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Abstract—Serverless computing provides a small runtime
container to execute lines of codes without a management of
infrastructure which is similar to Platform as a Service (PaaS)
but a functional level. Amazon started the event-driven compute
named Lambda functions in 2014 with a 25 concurrent limitation
but it now supports at least a thousand of concurrent invocation
to process event messages generated by resources like databases,
storage and system logs. Other providers i.e. Google, Microsoft
and IBM offer a dynamic scaling manager to handle parallel
requests of stateless functions in which additional containers
are provisioning on new compute nodes for distribution. How-
ever, while functions are often developed for microservices and
lightweight workload, they are associated with distributed data
processing using the concurrent invocations. We claim that the
current serverless computing environments are able to support
dynamic applications in parallel when a partitioned task is
executable on a small function instance. We present results
of throughput, network bandwidth, a file I/O and compute
performance regarding to the concurrent invocations. We also
deployed a series of functions for large distributed data processing
to address the elasticity and scalability and then demonstrate the
differences between serverless computing and virtual machines
for cost efficiency and resource utilization.

Keywords—FaaS$, Serverless, Event-driven Computing, Amazon
Lambda, Google Functions, Microsoft Azure Functions, IBM
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I. INTRODUCTION

Serverless computing is a commercial cloud service that
enables event-driven computing for stateless functions exe-
cutable on a container with a small resource allocation. Con-
tainers are lightweight which means that it starts in a second
and destroys quickly whereas a software environment for
applications is preserved in a container image and distributed
over multiple container instances. This is one of the benefits
that serverless computing takes along with its ease of use
while traditional virtual machines on Infrastructure as a Service
(TaaS) need some time to scale with system settings i.e. an
instance type, a base image, a network configuration and a
storage option.

Most services in the cloud computing era, pay-as-you-
go is a basic billing method in which charges are made
for allocated resources rather than actual usage. Serverless
computing may provide a cost-efficient service because it is
billed for the execution time of containers without paying
for procured resources that never used. Serverless also uses
0.1 second as a charging metric although many VM servers
still use an hourly charge metric. Amazon recently applied

per-second billing to EC2 services as Google Compute and
Microsoft Azure already have the per-second billing but it still
costs every second whether a program actually runs or not.

Serverless is a miss-leading terminology because it runs
on a physical server but it succeeded in emphasizing no
infrastructure configuration on the user side to prepare compute
environments. Geoffrey et al [1] defines serverless computing
among other existing solutions, such as Function-as-a-Service
(FaaS) and Event-Driven Computing, and we see production
serverless computing environments are offered as an event-
driven computing for microservices in which event is an
occurrence generated by other systems and resources and
microservices are described as a formal syntax written in a
programming function. New record on a database, deletion of
an object storage, or a notification from Internet of Things
devices is an example of various events and the event typically
contains messages to be processed by a single or multiple
event handlers. Sometimes an event is generated at a certain
interval of time which is predictable but many cases significant
numbers of events need to be processed at scale instantly.
Horizontal scaling for processing concurrent requests is one of
the properties of cloud-native applications [2] which have same
practical approaches and designs to build elastic and scalable
systems. Data processing serverless software (ExCamera [3],
PyWren [4]) for video rendering and Python program recently
show that extensive loads on the event handlers can be ingested
on serverless computing by using concurrent invocations. We
also understand that namespaces and control groups (cgroups)
offered by containers power up serverless computing with an
resource isolation to process dynamic applications individually,
but provisioning a thousand of instances within a few seconds.

A new event message is processed on a function instance
isolated by others and multiple instances are necessary when
several event messages are generated at the same time. Event
messages generated by mobile applications, for example, are
lightweight to process but the quantity of incoming message
is typically unpredictable so that such applications need to be
deployed on a particular platform built with dynamic provi-
sioning and efficient resource management in which serverless
computing aims for [5]. We may observe performance degra-
dation if a single instance has to deal with multiple event
massages with heave workload in parallel. Unlike IaaS, the
cost of instantiating a new instance is relatively small and
an instance for function execution is short-lived on serverless
computing thus it would have demanded to process concurrent
function invocations using multiple instances like one instance



per request. Certain applications that can be partitioned into
several small tasks, such as embarrassingly parallel, may
take advantage of the concurrent invocations on serverless
computing in which horizontal scaling is applied to achieve
the minimal function execution time required to process the
distributed tasks.

In this paper we evaluate serverless computing environ-
ments invoking functions in parallel to demonstrate the perfor-
mance and throughput of serverless computing for distributed
data processing. We compare the performance of CPU, mem-
ory and disk intensive functions running in between a sequen-
tial and a concurrent invocation which helps understanding
performance bottlenecks and function behaviors on serverless
computing environments. We also measure the throughput of
a set of event handlers including HTTP, database and storage
which may indicate a maximum size of dequeuing event
messages because functions are triggered by these common
handlers supported by each serverless provider. Continuous de-
velopment and integration are tested with source code changes
and function configuration changes e.g. timeout value and
memory size while concurrent functions are running. The rest
of the paper contains comparisons between IaaS and FaaS
using experiments on big data and deep learning applications
and the latest features offered by each servereless computing
environment from Amazon Lambda, Microsoft Azure Func-
tions, Google Functions and IBM OpenWhisk.

A. Trigger

A trigger, also called a front-end event handler invokes
a function with event messages as input parameters thus a
function is executed to process a request. Timers invoked by
crons are used to accomplish a set of tasks on a regular interval.
For example, an Apache HTTP web server error log is deleted
3AM daily followed by archiving a copy of the log 2AM by
scheduling routine cron tasks. Sensors at monitoring services
detect events as a series of logics and new event handlers
are continuously added based on application behaviors and
purposes. For example, Internet of Things (IoT) device at a
smart home detects receiving a package from online retailers
and generates a new event message which might be a trigger
of other applications e.g. sending text messages to a package
recipient. Serverless computing providers understand various
use cases and support different types of events including HTTP
requests, object storage e.g. AWS S3, and a database e.g. IBM
Cloudant thus as many actions as they can handle in order to
answer back the event messages. Event handlers also called
triggers either listen events and create an function invocation
(push model) or collect changes at a regular interval to invoke
a function (pull model). In this paper, We measure trigger
resolutions to see how sensitive it is and understand its capacity
of concurrent event messages. To measure a latency of triggers,
we ran a simple function on AWS Lambda with three triggers;
HTTP API gateway, DynamoDB and S3. For IBM OpenWhisk,
we ran a function using a HTTP trigger and the IBM Cloudant
trigger. For Google Cloud Function, we had triggers from
HTTP, Google Cloud Storage and a pub/sub messaging trigger.
For Azure Functions, we had triggers from HTTP and storage.

1) HTTP Trigger: HTTP trigger provides a simple but a
rich format to invoke a function with various content types e.g.
archive files, text, and JSON and multiple methods e.g. PUT,

POST and DELETE to deliver event messages differently.
Asynchronous non-blocking call is available to deal with
concurrent requests but queuing systems and database systems
are more suitable to estimate dynamic requests than the HTTP
trigger.

2) Database Trigger: Database trigger invokes a function
when there is an insertion/modification/deletion of a record
in a table which behaves like a message queuing system.
Google supports pub/sub trigger in their serverless platform
and it might be exchangeable with a database trigger since
Google Functions does not have a database trigger. We see
the comparison of the database type of trigger with AWS
DynamoDB and IBM Cloudant as a direct trigger to their
respective vendors’ functions. As of now we cannot compare
Azure and Google Cloud as they do not have a direct trigger
available to their respective functions. As per the graph, we see
that performance of the AWS DynamoDB trigger surpasses the
IBM Cloudant trigger.

3) Object Storage Trigger: Object storage is widely used to
store and access data from various platforms and we find that
the object storage trigger is supported in the most serverless
providers. AWS S3 trigger performs better than the Google
Cloud storage trigger but we still find that HTTP trigger is
a more reliable choice in processing multiple requests. Note
that we were not able to perform the object storage trigger for
IBM cloud storage it does not offer a direct trigger to IBM
Openwhisk as of now.

Serverless computing environments with concurrent in-
vocations may support distributed data processing with its
throughput, latency and compute performance at scale [6].
There are certain restrictions that we must be aware of before
implementing a serverless function, for example, event handler
types are a few; HTTP, object storage and database in common,
memory allocation is small; 512MB to 3GB memory allowance
per a container, function execution time is allowed only in
between 5 minutes and 10 minutes and a S00MB size of a
temporary directory is given. In the following sections, we
show our results towards Amazon Lambda, Google Functions,
Microsoft Functions, and IBM OpenWhisk Functions with its
elasticity, concurrency, cost efficiency and, functionality to
depict current serverless environments in production. Big Data
Benchmark from AmpLab and TensorFlow ImageNet exam-
ples are included as a comparison of costs and computation
time between serverless computing and virtual machines as
well.

II. EVALUATION

We evaluate serverless computing environments on
throughput of concurrent invocation, CPUs, response time for
dynamic workload, runtime overhead, and a temporary direc-
tory I/O performance and compare cost-effectiveness, event
trigger throughput, and features using a set of functions written
by supported runtimes e.g. nodeJS, Python, Java and C#. Each
provider has different features, platforms and limitations and
we tried to address the differences and find similarities among
them. Some of the values may not be available because of
two reasons, an early stage of the serverless environments and
limited configuration settings. For example, Microsoft Azure
runs Python 2.7 on Windows NT as a experimental runtime



language thus some libraries and packages for data analysis
are not imported e.g. TensorFlow needs Python 3.5+, and
Google Functions is in a beta version which only supports
Node]S, a javascript runtime although Python is internally
included in a function instance. 512MB memory limit on IBM
OpenWhisk prevents running TensorFlow ImageNet example
which requires at least a 600MB size of memory to perform
image recognition using trained models. New recent changes
are also applied in our tests such as 3008MB memory limits
on Amazon Lambda, and Java runtime on Microsoft Azure
Functions. All of the evaluations were performed using 1.5GB
memory allocation except IBM with 512MB and 5 minutes
execution timeout. To create a concurrent function invocation,
the Boto3 library is used to create asynchronous invocation
on Amazon Lambda, HTTP API is used on Microsoft Azure
and IBM OpenWhisk and an object storage is used on Google
Functions. Tests are completed by the set of functions written
by NodelS 6.10, Java, C#, and Python 3 and 2.7.

A. Concurrent Function Throughput

Function throughput is an indicator of concurrent process-
ing because it tells how many function instances are supplied
to deal with heavy requests. Asynchronous, non-blocking invo-
cations are supported by various methods over the providers.
Amazon SDK (Boto3) allows to invoke a function up to an
account’s concurrent limit and S3 object storage or DynamoDB
database is an alternative resource to invoke a function in
parallel. Google Functions only allows to concurrent execution
by a storage bucket and a rate of processing event messages
varies depends on the length of the message and its size.
Microsoft Azure Functions also scales out automatically by
its heuristic scale controller. IBM OpenWhisk does not seem
to provide scalability unless functions are manually invoked
as a workaround. We had to create a thousand of functions
with an identical logic but a different name and treat them
like invoking a single function in parallel. Figure 1 is a
throughput result per second over the four serverless providers
from 500 to 10000 concurrent invocations. Amazon Lambda
generates about 400 throughput per second in average and
AWS quickly reaches its maximum throughput from a small
number of concurrent invocation (1000). IBM OpenWhisk and
Microsoft Azure Functions show similar behavior in reaching
the best throughput at 2000 invocations and decreasing slowly
over increased invocations. Google Functions indicates slow
but steady increase of throughput over increased invocations.
Throughput at ten thousands of invocations on Google Func-
tions is about 168 per second which is better than IBM and
Azure.

B. Concurrency for CPU Intensive Workload

Multiplying two-dimensional array requires mostly com-
pute operations without consuming other resources thus
we created the matrix multiplication function written in a
JavaScript to stress CPU resources on a function instance
with concurrent invocations. Figure 2 shows an execution time
of the function between 1 and 100 concurrent invocations.
The results with 1 concurrent invocation which is non-parallel
invocation are consistent whereas the results with 100 invo-
cations show the overhead of between 28% and 4606% over
the total execution time. The results imply that more than one
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Fig. 1: Function Throughput on Concurrent Invocations

TABLE I: CPU Performance

Provider | GFLOPS per function | TFLOPS in total of 3000
AWS 19.63 66.30

Azure 2.15 7.94

Google 4.35 13.04

IBM 3.19 12.30

invocation was assigned to a single instance which may have
to share allocated compute resources, i.e. two cpu-intensive
function invocations may take twice longer by sharing CPU
time in half. For instance, the median of the function execution
time on Amazon Lambda (3.72 seconds) is about twice the
non-concurrent invocation (1.76 seconds).

19.63 gigaflops are detected on AWS Lambda with the
1.5GB size of memory configuration (whereas 40 gigaflops are
measured with 3GB memory) but it can reach more than a ter-
aflop when a fleet of containers are provisioned for concurrent
invocations. Serverless platform allocates compute resources
based on the amount of requests which shows to a peak
double-precision floating point performance of 66.3 TFLOPs
when an Amazon Lambda function is invoked concurrently.
Table I is the result of invoking three thousands of functions on
serverless functions which indicates proportional between the
number of functions and the aggregated flops. 66.3 teraflops
are relatively good performance. For example, Intel six core i7-
8700K generates 32 gigaflops and the latest NVIDIA TESLA
V100 GPU delivers 7.8 teraflops for a double precision floating
point. In the comparison of the total of TFLOPS, AWS Lambda
generates 5-7 times faster compute speed than others. Azure
Functions, IBM OpenWhisk, and Google Functions are in
either a beta service or an early stage of development therefore
we expect that the allocated compute resource will be more
comparable when the services are fully mature.

C. Concurrency for Disk Intensive Workload

A function in serverless computing has a writable tem-
porary directory with a small size e.g. SO0MB but it can be
used for various purposes, such as, storing extra libraries, tools
and intermediate data files while a function is running. We
created the function which writes and reads files on the temp
directory to stress a file I/0O. The measured I/O performance
toward a temporary directory is shown in Figure 3 with
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Fig. 3: Concurrency Overhead with File I/O Intensive Function

concurrent invocations. The results with 100 invocations show
that Amazon generates an execution time overhead of 91%,
Google generates the overhead of 145% and IBM generates
the overhead of 338% whereas Microsoft Functions fail to
complete function invocations within the execution time limit,
5 minutes. The median speed of the file read and write is
available in the Table II. Reading speed on Azure Functions is
the most competitive among others although it is not measured
on 100 concurrent invocations due to the storage space issue.
Writing a file between 1 and 100 concurrent invocations is
slightly worse compared to reading, the overhead of 110% on
Amazon Lambda, 164% on Google Functions and 1472% on
IBM OpenWhisk exist whereas the writing speed on Amazon
Lambda is 11 to 78 times faster than Google and IBM when
100 concurrent invocations are made.

D. Concurrency for Network Intensive Workload

Processing dataset from dynamic applications i.e. big data
and machine learning often incur significant performance
degradation in congested networks due to heavy transactions
of file uploading and downloading. If such activities are
distributed at multiple locations, network delays can be eas-

TABLE II: Median Write/Read Speed (MB/s)

Provider 100 Concurrent 1 Concurrent
Write Read Write Read
AWS 39.49 92.95 82.98 152.98
Azure - - 44.14 423.92
Google 3.57 54.14 9.44 55.88
IBM 0.50 33.89 7.86 68.23
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Fig. 4: Concurrency Overhead with Downloading Objects
Function

ily mitigated. Containers for serverless functions tend to be
deployed at different nodes to ensure resource isolation and
efficient resource utilization and this model may help resolving
this issue especially when functions are invoked in parallel. We
created a function which requests data size of 100 megabytes
from an object storage on each service provider thus a hundred
concurrent invocations create network traffic in total of 10
gigabytes. Figure 4 shows delays in the function execution
time between 1 and 100 concurrent invocations. We find that
Google Functions has a minimal overhead between 1 and the
100 concurrency level whereas Amazon Lambda is four times
faster in loading data from Amazon object storage (S3) than
Google object storage. Microsoft Azure Functions fails to get
access of data from its blob storage at 100 concurrency level
and we suspect it might be caused by the experimental runtime,
i.e. Python 2.7 or a single instance for multiple invocations.
Default runtime such as C# and F# may support scalability
better than the other runtime under development on Microsoft
Azure Functions.

E. Elasticity

Dynamic application performing latency-sensitive work-
loads needs elastic provisioning of function instances oth-
erwise overhead and failure would be observed during the
processing of workloads. We assume that serverless computing
scales out dynamically to provide additional compute resources
when a number of concurrent invocations is increased rapidly.
We created the simple function that takes less than 100
milliseconds and the function was invoked concurrently with
random numbers ranging from 10 to 90 over time resulting in
about 10 thousands of the total invocations within a minute.
With this setup, we expected to observe two values; delays of
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TABLE III: Execution Time (milli-sec) on Elasticity

Provider | MED SD Ist PCTL | 90th PCTL | 99th PCTL
AWS 61.08 14.94 35.08 78.99 89.41
Azure 574.0 | 747.33 118.0 1808.30 3202.0
Google 101.0 | 38.75 57.0 162.0 198.0

IBM 112.0 142.23 | 31.0 177.0 378.79

MED = Median, SD = Standard Deviation, PCTL = Percentile
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Fig. 5: Response Time for Dynamic Workload

instantiating new instances (which also called cold start) and a
total number of instances created during this test. We believe
that it explains whether elasticity mechanisms on serverless
computing is efficient or not in resource provisioning and
utilization. Delays in processing time would be observed when
existing function instances are overloaded and new instances
are added slowly which may cause performance degradation
in the entire invoked functions. Figure 5 shows different
results among the serverless providers with the same dynamic
workloads over time. We observed that new function instances
were added when a workload jumps to higher than the point
that existing instances can handle and the increased number of
function instances stay for a while to process future requests.
We find that Amazon and Google support elasticity well in
which the 99th percentile of the function execution time is
below 100 and 200 milliseconds whereas both IBM and Azure
show significant overhead at least two times bigger than others
if we compare the 99th percentile of the execution time. The
number of instances created for this workload was 54, 10, 101
and 100 in the order of Amazon, Azure, Google and IBM.
If there is a new request coming in while a function is in
processing current input data, Amazon provides an additional
instance for the new request whereas others decide to increase
the number of instances based on other factors, such as cpu
load, a queue length, an age of a queued message, which may
take some time to determine. The function we tested uses
the NodeJS runtime and scalable trigger types but we would
consider other runtimes i.e. C# and Java and other triggers e.g.
databases to see if it performs better in dealing with dynamic
workload. Each serverless provider uses different operating
systems and platforms and it seems certain runtimes and
triggers have better support in handling elasticity than others.
For example, Azure Queues has the 32 maximum batch size
to process in parallel and Azure Event Hubs doubles the limit.
Table III contains actual numbers we measured during this test
and the function execution time which is represented by blue
dots in the figure would expect to take less than 0.1 second in
a single invocation but there are overhead when workload is
increased in which the standard deviations and 99th percentile
indicate in the table. It explains that the increased number of
instances should be available instantly with additional amounts
of compute resources to provide enough capacity for the
upcoming demands.

Development and Operations (DevOps) paradigm is applied
to serverless functions to enable continuous delivery and
integration while functions are in action. Functions are ought
to be changed frequently for bug fixes and new updates and the
new release of functions should be deployed without causing
failures and delays to a production environment during the
existing function executions. Function configurations, such as
timeout and memory size, are often necessary without affecting
a function performance and delaying response time. Serverless
computing with DevOps may improve code development and
delivery steps through proper function deployment and con-
figuration which we expect when we write a function like a
program. Figure 6 shows a general function behavior when a
region of source code is updated and a configuration is changed
during 500 function executions in total with 10 concurrent
invocations. Gray dot indicates that a function is completed
in an existing function instance and a green plus indicates a
function is ran on a new instance. We have made a change of
source code before the first 200 invocations and an update of
configurations within the next 200 invocations thus different
behaviors should be observed close to these timelines. Amazon
has a certain period to replace an existing deployment to new
one. There are gray dots between 200 and 400 invocations
and we find that the previous function instances continued
to process several event messages although a new piece of
source code is published before the 200 invocations. Instead,
Google and IBM refreshed entire instances when there is a
new deployment although Google failed to multiple requests
during the update (red ’x’ marker indicates a failure of a
function). Microsoft Azure shows a similar behavior but it
is not clearly visible in the figure due to a small number of
instances. A single instance was detected to process of the first
200 invocations and a couple of new instances were added
later. We saw six new instances on Azure functions.

G. Serverless versus Virtual Machine

Serverless computing does not offer either high-end com-
puting performance or an inexpensive pricing model compared
to virtual machines like Amazon EC2. Virtual machines on
cloud computing have offered multiple options to scale com-
pute resources with machine types, network bandwidth and
storage performance to meet the expectation of performance
requirements of a given workload which requires optimal
capacity planning and system managements. Serverless com-
puting, however, aims to provide dynamic compute resources
for lightweight functions without these administrations and
offer cost-efficient solutions in which users pay for the ex-
ecution time of functions rather than paying for the leased
time of machines. Amazon, for example, has a EC2 machine
choice optimized for intensive tasks with up to 128 vCPUs
and a 3.8TiB size of memory with a limited number of
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allocations (default O, increased upon request) while AWS
Lambda allows to invoke a function at least a thousand of
concurrency per region with a small memory allocation up to
2.8GiB (3008MB) which result in a total size of 2.8TiB. We
ran an experiment in this section to demonstrate possible use
cases of serverless with the understanding of the differences of
these two compute models. Serverless computing is powered
by container technologies which has near zero start-up and
deleting latency during a function life-cycle. For example, we
ran a test of NodeJS function using Apache OpenWhisk with
Kubernetes and a small Docker container (as a Kubernetes
Pod) is deployed and terminated within a few milliseconds
for the function invocation. The container instance was in
a running state (warm state) for a certain period to receive
a future event message which merely consumes compute
resources and was changed to a pause state which indicates
a terminated process but reserving function data like source
code and a temp directory in a storage. This saves time to
re-instantiate a function for the upcoming requests without
wasting compute resources. This may cause some delays at
first which is called cold start but a configuration can be
changed to extend the idle time of the running container
or a regular wake-up invocation can be implemented as a
workaround if necessary. On the contrary, virtual machines
take at least a few seconds to be ready to run a program
and a high-end server type with multiple virtual CPUs and
a large size of memory and storage with a custom machine
image may take 10 to 20 minutes to initialize. Another issue
of using virtual machines is that a resource utilization needs to
be handled by users to maximize values of leasing machines.
If a VM is idle, utilization rate will be decreased and if
more VMs are necessary to support a huge amount of traffic
rapidly, existing VMs will be overloaded which may cause
performance degradation. Regarding the charge interval of
leased VMs, many cloud providers have applied a per-second
basis like serverless computing with some exceptions therefore
certain workload would be deployed on VMs if it requires high
performance compute resources for a short amount of time.

We did a cost comparison between serverless computing
and traditional virtual machines because we think it would
explain cost effectiveness for certain workload deployed on
these two platforms. The charging unit is different, serverless

TABLE IV: Building Binary Tree with Cost-Awareness

Platform RAM Cost/Sec Elapsed Second Total Cost (Rank)
AWS Lambda 3008MB $4.897¢-5 20.3 $9.9409¢-4 (6)
AWS EC2 (t2.micro) 1GiB $3.2e-6 29.5 $9.439¢-05 (3)
Azure Functions 192MB $3e-6 71.5 $2.145¢e-4 (4)
Azure VM 1GiB $3.05e-6 88.9 $2.71145e-4 (5)
Google Functions 2GB $2.9e-5 34.5 $0.001 (7)
Google Compute (f1-micro) 600MB $2.1e-6 19.2 $4.0319¢-05 (1)
IBM OpenWhisk 128MB $2.2125¢-6 | 34.2 $7.5667e-05 (2)

computing is based on 100 milliseconds per invocation and
a virtual machine is based on an hour or a second per an
instance. When we break down the cost in a second, serverless
is almost ten times expensive compared to a virtual machine
regarding to the allocated compute resources. We ran a python
and a javascript creating binary trees which consumes CPUs
and memory intensively on both platforms. Table IV shows
the execution time of the creating binary trees and the total
cost with the rank ordered by cost effectiveness. The result in-
dicates that a sequential and continuing function on serverless
computing would not be a good choice in terms of cost-savings
although it is still a simple way of deploying a function as a
service with a minimal infrastructure management. However,
dynamic concurrent invocations on serverless computing will
save cost against overloaded virtual machines when a number
of event messages spikes.

H. Trigger Comparison

In this section, we measure a trigger throughput to indicate
the maximum number of processing event messages in parallel.
Certain triggers e.g. Timer and GitHub Commit are excluded
because they generate a single event message as a series of
procedure and these are not suitable for concurrent function in-
vocations. Three types of triggers are selected; HTTP, database
and object storage triggers to measure the trigger throughput.
In the Figure 7, Triggers in AWS Lambda show that the median
throughput of the HTTP trigger is 55.7 functions per second
and the object storage has the 25.16 functions per second
median throughput. The database trigger in AWS Lambda has
throughput of 864.60 functions per second which is about 32
times of object storage throughput and 15 times of HTTP
trigger throughput. Note that the instance of database trigger
at Amazon is adjustable to deal with more event messages
when it is necessary. The scale of y axis in the figure is the
number of functions processed per second. We did not compare
Azure and Google Cloud database trigger as they do not have
a direct trigger available to their respective functions. In the
HTTP trigger, the asynchronous calls may not be supported by
serverless providers and limits of concurrent trigger processing
vary as well. Details about quota and limits need to be
confirmed by the providers and user accounts. As per Figure 7
we see that Microsoft Azure has the highest number of 142
invocations per second whereas Google Functions shows the
least throughput as they invoke very less number of functions
per second. Also, it is worth to address that all serverless
providers show a linear pattern of function invocation when
the number of requests is increased. We do not see any
degradation of performance in handling massive requests up to
3000 concurrent invocations. We can conclude that the increase
in invocation does not affect the performance.
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1. Feature Comparison

The feature comparison would be helpful to the new users
of serverless computing and will help the readers of this
paper understand the underlying system level information of
the serverless platform. As per the Table V, AWS Lambda
offers a wide range of trigger endpoints compared to the
other cloud providers.We also see that the cost of usage of
serverless function is based on two metrics. First, the number
of invocation of serverless functions. Second, the time taken
by a serverless function to execute and complete paired with
an amount of memory in size of gigabytes allocated. Invo-
cation to the serverless functions is really cost effective in all
serverless providers if an application is executable with certain
restrictions that serverless computing has. All providers have
similar pricing tables but IBM openWhisk does not charge the
number of invocations whereas the other providers do charge.
Google upscales in terms of memory as it provides maximum
of 2 GB of memory to run a serverless function. Google also
outperforms in terms of providing maximum execution timeout
of 9 minutes which would be helpful for long running jobs.
IBM OpenWhisk has the container which can provided the
best clock speed of 2100 *4 MHz.

J. Language Support

Each serverless provider supports different programming
languages thus developers are able to write functions with
a language preference. As an interpreted language, we find
Node.js, JavaScript runtime environment from all of the
providers, and Python is mostly supported. Compiled lan-
guages such as Java and C# are also supported although a
web-based inline editor is excluded. We assume that serverless
provider intends to extend language support in the future,
for example, Amazon recently added Golang and Microsoft
Azure added Java as their new runtime. Table VI shows
a list of supported runtimes. One other observation across
different language runtimes is an overhead to complete a
function. We created a second wait function in different
languages and measured excessive execution time in average
than a second over 100 times. Figure 8 indicates that the
runtime overhead in AWS is negligible and similar whereas

Language
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Csharp
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Swift

iinni

0.30
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0.20
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0.10
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AWS Azure Google

Runtime Cost in Second

Fig. 8: Runtime Overhead (Missing bars mean a
language is not supported)

C# in Azure creates the least overhead among other runtimes
and Python in IBM OpenWhisk shows the least standard
deviation. Node.js environment is a better choice in Google
Functions but we measured Python runtime overhead indrectly
through child_process.spawn (). For some functions,
these overheads might be sensitive to choose a language
runtime since there are timeouts in executing a function (See
Table V).

III. USE CASES

There are several areas where serverless can play an im-
portant role in research applications as well as in commercial
cloud. Big Data map-reduce application can be executed in a
similar fashion but a cost-effective way of a deployment as
we discuss implementations of the big data applications in a
series of serverless functions with cloud object storage and
databases [7], [8]. We ran some Big Data Benchmark tests by
scanning 100 text files with different queries and aggregating
1000 text files with group by and sum queries which show that
certain applications are executable on serverless framework
relatively easily and fast compared to running on server-based
systems. Image processing for CDN is also widely used by
commercial purpose to process thumbnails of the images to
client such as mobile and tablets which can be taken care by
serverless. Internet Of Things (IoT) is also one of use cases
for serverless framework because IoT devices typically have a
small compute power to process all the information and need
to use remote compute resources by sending event messages
which is a good fit for serverless computing. IoT devices will
trigger the lambda function using a rule. For example, in case
of a data-center, cooling facility is very important for proper
functioning of servers. If cooling is down, the sensors will call
a lambda function which will contain the logic sending alert
emails to the support team. In near future, we hope to see
several use cases of serverless computing as a main type of
cloud-native application development.

IV. DISCUSSION

Serverless computing would not be an option for those need
high-end computing power with intensive I/O performance
and memory bandwidth because of its resource limitation, for
example AWS Lambda only provides 3GB of memory and
2 virtual cores generating 40 flops with 5 minutes execution
timeouts. These limitations will be adjusted once serverless
environments are mature and there are more users but bulk syn-
chronous parallel (BSP) and communication-free workloads



Item

AWS Lambda

Azure Functions

Google Functions

IBM OpenWhisk

Runtime language

Node.js, Python, Java, C#,
Golang(Preview)

C#, F#, Node.js, PHP, Type-
Script, Batch, Bash, Power-
Shell, Java(Preview)

Node.js

Node.js, Python, Java, C#,
Swift, PHP, Docker

Trigger 18 triggers (i.e. S3, Dy- | 6 triggers (i.e. Blob, Cosmos | 3  triggers (i.e. HTTP, 3 triggers(i.e.
namoDB) DB) Pub/Sub) HTTP,Cloudant)
Price per Memory $0.0000166/GB-s $0.000016/GB-s $0.00000165/GB-s $0.000017/GB-s
Price per Execution | $0.2 per IM $0.2 per IM $0.4 per IM n/a
Free Tier First 1 M Exec First 1 M Exec First 2 M Exec Free Exec /
40,000GB-s
Maximum Memory 3008MB 1536MB 2048MB 512MB
Container OS Linux Windows NT Debian GNU/Linux 8 (jessie) Alpine Linux
Container CPU Info 2900.05 MHz,1 core 1.4GHZ 2200 MHz, 2 Processor 4 CPU cores,2100.070 MHz

Temp Directory | 512 MB (/tmp) 500 MB (D:\Local\ Temp) (/tmp) (/tmp)

(Path)

Execution Timeout 5 minutes 10 minutes 9 minutes 5 minutes

Code Size Limit 50 / 250 MB (com- n/a 100MB (compressed) 48 MB
pressed/uncompressed) for sources. 500MB

(uncompressed) for sources
plus modules.

TABLE V: Feature Comparison

Language AWS Azure Google IBM
Python 27,36 | 27 2.7 2.7,3.6
Java 8 8 - 8
Nodel]S 43,610 | 6.11,84 | 6.11.5 6, 8
C# 1,2 1,2 - -
Others Go 1.x F# 4.6 - Docker

TABLE VI: Supported Language Runtime

* Internal Support

can be applied to serverless computing with its concurrent
invocations. Additional containers for concurrent function in-
vocations reduce a total execution time with a linear speed up,
for example, a function invocation divided into two containers
decreases an execution time in half. There are also overlaps and
similarities between serverless and the other existing services,
for example, Azure Batch is a job scheduling service with
an automated deployment for a computing environment. AWS
Beanstalk [9] is deploying a web service with automated
resource provisioning.

V. RELATED WORK

We have noticed that there were several efforts to utilize
current serverless computing for parallel data processing using
concurrent invocations. PyWren [4] is introduced in achieving
about 40 TFLOPs using 2800 Amazon Lambda invocations.
The programming language runtime on serverless computing
has been discussed in the recent work [10]. Deploying scien-
tific computing applications has been conducted with experi-
ments to argue the possible use cases of serverless computing
for adopting existing workload [ 1] with its tool [12]. McGrath
et al [13] shows serverless comparison results for function
latency among production serverless computing environments
including Microsoft Azure Functions but it was not a compre-
hensive review, such as testing CPU, network and a file I/O,
and several improvements have been made later such as an
increment of memory allocation i.e. 3GB on Amazon Lambda
and additional runtime support i.e. Java on Azure Functions
and Golang on Amazon. OpenLambda [14] discusses running
a web application on a serverless computing and OpenWhisk
is introduced for mobile applications [5]. Since then several
offerings on serverless framework with new features have been

made. Kubeless [15] is a Kubernetes-powered open-source
serverless framework, like Fission [16]. Zappa [17] is a python
based serverless powered on Amazon Lambda with additional
features like keeping warm state of a function by poking at
a regular interval. OpenFaaS is a serverless for Docker and
Kubernetes with a language support for Node.js, Golang, C#
and binaries like ImageMagicK. Oracle also started to support
open source serverless platform, Fn project [18]. In this work,
we have investigated four serverless computing environments
in production regarding to the CPU performance, network
bandwidth, and a file I/O throughput and we believe it is
the first evaluation across Amazon Lambda, Azure Functions,
Google Functions and IBM OpenWhisk.

VI. CONCLUSION

Functions on serverless computing is able to process
distributed data applications by quickly provisioning addi-
tional compute resources on multiple containers. In this paper
we evaluated concurrent invocations on serverless comput-
ing including Amazon Lambda, Microsoft Azure Functions,
Google Cloud Functions and IBM Cloud Functions (Apache
OpenWhisk). Our results show that the elasticity of Ama-
zon Lambda exceeds others regarding to CPU performance,
network bandwidth, and a file I/O throughput when concur-
rent function invocations are made for dynamic workloads.
Overall, serverless computing is able to scale relatively well
to perform distributed data processing if a divided task is
small enough to execute on a function instance with 1.5GB
to 3GB memory limit and 5 to 10 minute execution time
limit. It also indicates that serverless computing would be more
cost-effective than processing on traditional virtual machines
because of the almost zero delay on boot up new instances
for additional function invocations and a charging model only
for the execution time of functions instead of paying for an
idle time of machines. We recommend researchers who have
such applications but running on traditional virtual machines
to consider migrating on functions because serverless comput-
ing offers ease of deployment and configuration with elastic
provisioning on concurrent function invocations. Serverless
computing currently utilizes containers with small computing
resources for ephemeral workloads but we believe that more
options on compute resources will be available in the future



with less restrictions on configurations to deal with complex
workloads.
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