Intel Xeon E7450 processor. Cluster nodes
are connected by 1 GbE onboard NICs with 10 Gigabit switch.

Table 1. Machines used

B
ar

ce
lo

n
a

C
lu

st
er

Head
Node (1)

Dell PowerEdge T605 workstation,
1 AMD Quad Core Opteron 2356 at 2.3GHz,
L2 Cache 2x1MB, Memory 8 GB,
Windows Server HPC Edition (Service Pack 1)

Compute
node (4)

Dell PowerEdge 2970,
2 AMD Quad Core Opteron 2356 at 2.3GHz,
4×512K L2 Cache, Memory 16 GB,
Windows Server 2003 Enterprise x64 bit Edition

Compute
node (2)

Dell PowerEdge R905,
4 AMD Quad Core Opteron 8356 at 2.3GHz,
4×512K L2 Cache, Memory 16 GB,
Windows Server HPC Edition (Service Pack 1)

Compute
node (1)

Dell PowerEdge R900,
4 Intel Six Core Xeon E7450 at 2.4GHz,
12 M L2 Cache, Memory 48GB,
Windows Server HPC Edition (Service Pack 1)

M
ad

ri
d

 C
lu

st
er

Head

Node (1)

Dell PowerEdge T605 workstation,
1 AMD Quad Core Opteron 2356 at 2.3GHz,
L2 Cache 2x1MB, Memory 8 GB,
Windows Server HPC Edition (Service Pack 1)

Compute
node (8)

Dell PowerEdge R905,
4 AMD Quad Core Opteron 8356 at 2.3GHz,
4x512K Cache, Memory 16 GB,
Windows Server HPC Edition (Service Pack 1)

2.2 Software Environments
All the algorithms were explicitly written for arbitrary MPI and
threading parallelism. As our software is C#, we used the
MPI.NET (version 1.0) environment [15] which is a C# wrapper
around Microsoft’s MPI and offers full functionality and
performed excellently on our problems.

The Microsoft CCR (Concurrency and Computation Runtime)
threading environment has been described in earlier papers [7-10].
We used version 2.0. We note that it is flexible and high

performance and easily supports two modes. In the first short
lived threads are spawned dynamically and execute independent
tasks before terminating at a synchronization point. In the second
mode, we adopt a model where CCR threads [11,12] are used
more like MPI processes and are long lived with rendezvous
synchronization points from time to time. We term these the
short-lived and long-lived threading modes in section 4.

In the hybrid model allowing both MPI and Threading, MPI is
always used between nodes but each node can be any number of
MPI processes that themselves run a set of threads. In the results
given here, the product of the number of MPI processes per node
and the number of threads per node was always less than equal to
the number of cores on the node. Note that decreasing number of
MPI processes, increases the message size and decreases the
number of messages for a given problem/overall parallelism. This
increases performance but in this case processing the message
does not exploit the several cores available to each MPI process.

We use the term parallel unit to refer to either thread or process in
what follows. We let P be the total number of parallel units – this
is number of MPI processes multiplied into the number of threads
per process.

3. CLUSTERING ALGORITHMS
3.1 Clustering Algorithms
Clustering can be viewed as a optimization problem that
determines a set of K clusters by minimizing

HVEC = i=1
N k=1

K Mi(k) DVEC(i,k) (1)

where DVEC(i,k) is the distance between point i and cluster center
k. Mi(k) is the probability that point i belongs to cluster k. This is
the vector version and one obtains the pairwise distance model
with:

HPW = 0.5 i=1
N j=1

N D(i, j) k=1
K Mi(k) Mj(k) / C(k) (2)

and C(k) = i=1
N Mi(k) is the expected number of points in the

k’th cluster. Equation (1) requires one be able to calculate the
distance between a point i and the cluster center k and this is only
possible when one knows the vectors corresponding to the points
i. (2) reduces to (1) when one inserts vector formulae and drops
terms i=1

N j=1
N DVEC(i,k) DVEC(j,k) k=1

K Mi(k) Mj(k) that
average to zero.

We minimize (1) or (2) as a function of cluster centers (1) and
cluster assignments Mi(k) (in both cases). One can derive
deterministic annealing from an informatics theoretic [13] or
physics formalism [14]. In latter case one smoothes out the cost
function (1) or (2) by averaging with the Gibbs distribution exp(-
H/T). This implies in a physics language that one is minimizing
not H but the free energy at temperature T and entropy S

 F = H-TS (3)

For VECDA and Hamiltonian H given by equation (1), one can do
this averaging exactly.

 Mi(k) = exp(- DVEC(i,k)/T) / Zi (4)

 Zi =  k exp(- DVEC(i,k)/T) (5)

 F = - T i=1
N log [Zi] / N (6)

For the case (2) where only distances are known, the integrals
with the Gibbs function are intractable analytically as the degrees
of freedom Mi(k) appear quadratically in the exponential. In the
more familiar simulated annealing approach to optimization, these

integrals are effectively performed by Monte Carlo. This implies
simulated annealing is always applicable but is usually very slow.
The applicability of deterministic annealing was enhanced by the
observation in [14] that one can use an approximate Hamiltonian
H0 and average with exp(-H0/T). For (2), one uses the form
motivated by the VECDA formalism (4).

 H0 = i=1
N k=1

K Mi(k) i(k) (7)

 Mi(k)  exp(-i(k)/T) with k=1
K Mi(k) =1 (8)

i(k) are new degrees of freedom. This averaging removes local
minima and is designed so that at high temperatures one starts
with one cluster. As temperature is lowered one minimizes (3)
with respective to degrees of freedom. A critical observation of
Rose [13] allows one to determine when to introduce new
clusters. As in usual expectation maximization (steepest descent)
the first derivative of (3) is set to zero to find new estimates for
Mi(k) or other parameters (cluster centers for VECDA). Then one
looks at the second derivative  of F to find instabilities that are
resolved by splitting clusters. One does not examine the full
matrix but the submatrices coming from restricting  to variations
of the parameters of a single cluster with the K-1 other clusters
fixed and two clusters placed at location of clusters whose
stability one investigates. As temperature is lowered one finds that
clusters naturally split and one can easily understand this from the
analytic form for . The previous work [14] on PWDA was
incomplete and did not consider calculation of  but rather only
assumed an a priori fixed number of clusters. We have completed
the formalism and implemented it in parallel. Note we only need
to find the single lowest eigenvalue of  (restricted to varying one
cluster). This is implemented as power (Arnoldi) method. One
splits the cluster if its restricted  has a negative eigenvalue and
this is smallest – minimized over all clusters.

The formalism for VECDA can be found in our earlier work and
[Rose98]. Here we just give results for the more complex PWDA
and use it to illustrate both methods. We let indices k   runs
over clusters from 1 to K while i j   run over data points from 1
to N. Mi(k) has already been given in equation (8). Then one
calculates:

A(k) = - 0.5 i=1
N j=1

N D(i, j) Mi(k) Mj(k) / C(k)2 (9a)

B(k) = i=1
N D(i, ) Mi(k) / C(k) (9b)

C(k) = i=1
N Mi(k) (9c)

Allowing the estimate (k) = (B(k) + A(k)) (10)
which minimizes F of equation (6). The NKNK second
derivative matrix  is given by

{,}{,} = (1/T)  {M()  - M() M() } +
(M() M() / T2) {k=1

K [- 2A(k) - B(k) - B(k) + D(,)]
[M(k) - k] [M(k) - k]/C(k)} (11)

Equations (9) and (10) followed by (8) represent the basic steepest
descent iteration that is performed at fixed temperature until the
estimate for (k) is converged. Note steepest descent is a
reasonable approach for deterministic annealing as one has
smoothed the cost function to remove (some) local minima. Then
one decides whether to split a cluster from the eigenvalues of  as
discussed above. If splitting is not called for, one reduces the
temperature and repeats equations (8) through (11). There is an
elegant method of deciding when to stop based on the fractional
freezing factors (k)

(k) = i=1
N Mi(k) (1 - Mi(k)) / C(k) (12)

As temperatures are lowered after final split, then the Mi(k) tend
to either 0 or 1 so (k) tends to zero. We currently stop when all
the freezing factors are < 0.002 but obviously this precise value is
ad-hoc.

3.2 Multi-scale and Deterministic Annealing
Deterministic annealing can be considered as a multi-scale
approach as quantities are weighted by exp (-D/T) for distances D
and temperature T. Thus at a given temperature T, the algorithm is
only sensitive to distances D larger than or of order T. One starts
at high temperatures (determined by largest distance scale in
problem) and reduce temperature (typically by 1% each iteration)
until you reach either the distance scale or number of clusters
desired. As explained in original papers [12], clusters emerge as
phase transitions as one lowers the temperature and need not be
put in by hand.

3.3 Geometric Structure and Visualization

Figure 1. 4000 Patient Records with 8 clusters from PWDA

Figure 2. 4500 ALU pairwise aligned Gene Sequences with 10
clusters from PWDA

We are using our software in fashion illustrated in figures 1 and 2.
The original data is clustered with VECDA (see earlier papers for
examples) or PWDA and then visualized by mapping points to 3D

with MDS [6] and visualizing with a 3D viewer written in
DirectX. As a next step, we will allow users to select regions
either from clustering or MDS and drill down into the substructure
in this region. Like the simpler linear principal component
analysis, MDS of a sub-region is generally totally different from
that of full space. We note here that deterministic annealing can
also be used to avoid local minima in MDS. We will report our
extensions of the original approach in [18] and comparison with
Newton’s method for MDS [19] elsewhere.

Figure 3. Gene Sequences data of Figure 2 mapped by a
dimension reduction function before MDS.

Clustering in high dimensions d is not intuitive geometrically as
the volume of a cluster of radius R is proportional to R(d+1)
implying that a cluster occupying 0.1% of total volume has a
radius reduced by only a factor 0.99 from that of overall space
with d=1000 (a value typical of gene sequences). These
conceptual difficulties are avoided by the pairwise approach. One
does see the original high dimension when projecting points to 3D
for visualization as they tend to appear on surface of the lower
dimensional space. This can be avoided as discussed in [22] by a
mapping Distance D  f(D) where f is a monotonic function
designed so that the transformed distances f(D) are distributed
uniformly in a lower dL dimensional space. We experimented with
dL = 2 and 4 where the mapping is analytically easy but found it
not improve the visualization. Typical results are shown in figure
3 that maps data of figure 2 to 2 dimensions before applying MDS
– the clustering is still performed on original unmapped data.
Certainly the tendency in figure 2 to be at edge of visualization
volume is removed but data understanding does not seem
improved. This approach finds an effective dimension deff for
original data by comparing mean and standard deviation of all the
inter-point distances D(i,j) with those in a dimension deff. This
determines an effective dimension deff of 40-50 for sequence data
and about 5 for medical record data.; in each case deff is a
dimension smaller than that of underlying vector space. This is
not surprising as data is a very special correlated set of points.

3.4 Parallelism
The parallelism for clustering is straightforward data parallelism
with the N points divided equally between the P parallel units.
This is the basis of most MapReduce algorithms and clustering
was proposed as a MapReduce application in [20]. We have in
fact compared simple (K-means) clustering between versions and
MapReduce and MPI in [21] and VECDA should be more suitable

for MapReduce as it is more computation at each iteration
(MapReduce has greater overhead than MPI on communication
and synchronization). VECDA only uses reduction, barrier and
broadcast operations in MPI and in fact MPI implementation of
this algorithm is substantially simpler than the threaded version.
Reduction, Barrier and Broadcast are all single statements in MPI
but require several statements – especially for reduction – in the
threaded case. Reduction is not difficult in threaded case but
requires care with many opportunities for incorrect or inefficient
implementations.

PWDA is also data parallel over points and its O(N2) structure
gives it similarities to other O(N2) algorithms such as those for
particle dynamics. We divide the points between parallel units.
Each MPI process also stores the distances D(i, j) for all points i
for which process is responsible. Of course the threads inside this
process can share all these distances stored in common memory of
a multicore node. There are subtle algorithms familiar from N-
body particle dynamics where a factor of 2 in storage (and in
computation) is saved by using the symmetry D(i, j) = D(j, i) but
this did not seem useful in this case. The MPI parallel algorithm
now needs MPI_SENDRECV to exchange information about the
distributed vectors; i.e. one needs to know about all components
of vectors Mi Bi and the vector Ai iterated in finding maximal
eigenvectors. This exchange of information can be done with a
ring structure as again used in O(N2) particle dynamics problems.
We measured the separate times in the four components of MPI –
namely SENDRECV, Reduction, and Broadcast and only the first
two are significant reaching 5-25% of total time with Broadcast
typically less than 0.1% of execution time. SENDRECV is
typically 2 to 3 times reduction but the latter is a non trivial
overhead (often 5-10%).

3.5 Computational Complexity
The vector and pairwise clustering methods have very different
and complementary computational complexities. VECDA
execution time is proportional to N d2 for N points – each of
dimension d. PWDA has an execution time proportional to N2.
PWDA can rapidly become a supercomputer computation. For
example with 4500 sequence datapoints and 8 clusters, the
sequential execution time is about 15 hours on a core of the
systems used in our benchmarks. A direct clustering with PWDA
of half million points (relevant even today) would naturally use
around 5000 cores (100 points per core) with pure MPI
parallelization. The hybrid threading-MPI parallelism could
support more cores as discussed in Sec 2.2.

We note that currently some 40-70% of the computation time is
used in deciding whether to split clusters in PWDA; there are
probably significantly better less time expensive algorithms here.
The runs of VECDA reported here correspond to a low dimension
space d = 2 for which negligible time is spent in splitting decision.
The second derivative matrices are of size NKNK for PWDA
and of size dKdK for VECDA. These are full matrices but as
power method for determining maximal eigenvalues is used the
computation is proportional to to the square of the matrix
dimension. For computations reported here, the annealing uses
from 1000-10,000 temperature steps while each eigenvalue
determination uses 10-200 iterations.

4. PERFORMANCE
4.1 Applications

We used three sample applications in the research reported here
and expect other publications to address the domain specific
scientific results. Here we just use them to study the algorithms
and their performance. The first application was a collection of
1500, 3000 and 4500 ALU sequences where the clustering is
designed to understand gene families as discussed before in [23].
Results from this are seen in figures 2 and 3 but not used in
performance study. The second application came from medical
informatics [24] and consisted of up to 36,000 medical records
each of which had 30 properties connected to a study of childhood
obesity. These properties were normalized uniformly and used to
define a vector for each patient record consisting of continuous
and binary data. These are combined to form a Euclidean distance
between each patient record. As shown already in figure 1, this
data shows striking structure after being clustered and projected
by MDS to 3D. The third application was a Monte Carlo
collection of ten Gaussian clusters in two dimensions; various
dataset sizes were used and here we use results from datasets with
10 clusters – each containing 20,000 or 40,000 data points. We
used the latter of scaled speedup studies of VECDA where
problem size is increased proportional to the number of nodes.
This is achieved by trivial replication of points as this ensures an
execution time exactly proportional to the number of points. This
is an artificial example but similar in architecture to the census
data clustering reported in [8]

4.2 Approach
As in earlier papers [7-10], rather than plot speed-up, we present
results in terms of an overhead f(n,P) where different overhead
effects are naturally additive. Further in simple cases the overhead
only depends on the grain size n = N/P in our case. Putting T(n,P)
as the execution time on P parallel units, we can define

Overhead f(n,P) = (PT(n,P)-T(Pn,1))/T(Pn,1) (13)
and efficiency  = 1/(1+f) and Speed-up = P (14)

We note that the overhead is approximately 1 – the efficiency .

4.3 Performance Results
We obtain generally good speed-up (low overhead) in our
measurements with however some surprising results.

Figure 4. Measurements of parallel overhead for samples of
2000 and 4000 element patient data on 8, 16 and 24 cores on a
single workstation with thread-based parallelism

In figure 4, we show some simple runs on the 8, 16 and 24 core
workstations in the Barcelona cluster of table 1. The highest
overhead is 0.16 on 24 cores but even this corresponds to a

speedup of 20.7 on the 24 core workstation. This data as expected
(and seen in all our runs) shows the overhead increasing as data
set sizes decrease. Figure 5 shows an effect that we will see in
more detail later. This looks at execution time for a largish 10,000
element patient record data for different mechanisms for the
parallelism. Namely we achieve 24 way parallelism (on the 24
core workstation) with different choices of MPI and threading.

Figure 5. 24 way parallel runs on 24 core Dell Intel
workstation for different choices of MPI and Thread
parallelism for 10,000 element patient data.

The poorest performance is seen for the case of pure thread
parallelism – 24 threads and no MPI (just the one process). This
pure threading case is about 25% slower than the other choices –
corresponding to 24 MPI processes(no extra threading), 12 MPI
processes (each of 2 threads), 6 MPI processes (each of 4 threads),
and finally 4 MPI processes (each of 6 threads). We have
discussed the overhead of threading in our earlier papers and
noted that Windows (the operating system used in all our results)
has overheads that limit the speed up obtainable with threads.

Figure 6. Measurements from [8] showing 5 to 10% runtime
fluctuations on an 8 core workstation. The results are plotted
as a function of number of simultaneous threads from 1 to 8
and for three different dataset sizes.

‐0.02

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

Patient2000‐16

Patient4000‐16

Patient2000‐8

Patient4000‐8

Patient4000‐24core

1 2 4 8 16 24 cores

Overhead

0

0.025

0.05

0.075

0.1

0 1 2 3 4 5 6 7 8
Number of Threads (one per core)

80 Clusters
500,000

50,000

10,000

Datapoints
per thread

b)

0

0.05

0.1

0.15

0.2

0 1 2 3 4 5 6 7 8

XP C# CCR

500,000

50,000

10,000

Datapoints
per thread

a)

Std Dev
Runtime

1 Cluster

Figure 7. Parallel Overhead for VECDA using long lived
threads run on 128 core Madrid Cluster in table 1. The results
achieve a given parallelism by choosing number of nodes, MPI
processes per node and threads per MPI process. The number
of threads increases as you move from left to right for given
level of parallelism.

In particular as discussed in [9], thread execution times fluctuate
substantially with figure 6 showing standard deviations from 5 to
10% on a simple kernel representative of the VECDA clustering
algorithm.

The identical code (translated from C# to C) shows order of
magnitude lower fluctuations when run under Linux [ICCS] with
interesting systematics even in Linux case. These fluctuations can
give significant parallel overheads as parallel algorithms used in
VECDA and PWDA like those in most scientific algorithms
requires iterative thread synchronization at the rendezvous points.
Here the execution time will be the maximum over that of all the
simultaneous fluctuating threads and so increase as this number
increases. As described in the earlier papers we have always seen
this and reported this effect to Microsoft. We found that these
fluctuations were the only sizeable new form of parallel overhead
compared to those well known from traditional parallel computing
i.e. in addition to load imbalance and communication overhead.
We did note the possible of extra overheads due to different
threads interfering on a single cache line but our current software
is coded to avoid this. Note that the fluctuation effect is larger in
the work reported here compared to our previous papers as we are
looking here at many more simultaneous threads. Note that the
effect does not just reflect the number of threads per process but
also the total number of threads because the threads are
synchronized not just within a process but between all processes
as MPI calls will synchronize all the threads in the job. Thus it is
interesting to examine this effect on the full 128 core Madrid
cluster as this could even be a model for performance of future
much larger core individual workstations.

Note that our current clusters of table 1 only have 10 gigabit
Ethernet connections and we will extend our work with a new
Infiniband connected 24 core node Windows cluster. This should

allow more sensitive examination of this thread synchronization
problem. We note that VECDA and PWDA differ somewhat in
this respect. VECDA only uses reduction (dominant use),
broadcast and barrier MPI operations and so has particularly fast
MPI synchronization. PWDA also has MPI_SENDRECV
(exchange of data between processes) which increases the MPI
synchronization time and could be expected to mask the thread
synchronization effect.

We see an interesting demonstration of this effect in figure 7
which shows the parallel overhead for 44 different choices of
nodes (from 1 to 8), MPI processes per node (from 1 to 16) and
threads per node (from 1 to 16 divided by MPI processes per
node). The results are divided into groups corresponding to a
given total parallelism. For each group, the number of threads
increases as we move from left to right. For example in the 128
way parallel group, there are five entries with the leftmost being
16 MPI processes per node on 8 nodes (a total of 128 MPI
processes) and the rightmost 16 threads on each of 8 nodes (a total
of 8 MPI processes). We find an incredibly efficient pure MPI
version – an overhead of just 0.08 (efficiency 92%) for 128 way
parallelism whereas the rightmost case of 16 threads has a 0.63
overhead (61% efficiency). All cases with 16 threads per node
show a high overhead that slowly increases as the node count
increases. For example the case of 16 threads on one node has an
overhead of 0.51. Note that in this we use scaled speedup i.e. the
problem size increases directly according to number of parallel
units. This ensures that the inner execution scenarios are identical
in all 44 cases reported in figure 7. We achieve this by replicating
a base point set as one can easily see that leads to same
mathematical problem but with a work that increases properly as
number of execution units increases.

Figure 8 shows similar results for the execution of PWDA on the
Madrid cluster for the Patient data set with 10,000 elements – the
same one used in figure 5. Generally MPI parallelism
outperforms thread parallelism but the effect is not as large as that
in figure 7. Part if not all of this difference is due to the
substantially higher MPI overhead which is largely due to
MPI_SENDRECV which is not used in the VECDA parallel
algorithm in figure 7.

Parallel Patterns

‐0.02

0.03

0.08

0.13

0.18

0.23

0.28

0.33

0.38

0.43

0.48

0.53

0.58

0.63

0.68

Parallel Deterministic Annealing Clustering VECDA (Long Lived)
Scaled Speedup Tests on eight 16-core Systems (10 Clusters; 160,000 points per cluster per thread)

Threading with CCR using Long Lived Threads

Parallel Overhead

2-way 4-way
8-way

16-way 32-way 48-way

64-way

128-way

Figure 8. Parallel Overhead for PWDA run on 128 core
Madrid Cluster in table 1. The results achieve a given
parallelism by choosing number of nodes, MPI processes per
node and threads per MPI process. The number of threads
increases as you move from left to right for given level of
parallelism.

The MPI overhead is such that this problem set size is best suited
to systems with 64 or smaller levels of parallelism. For example
for the cases of 16 MPI processes on 4 nodes or 8 MPI processes
on 8 nodes, we find an overhead of 0.18 entirely described by
MPI overheads (that were measured during run) that were 28%
MPI_REDUCE and the remainder MPI_SENDRECV as
broadcast time was negligible. The threaded implementations of
64 way parallelism have about twice the overhead of case where
MPI is used on the node. Figure 8 shows more variation than
figure 7 (see for example 48 way parallelism group) because we
now see significant increase in overheads as we increase the
number of nodes with the 6 node cases of 48 way parallelism
showing more overhead than 3 node case. Our near future work
includes improving the clarity of figures with extended patterns
for runs, re-ordering within groups and improving statistics by
averaging over several runs for each scenario.

To investigate this effect further we carefully re-implemented the
VECDA code replacing long threads by short lived threads
spawned at each new parallel section. In figure 9, we compare the
two versions of VECDA on the Barcelona cluster of table 1. The
results have similar structure to figure 7 except the long lived
VECDA-LL code (solid lines) has lower overheads than the
newer short lived thread VECDA-SL code (dotted lines). We had
hoped that the high overheads seen in figures 7, 8 and 9 for
patterns with many threads might have been some glitch in the
rather tricky long lived code. However our results support the
correctness of the original code and suggest that as expected it is
better to use long lived threads. This short lived threading

approach was also used in all PWDA results presented here but
the results of figure 9 suggest that we should re-implement with
long lived threads and use that choice in our ongoing work.

5. CONCLUSIONS
We believe that libraries or collections of services implementing
the best available algorithms in high performance parallel versions
will be essential for many fields to exploit the data deluge. Our
work has presented two complementary approaches to clustering –
pairwise and vector based that together cover a broad range of
problems. We have shown good parallel performance with as
expected a given problem size running well up to a certain level of
parallelism. We have shown significant impact on performance of
different implementations. MPI outperforms threaded codes on
Windows while a long lived threading with rendezvous
synchronization outperforms a simpler model with short lived
threads spawned afresh at each parallel section.

6. ACKNOWLEDGMENTS
We thank other members of the SALSA parallel computing group
for conversation and to Huapeng Yuan who developed some of
the initial code – especially VECDA using long lived threads. Our
work on patient data would not have been possible with Gilbert
Liu from IU Medical School and the gene sequence data was
produced by Haixu Tang and Mina Rho from the IU
Bioinformatics group who also answered our endless naïve
questions. The IU MPI.NET group led by Andrew Lumsdaine was
very helpful as we learnt how to use this. This research was
partially supported by Microsoft. We have obtained continued
help on CCR from George Chrysanthakopoulos and Henrik
Frystyk Nielsen. Scott Beason provided key support on
visualization and set up of Clusters.

Parallel Pairwise Clustering PWDA
Speedup Tests on eight 16-core Systems (6 Clusters; 10,000 patient records)

Threading with CCR using Short Lived Threads
Parallel Overhead

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

4-way

8-way 16-way

32-way

48-way

64-way

128-way

96-way

1, 2, 4, 8, 16, 32, 48, 96, 128-way parallelism

Parallel Patterns

Parallel Overhead

Figure 9. Parallel Overhead for VECDA using long lived
threads (solid) or short lived threads (dotted lines) run on 32
core Barcelona Cluster in table 1. The results achieve a given
parallelism by choosing number of nodes, MPI processes per
node and threads per MPI process. The number of threads
increases as you move from left to right for given level of
parallelism.

7. REFERENCES
[1] Dennis Gannon and Geoffrey Fox, Workflow in Grid

Systems Concurrency and Computation: Practice &
Experience 18 (10), 1009-19 (Aug 2006), Editorial of special
issue prepared from GGF10 Berlin.

[2] Jeffrey Dean and Sanjay Ghemawat, MapReduce: Simplified
Data Processing on Large Clusters, OSDI'04: Sixth
Symposium on Operating System Design and
Implementation, San Francisco, CA, December 2004.

[3] Geoffrey Fox and Marlon Pierce Grids Challenged by a Web
2.0 and Multicore Sandwich Special Issue of
Concurrency&Compuitation:Practice&Experience on
Seventh IEEE International Symposium on Cluster
Computing and the Grid — CCGrid 2007, Keynote Talk Rio
de Janeiro Brazil May 15 2007
http://grids.ucs.indiana.edu/ptliupages/publications/CCGridD
ec07-Final.pdf

[4] Julie D. Thompson, Frederic Plewniak and Oliver Poch, A
comprehensive comparison of multiple alignment programs,
Nucleic Acids Research 27, 2682-2690 (1999)

[5] Robert C. Edgar, MUSCLE: a multiple sequence alignment
method with reduced time and space complexity, BMC
Bioinformatics 5, 113 (2004)

[6] Seung-Hee Bae Parallel Multidimensional Scaling
Performance on Multicore Systems at workshop on
Advances in High-Performance E-Science Middleware and
Applications in Proceedings of eScience 2008 Indianapolis
IN December 7-12 2008
http://grids.ucs.indiana.edu/ptliupages/publications/eScience
2008_bae3.pdf

[7] Xiaohong Qiu, Geoffrey Fox, H. Yuan, Seung-Hee Bae,
George Chrysanthakopoulos, Henrik Frystyk Nielsen High
Performance Multi-Paradigm Messaging Runtime Integrating
Grids and Multicore Systems September 23 2007 published
in proceedings of eScience 2007 Conference Bangalore India
December 10-13 2007
http://grids.ucs.indiana.edu/ptliupages/publications/CCRSept
23-07eScience07.pdf

[8] Xiaohong Qiu, Geoffrey C. Fox, Huapeng Yuan, Seung-Hee
Bae, George Chrysanthakopoulos, Henrik Frystyk Nielsen
PARALLEL CLUSTERING AND DIMENSIONAL
SCALING ON MULTICORE SYSTEMS Invited talk at he
2008 High Performance Computing & Simulation
Conference (HPCS 2008) In Conjunction With The 22nd
EUROPEAN CONFERENCE ON MODELLING AND
SIMULATION (ECMS 2008) Nicosia, Cyprus June 3 - 6,
2008; Springer Berlin / Heidelberg Lecture Notes in
Computer Science Volume 5101/2008 "Computational

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

1.2

1.3

Parallel Deterministic Annealing Clustering VECDA
Long Lived (LL solid lines) vs. Short Lived (SL dotted lines) Threads

(Scaled Speedup Tests on two 16-core Systems; 10 Clusters; 160,000 data points per cluster per thread)

4-way
8-way

2-way

32-way

16-way

Parallel Overhead

Parallel Patterns

Science: ICCS 2008" ISBN 978-3-540-69383-3 Pages 407-
416 DOI: http://dx.doi.org/10.1007/978-3-540-69384-0_46

[9] Xiaohong Qiu, Geoffrey C. Fox, Huapeng Yuan, Seung-Hee
Bae, George Chrysanthakopoulos, Henrik Frystyk Nielsen
Performance of Multicore Systems on Parallel Data
Clustering with Deterministic Annealing ICCS 2008:
"Advancing Science through Computation" Conference;
ACC CYFRONET and Institute of Computer Science AGH
University of Science and Technology Kraków, POLAND;
June 23-25, 2008. Springer Lecture Notes in Computer
Science Volume 5101, pages 407-416, 2008. DOI:
http://dx.doi.org/10.1007/978-3-540-69384-0_46

[10] Xiaohong Qiu , Geoffrey C. Fox, Huapeng Yuan, Seung-Hee
Bae, George Chrysanthakopoulos, Henrik Frystyk Nielsen
Parallel Data Mining on Multicore Clusters 7th International
Conference on Grid and Cooperative Computing GCC2008
Shenzhen China October 24-26 2008
http://grids.ucs.indiana.edu/ptliupages/publications/qiu-
ParallelDataMiningMulticoreClusters.pdf

[11] Home Page for SALSA Project at Indiana University
http://www.infomall.org/salsa.

[12] Kenneth Rose, Eitan Gurewitz, and Geoffrey C. Fox
Statistical mechanics and phase transitions in clustering
Phys. Rev. Lett. 65, 945 - 948 (1990)

[13] Rose, K. Deterministic annealing for clustering,
compression, classification, regression, and related
optimization problems, Proceedings of the IEEE Vol. 86,
pages 2210-2239, Nov 1998

[14] T Hofmann, JM Buhmann Pairwise data clustering by
deterministic annealing, IEEE Transactions on Pattern
Analysis and Machine Intelligence 19, pp1-13 1997

[15] MPI.NET Home Page
http://www.osl.iu.edu/research/mpi.net

[16] Microsoft Robotics Studio is a Windows-based environment
that includes end-to-end Robotics Development Platform,
lightweight service-oriented runtime, and a scalable and
extensible platform. For details, see
http://msdn.microsoft.com/robotics/

[17] Georgio Chrysanthakopoulos and Satnam Singh “An
Asynchronous Messaging Library for C#”, Synchronization
and Concurrency in Object-Oriented Languages (SCOOL) at
OOPSLA October 2005 Workshop, San Diego, CA.

[18] Hansjorg Klock, Joachim M. Buhmann Multidimensional
scaling by deterministic annealing (1997) in Energy
Minimization Methods in Computer Vision and Pattern
Recognition, Eds Pelillo M. and Hancock E.R., Proc. Intl.
Workshop EMMCVPR Venice Italy, Springer Lecture Notes
in Computer Science 1223 ppg. 246-260 May 1997

[19] Anthony J. Kearsley, Richard A. Tapia, Michael W. Trosset
The Solution of the Metric STRESS and SSTRESS Problems
in Multidimensional Scaling Using Newton’s Method,
technical report 1995.

[20] C. Chu, S. Kim, Y. Lin, Y. Yu, G. Bradski, A. Ng, and K.
Olukotun. Map-reduce for machine learning on multicore. In
B. Scholkopf, J. Platt, and T. Hoffman, editors, Advances in
Neural Information Processing Systems 19, pages 281–288.
MIT Press, Cambridge, MA, 2007.

[21] Jaliya Ekanayake, Shrideep Pallickara, and Geoffrey Fox
Map-Reduce for Data Intensive Scientific Analyses
Proceedings of the IEEE International Conference on e-
Science. Indianapolis. 2008. December 7-12 2008
http://grids.ucs.indiana.edu/ptliupages/publications/ekanayak
e-MapReduce.pdf

[22] Hansjorg Klock, Joachim M. Buhmann, Data visualization
by multidimensional scaling: a deterministic annealing
approach, Pattern Recognition 33 (2000) 651}669

[23] Alkes L. Price, Eleazar Eskin and Pavel A. Pevzner, Whole-
genome analysis of Alu repeat elements reveals complex
evolutionary history. Genome Res. 2004 14: 2245-2252 DOI:
http://dx.doi.org/10.1101/gr.2693004

[24] Bell JF, Wilson JS, Liu GC. Neighborhood greenness and 2-
year changes in body mass index of children and youth. Am J
Prev Med. Dec 2008;35(6):547-553.

