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Abstract— Computer vision is being revolutionized by the 
incredible volume of visual data available on the Internet. A 
key part of computer vision, data mining, or any Big Data 
problem is the analytics that transforms this raw data into 
understanding. Many important data mining approaches 
require iterative computations at an unprecedented scale. 
Often an individual iteration can be specified as a MapReduce 
computation, leading to the iterative MapReduce program-
ming model for efficient execution of data-intensive iterative 
computations. We propose the Map-Collective model as a 
generalization of our earlier Twister system that is 
interoperable between HPC and cloud environments. In this 
paper, we study the problem of large-scale clustering, applying 
it to cluster large collections of 10-100 million social images, 
each represented as a point in a high dimensional (up to 2048) 
vector space, into 1-10 million clusters. This K-means 
application needs 5 stages in each iteration: Broadcast, Map, 
Shuffle, Reduce and Combine, and this paper presents new 
collective communication approaches optimized for large data 
transfers. Furthermore one needs additional communication 
patterns from those familiar in MapReduce, and we develop 
collectives that integrate capabilities developed by the MPI and 
MapReduce communities. We demonstrate that a topology-
aware and pipeline-based broadcasting method gives better 
performance than both MPI and other (Iterative) MapReduce 
systems. We present early results of an end-to-end image 
classification application and evaluate the quality of the 
resultant image classifications, showing that increasing the 
number of feature clusters leads to improved classifier 
accuracy.  
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I. INTRODUCTION 
The rate of data generation now exceeds the growth of 

computational power predicted by Moore’s law. Mining and 
analyzing these massive data sources to translate large-scale 
data into knowledge-based innovation represents a major 
computational challenge. MapReduce frameworks have 
become popular in recent years for their scalability and fault 
tolerance in large data processing and for their simplicity in 
the programming interface. Hadoop [1], an open source 
implementation following Google’s original MapReduce 
concept [2], has been widely used in industry and academia. 

But MapReduce does not directly address iterative 
solvers and basic matrix primitives, which Intel’s RMS 
(Recognition, Mining and Synthesis) taxonomy [3] identifies 
as common computing kernels for computer vision, 
rendering, physical simulation, financial analysis and data 
mining. These and other observations [7] suggest that 
iterative data processing runtime will be important to a 
spectrum of e-Science and e-Research applications as a 
kernel framework for large-scale data processing. Several 

frameworks designed for iterative MapReduce have been 
proposed to solve this problem, including Twister [4], Spark 
[5], HaLoop [6] and so on. For example, the initial version of 
Twister targeted optimization of data flow and reducing data 
transfer between iterations by caching invariant data in the 
local memory of compute nodes. However, it did not support 
the communication patterns needed in many applications, 
and we observe that a systematic approach to collective 
communication is essential in many iterative algorithms. 
Thus we generalize the (iterative) MapReduce concept to 
Map-Collective, since large collectives are a distinctive 
feature of data intensive applications [8]. 

Large-scale computer vision is one application that both 
involves big data but also often needs iterative solvers, such 
as large-scale clustering stages. This application produces 
challenges requiring both new algorithms and optimization 
of parallel execution involving very large collective 
communication steps. We have addressed the overall 
performance with an extension of Elkan's algorithm [9] to 
drastically speed up the computing (Map) step of clustering 
by use of the triangle inequality to remove unnecessary 
computation [8]. But this improvement increased the need 
for efficient communication, which is a major focus of this 
paper. Note that communication has been well studied, 
especially in MPI, but large-scale computer vision stresses 
different usage modes and message sizes from most previous 
applications. 

In this paper, we study the characteristics of a large-scale 
image clustering application and identify performance issues 
of collective communication. Our work is presented in the 
context of Twister, but the analysis is applicable to 
MapReduce and other data-centric computation solutions. In 
particular, the vision application requires 7 million image 
feature vectors to be clustered. We execute the application on 
1000 cores (125 8-core nodes) with 10,000 Map tasks. The 
root node must broadcast 512 MB of data to all compute 
nodes, making sequential broadcast costly. In aggregation, 
20 TB of intermediate data needs to be transferred from Map 
stage. Here we propose a topology-aware pipeline method to 
accelerate broadcast by a factor of over 120 compared with 
the sequential algorithm, and comparable with classic MPI 
methods [10] by slight (20%) outperformance. We also use 
3-stage aggregation to efficiently reduce intermediate data 
size by at least 90% within each stage. These methods 
provide important collective communication capabilities to 
our new iterative Map-Collective framework for data 
intensive applications. We evaluate our new methods on the 
PolarGrid [11] cluster. 



II. MOTIVATING APPLICATION: LARGE-SCALE VISION  
Computer vision is being revolutionized by the volume 

of visual data on the Internet: 500 million images uploaded 
every day to Facebook, Instagram and Snapchat, and 100 
hours of video uploaded to YouTube every minute. These 
vast and rapidly-growing collections of social imagery are 
motivating many large scale computer vision studies that can 
benefit from the infrastructure studied here. A major goal of 
these projects is to help organize photo collections, for 
instance by automatically determining the type of scene [47], 
recognizing common objects [48] and landmarks [49], 
determining where on earth a photo was taken [50, 51], and 
so on.   

A. Scene Type Recognition 
Here we consider the specific problem of recognizing 

two general properties of a photo: whether it was taken in an 
urban or rural environment, and whether it was taken in a 
mountainous or relatively “float” locale. A popular approach 
for visual classification tasks involves embedding images in 
a more discriminative space by representing them as 
collections of discriminative, invariant local image features. 
This is known as the Bag of Words (BoW) model, and is 
borrowed from techniques in information retrieval that 
represent documents as an unordered collection of words. To 
make this analogy work, we need to identify basic 
distinguishing features or visual words so that images can be 
encoded as histograms over this visual vocabulary [52] (just 
as text documents are represented as histograms over words).  

One way of producing this vocabulary is to sample small 
patches from many images, perform clustering, and then use 
each of the resulting cluster centroids to define a visual 
word. In our application, we sample five patches from each 
of 12 million images and describe each patch using the 
Histograms of Oriented Gradients (HOG) features [12]. 
HOG characterizes the local image features as a distribution 
of local edge gradients (see Figure 1), and produces a 512-
dimensional vector for each patch. Once the vocabulary is 
generated, any image can be represented as a histogram over 
this vocabulary: given an image, we densely sample patches, 

compute HOG vectors from these patches, assign each vector 
to its nearest centroid in the vocabulary, and then count the 
number of times each centroid occurs. Support Vector 
Machines (SVM) [46] are trained on these features to learn a 
discriminative classifier between the image classes of 
interest (e.g. rural vs. urban).  

B. Large-scale Image Feature Clustering 
A major challenge with this approach is the clustering 

step required to produce the vocabulary, as ideally we would 
like to cluster billions of patches into millions of centroids. 
We confront this computational challenge by performing K-
means clustering as a chain of Map computations separated 
by collective-communications (see Figure 2). The input data 
consists of a large number of feature vectors each with 512 
dimensions. We use Euclidean distance to compute the 
distances between feature vectors and the cluster centers 
(centroids). Since the vectors are static over iterations, we 
partition (decompose) the vectors and cache each partition in 
memory. Afterwards a Map task is assigned to it in the job 
configuration. During each iteration, the iteration driver 
broadcasts centroids to all Map tasks. Each Map task then 
assigns feature vectors to nearest cluster centers based on 
Euclidean distance. Map tasks calculate the sum of vectors 
associated with each cluster and count the total number of 
such vectors. The aggregation stage (to simplify the 
discussion, we only describe 1-stage aggregation here instead 
of 3-stage aggregation which is used in real implementation) 
processes the output collected from each Map task and 
calculates new cluster centers by adding all partial sums of 
cluster center values together, then dividing by the total 
number of points in the cluster. By combining these new 
centroids from Reduce tasks, the iteration driver gets updated 
centroids and control flow enters the next iteration (Table I). 

Another major challenge of this application is the amount 
of feature data. Currently we have nearly 1 TB, 
corresponding to 60 million HOG feature vectors, and we 
expect problems to grow in size by one to two orders of 
magnitude. For such a large amount of input data, we can 
increase the number of machines to reduce the data size per 
node, but the total data size (of cluster centers) transferred in 

Figure 1.  Workflow of the vocabulary learning application. 

 

Figure 2.  Image clustering control flow in Twister with the new local 
aggregation feature in Map stage. 

 

  



broadcasting and aggregation still grows as the number of 
centers multiplies. 

For example, suppose we were to cluster 7 million 512- 
dimensional vectors into 1 million clusters. In one iteration, 
the execution is done on 1,000 cores in 10 rounds with a total 
of 10,000 Map tasks. Each task only needs to cache 700 
vectors (358KB) and each node needs to cache 56K vectors, 
about 30MB in total. But in broadcast, the number of cluster 
centers is very large and the size of 1 million cluster centers 
is about 512MB. Therefore the centroids data per task 
received through broadcasting is much larger than the image 
feature vectors per task. Since each Map task needs a full 
copy of the centroids, the total data sent through 
broadcasting grows with the problem size and the number of 
nodes. For the example above, the total broadcast is about 64 
GB (because Map tasks are executed as threads, broadcast 
data can be shared among tasks on one node).  

We now reach the aggregation stage. Here each Map task 
generates about 2 GB of intermediate data, for a total of 
about 20 TB. This far exceeds the total memory size of 125 
nodes (each of which has 16 GB memory; 2 TB in total), and 
also makes the computation difficult to scale, since the data 
size grows with the number of nodes. In this paper, we do 3-
stage aggregation to solve this problem. In the first stage, we 
successfully reduce 20 TB of intermediate data to 250 GB 

with local aggregation (Figure 2). But due to the memory 
limitation, 250 GB still cannot be aggregated directly on one 
node. Thus we further divide the output data from each Map 
task into 125 partitions (numbered with Partition ID 0 to 
124) and use 125 tasks (1 task per node) to do group-by 
aggregation at the second stage. In this way, each node only 
processes 2 GB of data: Node 0 processes Partition 0 from 
all Map tasks, Node 1 processes all Partition 1 from all Map 
tasks, and so on. The output of group-by aggregation on each 
node is about 4 MB, so the 125 nodes only need to gather 
about 512 MB to the driver in the third stage of aggregation. 

In Table II we give the time complexity of each part of 
the algorithm, with p  as the number of nodes,  m  as the 
number of Map tasks, k  is the number of centroids, n is the 
total number of feature vectors, and l  is the number of 
dimensions. The improved aggregation time complexity is 
expressed as the sum of time complexity of 3 aggregation 
stages. We approximate the improved Map task running time 
using triangle inequalities from [8]. 

III. COLLECTIVE COMMUNICATION IN PARALLEL 
PROCESSING FRAMEWORKS 

In this section, we compare several big data parallel 
processing tools and show how they are applied. These tools 
are MPI, Hadoop MapReduce and iterative computation 
tools such as Twister and Spark [5]. We also analyze the 
pattern of collective communication and how intermediate 
data is handled in each tool. We expect the ideas of these 
tools to eventually converge into a single environment in the 
future, for which our new optimal communication is aimed 
in order to serve big data applications.  

A. Runtime Models 
MPI, Hadoop, Twister and Spark are four tools aimed at 

different types of applications and data, and have very 
different runtime models. We classify parallel data 
processing and communication patterns [14] in Figure 3. In 
the data tool spectrum, Hadoop and MPI are at opposite ends 
while Twister, Spark and other MapReduce-like tools are in 
the middle with mixed features extended from both Hadoop 
and MPI. Here we propose using systematic support of 
collectives to unify these models. 

1) MPI: MPI is a computation-centric solution that 
mainly serves scientific applications which are both 
complicated in communication patterns and computation-
intensive. It can spawn parallel processes to compute nodes, 
although users need to define the computation in each 
process and handle communication between them. MPI is 
highly optimized in communication performance. It offers 
both basic point-to-point communication and also collective 
communication operations. MPI runs on HPC and 

TABLE II.  TIME COMPLEXITY OF EACH STAGE 

Stage Simple Improved 
Broadcasting 𝑂𝑂(𝑘𝑘𝑘𝑘𝑘𝑘) 𝑂𝑂(𝑘𝑘𝑘𝑘) 
Map 𝑂𝑂(𝑘𝑘𝑘𝑘𝑘𝑘/𝑚𝑚) 𝑂𝑂(𝑘𝑘𝑘𝑘/𝑚𝑚)  [8] 

Aggregation 𝑂𝑂(𝑚𝑚𝑚𝑚𝑚𝑚) 𝑂𝑂(𝑚𝑚𝑚𝑚𝑚𝑚/𝑝𝑝) + 𝑂𝑂(𝑘𝑘𝑘𝑘)
+  𝑂𝑂(𝑘𝑘𝑘𝑘) 

 

TABLE I.  ALGORITHMS AND IMPLEMENTATION OF THE IMAGE 
CLUSTERING APPLICATION (ONE AGGREGATION TASK ONLY) 

Algorithm 1 Iteration Driver 
numLoop ← maximum iterations 
centroids[0] ← initial centroids value 
for(i ← 0;  i < numLoop; i ← i+1) 
    broadcast(centroids[i]) 
    runMapReduceIteration() 
    centroids[i+1] ←getResults() 

Algorithm 2 Map Task 
vectors ← load and cached from files  
centroids ← load from memory cache 
minDis ← new int[numVectors] 
minCentroidIndex ← new int[numVectors] 
for (i ← 0; i < numVectors; i ← i+1)  
    for (j ← 0; j < numCentroids; j ← j+1)  
        dis ← getEuclidean(vectors[i], centroids[j]) 
        if (dis < minDis[i])   
            minDis[i] ← dis  
            minCentroidIndex[i] ← j 
localSum ← new int[numCentroids][512] 
localCount ← new int[numCentroids] 
for(i ← 0; i < numVectors; i ← i+1)  
     localSum[minCentroidIndex[i]] +← vectors[i] 
     localCount[minCentroidIndex[i]] +← 1 
collect(localSum, localCount) 

Algorithm 3 Aggregation Task 
localSums ← collected from Map tasks 
localCounts ← collected from Map tasks 
totalSum ← new int[numCentroids][512] 
totalCount ← new int[numCentroids] 
newCentroids ← new byte[numCentroids][512] 
for (i ← 0; i < numLocalSums; i ← i+1) 
    for (j ← 0; j < numCentroids; j← j+1)  
        totalSum[j] = totalSum[j] + localSums.get(i)[j] 
        totalCount[j] = totalCount[j] + localCounts.get(i)[j] 
for (i ← 0; i < numCentroids; i← i+1) 
    newCentroids[i] = totalSum[i]/ totalCount[i] 
collect(newCentroids) 

 



supercomputers where data is decoupled from computation 
and stored in a separate shared and distributed file system. 
MPI does not have unified data abstractions analogous to 
the key-value pairs in MapReduce-related tools. In contrast, 
it is flexible enough to organize and process different types 
of data. MPI lacks fixed control flow, endowing it with the 
flexibility to emulate the MapReduce model or other user-
defined models [15-17].  

2) MapReduce and Hadoop: On the other hand, Hadoop 
is data-centric. HDFS [18] is used to store and manage big 
data so that users are freed from the data accessing and 
loading steps required in MPI. In addition, all computations 
are performed in the place where the data is located, to 
promote scalability. Key-Value pairs are the core data 
abstraction in MapReduce. With keys, intermediate data 
values are labeled and regrouped automatically without 
explicit communication commands. Hadoop is very suitable 
for processing records and logs, which are easy to split into 
small Key-Value pairs with words or lines. A typical record 
or log processing task includes information extraction and 
regrouping, which are easily expressed in Map-Reduce: 
intermediate Key-Value pairs are first extracted from 
records and logs in Map tasks, then regrouped in shuffling, 
and finally processed by Reduce tasks. But Hadoop is 
inefficient for data mining and scientific applications served 
by MPI because its control flow is constrained to a Map-
Shuffle-Reduce pattern.  

Differences in application algorithm and data 
characteristics also influence scheduling. In many scientific 
applications, the workload can be evenly distributed on each 
compute node and in-mmeory communication between 
processes happens frequently; as a result, MPI uses static 
scheduling. But for log and record processing, the workload 
in each task is hard to estimate, since some tasks generate 
more Key-Value pairs than others and all data exchange is 
based on HDFS but not in-memory communication. 
Because of these, Hadoop uses dynamic scheduling. Hadoop 
also provides task level fault tolerance, a feature MPI does 
not support.  

3) Twister and Spark: Twister and Spark are somewhere 
between MPI and Hadoop. Twister provides an easy-to-use, 
data-centric solution to process big data in data mining and 
scientific applications. Twister’s control flow is defined by 
iterations of MapReduce jobs, with the output of each 
iteration sent to the input to the next iteration. The data in 
Twister is also abstracted as Key-Value pairs for 
intermediate data regrouping as per the needs of the 
application. Twister uses static scheduling: data is pre-split 
and evenly distributed to compute nodes based on the 
available computing slots (the number of cores). Tasks are 
then sent to where the data is located. 

Spark also targets iterative algorithms but in addition 
boasts flexible iteration control with separated RDD 
operations called transformations and actions. A RDD is an 
in-memory data abstraction in distributed computing with 
fault tolerance support. Typical operations on RDDs include 
MapReduce-like operations such as Map, GroupByKey (like   
Shuffle but without sort) and ReduceByKey (same as 
Reduce), and also relational database-like operations like  

Union, Join, and Cartesian-Product. Spark scheduling is 
similar to Dryad but considers available memory of RDD 
partitions. RDD’s lineage graph is examined to build a DAG 
of stages for late execution.   

The Key/Value abstraction in MapReduce also requires 
more work in the form of partitioning before data loading. 
This is because the data abstracted in computation is usually 
not organized in the same way as in the file system. For 
example, the data in our image clustering application is 
stored in a set of text files, with each file containing feature 
vectors generated from a set of images. The file lengths and 
the total number of files vary. However, in the computation 
we set the number of data partitions to be the same as a 
multiple of the number of cores so that we can evenly 
distribute computation. Ultimately we need to convert “raw” 
data on disks to “cooked” data ready for computation. 
Currently we split original data files into evenly-sized data 
partitions. But Hadoop can automatically load data from 
blocks with custom InputSplit or InputFormat classes, while 
MPI requires the user to split data or use special formats like 
HDF5 [19] and NetCDF [20]. 

B. Collective Communication and Intermediate Data 
Handling 

MPI researchers have made major progress on 
communication optimization. However MPI focuses on low 
latency communication, while our application is notable for 
large messages where latency is less relevant. With the 
support of high-performance hardware, communication is 
well optimized. Users can communicate in two ways; one is 
to call send/receive APIs to customize communication 
between processes, and another is to invoke libraries to do 
collective communication, which is a type of communication 
in which all the workers are required to participate.  

Often data-centric problems run on clouds which consist 
of commodity machines, and the cost of transferring big 
intermediate data is high. For example, in our image 
clustering application, broadcasting about 500MB is 
required, and our findings show that this operation can be a 
great burden to current data-centric technology. This makes 
it necessary to systematically develop a Map-Collective 
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approach with a wide range of collectives, and to optimize 
for big data instead of the MPI simulation optimizations.  

There are traditionally 7 collective communication 
operations discussed in MPI [21]: four data redistribution 
operations (broadcast, scatter, gather, and allgather) and 
three data consolidation operations (reduce(-to-one), reduce-
scatter, and all-reduce). Neither Hadoop, Twister, nor Spark 
explicitly defines all these operations. Hadoop has implicit 
“broadcast” based on distributed cache and since Hadoop 
data is managed by HDFS, direct memory-to-memory 
collective communication does not exist. Twister and Spark 
supports broadcast explicitly but no allgather and allreduce. 
Another iterative MapReduce system Twister4Azure [22] 
supports all-gather and all-reduce. In a later paper we will 
describe integrating these different collectives into a single 
system that runs on HPC clusters (Twister) and PaaS cloud 
systems (Twister4Azure), changing the implementation to 
optimize for each infrastructure. The same high level 
collective primitive is used on each platform with different 
under-the-hood optimizations. 

In broadcasting, data abstraction and methods are very 
different across these systems. In MPI, data is abstracted as 
an array buffer; in Hadoop, as an HDFS file; Twister and 
Spark treat broadcast data as an object (Key-Value pairs in 
Twister and arbitrary objects in Spark). Several algorithms 
are used for broadcasting. MST (Minimum-Spanning Tree) 
is a typical broadcasting method used in MPI [21]. In this 
method, nodes form a minimum spanning tree and data is 
forwarded along the links. In this way, the number of nodes 
which have data grows in geometric progression, such that 
the performance model is:  

𝑇𝑇𝑀𝑀𝑀𝑀𝑀𝑀(𝑝𝑝,𝑛𝑛) = ⌈𝑙𝑙𝑙𝑙𝑙𝑙2𝑝𝑝⌉(𝛼𝛼 + 𝑛𝑛𝑛𝑛)                           (1) 

where p is the number of nodes, n is the data size, α is the 
communication startup time and β is the data transfer time 
per unit. This method is much better than simple 
broadcasting by reducing the complexity term  p to ⌈log2p⌉. 
But it is still insufficient when compared with scatter-all-
gather bucket algorithm. This algorithm is used in MPI for 
long vectors broadcasting which follows the style of “divide, 
distribute and gather” [23]. In the “scatter” phase, it scatters 
the data to all the nodes. Then in all-gather the bucket 
algorithm is used, which views the nodes as a chain. At each 
step, every node sends data to its right neighbor [25]. By 
taking advantage of the fact that messages traversing a link 
in opposite directions do not conflict, all-gather is done in 
parallel without any network contention. The performance 
model is: 

𝑇𝑇𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏(𝑝𝑝,𝑛𝑛) = (𝑝𝑝 + 𝑝𝑝 − 1)(𝛼𝛼 + 𝑛𝑛𝑛𝑛 𝑝𝑝⁄ )             (2) 

In large data broadcasting, assuming α  is small, the 
broadcasting time is about 2nβ. This is much better than the 
MST method because time appears constant. However, it is 
not easy to set a global barrier between the scatter and all-
gather phases in a cloud system to enable all the nodes to do 
all-gather at the same time. As a result, some links will have 

more load than others and thus cause network contention. 
We implement this algorithm and provide test results on IU 
PolarGrid (Table III). The execution time is roughly 2𝑛𝑛𝑛𝑛, 
but as the number of nodes increases, it gets slightly slower.  

MPI also has InfiniBand [24] multicast-based broadcast 
[25]. Many clusters support hardware-based multicast, but 
this is not reliable: sending order is not guaranteed and size 
of each send is limited. So after the first stage of 
multicasting, broadcast is enhanced with a chain-like 
broadcast, which is reliable enough to make sure every 
process has completed receiving data. In the second stage, 
the nodes are formed into a virtual ring topology. Each MPI 
process that gets a message via multicast serves as a new 
“root” within the virtual ring and exchanges data to the 
predecessor and successor in the ring. This is similar to the 
bucket algorithm we discuss above. 

Though the above methods are not perfect, they all 
reduce broadcast time to a great extent. Still, none of them 
are applied in data-centric solutions, where instead a simple 
algorithm is commonly used. Hadoop relies on HDFS to do 
broadcasting: the Distributed Cache is used to cache data 
from HDFS to the local disks of the compute nodes. The API 
addCacheFile and getLocalCacheFiles work together to 
complete the process of broadcasting. There is no special 
optimization, and the data download speed depends on the 
number of replicas in HDFS [18]. This method generates 
significant overhead (factor of p) when handling big data 
broadcast, as we show in experiments. 

We call this a “simple algorithm” because it sends data to 
all the nodes one by one. Initially in Twister, a single 
message broker is used to do broadcasting in a similar way 
(Figure 4). Though using multiple brokers in Twister or 
multiple replicas in HDFS could contain a simple 2-level 
broadcasting tree and ease the performance issue, they won’t 
fundamentally address the problem. To replace the current 
broadcasting in Twister, in the next section we propose a 
chain-based broadcasting algorithm suitable for cloud 
systems.  

Meanwhile, instead of using the simple algorithm, Spark 
adds BitTorrent [26] to enhance broadcast speed. BitTorrent 
is a well-known technology in internet file sharing. The 
programming interface of broadcast in Spark is very different 
from MPI and Twister. Due to the mechanism of late 
execution, broadcast is finished not in a single step but in 
two stages. When broadcast is invoked, the data is not 
broadcast until the parallel tasks are executed. Broadcasting 
happens when 10 printing tasks are invoked, so it doesn’t 
execute on all the nodes, only on the nodes where tasks are 
located. The performance of Spark Broadcasting is discussed 
with a simple case in Section VI. 

For data consolidation operations, reduce(-to-one) and 
reduce-scatter are parallel to a shuffle-reduce operation in 

TABLE III.  SCATTER-ALLGATHER BUCKET ALGORITHM 
PERFORMANCE ON IU POLARGRID WITH 1 GB DATA 

BROADCASTING 

Node# 1 25 50 75 100 125 
Seconds 11.4 20.57 20.62 20.68 20.79 21.2 

 



data-centric solutions. Reduce-(to-one) can be viewed as 
shuffling with only one Reducer while reduce-scatter can be 
viewed as shuffling with all workers as reducers. However, 
these operations are fundamentally different in terms of 
semantics because shuffle-reduce is based on Key-Value 
pairs while reduce-(to-one) and reduce-scatter are based on 
vectors, and the former is more flexible than the latter. In 
shuffle-reduce the number of keys in one worker can be 
arbitrary. For example, in word count, for a particular word 
“word1,” one worker could generate multiple Key-Value 
pairs with “word1” as key and 1 as the value. Or there might 
be no such Key-Value pairs if the worker couldn’t find any 
examples of “word1.” In addition, a value can be any 
arbitrary object which encapsulates many different data 
types. However, reduce-scatter requires the size of the 
vectors for reduction to be identical in all workers. Because 
the numbers of words and counts in each worker are hard to 
estimate, it is difficult to replace shuffle-reduce with reduce-
scatter in word count. 

We cannot use collective communication in MPI directly 
to simulate shuffle-reduce in MPI; instead we customize the 
communication with send/receive calls. Table IV shows how 
shuffling might look based on send/receive APIs. We 
simplify the code by using a matrix to hold all the Key-Value 
pairs for send/receive, but this still reveals another weakness 
of MPI in shuffling: the program is not simple and users 
have to explicitly designate where the data goes. By contrast, 
in data-centric solutions, data is managed by the framework, 

and automatically goes to the destination according to the 
keys.   

Thus shuffling can be viewed as a unique type of 
collective communication in data-centric solutions. The 
implementation is also different between runtimes. Hadoop 
manages intermediate data on disk, so data is first 
partitioned, sorted and spilled to disk, then transferred, 
merged and sorted again at the Reducer.  However, shuffling 
in Twister is much simpler and has better performance: data 
is only regrouped by keys and transferred in memory, and 
there is no sorting [4]. In Spark, there are two APIs related to 
shuffling. One is “groupByKey”, and another is “sort”.  

We argue that “sort” is not a necessary part of shuffle. 
First, in Twister all intermediate data is in memory so that 
keys can be regrouped through a large hash map, whereas in 
Hadoop, merging is done on disk and thus sorting is a 
required step to put similar keys together. Second, in many 
applications such as word count and our image clustering 
application, it is sufficient for the data to be grouped without 
being sorted, as the rank of each key is not important. As a 
result, we view shuffle as “regroup”. 

Due to the difference between similar concepts in 
different models, we generalize the abstraction of data 
consolidation operations in Map-Collective model as 
“aggregation”. So data consolidation operations such as 
“shuffle-reduce” is considered as “regroup-aggregate”. In the 
image clustering application, we implemented 3-stage 
aggregation.  

In summary, collective communication is not well 
studied in the context of MapReduce and other data-centric 
solutions, and may not be optimally implemented in the 
current runtimes. Though collective communication 
operations have been used in MPI for decades, they are still 
missing in MapReduce despite still being required by 
applications; for instance, broadcast and aggregate are two 
important operations in our image clustering application. 
With optimization, we introduce a new Twister control flow 
with optimized broadcasting and local aggregation features 
(Figure 2). Our collectives are implemented asynchronously 
but the broadcast step of K-means naturally synchronizes the 
algorithm at each iteration. 

IV. BROADCAST COLLECTIVE 
To address the need for high performance broadcast, we 

replace the broker methods in Twister with a chain method 
based on TCP sockets, customizing the message routing. 

A. Chain Broadcasting Algorithm 
We propose the chain method, an algorithm based on 

pipelined broadcasting [28]. Compute nodes in a Fat-Tree 
topology [29] are treated as a linear array and data is 
forwarded from one node to its neighbor chunk-by-chunk. 
Performance is enhanced by dividing the data into small 
chunks and overlapping transmission of data. For example, 
the first node sends a chunk to the second node. Then, while 
the second node sends the data to the third node, the first 
node sends another chunk to the second node, and so on 
[28]. This pipelined data forwarding is called a chain, and is 
particularly suitable for the large data in our communication 
problem. 

Figure 4.  Initial Twister architecture 

TABLE IV.  MPI “SHUFFLING” PSEUDO CODE 

Algorithm 1 MPI “shuffling”  
for( i←0; i<max_rank; i←i+1) { 
if(my_rank = i) { 
    for(j←0; j<max_rank&&j!=i; j←j+1)  
       MPI_Send(numSendKVpairs[j]);   
       for(k←0; k<numSendKVpairs[j]; k←k+1)  
            MPI_Send(sendKVpairs[j][k]) 
else  
    MPI_Recv(numRecvKVpairs[i]); 
    for(j←0; j<numRecvKVpairs[j]; j←j+1)  
            MPI_Recv(recvKVpairs[i][j]); 
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Pipelined broadcasting performance depends on the 
chunk size. Ideally, if every transfer can be overlapped 
seamlessly, the theoretical performance is as follows: 

𝑇𝑇𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝(𝑝𝑝, 𝑘𝑘,𝑛𝑛) = (𝑝𝑝 + 𝑘𝑘 − 1)(𝛼𝛼 + 𝑛𝑛𝑛𝑛 𝑘𝑘⁄ )      (3) 

Here p  is the number of nodes, k  is the number of data 
chunks, n is the data size, α is communication startup time 
and β  is data transfer time per unit. In large data 
broadcasting, assuming α is small and k is large, the main 
term of the formula is  (p + k − 1)nβ k⁄ ≈ nβ , which is 
close to constant. From the formula, the best number of 
chunks is kopt = �(p − 1)nβ/α  when  ∂T ∂k⁄ = 0  [28]. 
However, in practice, the actual chunk size per sending is 
decided by the system, and the speed of data transfers on 
each link could vary as network congestion might occur 
when data is continuously forwarded into the pipeline. As a 
result, formula (3) cannot be applied directly to predict real 
performance of our chain broadcasting implementation. But 
the experiment results we will present later still show that as 
p increases, the broadcasting time remains constant and close 
to the bandwidth limit.  

B. Rack-Awareness 
This chain method is suitable for racks with Fat-Tree 

topologies, which are common in clusters and data centers 
[30]. Since each node has only two links (less than the 
number of links per node in Mesh/Torus [31]), chain 
broadcasting can maximize the utilization of the links per 
node. We also make the chain topology-aware by allocating 
nodes within the same rack nearby in the chain. Assuming 
the racks are numbered as R1, R2 , R3…, we put nodes in R1 
at the beginning of the chain, nodes in R2  after the nodes 
in R1, nodes in R3 after nodes in R2, etc. Otherwise, if the 
nodes in  R1  are intertwined with nodes in  R2  in the 
sequence, the flow will jump between switches, 
overburdening the core switch. To support rack-awareness, 
we write and save configuration information on each node. A 
node discovers its predecessor and successor by loading this 
information when starting. In future work we plan to replace 
this with automatic topology detection. 

C. Implementation 
Our implementation of chain broadcasting starts with a 

request from the root to the first node in the topology-aware 
chain. Then the master keeps sending a small portion of the 
data to the next slave node. In the meantime, each node in 
the chain creates a connection to its successor. Next each 
node receives partial data from the socket stream, stores it in 
the application buffer and forwards it to the next node (Table 
V). 

V. 3-STAGE AGGREGATION 
As what we discussed in Section II, direct aggregation is 

impossible for large intermediate data. We do aggregation in 
3 stages. In the first stage aggregation, since each Map task 
is running at thread level, we reduce the intermediate data 
size on each node with local aggregation across Map tasks. 
We organize the local aggregated data into partitions. Then 
in the second stage aggregation, we do group-by aggregation 

across nodes for each partition. Thirdly, we do gather to 
aggregate partitions from nodes to the driver. 

To support local aggregation, we provide an appropriate 
interface to help users define the aggregation operation. Each 
Key-Value pair in intermediate data is a partial sum of the 
components of data points associated with a particular 
cluster. Since addition is an operation with both commutative 
and associative properties, for any two values belonging to 
the same key, we can do addition on them and merge them to 
a single Key-Value pair, which has no effect on the final 
result: 

𝑓𝑓�𝑘𝑘𝑘𝑘1,⋯ , 𝑘𝑘𝑘𝑘𝑖𝑖 ,⋯ , 𝑘𝑘𝑘𝑘𝑗𝑗 ,⋯ , 𝑘𝑘𝑘𝑘𝑛𝑛� = 𝑓𝑓�𝑘𝑘𝑘𝑘1,⋯ , �𝑘𝑘𝑘𝑘𝑖𝑖 ⊕
𝑘𝑘𝑘𝑘𝑗𝑗�,⋯ , 𝑘𝑘𝑘𝑘𝑛𝑛� = 𝑓𝑓�𝑘𝑘𝑘𝑘1,⋯ , �𝑘𝑘𝑘𝑘𝑗𝑗 ⊕ 𝑘𝑘𝑘𝑘𝑖𝑖�,⋯ , 𝑘𝑘𝑘𝑘𝑛𝑛� ∀ 𝑖𝑖, 𝑗𝑗, 1 ≤
𝑖𝑖, 𝑗𝑗 ≤ 𝑛𝑛                                                                                (4) 

where f  is the Reduce function, n  is the number of Key-
Value pairs belonging to the same key, and ⊕ represents an 
operation which is similar to addition that can be applied on 
any two Key-Value pairs to produce a new Key-Value pair. 
In our image clustering application, ⊕ is the addition of two 
partial sums.  

With ⊕ operation and the fact that Map tasks work at the 
thread level on compute nodes, we do local aggregation in 
the memory shared by Map tasks. Once a Map is finished, it 
doesn’t send data out immediately but instead caches it to a 
shared memory pool. When key conflicts happen, the 
program invokes a user-defined operation to merge two Key-
Value pairs. A barrier is set so that data in the pools is not 
transferred until all the Map tasks in a node are finished. By 
trading communication time with computation time, we 
reduce data transfer significantly. 

VI. EXPERIMENTS 

A. Performance Comparison among Runtime Frameworks 
To evaluate performance of the proposed broadcasting 

and aggregation mechanisms, we conducted experiments on 
IU PolarGrid in the context of both kernel and application 

TABLE V.  BROADCASTING ALGORITHM 

Algorithm 1 master side “send” method 
conn ← connection to the next node 
bytes ← byte array serialized from the broadcasting object 
totalBytes ← total size of bytes 
SEND_UNIT ← 8192  
start ← 0 
conn.send(totalBytes) 
while (start +  SEND_UNIT <  totalBytes) 
    conn.sent(bytes, start, SEND_UNIT) 
    start ← start + SEND_UNIT  
if (start < totalBytes) 
    conn.send(bytes, start, totalBytes - start) 

Algorithm 2 slave side “receive” method 
conn ← connection to the previous node 
connNextN ← connection to the next node 
totalBytes ← receiveInt() 
connNextN.send(totalBytes) 
buffer ← get buffer to hold the byte data received 
RECV_UNIT ← 8192  
recvLen ← 0 
while ((len ← conn.receive(buffer, recvLen, RECV_UNIT)) > 0)  
    connNextNsend(buffer, recvLen, len) 
    recvLen ← recvLen + len 
    if (recvLen = totalBytes) break 

 



benchmarking. IU PolarGrid [11] uses a Fat-Tree topology to 
connect compute nodes. The nodes are split into sections of 
42 nodes which are then tied together with 10 GigE to a 
Cisco Nexus core switch. For each section, nodes are 
connected with 1 GigE to an IBM System Networking Rack 
Switch G8000. This forms a 2-level Fat-Tree structure with 
the first level of 10 GigE connections and the second level of 
1 GigE connections. For computing capacity, each compute 
node in PolarGrid uses a 4-core 8-thread Intel Xeon CPU 
E5410 2.33 GHz processor. The L2 cache size per core is 12 
MB. Each compute node has 16 GB total memory. The 
results demonstrate that the chain method achieves the best 
performance on big data broadcasting compared with other 
MapReduce and MPI frameworks, and 3-stage aggregation 
significantly outperforms the original aggregation. 

1) Broadcasting 
We test the following methods: Twister chain method, 

MPI_BCAST in Open MPI 1.4.1 [32], and broadcast in MPJ 
Express 0.38 [33]. We also compare the current Twister 
chain broadcasting method with other designs such as simple 
broadcasting and chain method without topology awareness. 

In Figure 5, we show performance of simple broadcast as 
a baseline on IU PolarGrid. Owing to 1 GB connection on 
each node, the transmission speed is about 8 seconds per GB 
which matches the setting of the bandwidth. With our new 
algorithm, we successfully reduce the cost by a factor of p 
from  O(pn) to O(n), where p is the number of nodes and n 
is data size. 

Figure 6 compares the chain method and MPI_BCAST 
method in Open MPI. The time cost of the new chain method 
is stable as the number of processes increases. This matches 
the broadcasting formula (3) and we can conclude that with 
proper implementation, the actual performance of the chain 
method can achieve near constant execution time. Besides, 
the new method achieves 20% better performance than 
MPI_BCAST in Open MPI. Figure 7 compares the Twister 
chain method and the broadcast method in MPJ. Due to 
exceptions, we couldn’t launch MPJ broadcast on 2GB data. 
MPJ broadcasting method is also stable as the number of 
processes grows, but is four times slower than our Java 
implementation. Furthermore, there is a significant gap 
between 1-node broadcasting and 25-node broadcasting in 
MPJ. 

However if the chain sequence is randomly generated but 
not topology-aware, performance degrades quickly as the 
scale grows. Figure 9 shows that the chain method with 

topology-awareness is 5 times faster than that of the chain 
method without topology-awareness.  For broadcasting 
within a single switch, we see that as expected, there is not 
much difference between the two methods. However, as the 
number of nodes and the number of racks increase, execution 
time increases significantly. When there are more than 3 
switches, execution time become stable and does not change 
much; this is because there are many inter-switch 
communications and performance is constrained by the 10 
GB bandwidth and the throughput ability of the core switch. 

2) Analysis of BitTorrent Broadcasting 
Here we examine performance of BitTorrent broadcast in 

Spark, which is reported to be excellent [27]. In our testing, 
however, the current Spark (v. 0.7.0) has good performance 
on a few nodes but degrades quickly as the number of nodes 
increases. We executed only 1 task after invoking 
broadcasting on 500 MB of data, and the result was stable as 
the number of nodes grew. When we set the number of 
receivers equal to the number of nodes, performance issues 
emerged: on 25 nodes with 25 tasks, the performance was 
the same as with 1 receiver, but on 50 nodes with 50 tasks, 
broadcasting time increased three-fold. We tried to broadcast 
from 75 nodes to 150 nodes, but none of the tests executed 
successfully. Increasing the number of receivers to the 
number of cores gave similar results, scaling to 50 nodes 
only. We tried 1 GB and 2 GB broadcasts but these did not 
scale to 25 nodes. 

Since the broadcasting topology in BitTorrent is built 
dynamically, it is unknown if the broadcast topology follows 
the patterns in MPI, such as a MST. Also important in 
broadcast is that this topology follows rack-awareness. A 
special dynamic topology detection technique is mentioned 
[27] but it may not be used in the current version. For 
sending chunk size, [27] mentions that 4 MB performs well 
but without any further analysis. 

3) Local Aggregation in 3-stage Aggregation 
To reduce intermediate data from 1 TB data to 125 GB 

data, we use local aggregation. The output per node is 
reduced to 1 GB and total data for shuffling is only about 
125 GB, and the cost of regrouping is only 10% of the 
original time. 
B. Evaluation of Image Recognition Application 

Finally, we tested the full execution of our image 
classification application. As described in Section II, the first 
step of constructing our classifiers is to create the 

 



vocabulary. To do this, we took a set of 12 million publicly-
available, geo-tagged Flickr photos, randomly sampled 5 
patches from each image, and then computed the 512 
dimensional HOG feature for each patch. We then used our 
high-performance implementation of K-means to cluster 
these 7.42 million 512 dimensional HOG vectors into 1 
million cluster centers. Specifically, we created 10,000 map 
tasks on 125 compute nodes, so that each node had 80 tasks 
and each task cached 742 vectors. For 1 million centroids, 
the amount of broadcast data was about 512 MB, the 
aggregation data size was about 20 TB, and the data size 
after local aggregation was about 250 GB. Since the total 
amount of physical memory on our 125 nodes was 2 TB, we 
could not even execute the program unless local aggregation 
was performed first in aggregation. Collective 
communication cost per iteration was 169 seconds (less than 
3 minutes).  Note that we are currently developing a new 
faster K-means algorithm [8][9] that will drastically reduce 
the current hour-long computation time in the Map stage by 
up to a factor of the number of dimensions of the feature 
vectors, and so the improved communication time is highly 
relevant.  

Once the vocabulary was created, we trained classifiers 
for our problems of inferring elevation gradient and 
population. Our classification task is to determine if a given 
image was taken in an area with a “high” or “low” value for 
these attributes – e.g. a rural area or a city. To build the 
classifiers, we collected approximately 15,000 geo-tagged 
images from Flickr which were labeled with ground-truth 
attribute values. We encoded these images as described in 
section 2.1 using the vocabulary built through K-means, 
which produces a single k-dimensional feature vector for 
each image. We then used half the data to train linear 
Support Vector Machine classifiers [46], and reserved the 
rest for testing.  

For the elevation gradient task, our classifiers achieved 
an accuracy of 57.23%, versus a random baseline of 50%, 
while the urbanicity classifier performed better at 68.27%. In 
interpreting these numbers, it is important to note that we use 
an unfiltered set of Flickr images, including photos that do 
not have any visual evidence of where they were taken. To 
put these accuracies into context, we conducted a small-scale 
experiment in which we asked people to perform the same 

tasks (classify urbanicity and elevation gradient) on a 
random subset of 1000 images. They performed slightly 
better on elevation gradient (60.0% vs. 57.2%) but 
significantly better on urbanicity (80.8% vs. 68.2%). Figure 
11 presents sample images, showing both correct and 
incorrect classifications. 

Figure 10 presents the relationship between the size of 
the vocabulary (which, in turn, is the size of the feature 
clustering task) and the classifier accuracy. We observe that 
the elevation gradient classifier quickly reached a saturation 
point such that the additional information encoded in the 
larger vocabularies is not very helpful. On the other hand, for 
the urbanicity attribute, the accuracy improved by a steady 2-
3% for each tenfold increase in vocabulary. These results 
demonstrate that, in some cases, large gains in image 
classification accuracy can be made by employing vast 
dictionaries like those the proposed framework can support. 

VII. RELATED WORK 
In Section III we discussed the data processing runtimes 

and compared the collective communication within them. 
Here we summarize the analysis and add other observations. 
Collective communication algorithms are thoroughly studied 
in the MPI runtime, although the Java implementations are 
less well optimized. Each operation has several different 
algorithms based on message size and network topology 
(such as linear array, mesh and hypercube [21]). Basic 
algorithms are the pipeline broadcast method [28], the 
minimum-spanning tree method, the bidirectional exchange 
algorithm, and the bucket algorithm [21]. Since these 
algorithms have different advantages, combinations of these 
algorithms (polymorphism) are widely used to improve 
communication performance [21], and some solutions also 
provide automatic algorithm selection [34].  

Other papers have a different focus than our work. Some 
of them only study small data transfers up to a level of 
megabytes [21] [35] while some solutions rely on special 
hardware support [23]. The data type in these papers is 
typically vectors and arrays, whereas we are considering 
objects. Many algorithms such as “all-gather” operate under 
the assumption that each node has the same amount of data 
[21] [23], which is uncommon in a MapReduce model.  

There are several solutions to improve the performance 

 



of data transfers in MapReduce. Orchestra [27] is one such 
global control service and architecture that manages intra- 
and inter-transfer activities in the Spark system (we gave 
some test results in section 3.1). It not only provides control, 
scheduling and monitoring on data transfers, but also 
optimizes broadcasting and shuffling. For broadcasting, it 
uses an optimized BitTorrent-like protocol called Cornet, 
augmented by topology detection. For shuffling, Orchestra 
employs weighted shuffle scheduling (WSS) to set the 
weight of the flow proportional to the data size; we noted 
earlier this optimization is not relevant in our application.  

Hadoop-A [36] provides a pipeline to overlap the shuffle, 
merge and reduce phases and uses an alternative Infiniband 
RDMA-based protocol to leverage RDMA inter-connects for 
fast shuffling. MATE-EC2 [37], a MapReduce-like 
framework for EC2 [38] and S3 [39] uses local and global 
aggregation for data consolidation. This strategy is similar to 
what was done in Twister, but since it focuses on the EC2 
environment, the design and implementation are totally 
different. iMapReduce [40] and iHadoop [41] are iterative 
MapReduce frameworks that optimize data transfers between 
iterations asynchronously when there is no barrier between 
iterations. However, this design does not work for 
applications that need to broadcast data in every iteration 
because all the outputs from Reduce tasks are needed for 
every Map task.  

Daytona [45] is a recent iterative MapReduce runtime 
developed by Microsoft Research for the Azure Cloud 
Platform that builds on some of the ideas of the earlier 
Twister system. Excel DataScope is an application of 
Daytona. Users can upload data from Excel to the DataScope 
service or select a dataset already in the cloud, then select an 
analysis model from the DataScope ribbon to run against the 
selected data. The results can be returned to the Excel client 
or remain in the cloud for processing and visualization. 
Daytona is available as a “Community Technology Preview” 
for non-commercial use. 

The focus of this paper is on the algorithms, system 
design and implementation to support large-scale computer 
vision, not computer vision itself. Still, we will briefly 
mention a few papers related to ours. A small but growing 
number of papers have considered the opportunities and 
challenges of image classification on large-scale online 
social photo collections. Hays and Efros [50] and Li et al 
[49] use millions of images to build classifiers for place and 
landmark recognition, respectively, while Xiao et al [47] 
build a huge dataset of images and test various features and 
classifiers on scene type recognition. The de facto standard 
classification technique is to extract features like HOG [11], 
cluster into a vocabulary using K-means [52], write each 
image as a histogram over the vocabulary, and then learn a 
classifier using an SVM [46]. We are not aware of any work 
that has built vocabularies on the scale that we consider in 
this paper. 

VIII. CONCLUSIONS AND FUTURE WORK 
In this paper, we demonstrated first steps towards a high 

performance Map-Collective programming model and 
runtime using the requirements of a large-scale clustering 

algorithm. We replaced broker-based methods and designed 
and implemented a new topology-aware chain broadcast 
algorithm, which reduces the time burden of broadcast by at 
least a factor of 120 on 125 nodes, compared with the simple 
broadcast algorithm. It gives 20% better performance than 
the best C/C++ MPI methods, 4 times better than Java MPJ, 
and a factor of 5 improvement over non-optimized (for 
topology) pipeline-based method on 150 nodes. The 
aggregation cost after using local aggregation is only 10% of 
the original time. Collective communication has significantly 
improved the intermediate data transfer for large-scale 
clustering problems. 

In future work, we will improve the K-means algorithm 
[8][9][42] and apply the Map-Collective framework to other 
iterative applications [43] including Multi-Dimensional 
Scaling where the all-gather primitive is needed. We will 
also extend current work to include an all-reduce collective 
that is an alternative approach to K-means. The resulting 
Map-Collective model that captures the full range of 
traditional MapReduce and MPI features will be evaluated 
on Azure [22] as well as IaaS/HPC environments.  

On the application side, we will apply our technique to 
classifying types of scene attributes other than urbanicity and 
elevation; our goal is to build classifiers for hundreds or 
thousands of different scene attributes, and then use these for 
visual place recognition by cross-referencing to GIS maps. 
We are investigating other techniques like deep learning [7] 
for building the vocabulary, but these will require iterative 
algorithms applied to large-scale data like the ones we have 
considered here. 
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