
von Laszewski, Diaz, et.al. Towards Cloud Deployments using FutureGrid

1

Abstract— In this document we briefly outline some

differences between IaaS frameworks Eucalyptus, OpenNebula,
OpenStack and Nimbus. We provide also an overview how
platforms such as Amazon, Azure, and Google provide additional
services to provide more convenient platforms for its users. We
than present an overview of what FutureGrid currently provides
while also focusing on opportunities to leverage from our image
generation and management tool to utilize several of the IaaS
frameworks.

Index Terms—cloud, grid, Nimbus, Eucalyptus, OpenStack,
OpenNebula, RAIN, FutureGrid

I. INTRODUCTION
Cloud computing has become an important driver for

delivering infrastructure as a service to users that demand the
creation of environments that are customized to their service
needs. This not only includes the instantiation of a service, but
often the creation of a suitable software stack in which such
services are deployed and delivered. Furthermore, we observe
the trend that a platform is delivered as a service to its
customers that hides the at times very complex task of creating
infrastructures suitable for us. Together IaaS and PaaS can
provide potent solutions not only to business users, but also to
the educational and scientific computing communities. While
on the one hand one can imagine cloud and grids to support
the most challenging scientific research problems posed by a
small number of dedicated scientist, such environments will
also be able to support what is today termed the “long tail of
science”, that is many thousands of scientific users with
modest or moderate computing needs that do not necessarily
require the presence of a petaflop capable agglomerations of
dedicated compute resources.

To evaluate how we need to move forward, we have to start
first to analyze some existing IaaS frameworks and identify
useful IaaS and PaaS solutions for deployment in a cloud for

The FutureGrid project is funded by the National Science Foundation (NSF)
and is led by Indiana University with University of Chicago, University of
Florida, San Diego Supercomputing Center, Texas Advanced Computing
Center, University of Virginia, University of Tennessee, University of
Southern California, Dresden, Purdue University, and Grid 5000 as partner
sites. This material is based upon work supported in part by the National
Science Foundation under Grant No. 0910812.

scientists.
The paper is structured as follows. First we will present a an

overview what and why FutureGrid has offered a set of
current services to its community. We will than go in much
more detail to identify differences between different IaaS
offerings.

Then we will provide our thoughts on providing PaaS
offerings attractive for our user communities. Next we discuss
what implications FG currently provides and also focus on
describing our image management tools that allow to be
somewhat agnostic towards IaaS frameworks and provide
pathways to create images for each of them based on a
common base image description.

The later is of special interest as at this time many of the
Cloud frameworks are still under heavy development and
pathways to utilize multiple of them are of current interest.

II. FUTUREGRID

In order to test out some of the cloud offerings and to
identify what kind of applications benefit from clouds
FutureGrid offers possibilities to explore them. The
FutureGrid project is sponsored by NSF and includes partners
from Indiana University, University of Chicago, University of
Florida, San Diego Supercomputing Center, Texas Advanced
Computing Center, University of Virginia, University of
Tennessee,University of Southern California, Dresden, Purdue
University, and Grid 5000.

It has a set of distributed resources among its sites totaling
about 5000 compute cores. Resources include a variety of
different platforms allowing for interesting heterogeneous
distributed compute, network, and storage resources while at
the same time allowing to unify resources and services for
interoperability and scalability experiments as requested by its
user communities. As such FG provides a fertile base
environment to explore a variety of IaaS and PaaS offerings.

Currently FutureGrid provides a variety of variety of
services. When deciding which services to offer we have
based our decision on information that we gathered through
our web portal as part of an integrated project proposal and
approval process. Each project had the choice to vote and list
technologies that were relevant for the execution of their
projects. The result of this information is depicted in Figure 1

Towards Cloud Deployments
using FutureGrid

Javier Diaz, Gregor von Laszewski, Fugang Wang, Geoffrey C. Fox
Indiana University, Bloomington, IN 47408

laszewski@gmail.com

von Laszewski, Diaz, et.al. Towards Cloud Deployments using FutureGrid

2

and Figure 2. We observed the following:
1. Nimbus and Eucalyptus were requested the most. This

may not be that surprising as we made most
advertisement for these systems and initially
recommended them for educational class projects on
FG.

2. High Performance Computing was requested as third
highest category. This is possibly motivated by our
affiliation with traditional HPC and Grid communities
as well as the strong ties to XSEDE.

3. Hadoop and map reduce was requested for about
36.78% of all users. This number is higher than the
once reported in the figure, as we combined the values
for Hadoop and MapReduce while only considering
unique entries.

4. We saw recently a surge in requests for OpenStack and
OpenNebula as both environments are quite popular
due to different reasons. OpenStack has just become
one of the preferred open source solutions for cloud
computing within a large number of companies, but
also within the research community. OpenNebula is
quite popular as part of the European Cloud efforts but
has gained substantial backing also by US projects such
as Clemson University and Fermi Laboratory as part of
their cloud strategies.

5. Not surprisingly the largest contingent of our users are
technology experts. In fact, when analyzing the data
from our projects many consider themselves as
technology investigation although they may have
motivating applications from scientific domains. Hence
we have corrected our data based on a review done by
us as best as we could identify.

Figure 1: Technology choices made as part of the project
application process in FutureGrid. Note that multiple entries
could be selected so the total will be more than 100%.

Please note that the data here is only been collected by the
project.1

Figure 2: The distribution of the scientific areas that we
identified while reviewing the project requests. (Please note that
20 project have yet to be integrated into this data).

Figure 3: Typical partitioning of FG compute resources by IaaS
framework

Based on this analysis we spent our effort to enable such

services within FutureGrid. As a result we are currently
providing the following partitioning between services as listed
in Figure 3. However we have to point out that the number of
nodes associated between these services can be changed by
request. The reason that OpenNebula does not appear on this
chart is that we have not made it officially accessible to our
users due to manpower restrictions. However we have
conducted scalability experiments (see Section X) that could
motivate a possible shift in our current deployment strategy.
At present we are working towards making the choice of
which IaaS framework to run on the systems more dynamic.
For example today I could decide to run Nimbus on the nodes,
while tomorrow I could run OpenStack or Open Nebula on
them. This helps in evaluating technologies and identifies
environments that are best suited for a particular use case.

1 There is also a slight bias towards the first three technologies as they

were part of a required field. In future we will provide a better ay of collecting
the information as part of an independent survey.

2.30%
4.00%
4.00%
4.60%

8.60%
8.60%

14.90%
15.50%
15.50%
15.50%

23.60%
32.80%

35.10%
44.80%

52.30%
56.90%

PAPI

Vampir

gLite

Genesis II

OpenStack

XSEDE Software Stack

Hadoop

Eucalyptus

Education
9%

Computer
Science

35%
other

Domain
Science

14%

Life Science
15%

Inter-
operability

3%

Technology
Evaluation

24%

von Laszewski, Diaz, et.al. Towards Cloud Deployments using FutureGrid

3

III. OVERVIEW OF CLOUD IAAS FRAMEWORKS
One fundamental concept in cloud computing is based on

providing Infrastructure as a Service (IaaS) to deliver
resources to customers and users instead of purchasing and
maintaining compute, storage, and network. Typically this is
achieved through virtual machine offerings. In order to
establish such a service, a number of toolkits are available
including Eucalyptus, Nimbus, OpenNebula, OpenStack. We
will provide a short discussion about these toolkits next and
outline some major differences between them.

A. Nimbus
The Nimbus project [1] is working on two products that

they term “Nimbus Infrastructure” and “Nimbus Platform”.

Nimbus Infrastructure: The Nimbus project defines the
Nimbus Infrastructure to be “an open source EC2/S3-
compatible Infrastructure-as-a-Service implementation
specifically targeting features of interest to the scientific
community such as support for proxy credentials, batch
schedulers, best-effort allocations and others.” To support this
mission, Nimbus is providing their own implementation of
a) a storage cloud that according to the Nimbus project is S3
compatible but is enhanced by quota management b) EC2
compatible cloud services c) a convenient cloud client that is
using internally WSRF.

Nimbus Platform: The Nimbus platform is targeting to
provide additional tool to its users to simplify the utilization of
the infrastructure services and allows integration with other
existing clouds including OpenStack and Amazon. To achieve
this the following tools have been developed so far: a)
cloudinit.d coordinates launching, controlling, and monitoring
cloud applications, b) a context broker service that coordinates
large virtual cluster launches automatically and repeatably [1,
2]

B. OpenNebula
OpenNebula [3, 4] is an open-source toolkit which allows to

transform existing infrastructure into an Infrastructure as a
Service (IaaS) cloud with cloud-like interfaces. It has been
designed to be flexible and modular to allow its integration
with different storage and network infrastructure
configurations, and hypervisor technologies [5].

OpenNebula can be used to adapt to organizations with
changing resource needs, including addition or failure of
physical resources [6]. Some essential features to support
changing environments includes live migration and snapshots
of VMs [3]. Furthermore, when the local resources are
insufficient, OpenNebula can support a hybrid cloud model by
using cloud drivers to interface with external clouds. This lets
organizations supplement the local infrastructure with
computing capacity from public clouds to meet peak demands,
or implement high availability strategies.

OpenNebula supports different access interfaces that can be
used simultaneously including REST-based interfaces, OGF
OCCI service interfaces, and the emerging cloud API

standard, as well as the AWS EC2 API service, the de facto
cloud API standard.

It also supports cloud federation for scalability, isolation or
multiple-site support. Thus, a single access point and
centralized management system can be used to control
multiple instances of OpenNebula.

The authorization is based on passwords, ssh rsa keypairs,
X509 certificates or LDAP. This framework also supports
fine-grained ACLs that allow multiple-role support. The
authentication.

Finally, the storage subsystem supports any backend
configuration, from non shared file systems with image
transferring via SSH to shared file systems (NFS, GlusterFS,
Lustre…) or LVM with CoW (copy-on-write), and any storage
server, from using commodity hardware to enterprise-grade
solutions.

C. OpenStack
OpenStack [7] is a collection of open source technologies to

deliver public and private clouds. These technologies are
OpenStack Compute (called Nova), OpenStack Object Storage
(called Swift), and the recently presented OpenStack Imaging
Service (called Glance). OpenStack is a new effort and has
received considerable momentum due to its openness and may
companies supporting this OpenSource effort.

Nova is designed to provision and manage large networks
of virtual machines, creating a redundant and scalable cloud
computing platform. Swift is used to create redundant,
scalable object storage using clusters of standardized servers
to store petabytes of accessible data. It is not a file system or
real-time data storage system, but rather a long-term storage
system for a more permanent type of static data that can be
retrieved, leveraged, and then updated if necessary. Glance
provides discovery, registration, and delivery services for
virtual disk images.

D. Eucalyptus
Eucalyptus [8] promises the creation of on-premise private

clouds, with no requirements for retooling the organization's
existing IT infrastructure or need to introduce specialized
hardware. Eucalyptus implements an IaaS (Infrastructure as a
Service) private cloud that is accessible via an API compatible
with Amazon EC2 and Amazon S3.

It has five high-level components: Cloud Controller (CLC)
that manages the virtualized resources; Cluster Controller
(CC) controls the execution of VMs; Walrus is the storage
system, Storage Controller (SC) provides block-level network
storage including support for Amazon Elastic Block Storage
(EBS) semantics; and Node Controller (NC) is installed in
each compute node to control VM activities, including the
execution, inspection, and termination of VM instances.

IV. FEATURE COMPARISON OF THE IAAS FRAMEWORKS
All these IaaS frameworks have been designed to allow

users to create and manage their own virtual infrastructures.

von Laszewski, Diaz, et.al. Towards Cloud Deployments using FutureGrid

4

However, these frameworks have differences that need to be
considered when choosing a framework. Thus, we are going to
provide a comparison of a selected number of essential
features supported by each one. We summarized our findings
in Table 1.

Software deployment. This is the first obstacle that we find
when we want do deploy our own infrastructure. In our

experience the easiest to deploy is OpenNebula because we
only have to install a single service in the frontend for a basic
configuration while no OpenNebula software is installed in the
compute nodes. Nimbus is also relatively easy to install, as
only two services have to be configured in the frontend plus
the software installation in each compute node. On the other
hand, Eucalyptus and OpenStack deployments are quite

 OpenStack Eucalyptus 2.0 Nimbus OpenNebula

Interfaces EC2 and S3, Rest
Interface. Working on
OCCI


EC2 and S3, Rest
Interface. Working on
OCCI


EC2 and S3, Rest
Interface



Native XML/RPC,
EC2 and S3, OCCI, Rest
Interface


Hypervisor KVM, XEN, VMware
Vsphere, LXC, UML
and Microsoft's HyperV


KVM and XEN. VMWare
in the enterprise edition.



KVM and XEN



KVM, XEN and VMWare



Networking - Two modes:
(a) Flat networking
(b) VLAN networking
-Creates Bridges
automatically
-Uses IP forwarding for
public IP
-VMs only have private
IPs



- Four modes:
(a) managed
(b) managed-novLAN
(c) system
(d) static
-In (a) & (b) bridges are
created automatically
-Uses IP forwarding for
public IP
-VMs only have private
IPs


- IP assigned using a
DHCP server that
can be configured in
two ways.
- Bridges must
exists in the
compute nodes



- Networks can be defined
to support Ebtable, Open
vSwitch and 802.1Q
tagging
-Bridges must exists in
the compute nodes
-IP are setup inside VM



Software
deployment

- Software is composed
by different component
that can be distributed in
different machines.
- Compute nodes need
to install OpenStack
software


- Software is composed
by different component
that can be distributed in
different machines.
- Compute nodes need to
install OpenStack
software


Software is installed
in frontend and
compute nodes



Software is installed in
frontend



DevOps
deployment

Chef, Crowbar
Puppet



Chef*
Puppet*
*according to vendor


no Chef
Puppet



Storage
(Image
Transference)

- Swift (http/s)
- Unix filesystem (ssh)



Walrus (http/s)



Cumulus (http/https)



Unix Filesystem (ssh,
shared filesystem or LVM
with CoW)


Authentication X509 credentials, LDAP



X509 credentials



X509 credentials,
Grids


X509 credential, ssh rsa
keypair, password, LDAP


Avg. Release
Frequency

<4month >4 month


<4 month >6 month


License OpenSource with
Apache license



BSD license and
Commercial, difference
between commercial
version

OpenSource with
Apache license
version 2


OpenSource with Apache
license version 2



s a positive evaluation. The more checkmarks the better from our point of view.

Table 1: Feature comparison of IaaS frameworks

von Laszewski, Diaz, et.al. Towards Cloud Deployments using FutureGrid

5

difficult to achieve due to the entire different components that
we need to configure and the different configuration
possibilities that they provide.

In addition to a single install we also have to consider
update and new release frequencies (see Figure 4). From the
release notes and announcements of the framework we
observe that major updates happen on a 4 or 6 month
schedule, with many release candidates that fix also
intermediate issues. Furthermore we observed that the
installation deployment depends on scalability requirements
and that it is important to note that a deployment lets say for a
4 node OpenStack environment may look quite different from
a 60 node installation. Hence, it is important that toolkits
providing IaaS can be deployed through configuration
management toolkits in order to minimize the effort of
repetitive tasks to deploy them on the resources once new
versions com out or if a different configuration is set up. Tools
such as chef and puppet provide a considerable value add in
this regards. Furthermore, they serve as a repeatable
“template” to install the services in case version dependent
performance comparisons or feature comparisons are
conducted by the users.

Figure 4: Release frequency of popolar IaaS frameworks

Interfaces. Since Amazon EC2 is a standard de-facto, all of

them support the basic functionality of this interface, namely:
image upload and registration, and the VM run, describe and
terminate operations. However, the OpenStack project noticed
disadvantages due to features that EC2 is not exposing. Thus
OpenStack is considering to provide interfaces that diverge
from the original EC2 standard.

Storage. Storage is very important in cloud because we
have to manage many images and they must be available for
users anytime. Therefore, most of the IaaS frameworks
decided to provide a cloud storage system that can be used not
only for internal purposed, but also as an independent product.
In the case of Nimbus, it is called Cumulus and it is based on
the posix filesystem. Cumulus also provides a plugin that
could be used against a variety of storage systems including
PVFS, GFS, and HDFS (under a FUSE module). The
communication with Cumulus is via http/s. In case of
OpenStack and Eucalyptus, they provide a more sophisticated
storage system called Swift and Walrus, respectively. Both of

them are designed to provide good fault tolerant and
scalability. In the case of OpenStack, the images can be stored
in the posix filesystem or in Swift. In the first case, images are
transferred using ssh while in the second one are transferred
using http/s. Finally, OpenNebula does not provide a cloud
storage product, but its internal storage system can be
configure in different ways. Thus, we can have a shared
filesystem between frontend and compute nodes; we can
transfer the images using ssh; or we can use LVM with CoW
to copy the images to the compute nodes.

Networking. The network is managed differently for each
IaaS framework while providing various options in each of
them.:
• Eucalyptus offers four different networking modes:

managed, managed-noLAN, system, and static [9]. In the
two first modes, Eucalyptus manages the network of the
VMs. They differ in the network isolation provided by
vLAN. In the system mode, Eucalyptus assumes that IPs
are obtained by an external DHCP server. In the static
mode, Eucalyptus manages VM IP address assignment by
maintaining its own DHCP server with one static entry
per VM.

• Nimbus assigns IPs using a DHCP server that can be
configured in two ways: centralized and local. In the first
case, a DHCP service is used that one configures with
Nimbus-specific MAC to IP mappings. In the second
case, a DHCP server is installed on every compute node
and automatically configured with the appropriate
addresses just before a VM boots.

• OpenStack support two modes of managing networks for
virtual machines: flat networking and vLAN networking.
vLAN based networking requires that you have a vLAN
capable managed switch that you can use to setup vLANs
for your systems. Flat Networking uses Linux ethernet
bridging to connect multiple compute hosts together.

• The OpenNebula network contains the following options:
host-managed vLANs where the network access is
restricted through vLAN tagging, which also requires
support from the hardware switches; Ebtables to restrict
the network access through Ebtables rules; and Open
vSwitch to restrict network access with Open vSwitch
Virtual Switch.

Hypervisors. All of the IaaS frameworks do support KVM
and XEN and cover therefore the most popular hypervisors.
VMWare is also supported OpenNebula and Openstack.
Eucalyptus supports VMWare only in its commercial version.
Nimbus does not support VMWare. Additionally, OpenStack
also supports LXC, UML and Microsoft's HyperV. This
makes OpenStack a quite attractive choice for experimenting
with different hypervisors environments.

Authentication. All of the IaaS frameworks support X509
credentials as authentication method for users. OpenStack and
OpenNebula also support authentication via LDAP, although
is quite basic. OpenNebula also support ssh rsa keypair and
password authentication. Nimbus can also provide
compatibility with existing Grid infrastructure authentication.

von Laszewski, Diaz, et.al. Towards Cloud Deployments using FutureGrid

6

V. OVERVIEW OF SELECTED PAAS FRAMEWORKS

A. Platform as a Service
Under Platform as a Service (PaaS) we elevate services

offered to the users beyond the infrastructure and focus on the
delivery of a “platform” against which developers can create
services while using the features provided by the particular
platform. Hence, developers can build applications without
installing any tools on their computer and deploy those
applications without worrying about system administration
tasks.

B. Azure
The Windows Azure platform [10] is an Internet-scale

computing and services platform hosted in Microsoft data
centers. The Windows Azure platform includes the foundation
layer of Windows Azure as well as a set of developer services
which can be used individually or together. These are
Windows Azure (platform for running Windows applications
and storing their data in the cloud), SQL Azure (a cloud-
based, scale-out version of SQL Server) and Windows Azure
AppFabric (a collection of services supporting applications
both in the cloud and on premise).

The Windows Azure programming model imposes three
rules on applications:

• A Windows Azure application is built from one or
more roles. A role defines application files and their
configuration. One can define one or more roles for
your application, each with its own set of application
files and configuration. For each role one can specify
the number of VMs, or role instances used as part of
the instantiation and execution.

• A Windows Azure application runs multiple instances
of each role to provide scalability and fault tolerance.

• A Windows Azure application behaves correctly when
any role instance fails because several copies are
running. Additionally if the application terminates due
to uncontrolled exceptions, Windows Azure will detect
this and it will automatically restart the application.

C. Amazon Web Services
Amazon [11] is a cloud computing platform composed by a

number of products and services. It supports Java, PHP, Ruby
and Python languages as well as the .NET platform for
application development. Next we mention the most popular
services offered by Amazon (see also Table 2).

Services offered by Amazon include computational services
such as Elastic Compute Cloud (EC2), which delivers
scalable, pay-as-you-go compute capacity in the cloud or
Amazon Elastic MapReduce to easily and cost-effectively
process vast amounts of data.

Amazon storage services like Simple Storage Service (S3)
provide a fully redundant data storage infrastructure for
storing and retrieving any amount of data, at any time, from
anywhere on the Web.

Database services include both relational and non-relational
databases. This services work in conjunction with Amazon S3
and EC2.

Messaging services like the Amazon Simple Queue Service
(SQS) make it easy to build workflows between web services.

Other services offered include payment and billing,
deployment and management or web traffic.

One advantage of using AWS is its evolving offering of
add-ons provided by third –parties. Most notably in the HPC
area many are contributors such as Mathworks,
Univa/Gridengine, Adaptive Computing, Intel, StackIQ. Cycle
Computing. Additionally, open source projects with
interesting tools to create clusters such as StarCluster to create
clusters using spot pricing used in Bioinformatics and
CloudFlu for CFD applications.

D. Google AppEngine
Google AppEngine [12] provides a platform to build and

host web applications. App Engine includes java and python
runtime environments to develop applications. It also provides
a Go runtime environment that runs natively compiled Go
code. In regards to datastore, it provides a distributed data
storage that features a query engine and transactions. This is a
non-relational database that can be accessed with GQL
(Google Query Language). GQL has SQL like syntax.

Applications run in a secure environment that provides
limited access to the underlying operating system. These
limitations allow App Engine to distribute web requests for the
application across multiple servers, and start and stop servers

Compute Elastic Compute Cloud (EC2) (including GPU
and extra large instances), Elastic MapReduce,
Auto Scaling, Elastic Load Balancing

Content
Delivery

CloudFront

Database SimpleDB, Relational Database Service
(RDS), ElastiCache

Deployment &
Management

Identity and Access Management (IAM),
CloudWatch, Elastic Beanstalk ,
CloudFormation

Messaging Simple Queue Service (SQS), Simple
Notification Service (SNS), Simple Email
Service (SES)

Networking Route 53, Virtual Private Cloud (VPC), AWS
Direct Connect

Payments &
Billing

Flexible Payments Service (FPS) , DevPay

Storage Simple Storage Service (S3), Elastic Block
Store (EBS), AWS Import/Export

Support Premium Support
Web Traffic Alexa Web Information Service, Alexa Top

Sites
Workforce Mechanical Turk

In the HPC area many contributors including companies
such as Mathworks, Univa, Adaptive Computing, Intel,
StackIQ. Cycle Computing, put also open source projects
with interesting tools to create clusters such as StarCluster
and CloudFlu for CFD applications.

Table 2: Amazon Web Service Products

von Laszewski, Diaz, et.al. Towards Cloud Deployments using FutureGrid

7

to meet traffic demands. The sandbox isolates your application
in its own secure, reliable environment that is independent of
the hardware, operating system and physical location of the
web server.

App Engine costs nothing to get started. All applications
can use up to 1 GB of storage and enough CPU and bandwidth
to support an efficient app serving around 5 million page
views a month, absolutely free. When you enable billing for
your application, your free limits are raised, and you only pay
for resources you use above the free levels.

VI. SUPPORTED IAAS AND PAAS FRAMEWORKS IN
FUTUREGRID

As already outlined in Section II FutureGrid provides at this
time officially IaaS offerings based on Nimbus, OpenStack
and Eucalyptus on various resources. However, We also
experimented internally with an OpenStack installation with
great success. At this time Nimbus is our preferred IaaS
framework due to its easy install, the stability, and the funded
support that is provided while including the authors of the
Nimbus project as funded partners. This has a positive impact
in support tasks, but also in the development of features
motivated by FutureGrid. As part of our PaaS offerings we
provide various ways of running Hadoop on FG. This is
achieved by either using Hadoop as part of the virtualized
environment, or exposing it through the queuing system
through myHadoop. Twister is contributed through
community efforts. Additionally, services such as Unicore and
Genesis II are available as part of the HPC services.
At this time we are not supporting any other PaaS offerings
such as messaging queues or hosted databases.

Due to the variety of services and limited resources
provided in FG it is necessary to enable a mechanism to
provision needed services onto resources. This includes also
the assignment of resources to different IaaS or PaaS
frameworks. We have developed as first step to address this
challenge a sophisticated image management toolkit that
allows us to not only provision virtual machines, but also
provision directly onto bare-metal. Hence we use the term
raining to indicate that we can place arbitrary software stack
onto a resource. The toolkit to do so is called rain.

Hence, rain makes it possible to compare the benefits of
IaaS, PaaS performance issues, as well as evaluating which
applications can benefit from such environments and how they
must be efficiently be configured. One of the major
components that rain includes is our image management
service that we explain in the next section in more detail.

VII. IMAGE MANAGEMENT IN FUTUREGRID
The FG image management defines the full life cycle of the

images in FG. It involves the process of creating, customizing,
storing, sharing and deploying images for different FG
environments. Figure 5 shows the high-level image
management architecture with its different components and
the interfaces that expose the functionality as part of an API,
portal and shell command.

Figure 5: FutureGrid Image Management Architecture.

FG image management core services include three main
services:

Image Repository. It provides a service to query, store, and
update images through a unique and common interface.
Images can be described with information about the software
stack, operating system, architecture, etc. This information is
maintained in a catalog and can be searched by users and/or
other FutureGrid services. Users looking for a specific image
can discover available images fitting their needs using the
catalog interface. In addition, users can also register
customized images, share them among other users, and choose
any of them for the provisioning subsystem. Security and
accounting mechanisms manage the access to the images, the
access to administration commands, disk space utilization, and
repository usage. This is achieved by managing user roles,
quotas, user status and access lists.

Image Generator. It creates images, according to user
requirements, that can be deployed in FutureGrid (FG). Since
FG is a testbed that support different type of infrastructures
like HPC or IaaS frameworks, the images created by this tool
are not aimed to any specific environment. Thus, it is at the
deployment time when the images are customized to be
successfully integrated into the desired infrastructure. This
clear separation between image generation and deployment
provides a powerful model that allows us to independently
increase the OS and infrastructures supported, respectively.
Moreover, it reduces the amount of images that we need to
manage in the image repository and therefore the disk usage.

Image Deploy. This tool is responsible for customizing
images for specific infrastructures and deploying them in such
infrastructures. We can distinguish between two main
infrastructures types: HPC and cloud. In both cases we need to
make some configuration like network IP, DNS, file system
table and kernel modules. Additional configurations are
performed depending of the infrastructure type. Thus, a
deployment into the HPC infrastructure means that we are
going to create network bootable images that can run in bare

von Laszewski, Diaz, et.al. Towards Cloud Deployments using FutureGrid

8

metal machines. On the other hand, a cloud deployment means
that we are going to convert the images in VMs for different
IaaS frameworks.

One important feature in our image management design is

that we are not simply storing an image but rather focus on the
way an image is created through templating. Thus it is
possible at any time to regenerate an image based on the
template that is used to install the software stack onto a bare
operating system. In this way, we can optimize the use of the
storage resources. Furthermore, the image repository can
maintain specific data that assist in measuring usage and
performance. This usage data can be used to purge rarely used
images, while they still can be recreated with the use of
templating. This will obviously lead to a significant amount of
space saving. Moreover, the use of image templating will
allow us to automatically generate images for diverse
environments including a variety of hypervisors and hardware
platforms. In this process, we will include mechanisms to
verify that these requirements are reasonable like for example
if the required IaaS is compatible with the requested
hypervisor. In general, we can employ simple rules such as (a)
if we find the image, we just provide it to the user (b)If not,
we generate a new image to provide that to the user and store
it in the image repository (c) if an image is rarely used it may
get purged and we only keep the image generation template.

VIII. IMAGE COMPATIBILITY
Currently we support the deployment of images in HPC,

OpenStack, Eucalyptus and OpenNebula. We plan to provide
support for Nimbus and Amazon as well.

All our images are created in raw format. Thus, when we
deploy an image in an infrastructure we only need to do some
minor modifications but we do not change its format, see
Section VII. These modifications are aimed to allow images
take advantages of all features provided by the infrastructure
like contextualization or ssh key injection.

Therefore, we could take an image that has been deployed
in a particular infrastructure and deploy it in another
infrastructure. We should verify that the previous
configuration does not conflict with the new one, though.

IX. RAIN - DYNAMIC PROVISIONING
Now that we have an elementary way of managing images,

we can dynamically provision them onto the resources in bare
metal and in virtualized environments while raining them onto
our resources. Hence we can

- create customized environments on demand,
- compare different infrastructures, and
- move resources from one infrastructure to another by

changing the image they are running plus doing needed
changes in the framework.

- ease the system administrator burden for creating
deployable images.

As we have provided and demonstrated the basic functionality
of rain as part of a scalability experiment, we like to focus in

our next tasks on moving resources between the different IaaS
and PaaS offerings while integrating this with an advanced
reservation system that can be accessed through the queuing
system we utilize.

X. INFRASTRUCTURE SCALABILITY STUDY
We have performed several tests to study the scalability of

the infrastructures installed in our cluster called India. The
idea of these tests is to provision as many physical machines
(PM) or virtual machines (VM) at the same time as possible.
Tests success if all the machines have ssh access. Our results
are the time that takes since the request is placed until we have
access to all the machines.

For that purpose we have created a CentOS 5 image and
deployed it in the different infrastructures: HPC, OpenStack,
Eucalyptus and OpenNebula. For that process we have used
our image generator and deployment tools. This gives us an
identical image to be used in all cases. Therefore, the only
difference in the image is the version of the 2.6 kernel/ramdisk
used. In HPC we use the ramdisk modified by xCAT, in
Eucalyptus we use a XEN kernel and in OpenStack or
OpenNebula we use a generic kernel. The total size of the
image without compression is 1.5 GB. In the case of netboot it
is compress and is around 300MB.

The machines that we are using are Xeon with 8 cores and
24GB of RAM. The network is 1Gbps Ethernet.

Figure 6 shows the results of the performed tests. In the
following sections we mention the software used in each
infrastructure, the results obtained and the problems we had.

Figure 6: Scalability Experiment of IaaS Frameworks on
FutureGrid

A. HPC (Moab/xCAT)
In these tests we have used Moab 6.0.3 and xCAT 2.6.9 to

dynamically provision the machines. We had a total of 111
machines to be provisioned with the same image. During the
tests we did not have any problems and observed very good
lineal scalability (see Figure 6). This can be contributed due to
good parallel execution behavior that only competes for
resources at the time when each retrieves the image that
marked for booting. Since the image is compress and

von Laszewski, Diaz, et.al. Towards Cloud Deployments using FutureGrid

9

relatively small scalability for this setup is preserved.
However it is to be noted that provisioning even a single
machine takes some time in contrast to its virtualized
counterpart. This is due to the process of rebooting the
physically machine in case we rain the image on bare-metal.

B. OpenStack
In our experiments, we have used the Cactus version of

OpenStack. In order to make an efficient image provisioning,
OpenStack caches images in the computes nodes. Thus, it does
not need to transfer the image over the network every time it is
requested and the instantiation of a VM is faster.

Due to scalability issues by provisioning higher number of
VMs, we modified our strategy to submit VM requests in
batches of 10 VMs at a time (maximum). This means that in
the case of provisioning 32 VMs, we have requested 3 times
10 VMs and once 2 VMs. Without this change we were not
able to obtain reliably the requested number f virtual machines
within the OpenStack framework deployed in FG. This is a
verified bug and the idea stems from the OpenStack team who
did the same in their tests [13].

Furthermore, we observed that if the image to be used is not
cached in the compute nodes, the scalability of this framework
is very limited. In fact, we started to have problems trying to
boot 16 VMs, where we got around a 50% of failed tests.
Main problems were due to VMs stuck in the launching status
(this is the status where the image is copied to the compute
node).

On the other hand, once we had the image cached in most of
the compute nodes, we were able to boot up to 64 VMs
simultaneously. However, this was not an easy task and again
we experienced a failure rate of more than a 50%. We
observed that VMs got stuck in launching status and other
images were in running status but without ssh access. The ssh
access problem is mainly related to the fact that OpenStack
does not inject the public network configuration inside the
VM. Alternatively, it creates bridges and conducts IP
forwarding to direct all the traffic toward the private IP. At
times we observed that the bridges, the iptables entries or both
were not created properly. In particular, the iptables issue is
important because we observed that some times OpenStack
gets confused and duplicate entries in the iptables using old
information that was not properly cleaned up. This erroneous
information makes the VMs inaccessible. We observed that
this problem is persistent and one needs to manually modify
the database to remove the wrong entries or restart OpenStack.

Finally, another known problem of OpenStack cactus is that
it is not able to automatically assign public IPs to the VMs, so
we have to look into the pool and assign one to each VM
manually. This feature has been added in the Diablo version,
though. Our intention is to rerun our experiments also with
Diablo once it is available on FutureGrid.

C. Eucalyptus
We use the 2.03 version of Eucalyptus, which is the latest

OpenSource version. Eucalyptus also caches the images in the

compute nodes. As we observed similar issues in Eucalyptus
while requesting larger numbers of VMs, the tests were
executed in the same way through batched requests like in
OpenStack (10 at a time) but with a delay of 6 seconds. This is
due to an annoying feature of Eucalyptus that prevents users
from executing the same command several times in a short
period of time.

The tests with this infrastructure were quite disappointing
because we could only get 16 VMs running at the same time,
see Figure 6. Even though, the failure rate was very high.
Eucalyptus, like OpenStack, configures the public network
with IP forwarding and creates the bridges at running time.
Thus, this creates problems, like before, and we got similar
errors like missing bridges and iptables entries. Additionally,
we had problems with the automatic assignment of public IPs
to the VMs. This means that some VMs did not get public IPs
and therefore they were not accessible for users.

D. OpenNebula
We used OpenNebula version 3.0.0. By default

OpenNebula does not cache images in the compute nodes. It
supports three basic transfer plugins named nfs, ssh and lvm.
NFS has a terrible performance because the VMs are reading
the image through the network. SSH was the one that we used
because is still easy to configure and has a better performance.
The last one seems more difficult to configure, but it should
provide the best performance, because it is the one selected by
the OpenNebula people to perform their experiments [14, 15].
As we can see in Figure 6, we were able to instantiate 148
VMs at the same time with almost a 100% of success. In fact,
we only got one error in the case of 148 VMs. Since our
configuration does not use an image cache, it was pretty slow
and limited by the network as each image needed to be copied
for each VM. This can however be improved by introducing
caches as others have proven [16].

XI. CONCLUSIONS
To develop strategies for deployment of IaaS frameworks

we have in this paper analyzed some basic functionality and
found that the frameworks are sufficient in functionality for
many applications. However, we found challenges in our
scalability experiments while dynamically provisioning
images on them. This was especially evident for Eucalyptus
and even OpenStack. As many components are involved in the
deployment they are also not that easy to deploy. Tools
provided as part of developments such as chef and puppet can
simplify deployments especially if they have to be done
repeatedly or require modifications to improve scalability. We
claim that the environment to conduct an OpenStack
experiment with just a handful VMs may look quite different
from a deployment that uses many hundreds of servers on
which Openstack may be hosted. This is also documented
nicely as part of the OpenStack Web pages that recommends
more complex service hierarchies in case of larger
deployments.
 On the other hand, we have seen that OpenNebula is very
reliable and easy to deploy. Although in our experiments we

von Laszewski, Diaz, et.al. Towards Cloud Deployments using FutureGrid

10

found it quite slow due to the lack of cache in the ssh plugin.
Nevertheless, we think that this problem is easier to solve than
the reliability one found in other frameworks. In fact, after we
finished the tests I discovered that one guy modified the SSH
plugin to cache the images in the compute nodes.

 In all these tests we have manually created the different
infrastructures by creating netboot images, configuring
networks, adding/removing machines to/from the
infrastructures, etc. Therefore it is clear that if we want to do
this kind of tests again, we need a tool that does all these
things automatically.

We also have to point out that the extension of the rain
toolkit by enabling a “move” of resources from on IaaS to
another will take some effort, as many services are required to
interact. For example, we need to modify the image generation
to be able to install more software than the currently support;
we need to modify the image deployment to configure the
software according to our infrastructure; we need to improve
the way that we deal with different kernels and develop a tool
that generate different kernels on demand, which is not easy
because some software like the hypervisor ones install
modules in the kernel. Additionally, the “move” command
also needs to be able to disable nodes from one infrastructure
and enable them in another, but this has to be done without
interfering with running jobs/experiments. This can be an easy
task in the case of Moab-PBS because they know what jobs
are running and where. However, in the case of Cloud
infrastructures it is going to be more complex as we will have
to implement some kind of scheduler or queue system to keep
track of the running experiments and used hosts.

 Finally, one problem that we found during the tests is that
we are not ready to netboot images with a Xen kernel because
xCAT is not able to generate them. So, we will have to do it
manually and this may not be compatible with xCAT. This is
needed if we want to dynamically add new hosts to Eucalyptus
because the current version only supports this hypervisor or if
users need machines with this kernel for their experiments.

On the other hand we have been able to demonstrate that
images generated with our tools project cross-platform
functionality. Hence we are able to generate images with
similar functionality in Eucalyptus, OpenStack, and Nimbus.
We can also extend this work by expanding it to for example
AWS, or Azure, as well as Nimbus.

Through the ability of rain it will become easier for us to
deploy PaaS on the IaaS offerings as we can create
“templates” that facilitate their install and potentially their
upgrade. Due to this ability it is possible to replicate the
environments and introduce reproducible environment.

ACKNOWLEDGEMENTS
We would like to acknowledge the system team for its

support and help in the preparation and execution of these
tests.

REFERENCES

[1] Nimbus Project Web Page. Available:
http://www.nimbusproject.org

[2] K. Keahey, I. Foster, T. Freeman, and X. Zhang, "Virtual
Workspaces: Achieving Quality of Service and Quality of Life in
the Grid," Scientific Programming Journal, vol. 13, pp. 265-276,
2005.

[3] OpenNebula Web Page. Available:
http://www.opennebula.org

[4] I. M. Llorente, R. Moreno-Vozmediano, and R. S. Montero,
"Cloud computing for on-demand grid resource provisioning,"
Advances in Parallel Computing, vol. 18, pp. 177-191, 2009.

[5] R. S. Montero, R. Moreno-Vozmediano, and I. M. Llorente, "An
Elasticity Model for High Throughput Computing Clusters," J.
Parallel and Distributed Computing, 2010.

[6] B.Sotomayor, R. S. Montero, I. M. Llorente, and I.Foster, "Virtual
Infrastructure Management in Private and Hybrid Clouds," IEEE
Internet Computing, vol. 13, pp. 14-22, Sep.-Oct 2009 2009.

[7] OpenStack Web Page. Available: http://www.openstack.org
[8] Eucalyptus Web Pages (Open Source). Available:

http://open.eucalyptus.com/
[9] Eucalyptus Network Configuration 2.0. Available:

http://open.eucalyptus.com/wiki/EucalyptusNetwork
Configuration_v2.0

[10] Azure. Available: http://msdn.microsoft.com/en-
us/library/dd163896.aspx

[11] Amazon WS. Available: http://aws.amazon.com
[12] "Google App Engine."
[13] "Running 200 VM instances on OpenStack."
[14] U. Schwickerath, "CERN Cloud Computing Infrastructure,"

presented at the ICS Cloud Computing Conference, 2010.
[15] "CERN Scaling up to 16000 VMs."
[16] "Cache optimization in OpenNebula."

http://www.nimbusproject.org/
http://www.opennebula.org/
http://www.openstack.org/
http://open.eucalyptus.com/
http://open.eucalyptus.com/wiki/EucalyptusNetworkConfiguration_v2.0
http://open.eucalyptus.com/wiki/EucalyptusNetworkConfiguration_v2.0
http://msdn.microsoft.com/en-us/library/dd163896.aspx
http://msdn.microsoft.com/en-us/library/dd163896.aspx
http://aws.amazon.com/

	I. Introduction
	II. FutureGrid
	III. Overview of Cloud IaaS Frameworks
	A. Nimbus
	B. OpenNebula
	C. OpenStack
	D. Eucalyptus

	IV. Feature Comparison of the IaaS Frameworks
	V. Overview of selected PaaS Frameworks
	A. Platform as a Service
	B. Azure
	C. Amazon Web Services
	D. Google AppEngine

	VI. Supported IaaS and PaaS Frameworks in FutureGrid
	VII. Image Management in FutureGrid
	VIII. Image Compatibility
	IX. RAIN - Dynamic Provisioning
	X. Infrastructure Scalability Study
	A. HPC (Moab/xCAT)
	B. OpenStack
	C. Eucalyptus
	D. OpenNebula

	XI. Conclusions
	Acknowledgements
	References

