
Large-Scale Image Classification using High Performance Clustering

Bingjing Zhang, Judy Qiu, Stefan Lee, David Crandall
Department of Computer Science and Informatics

Indiana University, Bloomington
{zhangbj, xqiu, steflee, djcran}@indiana.edu

Abstract— Computer vision is being revolutionized by the
incredible volume of visual data available on the Internet. A
key part of computer vision, data mining, or any Big Data
problem is the analytics that transforms this raw data into
understanding. Many important data mining approaches
require iterative computations at an unprecedented scale.
Often an individual iteration can be specified as a MapReduce
computation, leading to the iterative MapReduce program-
ming model for efficient execution of data-intensive iterative
computations. We propose the Map-Collective model as a
generalization of our earlier Twister system that is
interoperable between HPC and cloud environments. In this
paper, we study the problem of large-scale clustering, applying
it to cluster large collections of 10-100 million social images,
each represented as a point in a high dimensional (up to 2048)
vector space, into 1-10 million clusters. This K-means
application needs 5 stages in each iteration: Broadcast, Map,
Shuffle, Reduce and Combine, and this paper presents new
collective communication approaches optimized for large data
transfers. Furthermore one needs additional communication
patterns from those familiar in MapReduce, and we develop
collectives that integrate capabilities developed by the MPI and
MapReduce communities. We demonstrate that a topology-
aware and pipeline-based broadcasting method gives better
performance than both MPI and other (Iterative) MapReduce
systems. We present early results of an end-to-end image
classification application and evaluate the quality of the
resultant image classifications, showing that increasing the
number of feature clusters leads to improved classifier
accuracy.

Keywords-Social Images; Data Intensive; High Dimension;
Iterative MapReduce; Collective Communication

I. INTRODUCTION
The rate of data generation now exceeds the growth of

computational power predicted by Moore’s law. Mining and
analyzing these massive data sources to translate large-scale
data into knowledge-based innovation represents a major
computational challenge. MapReduce frameworks have
become popular in recent years for their scalability and fault
tolerance in large data processing and for their simplicity in
the programming interface. Hadoop [1], an open source
implementation following Google’s original MapReduce
concept [2], has been widely used in industry and academia.

But MapReduce does not directly address iterative
solvers and basic matrix primitives, which Intel’s RMS
(Recognition, Mining and Synthesis) taxonomy [3] identifies
as common computing kernels for computer vision,
rendering, physical simulation, financial analysis and data
mining. These and other observations [7] suggest that
iterative data processing runtime will be important to a
spectrum of e-Science and e-Research applications as a
kernel framework for large-scale data processing. Several

frameworks designed for iterative MapReduce have been
proposed to solve this problem, including Twister [4], Spark
[5], HaLoop [6] and so on. For example, the initial version of
Twister targeted optimization of data flow and reducing data
transfer between iterations by caching invariant data in the
local memory of compute nodes. However, it did not support
the communication patterns needed in many applications,
and we observe that a systematic approach to collective
communication is essential in many iterative algorithms.
Thus we generalize the (iterative) MapReduce concept to
Map-Collective, since large collectives are a distinctive
feature of data intensive applications [8].

Large-scale computer vision is one application that both
involves big data but also often needs iterative solvers, such
as large-scale clustering stages. This application produces
challenges requiring both new algorithms and optimization
of parallel execution involving very large collective
communication steps. We have addressed the overall
performance with an extension of Elkan's algorithm [9] to
drastically speed up the computing (Map) step of clustering
by use of the triangle inequality to remove unnecessary
computation [8]. But this improvement increased the need
for efficient communication, which is a major focus of this
paper. Note that communication has been well studied,
especially in MPI, but large-scale computer vision stresses
different usage modes and message sizes from most previous
applications.

In this paper, we study the characteristics of a large-scale
image clustering application and identify performance issues
of collective communication. Our work is presented in the
context of Twister, but the analysis is applicable to
MapReduce and other data-centric computation solutions. In
particular, the vision application requires 7 million image
feature vectors to be clustered. We execute the application on
1000 cores (125 8-core nodes) with 10,000 Map tasks. The
root node must broadcast 512 MB of data to all compute
nodes, making sequential broadcast costly. In aggregation,
20 TB of intermediate data needs to be transferred from Map
stage. Here we propose a topology-aware pipeline method to
accelerate broadcast by a factor of over 120 compared with
the sequential algorithm, and comparable with classic MPI
methods [10] by slight (20%) outperformance. We also use
3-stage aggregation to efficiently reduce intermediate data
size by at least 90% within each stage. These methods
provide important collective communication capabilities to
our new iterative Map-Collective framework for data
intensive applications. We evaluate our new methods on the
PolarGrid [11] cluster.

II. MOTIVATING APPLICATION: LARGE-SCALE VISION
Computer vision is being revolutionized by the volume

of visual data on the Internet: 500 million images uploaded
every day to Facebook, Instagram and Snapchat, and 100
hours of video uploaded to YouTube every minute. These
vast and rapidly-growing collections of social imagery are
motivating many large scale computer vision studies that can
benefit from the infrastructure studied here. A major goal of
these projects is to help organize photo collections, for
instance by automatically determining the type of scene [47],
recognizing common objects [48] and landmarks [49],
determining where on earth a photo was taken [50, 51], and
so on.

A. Scene Type Recognition
Here we consider the specific problem of recognizing

two general properties of a photo: whether it was taken in an
urban or rural environment, and whether it was taken in a
mountainous or relatively “float” locale. A popular approach
for visual classification tasks involves embedding images in
a more discriminative space by representing them as
collections of discriminative, invariant local image features.
This is known as the Bag of Words (BoW) model, and is
borrowed from techniques in information retrieval that
represent documents as an unordered collection of words. To
make this analogy work, we need to identify basic
distinguishing features or visual words so that images can be
encoded as histograms over this visual vocabulary [52] (just
as text documents are represented as histograms over words).

One way of producing this vocabulary is to sample small
patches from many images, perform clustering, and then use
each of the resulting cluster centroids to define a visual
word. In our application, we sample five patches from each
of 12 million images and describe each patch using the
Histograms of Oriented Gradients (HOG) features [12].
HOG characterizes the local image features as a distribution
of local edge gradients (see Figure 1), and produces a 512-
dimensional vector for each patch. Once the vocabulary is
generated, any image can be represented as a histogram over
this vocabulary: given an image, we densely sample patches,

compute HOG vectors from these patches, assign each vector
to its nearest centroid in the vocabulary, and then count the
number of times each centroid occurs. Support Vector
Machines (SVM) [46] are trained on these features to learn a
discriminative classifier between the image classes of
interest (e.g. rural vs. urban).

B. Large-scale Image Feature Clustering
A major challenge with this approach is the clustering

step required to produce the vocabulary, as ideally we would
like to cluster billions of patches into millions of centroids.
We confront this computational challenge by performing K-
means clustering as a chain of Map computations separated
by collective-communications (see Figure 2). The input data
consists of a large number of feature vectors each with 512
dimensions. We use Euclidean distance to compute the
distances between feature vectors and the cluster centers
(centroids). Since the vectors are static over iterations, we
partition (decompose) the vectors and cache each partition in
memory. Afterwards a Map task is assigned to it in the job
configuration. During each iteration, the iteration driver
broadcasts centroids to all Map tasks. Each Map task then
assigns feature vectors to nearest cluster centers based on
Euclidean distance. Map tasks calculate the sum of vectors
associated with each cluster and count the total number of
such vectors. The aggregation stage (to simplify the
discussion, we only describe 1-stage aggregation here instead
of 3-stage aggregation which is used in real implementation)
processes the output collected from each Map task and
calculates new cluster centers by adding all partial sums of
cluster center values together, then dividing by the total
number of points in the cluster. By combining these new
centroids from Reduce tasks, the iteration driver gets updated
centroids and control flow enters the next iteration (Table I).

Another major challenge of this application is the amount
of feature data. Currently we have nearly 1 TB,
corresponding to 60 million HOG feature vectors, and we
expect problems to grow in size by one to two orders of
magnitude. For such a large amount of input data, we can
increase the number of machines to reduce the data size per
node, but the total data size (of cluster centers) transferred in

Figure 1. Workflow of the vocabulary learning application.

Figure 2. Image clustering control flow in Twister with the new local
aggregation feature in Map stage.

broadcasting and aggregation still grows as the number of
centers multiplies.

For example, suppose we were to cluster 7 million 512-
dimensional vectors into 1 million clusters. In one iteration,
the execution is done on 1,000 cores in 10 rounds with a total
of 10,000 Map tasks. Each task only needs to cache 700
vectors (358KB) and each node needs to cache 56K vectors,
about 30MB in total. But in broadcast, the number of cluster
centers is very large and the size of 1 million cluster centers
is about 512MB. Therefore the centroids data per task
received through broadcasting is much larger than the image
feature vectors per task. Since each Map task needs a full
copy of the centroids, the total data sent through
broadcasting grows with the problem size and the number of
nodes. For the example above, the total broadcast is about 64
GB (because Map tasks are executed as threads, broadcast
data can be shared among tasks on one node).

We now reach the aggregation stage. Here each Map task
generates about 2 GB of intermediate data, for a total of
about 20 TB. This far exceeds the total memory size of 125
nodes (each of which has 16 GB memory; 2 TB in total), and
also makes the computation difficult to scale, since the data
size grows with the number of nodes. In this paper, we do 3-
stage aggregation to solve this problem. In the first stage, we
successfully reduce 20 TB of intermediate data to 250 GB

with local aggregation (Figure 2). But due to the memory
limitation, 250 GB still cannot be aggregated directly on one
node. Thus we further divide the output data from each Map
task into 125 partitions (numbered with Partition ID 0 to
124) and use 125 tasks (1 task per node) to do group-by
aggregation at the second stage. In this way, each node only
processes 2 GB of data: Node 0 processes Partition 0 from
all Map tasks, Node 1 processes all Partition 1 from all Map
tasks, and so on. The output of group-by aggregation on each
node is about 4 MB, so the 125 nodes only need to gather
about 512 MB to the driver in the third stage of aggregation.

In Table II we give the time complexity of each part of
the algorithm, with p as the number of nodes, m as the
number of Map tasks, k is the number of centroids, n is the
total number of feature vectors, and l is the number of
dimensions. The improved aggregation time complexity is
expressed as the sum of time complexity of 3 aggregation
stages. We approximate the improved Map task running time
using triangle inequalities from [8].

III. COLLECTIVE COMMUNICATION IN PARALLEL
PROCESSING FRAMEWORKS

In this section, we compare several big data parallel
processing tools and show how they are applied. These tools
are MPI, Hadoop MapReduce and iterative computation
tools such as Twister and Spark [5]. We also analyze the
pattern of collective communication and how intermediate
data is handled in each tool. We expect the ideas of these
tools to eventually converge into a single environment in the
future, for which our new optimal communication is aimed
in order to serve big data applications.

A. Runtime Models
MPI, Hadoop, Twister and Spark are four tools aimed at

different types of applications and data, and have very
different runtime models. We classify parallel data
processing and communication patterns [14] in Figure 3. In
the data tool spectrum, Hadoop and MPI are at opposite ends
while Twister, Spark and other MapReduce-like tools are in
the middle with mixed features extended from both Hadoop
and MPI. Here we propose using systematic support of
collectives to unify these models.

1) MPI: MPI is a computation-centric solution that
mainly serves scientific applications which are both
complicated in communication patterns and computation-
intensive. It can spawn parallel processes to compute nodes,
although users need to define the computation in each
process and handle communication between them. MPI is
highly optimized in communication performance. It offers
both basic point-to-point communication and also collective
communication operations. MPI runs on HPC and

TABLE II. TIME COMPLEXITY OF EACH STAGE

Stage Simple Improved
Broadcasting 𝑂𝑂(𝑘𝑘𝑘𝑘𝑘𝑘) 𝑂𝑂(𝑘𝑘𝑘𝑘)
Map 𝑂𝑂(𝑘𝑘𝑘𝑘𝑘𝑘/𝑚𝑚) 𝑂𝑂(𝑘𝑘𝑘𝑘/𝑚𝑚) [8]

Aggregation 𝑂𝑂(𝑚𝑚𝑚𝑚𝑚𝑚) 𝑂𝑂(𝑚𝑚𝑚𝑚𝑚𝑚/𝑝𝑝) + 𝑂𝑂(𝑘𝑘𝑘𝑘)
+ 𝑂𝑂(𝑘𝑘𝑘𝑘)

TABLE I. ALGORITHMS AND IMPLEMENTATION OF THE IMAGE
CLUSTERING APPLICATION (ONE AGGREGATION TASK ONLY)

Algorithm 1 Iteration Driver
numLoop ← maximum iterations
centroids[0] ← initial centroids value
for(i ← 0; i < numLoop; i ← i+1)
 broadcast(centroids[i])
 runMapReduceIteration()
 centroids[i+1] ←getResults()

Algorithm 2 Map Task
vectors ← load and cached from files
centroids ← load from memory cache
minDis ← new int[numVectors]
minCentroidIndex ← new int[numVectors]
for (i ← 0; i < numVectors; i ← i+1)
 for (j ← 0; j < numCentroids; j ← j+1)
 dis ← getEuclidean(vectors[i], centroids[j])
 if (dis < minDis[i])
 minDis[i] ← dis
 minCentroidIndex[i] ← j
localSum ← new int[numCentroids][512]
localCount ← new int[numCentroids]
for(i ← 0; i < numVectors; i ← i+1)
 localSum[minCentroidIndex[i]] +← vectors[i]
 localCount[minCentroidIndex[i]] +← 1
collect(localSum, localCount)

Algorithm 3 Aggregation Task
localSums ← collected from Map tasks
localCounts ← collected from Map tasks
totalSum ← new int[numCentroids][512]
totalCount ← new int[numCentroids]
newCentroids ← new byte[numCentroids][512]
for (i ← 0; i < numLocalSums; i ← i+1)
 for (j ← 0; j < numCentroids; j← j+1)
 totalSum[j] = totalSum[j] + localSums.get(i)[j]
 totalCount[j] = totalCount[j] + localCounts.get(i)[j]
for (i ← 0; i < numCentroids; i← i+1)
 newCentroids[i] = totalSum[i]/ totalCount[i]
collect(newCentroids)

supercomputers where data is decoupled from computation
and stored in a separate shared and distributed file system.
MPI does not have unified data abstractions analogous to
the key-value pairs in MapReduce-related tools. In contrast,
it is flexible enough to organize and process different types
of data. MPI lacks fixed control flow, endowing it with the
flexibility to emulate the MapReduce model or other user-
defined models [15-17].

2) MapReduce and Hadoop: On the other hand, Hadoop
is data-centric. HDFS [18] is used to store and manage big
data so that users are freed from the data accessing and
loading steps required in MPI. In addition, all computations
are performed in the place where the data is located, to
promote scalability. Key-Value pairs are the core data
abstraction in MapReduce. With keys, intermediate data
values are labeled and regrouped automatically without
explicit communication commands. Hadoop is very suitable
for processing records and logs, which are easy to split into
small Key-Value pairs with words or lines. A typical record
or log processing task includes information extraction and
regrouping, which are easily expressed in Map-Reduce:
intermediate Key-Value pairs are first extracted from
records and logs in Map tasks, then regrouped in shuffling,
and finally processed by Reduce tasks. But Hadoop is
inefficient for data mining and scientific applications served
by MPI because its control flow is constrained to a Map-
Shuffle-Reduce pattern.

Differences in application algorithm and data
characteristics also influence scheduling. In many scientific
applications, the workload can be evenly distributed on each
compute node and in-mmeory communication between
processes happens frequently; as a result, MPI uses static
scheduling. But for log and record processing, the workload
in each task is hard to estimate, since some tasks generate
more Key-Value pairs than others and all data exchange is
based on HDFS but not in-memory communication.
Because of these, Hadoop uses dynamic scheduling. Hadoop
also provides task level fault tolerance, a feature MPI does
not support.

3) Twister and Spark: Twister and Spark are somewhere
between MPI and Hadoop. Twister provides an easy-to-use,
data-centric solution to process big data in data mining and
scientific applications. Twister’s control flow is defined by
iterations of MapReduce jobs, with the output of each
iteration sent to the input to the next iteration. The data in
Twister is also abstracted as Key-Value pairs for
intermediate data regrouping as per the needs of the
application. Twister uses static scheduling: data is pre-split
and evenly distributed to compute nodes based on the
available computing slots (the number of cores). Tasks are
then sent to where the data is located.

Spark also targets iterative algorithms but in addition
boasts flexible iteration control with separated RDD
operations called transformations and actions. A RDD is an
in-memory data abstraction in distributed computing with
fault tolerance support. Typical operations on RDDs include
MapReduce-like operations such as Map, GroupByKey (like
Shuffle but without sort) and ReduceByKey (same as
Reduce), and also relational database-like operations like

Union, Join, and Cartesian-Product. Spark scheduling is
similar to Dryad but considers available memory of RDD
partitions. RDD’s lineage graph is examined to build a DAG
of stages for late execution.

The Key/Value abstraction in MapReduce also requires
more work in the form of partitioning before data loading.
This is because the data abstracted in computation is usually
not organized in the same way as in the file system. For
example, the data in our image clustering application is
stored in a set of text files, with each file containing feature
vectors generated from a set of images. The file lengths and
the total number of files vary. However, in the computation
we set the number of data partitions to be the same as a
multiple of the number of cores so that we can evenly
distribute computation. Ultimately we need to convert “raw”
data on disks to “cooked” data ready for computation.
Currently we split original data files into evenly-sized data
partitions. But Hadoop can automatically load data from
blocks with custom InputSplit or InputFormat classes, while
MPI requires the user to split data or use special formats like
HDF5 [19] and NetCDF [20].

B. Collective Communication and Intermediate Data
Handling

MPI researchers have made major progress on
communication optimization. However MPI focuses on low
latency communication, while our application is notable for
large messages where latency is less relevant. With the
support of high-performance hardware, communication is
well optimized. Users can communicate in two ways; one is
to call send/receive APIs to customize communication
between processes, and another is to invoke libraries to do
collective communication, which is a type of communication
in which all the workers are required to participate.

Often data-centric problems run on clouds which consist
of commodity machines, and the cost of transferring big
intermediate data is high. For example, in our image
clustering application, broadcasting about 500MB is
required, and our findings show that this operation can be a
great burden to current data-centric technology. This makes
it necessary to systematically develop a Map-Collective

(a) Map Only
(Pleasingly Parallel)

(b) Classic
MapReduce

(c) Iterative
MapReduce

(d) Loosely
Synchronous

- CAP3 Gene Analysis
- Smith-Waterman

Distances
- Document conversion

(PDF -> HTML)
- Brute force searches in

cryptography
- Parametric sweeps
- PolarGrid Matlab data

analysis

- High Energy Physics
(HEP) Histograms

- Distributed search
- Distributed sorting
- Information retrieval
- Calculation of Pairwise

Distances for
sequences (BLAST)

- Expectation
maximization
algorithms

- Linear Algebra
- Data mining include K-

means clustering
- Deterministic

Annealing Clustering
- Multidimensional

Scaling (MDS)
- PageRank

Many MPI scientific
applications utilizing
wide variety of
communication
constructs including
local interactions
- Solving Differential

Equations and
- particle dynamics with

short range forces

Pij

Collective Communication MPI

Input

Output

map

Input
map

reduce

Input
map

iterations

No Communication

reduce

Figure 3. Classification of Applications

approach with a wide range of collectives, and to optimize
for big data instead of the MPI simulation optimizations.

There are traditionally 7 collective communication
operations discussed in MPI [21]: four data redistribution
operations (broadcast, scatter, gather, and allgather) and
three data consolidation operations (reduce(-to-one), reduce-
scatter, and all-reduce). Neither Hadoop, Twister, nor Spark
explicitly defines all these operations. Hadoop has implicit
“broadcast” based on distributed cache and since Hadoop
data is managed by HDFS, direct memory-to-memory
collective communication does not exist. Twister and Spark
supports broadcast explicitly but no allgather and allreduce.
Another iterative MapReduce system Twister4Azure [22]
supports all-gather and all-reduce. In a later paper we will
describe integrating these different collectives into a single
system that runs on HPC clusters (Twister) and PaaS cloud
systems (Twister4Azure), changing the implementation to
optimize for each infrastructure. The same high level
collective primitive is used on each platform with different
under-the-hood optimizations.

In broadcasting, data abstraction and methods are very
different across these systems. In MPI, data is abstracted as
an array buffer; in Hadoop, as an HDFS file; Twister and
Spark treat broadcast data as an object (Key-Value pairs in
Twister and arbitrary objects in Spark). Several algorithms
are used for broadcasting. MST (Minimum-Spanning Tree)
is a typical broadcasting method used in MPI [21]. In this
method, nodes form a minimum spanning tree and data is
forwarded along the links. In this way, the number of nodes
which have data grows in geometric progression, such that
the performance model is:

𝑇𝑇𝑀𝑀𝑀𝑀𝑀𝑀(𝑝𝑝,𝑛𝑛) = ⌈𝑙𝑙𝑙𝑙𝑙𝑙2𝑝𝑝⌉(𝛼𝛼 + 𝑛𝑛𝑛𝑛) (1)

where p is the number of nodes, n is the data size, α is the
communication startup time and β is the data transfer time
per unit. This method is much better than simple
broadcasting by reducing the complexity term p to ⌈log2p⌉.
But it is still insufficient when compared with scatter-all-
gather bucket algorithm. This algorithm is used in MPI for
long vectors broadcasting which follows the style of “divide,
distribute and gather” [23]. In the “scatter” phase, it scatters
the data to all the nodes. Then in all-gather the bucket
algorithm is used, which views the nodes as a chain. At each
step, every node sends data to its right neighbor [25]. By
taking advantage of the fact that messages traversing a link
in opposite directions do not conflict, all-gather is done in
parallel without any network contention. The performance
model is:

𝑇𝑇𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏(𝑝𝑝,𝑛𝑛) = (𝑝𝑝 + 𝑝𝑝 − 1)(𝛼𝛼 + 𝑛𝑛𝑛𝑛 𝑝𝑝⁄) (2)

In large data broadcasting, assuming α is small, the
broadcasting time is about 2nβ. This is much better than the
MST method because time appears constant. However, it is
not easy to set a global barrier between the scatter and all-
gather phases in a cloud system to enable all the nodes to do
all-gather at the same time. As a result, some links will have

more load than others and thus cause network contention.
We implement this algorithm and provide test results on IU
PolarGrid (Table III). The execution time is roughly 2𝑛𝑛𝑛𝑛,
but as the number of nodes increases, it gets slightly slower.

MPI also has InfiniBand [24] multicast-based broadcast
[25]. Many clusters support hardware-based multicast, but
this is not reliable: sending order is not guaranteed and size
of each send is limited. So after the first stage of
multicasting, broadcast is enhanced with a chain-like
broadcast, which is reliable enough to make sure every
process has completed receiving data. In the second stage,
the nodes are formed into a virtual ring topology. Each MPI
process that gets a message via multicast serves as a new
“root” within the virtual ring and exchanges data to the
predecessor and successor in the ring. This is similar to the
bucket algorithm we discuss above.

Though the above methods are not perfect, they all
reduce broadcast time to a great extent. Still, none of them
are applied in data-centric solutions, where instead a simple
algorithm is commonly used. Hadoop relies on HDFS to do
broadcasting: the Distributed Cache is used to cache data
from HDFS to the local disks of the compute nodes. The API
addCacheFile and getLocalCacheFiles work together to
complete the process of broadcasting. There is no special
optimization, and the data download speed depends on the
number of replicas in HDFS [18]. This method generates
significant overhead (factor of p) when handling big data
broadcast, as we show in experiments.

We call this a “simple algorithm” because it sends data to
all the nodes one by one. Initially in Twister, a single
message broker is used to do broadcasting in a similar way
(Figure 4). Though using multiple brokers in Twister or
multiple replicas in HDFS could contain a simple 2-level
broadcasting tree and ease the performance issue, they won’t
fundamentally address the problem. To replace the current
broadcasting in Twister, in the next section we propose a
chain-based broadcasting algorithm suitable for cloud
systems.

Meanwhile, instead of using the simple algorithm, Spark
adds BitTorrent [26] to enhance broadcast speed. BitTorrent
is a well-known technology in internet file sharing. The
programming interface of broadcast in Spark is very different
from MPI and Twister. Due to the mechanism of late
execution, broadcast is finished not in a single step but in
two stages. When broadcast is invoked, the data is not
broadcast until the parallel tasks are executed. Broadcasting
happens when 10 printing tasks are invoked, so it doesn’t
execute on all the nodes, only on the nodes where tasks are
located. The performance of Spark Broadcasting is discussed
with a simple case in Section VI.

For data consolidation operations, reduce(-to-one) and
reduce-scatter are parallel to a shuffle-reduce operation in

TABLE III. SCATTER-ALLGATHER BUCKET ALGORITHM
PERFORMANCE ON IU POLARGRID WITH 1 GB DATA

BROADCASTING

Node# 1 25 50 75 100 125
Seconds 11.4 20.57 20.62 20.68 20.79 21.2

data-centric solutions. Reduce-(to-one) can be viewed as
shuffling with only one Reducer while reduce-scatter can be
viewed as shuffling with all workers as reducers. However,
these operations are fundamentally different in terms of
semantics because shuffle-reduce is based on Key-Value
pairs while reduce-(to-one) and reduce-scatter are based on
vectors, and the former is more flexible than the latter. In
shuffle-reduce the number of keys in one worker can be
arbitrary. For example, in word count, for a particular word
“word1,” one worker could generate multiple Key-Value
pairs with “word1” as key and 1 as the value. Or there might
be no such Key-Value pairs if the worker couldn’t find any
examples of “word1.” In addition, a value can be any
arbitrary object which encapsulates many different data
types. However, reduce-scatter requires the size of the
vectors for reduction to be identical in all workers. Because
the numbers of words and counts in each worker are hard to
estimate, it is difficult to replace shuffle-reduce with reduce-
scatter in word count.

We cannot use collective communication in MPI directly
to simulate shuffle-reduce in MPI; instead we customize the
communication with send/receive calls. Table IV shows how
shuffling might look based on send/receive APIs. We
simplify the code by using a matrix to hold all the Key-Value
pairs for send/receive, but this still reveals another weakness
of MPI in shuffling: the program is not simple and users
have to explicitly designate where the data goes. By contrast,
in data-centric solutions, data is managed by the framework,

and automatically goes to the destination according to the
keys.

Thus shuffling can be viewed as a unique type of
collective communication in data-centric solutions. The
implementation is also different between runtimes. Hadoop
manages intermediate data on disk, so data is first
partitioned, sorted and spilled to disk, then transferred,
merged and sorted again at the Reducer. However, shuffling
in Twister is much simpler and has better performance: data
is only regrouped by keys and transferred in memory, and
there is no sorting [4]. In Spark, there are two APIs related to
shuffling. One is “groupByKey”, and another is “sort”.

We argue that “sort” is not a necessary part of shuffle.
First, in Twister all intermediate data is in memory so that
keys can be regrouped through a large hash map, whereas in
Hadoop, merging is done on disk and thus sorting is a
required step to put similar keys together. Second, in many
applications such as word count and our image clustering
application, it is sufficient for the data to be grouped without
being sorted, as the rank of each key is not important. As a
result, we view shuffle as “regroup”.

Due to the difference between similar concepts in
different models, we generalize the abstraction of data
consolidation operations in Map-Collective model as
“aggregation”. So data consolidation operations such as
“shuffle-reduce” is considered as “regroup-aggregate”. In the
image clustering application, we implemented 3-stage
aggregation.

In summary, collective communication is not well
studied in the context of MapReduce and other data-centric
solutions, and may not be optimally implemented in the
current runtimes. Though collective communication
operations have been used in MPI for decades, they are still
missing in MapReduce despite still being required by
applications; for instance, broadcast and aggregate are two
important operations in our image clustering application.
With optimization, we introduce a new Twister control flow
with optimized broadcasting and local aggregation features
(Figure 2). Our collectives are implemented asynchronously
but the broadcast step of K-means naturally synchronizes the
algorithm at each iteration.

IV. BROADCAST COLLECTIVE
To address the need for high performance broadcast, we

replace the broker methods in Twister with a chain method
based on TCP sockets, customizing the message routing.

A. Chain Broadcasting Algorithm
We propose the chain method, an algorithm based on

pipelined broadcasting [28]. Compute nodes in a Fat-Tree
topology [29] are treated as a linear array and data is
forwarded from one node to its neighbor chunk-by-chunk.
Performance is enhanced by dividing the data into small
chunks and overlapping transmission of data. For example,
the first node sends a chunk to the second node. Then, while
the second node sends the data to the third node, the first
node sends another chunk to the second node, and so on
[28]. This pipelined data forwarding is called a chain, and is
particularly suitable for the large data in our communication
problem.

Figure 4. Initial Twister architecture

TABLE IV. MPI “SHUFFLING” PSEUDO CODE

Algorithm 1 MPI “shuffling”
for(i←0; i<max_rank; i←i+1) {
if(my_rank = i) {
 for(j←0; j<max_rank&&j!=i; j←j+1)
 MPI_Send(numSendKVpairs[j]);
 for(k←0; k<numSendKVpairs[j]; k←k+1)
 MPI_Send(sendKVpairs[j][k])
else
 MPI_Recv(numRecvKVpairs[i]);
 for(j←0; j<numRecvKVpairs[j]; j←j+1)
 MPI_Recv(recvKVpairs[i][j]);

 Worker Node

Local Disk

Worker Pool

Twister Daemon

Master Node

Twister
Driver

Main Program

B B BB

Pub/Sub
Broker Network and
Collective
Communication
Service

Worker Node

Local Disk

Worker Pool

Twister Daemon

Scripts perform:
Data distribution, data collection,
and partition file creation

map

reduce Cacheable tasks

Pipelined broadcasting performance depends on the
chunk size. Ideally, if every transfer can be overlapped
seamlessly, the theoretical performance is as follows:

𝑇𝑇𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝(𝑝𝑝, 𝑘𝑘,𝑛𝑛) = (𝑝𝑝 + 𝑘𝑘 − 1)(𝛼𝛼 + 𝑛𝑛𝑛𝑛 𝑘𝑘⁄) (3)

Here p is the number of nodes, k is the number of data
chunks, n is the data size, α is communication startup time
and β is data transfer time per unit. In large data
broadcasting, assuming α is small and k is large, the main
term of the formula is (p + k − 1)nβ k⁄ ≈ nβ , which is
close to constant. From the formula, the best number of
chunks is kopt = �(p − 1)nβ/α when ∂T ∂k⁄ = 0 [28].
However, in practice, the actual chunk size per sending is
decided by the system, and the speed of data transfers on
each link could vary as network congestion might occur
when data is continuously forwarded into the pipeline. As a
result, formula (3) cannot be applied directly to predict real
performance of our chain broadcasting implementation. But
the experiment results we will present later still show that as
p increases, the broadcasting time remains constant and close
to the bandwidth limit.

B. Rack-Awareness
This chain method is suitable for racks with Fat-Tree

topologies, which are common in clusters and data centers
[30]. Since each node has only two links (less than the
number of links per node in Mesh/Torus [31]), chain
broadcasting can maximize the utilization of the links per
node. We also make the chain topology-aware by allocating
nodes within the same rack nearby in the chain. Assuming
the racks are numbered as R1, R2 , R3…, we put nodes in R1
at the beginning of the chain, nodes in R2 after the nodes
in R1, nodes in R3 after nodes in R2, etc. Otherwise, if the
nodes in R1 are intertwined with nodes in R2 in the
sequence, the flow will jump between switches,
overburdening the core switch. To support rack-awareness,
we write and save configuration information on each node. A
node discovers its predecessor and successor by loading this
information when starting. In future work we plan to replace
this with automatic topology detection.

C. Implementation
Our implementation of chain broadcasting starts with a

request from the root to the first node in the topology-aware
chain. Then the master keeps sending a small portion of the
data to the next slave node. In the meantime, each node in
the chain creates a connection to its successor. Next each
node receives partial data from the socket stream, stores it in
the application buffer and forwards it to the next node (Table
V).

V. 3-STAGE AGGREGATION
As what we discussed in Section II, direct aggregation is

impossible for large intermediate data. We do aggregation in
3 stages. In the first stage aggregation, since each Map task
is running at thread level, we reduce the intermediate data
size on each node with local aggregation across Map tasks.
We organize the local aggregated data into partitions. Then
in the second stage aggregation, we do group-by aggregation

across nodes for each partition. Thirdly, we do gather to
aggregate partitions from nodes to the driver.

To support local aggregation, we provide an appropriate
interface to help users define the aggregation operation. Each
Key-Value pair in intermediate data is a partial sum of the
components of data points associated with a particular
cluster. Since addition is an operation with both commutative
and associative properties, for any two values belonging to
the same key, we can do addition on them and merge them to
a single Key-Value pair, which has no effect on the final
result:

𝑓𝑓�𝑘𝑘𝑘𝑘1,⋯ , 𝑘𝑘𝑘𝑘𝑖𝑖 ,⋯ , 𝑘𝑘𝑘𝑘𝑗𝑗 ,⋯ , 𝑘𝑘𝑘𝑘𝑛𝑛� = 𝑓𝑓�𝑘𝑘𝑘𝑘1,⋯ , �𝑘𝑘𝑘𝑘𝑖𝑖 ⊕
𝑘𝑘𝑘𝑘𝑗𝑗�,⋯ , 𝑘𝑘𝑘𝑘𝑛𝑛� = 𝑓𝑓�𝑘𝑘𝑘𝑘1,⋯ , �𝑘𝑘𝑘𝑘𝑗𝑗 ⊕ 𝑘𝑘𝑘𝑘𝑖𝑖�,⋯ , 𝑘𝑘𝑘𝑘𝑛𝑛� ∀ 𝑖𝑖, 𝑗𝑗, 1 ≤
𝑖𝑖, 𝑗𝑗 ≤ 𝑛𝑛 (4)

where f is the Reduce function, n is the number of Key-
Value pairs belonging to the same key, and ⊕ represents an
operation which is similar to addition that can be applied on
any two Key-Value pairs to produce a new Key-Value pair.
In our image clustering application, ⊕ is the addition of two
partial sums.

With ⊕ operation and the fact that Map tasks work at the
thread level on compute nodes, we do local aggregation in
the memory shared by Map tasks. Once a Map is finished, it
doesn’t send data out immediately but instead caches it to a
shared memory pool. When key conflicts happen, the
program invokes a user-defined operation to merge two Key-
Value pairs. A barrier is set so that data in the pools is not
transferred until all the Map tasks in a node are finished. By
trading communication time with computation time, we
reduce data transfer significantly.

VI. EXPERIMENTS

A. Performance Comparison among Runtime Frameworks
To evaluate performance of the proposed broadcasting

and aggregation mechanisms, we conducted experiments on
IU PolarGrid in the context of both kernel and application

TABLE V. BROADCASTING ALGORITHM

Algorithm 1 master side “send” method
conn ← connection to the next node
bytes ← byte array serialized from the broadcasting object
totalBytes ← total size of bytes
SEND_UNIT ← 8192
start ← 0
conn.send(totalBytes)
while (start + SEND_UNIT < totalBytes)
 conn.sent(bytes, start, SEND_UNIT)
 start ← start + SEND_UNIT
if (start < totalBytes)
 conn.send(bytes, start, totalBytes - start)

Algorithm 2 slave side “receive” method
conn ← connection to the previous node
connNextN ← connection to the next node
totalBytes ← receiveInt()
connNextN.send(totalBytes)
buffer ← get buffer to hold the byte data received
RECV_UNIT ← 8192
recvLen ← 0
while ((len ← conn.receive(buffer, recvLen, RECV_UNIT)) > 0)
 connNextNsend(buffer, recvLen, len)
 recvLen ← recvLen + len
 if (recvLen = totalBytes) break

benchmarking. IU PolarGrid [11] uses a Fat-Tree topology to
connect compute nodes. The nodes are split into sections of
42 nodes which are then tied together with 10 GigE to a
Cisco Nexus core switch. For each section, nodes are
connected with 1 GigE to an IBM System Networking Rack
Switch G8000. This forms a 2-level Fat-Tree structure with
the first level of 10 GigE connections and the second level of
1 GigE connections. For computing capacity, each compute
node in PolarGrid uses a 4-core 8-thread Intel Xeon CPU
E5410 2.33 GHz processor. The L2 cache size per core is 12
MB. Each compute node has 16 GB total memory. The
results demonstrate that the chain method achieves the best
performance on big data broadcasting compared with other
MapReduce and MPI frameworks, and 3-stage aggregation
significantly outperforms the original aggregation.

1) Broadcasting
We test the following methods: Twister chain method,

MPI_BCAST in Open MPI 1.4.1 [32], and broadcast in MPJ
Express 0.38 [33]. We also compare the current Twister
chain broadcasting method with other designs such as simple
broadcasting and chain method without topology awareness.

In Figure 5, we show performance of simple broadcast as
a baseline on IU PolarGrid. Owing to 1 GB connection on
each node, the transmission speed is about 8 seconds per GB
which matches the setting of the bandwidth. With our new
algorithm, we successfully reduce the cost by a factor of p
from O(pn) to O(n), where p is the number of nodes and n
is data size.

Figure 6 compares the chain method and MPI_BCAST
method in Open MPI. The time cost of the new chain method
is stable as the number of processes increases. This matches
the broadcasting formula (3) and we can conclude that with
proper implementation, the actual performance of the chain
method can achieve near constant execution time. Besides,
the new method achieves 20% better performance than
MPI_BCAST in Open MPI. Figure 7 compares the Twister
chain method and the broadcast method in MPJ. Due to
exceptions, we couldn’t launch MPJ broadcast on 2GB data.
MPJ broadcasting method is also stable as the number of
processes grows, but is four times slower than our Java
implementation. Furthermore, there is a significant gap
between 1-node broadcasting and 25-node broadcasting in
MPJ.

However if the chain sequence is randomly generated but
not topology-aware, performance degrades quickly as the
scale grows. Figure 9 shows that the chain method with

topology-awareness is 5 times faster than that of the chain
method without topology-awareness. For broadcasting
within a single switch, we see that as expected, there is not
much difference between the two methods. However, as the
number of nodes and the number of racks increase, execution
time increases significantly. When there are more than 3
switches, execution time become stable and does not change
much; this is because there are many inter-switch
communications and performance is constrained by the 10
GB bandwidth and the throughput ability of the core switch.

2) Analysis of BitTorrent Broadcasting
Here we examine performance of BitTorrent broadcast in

Spark, which is reported to be excellent [27]. In our testing,
however, the current Spark (v. 0.7.0) has good performance
on a few nodes but degrades quickly as the number of nodes
increases. We executed only 1 task after invoking
broadcasting on 500 MB of data, and the result was stable as
the number of nodes grew. When we set the number of
receivers equal to the number of nodes, performance issues
emerged: on 25 nodes with 25 tasks, the performance was
the same as with 1 receiver, but on 50 nodes with 50 tasks,
broadcasting time increased three-fold. We tried to broadcast
from 75 nodes to 150 nodes, but none of the tests executed
successfully. Increasing the number of receivers to the
number of cores gave similar results, scaling to 50 nodes
only. We tried 1 GB and 2 GB broadcasts but these did not
scale to 25 nodes.

Since the broadcasting topology in BitTorrent is built
dynamically, it is unknown if the broadcast topology follows
the patterns in MPI, such as a MST. Also important in
broadcast is that this topology follows rack-awareness. A
special dynamic topology detection technique is mentioned
[27] but it may not be used in the current version. For
sending chunk size, [27] mentions that 4 MB performs well
but without any further analysis.

3) Local Aggregation in 3-stage Aggregation
To reduce intermediate data from 1 TB data to 125 GB

data, we use local aggregation. The output per node is
reduced to 1 GB and total data for shuffling is only about
125 GB, and the cost of regrouping is only 10% of the
original time.
B. Evaluation of Image Recognition Application

Finally, we tested the full execution of our image
classification application. As described in Section II, the first
step of constructing our classifiers is to create the

vocabulary. To do this, we took a set of 12 million publicly-
available, geo-tagged Flickr photos, randomly sampled 5
patches from each image, and then computed the 512
dimensional HOG feature for each patch. We then used our
high-performance implementation of K-means to cluster
these 7.42 million 512 dimensional HOG vectors into 1
million cluster centers. Specifically, we created 10,000 map
tasks on 125 compute nodes, so that each node had 80 tasks
and each task cached 742 vectors. For 1 million centroids,
the amount of broadcast data was about 512 MB, the
aggregation data size was about 20 TB, and the data size
after local aggregation was about 250 GB. Since the total
amount of physical memory on our 125 nodes was 2 TB, we
could not even execute the program unless local aggregation
was performed first in aggregation. Collective
communication cost per iteration was 169 seconds (less than
3 minutes). Note that we are currently developing a new
faster K-means algorithm [8][9] that will drastically reduce
the current hour-long computation time in the Map stage by
up to a factor of the number of dimensions of the feature
vectors, and so the improved communication time is highly
relevant.

Once the vocabulary was created, we trained classifiers
for our problems of inferring elevation gradient and
population. Our classification task is to determine if a given
image was taken in an area with a “high” or “low” value for
these attributes – e.g. a rural area or a city. To build the
classifiers, we collected approximately 15,000 geo-tagged
images from Flickr which were labeled with ground-truth
attribute values. We encoded these images as described in
section 2.1 using the vocabulary built through K-means,
which produces a single k-dimensional feature vector for
each image. We then used half the data to train linear
Support Vector Machine classifiers [46], and reserved the
rest for testing.

For the elevation gradient task, our classifiers achieved
an accuracy of 57.23%, versus a random baseline of 50%,
while the urbanicity classifier performed better at 68.27%. In
interpreting these numbers, it is important to note that we use
an unfiltered set of Flickr images, including photos that do
not have any visual evidence of where they were taken. To
put these accuracies into context, we conducted a small-scale
experiment in which we asked people to perform the same

tasks (classify urbanicity and elevation gradient) on a
random subset of 1000 images. They performed slightly
better on elevation gradient (60.0% vs. 57.2%) but
significantly better on urbanicity (80.8% vs. 68.2%). Figure
11 presents sample images, showing both correct and
incorrect classifications.

Figure 10 presents the relationship between the size of
the vocabulary (which, in turn, is the size of the feature
clustering task) and the classifier accuracy. We observe that
the elevation gradient classifier quickly reached a saturation
point such that the additional information encoded in the
larger vocabularies is not very helpful. On the other hand, for
the urbanicity attribute, the accuracy improved by a steady 2-
3% for each tenfold increase in vocabulary. These results
demonstrate that, in some cases, large gains in image
classification accuracy can be made by employing vast
dictionaries like those the proposed framework can support.

VII. RELATED WORK
In Section III we discussed the data processing runtimes

and compared the collective communication within them.
Here we summarize the analysis and add other observations.
Collective communication algorithms are thoroughly studied
in the MPI runtime, although the Java implementations are
less well optimized. Each operation has several different
algorithms based on message size and network topology
(such as linear array, mesh and hypercube [21]). Basic
algorithms are the pipeline broadcast method [28], the
minimum-spanning tree method, the bidirectional exchange
algorithm, and the bucket algorithm [21]. Since these
algorithms have different advantages, combinations of these
algorithms (polymorphism) are widely used to improve
communication performance [21], and some solutions also
provide automatic algorithm selection [34].

Other papers have a different focus than our work. Some
of them only study small data transfers up to a level of
megabytes [21] [35] while some solutions rely on special
hardware support [23]. The data type in these papers is
typically vectors and arrays, whereas we are considering
objects. Many algorithms such as “all-gather” operate under
the assumption that each node has the same amount of data
[21] [23], which is uncommon in a MapReduce model.

There are several solutions to improve the performance

of data transfers in MapReduce. Orchestra [27] is one such
global control service and architecture that manages intra-
and inter-transfer activities in the Spark system (we gave
some test results in section 3.1). It not only provides control,
scheduling and monitoring on data transfers, but also
optimizes broadcasting and shuffling. For broadcasting, it
uses an optimized BitTorrent-like protocol called Cornet,
augmented by topology detection. For shuffling, Orchestra
employs weighted shuffle scheduling (WSS) to set the
weight of the flow proportional to the data size; we noted
earlier this optimization is not relevant in our application.

Hadoop-A [36] provides a pipeline to overlap the shuffle,
merge and reduce phases and uses an alternative Infiniband
RDMA-based protocol to leverage RDMA inter-connects for
fast shuffling. MATE-EC2 [37], a MapReduce-like
framework for EC2 [38] and S3 [39] uses local and global
aggregation for data consolidation. This strategy is similar to
what was done in Twister, but since it focuses on the EC2
environment, the design and implementation are totally
different. iMapReduce [40] and iHadoop [41] are iterative
MapReduce frameworks that optimize data transfers between
iterations asynchronously when there is no barrier between
iterations. However, this design does not work for
applications that need to broadcast data in every iteration
because all the outputs from Reduce tasks are needed for
every Map task.

Daytona [45] is a recent iterative MapReduce runtime
developed by Microsoft Research for the Azure Cloud
Platform that builds on some of the ideas of the earlier
Twister system. Excel DataScope is an application of
Daytona. Users can upload data from Excel to the DataScope
service or select a dataset already in the cloud, then select an
analysis model from the DataScope ribbon to run against the
selected data. The results can be returned to the Excel client
or remain in the cloud for processing and visualization.
Daytona is available as a “Community Technology Preview”
for non-commercial use.

The focus of this paper is on the algorithms, system
design and implementation to support large-scale computer
vision, not computer vision itself. Still, we will briefly
mention a few papers related to ours. A small but growing
number of papers have considered the opportunities and
challenges of image classification on large-scale online
social photo collections. Hays and Efros [50] and Li et al
[49] use millions of images to build classifiers for place and
landmark recognition, respectively, while Xiao et al [47]
build a huge dataset of images and test various features and
classifiers on scene type recognition. The de facto standard
classification technique is to extract features like HOG [11],
cluster into a vocabulary using K-means [52], write each
image as a histogram over the vocabulary, and then learn a
classifier using an SVM [46]. We are not aware of any work
that has built vocabularies on the scale that we consider in
this paper.

VIII. CONCLUSIONS AND FUTURE WORK
In this paper, we demonstrated first steps towards a high

performance Map-Collective programming model and
runtime using the requirements of a large-scale clustering

algorithm. We replaced broker-based methods and designed
and implemented a new topology-aware chain broadcast
algorithm, which reduces the time burden of broadcast by at
least a factor of 120 on 125 nodes, compared with the simple
broadcast algorithm. It gives 20% better performance than
the best C/C++ MPI methods, 4 times better than Java MPJ,
and a factor of 5 improvement over non-optimized (for
topology) pipeline-based method on 150 nodes. The
aggregation cost after using local aggregation is only 10% of
the original time. Collective communication has significantly
improved the intermediate data transfer for large-scale
clustering problems.

In future work, we will improve the K-means algorithm
[8][9][42] and apply the Map-Collective framework to other
iterative applications [43] including Multi-Dimensional
Scaling where the all-gather primitive is needed. We will
also extend current work to include an all-reduce collective
that is an alternative approach to K-means. The resulting
Map-Collective model that captures the full range of
traditional MapReduce and MPI features will be evaluated
on Azure [22] as well as IaaS/HPC environments.

On the application side, we will apply our technique to
classifying types of scene attributes other than urbanicity and
elevation; our goal is to build classifiers for hundreds or
thousands of different scene attributes, and then use these for
visual place recognition by cross-referencing to GIS maps.
We are investigating other techniques like deep learning [7]
for building the vocabulary, but these will require iterative
algorithms applied to large-scale data like the ones we have
considered here.

ACKNOWLEDGEMENTS
We gratefully acknowledge support from National

Science Foundation grant OCI-1149432 and IIS-1253549,
and from the Intelligence Advanced Research Projects
Activity (IARPA) via Air Force Research Laboratory. The
U.S. Government is authorized to reproduce and distribute
reprints for Governmental purposes notwithstanding any
copyright annotation thereon. Disclaimer: The views and
conclusions contained herein are those of the authors and
should not be interpreted as necessarily representing the
official policies or endorsements, either express or implied,
of IARPA, AFRL, or the U.S. Government.

REFERENCES
[1] Apache Hadoop. http://hadoop.apache.org.
[2] J. Dean and S. Ghemawat. “Mapreduce: Simplified data processing on

large clusters.” In Symp. on OS Design and Implementation, 2004.
[3] P. Dubey. “A Platform 2015 Model: Recognition, Mining and

Synthesis Moves Computers to the Era of Tera.” Compute-Intensive,
Highly Parallel Applications and Uses. (9) 2, 2005.

[4] J. Ekanayake, H. Li, B. Zhang, T. Gunarathne, S.-H, Bae, J. Qiu, G.
Fox. “Twister: A Runtime for iterative MapReduce.” In Workshop on
MapReduce and its Applications at ACM HPDC 2010, 2010.

[5] M. Zaharia, M. Chowdhury, M. J. Franklin, S. Shenker, and I. Stoica.
“Spark: Cluster Computing with Working Sets.” In HotCloud, 2010.

[6] Y. Bu, B. Howe, M. Balazinska, and M. Ernst. “Haloop: Efficient
Iterative Data Processing on Large Clusters.” In Proc. of the VLDB
Endowment, September 2010.

[7] J. Dean, et al. “Large Scale Distributed Deep Networks.” In Neural
Information Processing Systems Conf., 2012.

http://hadoop.apache.org/

[8] J. Qiu, B. Zhang, “Mammoth Data in the Cloud: Clustering Social
Images.” In Clouds, Grids and Big Data, IOS Press, 2013.

[9] Charles Elkan, “Using the triangle inequality to accelerate K-means.”
In Intl. Conf. on Machine Learning 2003.

[10] MPI Forum, “MPI: A Message Passing Interface,” in Proc. of
Supercomputing, 1993.

[11] PolarGrid. http://polargrid.org/.
[12] N. Dalal, B. Triggs. “Histograms of Oriented Gradients for Human

Detection.” In IEEE CVPR, 2005
[13] J. MacQueen, “Some Methods for Classification and Analysis of

MultiVariate Observations.” In Berkeley Symp. on Mathematical
Statistics and Probability, 1967.

[14] J. Ekanayake, T. Gunarathne, J. Qiu, G. Fox, S. Beason, J. Choi, Y.
Ruan, S. Bae, and H. Li. Applicability of DryadLINQ to Scientific
Applications. Community Grids Lab, Indiana University, 2010.

[15] S. Plimpton, K. Devine, “MapReduce in MPI for Large-scale Graph
Algorithms,” Parallel Computing, 2011.

[16] X. Lu, B. Wang, L. Zha, and Z. Xu. “Can MPI Benefit Hadoop and
MapReduce Applications?” Intl. Conf. on Parallel Processing
Workshops, 2011.

[17] T. Hoefler, A. Lumsdaine, and J. Dongarra. “Towards Efficient
MapReduce Using MPI.” In PVM/MPI Users' Group Meeting, 2009.

[18] K. Shvachko, H. Kuang, S. Radia, and R. Chansler. “The Hadoop
Distributed File System.” Symp. on Mass Storage Systems and
Technologies, 2010.

[19] HDF5, http://www.hdfgroup.org/HDF5/whatishdf5.html
[20] NetCDF, http://www.unidata.ucar.edu/software/netcdf/
[21] E. Chan, M. Heimlich, A. Purkayastha, and R. A. van de Geijn.

“Collective communication: theory, practice, and experience.”
Concurrency and Computation: Practice and Experience (19), 2007,.

[22] T. Gunarathne, B. Zhang, T.-L. Wu, and J. Qiu. “Scalable Parallel
Computing on Clouds Using Twister4Azure Iterative MapReduce.”
Future Generation Computer Systems (29), pp. 1035-1048, 2013.

[23] N. Jain and Y. Sabharwal. “Optimal Bucket Algorithms for Large
MPI Collectives on Torus Interconnects.” ACM Intl. Conf. on
Supercomputing, 2010.

[24] Infiniband Trade Association. http://www.infinibandta.org.
[25] T. Hoefler, C. Siebert, and W. Rehm. “Infiniband Multicast: A

practically constant-time MPI Broadcast Algorithm for large-scale
InfiniBand Clusters with Multicast.” IEEE Intl. Parallel &
Distributed Processing Symposium, 2007

[26] BitTorrent. http://www.bittorrent.com.
[27] M. Chowdhury et al. “Managing Data Transfers in Computer

Clusters with Orchestra,” ACM SIGCOMM, 2011.
[28] J. Watts and R. van de Geijn. “A pipelined broadcast for

multidimensional meshes.” Parallel Processing Letters (5) 1995.
[29] C. Leiserson. “Fat-trees: universal networks for hardware efficient

supercomputing.” IEEE Transactions on Computers, (34) 10, 1985.
[30] R. N. Mysore. “PortLand: A Scalable Fault-Tolerant Layer 2 Data

Center Network Fabric.” In SIGCOMM, 2009
[31] S. Kumar, Y. Sabharwal, R. Garg, and P. Heidelberger.

“Optimization of All-to-all Communication on the Blue Gene/L
Supercomputer.” In Intl. Conf. on Parallel Processing, 2008.

[32] Open MPI, http://www.open-mpi.org
[33] MPJ Express, http://mpj-express.org/
[34] H. Mamadou, T. Nanri, and K. Murakami. “A Robust Dynamic

Optimization for MPI AlltoAll Operation.” Intl. Symp. on Parallel &
Distributed Processing, 2009.

[35] P. Balaji, A. Chan, R. Thakur, W. Gropp, and E. Lusk. “Toward
message passing for a million processes: Characterizing MPI on a
massive scale Blue Gene/P.” Computer Science Research and
Development, (24), pp. 11-19, 2009.

[36] Y. Wang et al. “Hadoop Acceleration Through Network Levitated
Merge.” In Intl. Conf. for High Performance Computing, Networking,
Storage and Analysis, 2011.

[37] T. Bicer, D. Chiu, and G. Agrawal. “MATE-EC2: A Middleware for
Processing Data with AWS.” In ACM Intl. Workshop on Many Task
Computing on Grids and Supercomputers, 2011.

[38] Amazon EC2. http://aws.amazon.com/ec2/.
[39] Amazon S3. http://aws.amazon.com/s3/.

[40] Y. Zhang, Q. Gao, L. Gao, and C. Wang. “iMapReduce: A distributed
computing framework for iterative computation.” In DataCloud,
2011.

[41] E. Elnikety, T. Elsayed, and H. Ramadan. “iHadoop: Asynchronous
Iterations for MapReduce.” In IEEE Intl. Conf. on Cloud Computing
Technology and Science, 2011.

[42] J. Drake and G. Hamerly. “Accelerated K-means with adaptive
distance bounds.” In NIPS Work. on Optimization for Machine
Learning, 2012.

[43] B. Zhang, Y. Ruan, T.-L. Wu, J. Qiu, A. Hughes, G. Fox. “Applying
Twister to Scientific Applications.” In IEEE Intl. Conf. on Cloud
Computing Technology and Science 2010.

[44] Daytona. http://research.microsoft.com/en-us/projects/daytona/
[45] T. Joachims. “Making large-scale SVM learning practical.” In

Advances in Kernel Methods, MIT Press, 1999.
[46] J. Xiao, J. Hays, K. Ehinger, A. Oliva, and A. Torralba. “Sun

database: Large-scale scene recognition from abbey to zoo”. CVPR,
2010.

[47] P. Felzenszwalb, R. Girshick, D. McAllester, and D. Ramanan.
“Object Detection with Discriminately Trained Part Based Models.”
PAMI 2010.

[48] Y. Li, D. Crandall, and D. Huttenlocher. “Landmark Classification in
Large-Scale Image Collections.” In ICCV, 2009.

[49] J. Hays and A. Efros. “IM2GPS: Estimating geographic information
from a single image.” In IEEE CVPR, 2008.

[50] D. Crandall, L. Backstrom, J. Kleinberg, and D. Huttenlocher.
“Mapping the world’s photos.” In Intl. World Wide Web Conf., 2009.

[51] G. Csurka, C. Dance, L. Fan, J. Williamowski and C. Bray. “Visual
categorization with bags of keypoints.” In ECCV Workshop on
Statistical Learning in Computer Vision, 2004.

http://polargrid.org/polargrid
http://www.hdfgroup.org/HDF5/whatishdf5.html
http://www.unidata.ucar.edu/software/netcdf/
http://www.infinibandta.org/
http://www.bittorrent.com/
http://www.open-mpi.org/
http://mpj-express.org/
http://aws.amazon.com/ec2/
http://aws.amazon.com/s3/
http://research.microsoft.com/en-us/projects/daytona/

	I. Introduction
	II. Motivating Application: Large-Scale Vision
	A. Scene Type Recognition
	B. Large-scale Image Feature Clustering

	III. Collective communication in parallel processing frameworks
	A. Runtime Models
	1) MPI: MPI is a computation-centric solution that mainly serves scientific applications which are both complicated in communication patterns and computation-intensive. It can spawn parallel processes to compute nodes, although users need to define th...
	2) MapReduce and Hadoop: On the other hand, Hadoop is data-centric. HDFS [18] is used to store and manage big data so that users are freed from the data accessing and loading steps required in MPI. In addition, all computations are performed in the pl...
	3) Twister and Spark: Twister and Spark are somewhere between MPI and Hadoop. Twister provides an easy-to-use, data-centric solution to process big data in data mining and scientific applications. Twister’s control flow is defined by iterations of Map...

	B. Collective Communication and Intermediate Data Handling

	IV. BROADCAST COLLECTIVE
	A. Chain Broadcasting Algorithm
	B. Rack-Awareness
	C. Implementation

	V. 3-Stage Aggregation
	VI. EXPERIMENTS
	A. Performance Comparison among Runtime Frameworks
	1) Broadcasting
	2) Analysis of BitTorrent Broadcasting
	3) Local Aggregation in 3-stage Aggregation

	B. Evaluation of Image Recognition Application

	VII. RELATED WORK
	VIII. CONCLUSIONS AND FUTURE WORK
	ACKNOWLEDGEMENTS
	REFERENCES

