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Abstract 
Distributed and parallel computing have emerged as a well developed field in computer science. 
Cloud computing offers new approaches for commercial and scientific applications because it 
incorporates different perspectives for the use of both hardware and software. MapReduce-
distributed data processing architecture, instantiating the new paradigm of “bring the 
computation to data” has become a popular solution for  large scale scientific applications, such 
as data/text-mining, bioinformatics sequence alignment, Matrix Multiplication, etc. To 
understand whether the MapReduce computing model applies to these data-intensive analytic 
problems, we have explored several problems by analyzing their usage for different MapReduce 
platforms in  HPC-Clouds environments. This paper mainly review the state-of-the-art  
MapReduce  systems for scientific applications. It also  summarizes research issues found in 
prior studies.  
 
I. Introduction 
Every day, an enormous amount of terabyte data is generated from scientific experiments, 
commercial online data collecting, and physical digital device transaction. These collected data 
are generally analyzed according to different computational algorithms, which yield meaningful 
results. Therefore, the emergence of scientific computing, especially large-scale data-intensive 
computing for science discovery, is a growing field of research for helping people analyze how 
to predict or to explore more possibilities for data analysis. Since tremendous amounts of data 
are collected, parallel computing options, such as the cloud pleasingly model, have recently 
been adopted due to its easy-to-use and easy-to-scale features. However, this model is not yet 
universally accepted. Software developers are always worried about cost, computational models, 
and comparisons to previous computational models. Typically, the migration from original 
sequential model to parallel model is the main challenge.  
 
Therefore, in this study, we give a summary of Service Level Agreement (SLA) and cost issues.. 
The remainder of the paper is organized as follows. Section 2 provides an overview of 
MapReduce. Section 3 demonstrates several applications that have implemented MapReduce, 
as well as the experimental results that have been deployed in different environments. Section 4 
introduces literature on MapReduce. Concluding remarks are given in Section 5. 
 
II. MapReduce Background  
MapReduce is the data centric computing model of cloud computing that provides the 
computational power to implement and deploy applications within a distributed environment. 
The MapReduce computation model was initially introduced by Google [1] and aims to solve 
daily text-based and semantic web data analysis for the data collected by Google services. 
Hadoop MapReduce [2] was later presented by the open source community and was directed 
by Yahoo and IBM, with the main differences consisting of the changes from C++ to Java. 
Thereafter, Hadoop has become MapReduce’s main track for academic research, such as [3-6], 
as well as for “big data” analytic solutions for companies besides Google (e.g., Facebook). 
 
II.1 Architecture 
As can be seen in Figure 1, the architecture of MapReduce follows a traditional centralized 
server-client (master-slaves) model. The master node normally runs the Namenode and 



Jobtracker services and takes on most of the administrative work, such as high-level metadata 
information handling, uploaded data splitting and distribution, jobs and tasks scheduling, and 

 
 

Figure 1. MapReduce Architecture Figure 2. Overview of MapReduce data processing 
[7] 

command-line query handling. On the other hand, other nodes normally run with datanodes and 
tasktracker services, which store the real split data block and execute the assigned tasks from 
master node. A general MapReduce job is split into four different stages: Data split, Map, 
Shuffle, and Reduce.  
 
Input data (files) uploaded to GFS/HDFS are split into sequential blocks with a specified size 
[google paper and hadoop book], for example, 64 MB is the default block size of Hadoop 
MapReduce. Then, each block is stored across datanodes according to placement assignment 
constructed by the master node. Generally, the placement strategy is random and is built based 
on user-defined replica’s factor. For example, if the replica factor is 3, Hadoop places the first 
split data block on a local datanode within the same rack. Then, it duplicates the same block to 
another random datanode in another rack. Finally, it forwards the second copy to another 
random datanode in the same or other rack.  
 
Based on the selected input data format for map stage, the split data blocks are constructed into 
<key, value> pairs, in which key is normally represented as a unique name and is used to 
perform in-memory local sorting. Map functions compute the intermediate result according to 
assigned <key, value> pairs. The Shuffle stage sorts intermediate KeyValue pairs by their keys 
and sends each record to an assigned reducer. Finally, reducers combine and compute with the 
collected KeyValue, and yield meaningful results to the disk. Figure 2 demonstrates an example 
of the overall data processing. 
 

map(split input) { 
for each key in input 

emit(key, value) 
} 
 
reduce(key, values) { 

sum = 0 
for each value in values 

sum += value 
emit(key, sum) 

} 

 
Figure 3. MapReduce example program Figure 4. SWG algorithm with MapReduce [8] 



II.2 Job scheduling 
Data locality is one of MapReduce’s key features. For each split data block, the locality 
information is stored as metadata in Namenode. Jobtracker utilizes this location information to 

 
Figure 5. Kmeans clustering relative parallel efficiency using 128 million data points (Left) and weak 
scaling from 32 to 256 million data points (Right) [9] 
 
assign close to data computation, which reduces the cost from transferring data over the 
network. Several studies [10] have proved that with this key feature, MapReduce is definitely 
running faster than random or fairly random task scheduling.  
 
II.3 Classes of MapReduce applications 
The idea of MapReduce is that of a simple program on multiple data models (SPMD) in which 
programmers can easily convert a sequential program using MapReduce API and deploy 
hundreds or thousands of nodes. Figure 3 offers an example of MapReduce programming style. 
Here, map function basically takes the split input and generates the intermediate results as the 
form of <key, value> pairs, then the reduce function aggregates these intermediate <key, 
values> into results. However, domain scientists may wonder how this function could be used 
and how the MapReduce style could be integrated into their data problems [11] has categorized 
the types of applications that MapReduce generally supports, which are: 1) Map-Only, 2) 
Classic MapReduce, 3) Iterative MapReduce. 
 

Map-Only Classic MapReduce Iterative MapReduce 

 
 

 

Table 1. Classification of MapReduce Applications 
 
II.3.1 Map-Only 
Map-Only, also known as a zero reduce task, is the simplest MapReduce application because it 
basically converts a collection of data from its original format into other formats. Each map task 
of a MapReduce program ideally has minimum dependencies and is executed similarly with 
different split data. MapReduce Cap3 [4] has been implemented in this style. 
 



II.3.2 Classic MapReduce 
As mentioned in Section II, a general map stage converts the data input into KeyValue pairs and 
generates intermediate results. Here, the intermediate data size is decided based on the weight 
of computation in the map stage. The Reduce stage collects and computes the sorted 
intermediate results, then, the program aggregates meaningful output according to the user-
defined algorithm. WordCount is the classic text-mining problem that finds occurrences of words 
from a set of text documents and is represented as the standard example of the MapReduce 
programming model. Generally, a given input document is constructed as <keys, values>, in 
which keys are the position in the file, and values are the line of text in a file. Map tasks take these 
initial KeyValue pairs and emit intermediate data in the form of <word, 1>, while reduce tasks 
aggregate the intermediate KeyValue into <word, occurrences> based on their unique “word” terms. 
Due to its embarrassingly parallel characteristics, MapReduce has been widely used by 
commercial and academic communities; for instance, MapReduce SWG [4] has been 
successfully implemented and deployed on a nationwide scale cluster that runs hundreds of 
cores. 
 
II.3.3 Iterative MapReduce 
Generally, a MapReduce job only contains one round of the map-to-reduce phrase, so the 
output is then emitted to a distributed file system, such as HDFS. Nevertheless, each job needs 
a comparably long configuration time to assign map and reduce tasks. For many applications or 
algorithms, especially data intensive applications, which continuously run within a conditional 
loop before termination, the output of each round of map-reduce phrase may need to be reused 
for the next iteration in order to obtain a completed result. Classic MapReduce does not fit with 
this computing model; therefore, iterative MapReduce is considered a solution for these 
applications. There are many form of iterative runtimes, such as Twister [12] and HaLoop [13], 
Twister4Azure [9] (initially AzureMapReduce [4]), and Spark [14], each of which is supported 
with different features for different optimized applications.  
Mainly, these works are similar and extend the classic MapReduce model to support in-job 
multiple iterations with providing caching for loop-invariant data. For instance, Twister allows a 
long-running MapReduce job while keeping static/loop-invariant data in memory between 
iterations; HaLoop extends Hadoop and supports loop-invariant caching and also keeps the 
reduced outputs in memory in order to provide a faster fix point scheduling; Twister4Azure is an 
alternative implementation of Twister but deployed to the Microsoft Azure Platform [15], it 
provides similar loop-invariant data caching either in-memory or on-disk. Moreover, it introduces 
merge tasks to collect reducer outputs and cache-aware scheduling in order to quickly assign 
computation regarding cached data; Spark, on the other hand, is built with a high-level language, 
Scala [16], which is based on resilient distributed datasets [17] (RDDs, read-only data objects 
across a set of machines). RDDs are used for loop-invariant data caching and reconstruct these 
data in case of node failure. Spark’s programming model and style are similar to query language, 
but these support MapReduce jobs by exposing the map and reducing tasks to a functional 
programming interface that is supported by Mesos API [18].   
 
III. Data Intensive applications with MapReduce and results 
Scientific computing is a very important task: this type of intensive analytical results are useful 
for human society’s evolution. But the scale of data collection size is rapidly increasing, so 
traditional sequential computation mechanisms take longer than scientists can bear. The 
scientific domain has therefore adopted parallel computing such as MPI and MapReduce. 
Although MPI is also capable of solving the big data problem, it requires a great deal of 
background knowledge and programming skills [19]. Compared to MPI, MapReduce model 
provides a user-friendly programming style and has rapidly gained the acceptance of many 
commercial companies and scientists. In addition, most of the scientific computing algorithms 



are data intensive applications which normally run for tens or even hundreds of hours, meaning 
that failure tasks are common in this regard; this matches the heterogeneous/commodity 
computing environment, in which software-level or hardware-level fails are common. The 
MapReduce model does handle fault-tolerance well, as the ability to do this is one of the initial 
design goals. Finally, either native or optimized data locality scheduling diminishes the data 
transmission cost of worker nodes.  
 
III.1 Examples for different MapReduce classes 
Based on the above benefits of using MapReduce, it has become a growing trend for scientists 
to utilize MapReduce for daily analysis. In our previous works [4, 9, 20, 21], we have 
implemented several important bioinformatics and scientific applications, such as SWG [22], 
Cap3 [23], Kmeans [24], MDS [25] and PageRank [26]. We describe three of them as examples 
of the above classification.  
 
MapReduce Cap3 is a typical CPU-intensive application for map-only programming mode. Cap3 
originally is a DNA sequence assembling and aligning binary written in C. It could be possibly 
converted into Hadoop Java version. But since the nature of this binary could handle gene 
sequence independently, [21] implements it as a pleasingly parallel application. The challenge 
of this type of application is that Cap3 binary must take a file path of a continuous file as 
program argument, where Hadoop does not have such data input format. Therefore, this study 
[21] purpose a data input classes DataFileInputFormat and FileRecordReader for constructing the 
map’s KeyValue pair, where the key the logical filename and the value is the HDFS path of the 
file. The map task of MapReduce Cap3 takes the sequence assembly binary given with a 
FASTA-formatted file stored on HDFS, then it generates a partial consensus sequences 
according to the given file. Those partial output files can be collected by a single reduce task or 
by a few shell script lines.   
 
Smith Waterman Gotoh (SWG) algorithm [27] is a pairwise dissimilarity comparison of two given 
DNA or protein sequences. Figure 4 shows the SWG decomposition with Classic MapRedure 
model. Either Hadoop SWG or Twister SWG calculates the dissimilarity distance by 
decomposing the given dataset into NxN matrix, when N is amount of DNA or protein 
sequences. Each map task takes a block matrix of size M, e.g. 100, and computes the SWG 
distances within that block. Reduce tasks collect the results in the same row and write them into 
files. In practices, Hadoop SWG splits a large FASTA file into file blocks stored on HDFS, and it 
constructs <key, values> pairs as <block index, file content> with the support of native 
SequenceFileInputFormat. Where Twister sends this splits data blocks directly to each map 
tasks from master node. Also, as the triangular feature of these blocks, only half of the blocks 
are meaningful and computed. This example shows that any general algorithms could be 
customized with MapReduce.    
 
Kmeans clustering [24] is a famous data mining algorithm which partitions given data set into 
disjoint clusters. It is generally implemented in an iterative fashion in which the algorithm returns 
the result only certain break conditions met, e.g. error rate. Hadoop Kmeans is a workable 
implementation but slow. The native Hadoop does not support multiple iterations within a 
MapReduce job, therefore, the only way is to simulate it with submitting multiple MapReduce 
jobs and sources the output of each iteration as input for next job. In addition, updated centroids 
of each round are flushed into HDFS and reloaded on all map tasks every time. There are few 
drawbacks of this implementation – job configuration overhead, lack of caching, and dynamic 
computation assignment. Twister or HaLoop are considered to be solution for this type of 
iterative applications. In practice, Twister caches the read-only data points in-memory for each 
map task which improves I/O performance. Also, with this caching feature, map tasks’ 



assignment is fixed after the initial iteration. Different from Hadoop Kmeans, updated centroids 
are broadcasted to all map tasks at the end of each iteration via the messaging broker. The 
result [9] in Figure 5 shows that Twister Kmeans is significantly better than Hadoop 
implementation.   
 

  
Figure 6. a) SWG performance [4] Figure 6. b) SWG relative parallel efficiency [4] 

 
III.2 Experiments and deployments on local cluster and clouds 
Above applications have been tested on two different environments: Bare Metal cluster, 
Amazon EC2 [28] cloud and Azure [15] cloud: 1) Bare Metal tests were performed on an 
FutureGrid [29] India iDataplex cluster, in which each computer node had two Intel Xeon E5410 
2.33GHz CPUs (a total of 8 cores) and 16 GB memory attached to a Gigabit Ethernet network. 
2) Amazon EC2 cloud tests were performed using both High CPU extra-large instances and 
extra-large instances, in which the former has 8 virtual cores (considered 20 EC2 compute units) 
with 7 GB memory and the latter has 4 virtual cores (considered 8 EC2 compute units) with 15 
GB memory. The reason that the cloud tests used two sets of compute instances as SWG 
applications reached the memory limitation of High CPU extra-large instances. 3) Azure tests 
were performed using azure small instances, which has one core per computer node. 
As seen in Figures 6a and 6b, the SWG application has similar performance results on a 
different platform, except that the use of the NAligner [30] library in Windows increases total 
execution time (meanwhile, all other platforms use the JAligner [31] library).  We could also 
prove this issue when running Cap3, as shown in Figures 7a and 7b, in which the overall 
performance of clouds is nearly same as the bare metal cluster. 
 

  
Figure 7. a) Cap3 performance  [4] Figure 7. b) Cap3 relative parallel efficiency  [4] 

 
III.3 Commercial Cloud Cost 
Domain scientists or small companies may not own dedicated clusters; therefore, it is possible 
to run their application on the commercial clouds. Table 2 shows the instance details of Amazon 
Cloud and Azure cloud with the basic pricing plan. Currently, there are increasing numbers of 
new features such as bid-your-own-instances and cluster reservations, but the price range  and 
capacity are uncertain. In addition, Figures 8a and 8b present the total costs of running 
experiments on clouds. It is acceptable if an individual has a closed deadline without being 



assigned to a nationwide cluster. We also captured the daily performance behavior on clouds as 
being generally normalized without any performance fluctuation issues. The results are shown in 
Figure 9.       
 

  
Figure 8. a) Cap3 Cost on Clouds  [4] Figure 8. b) SWG costs on clouds  [4] 

 

Instance Type (as of 04/20/2013) 
Mem. 
(GB) 

Compute 
units / 
Virtual cores 

Storage 
(GB) 

$ per hours 
(Linux/Unix) 

$ per hours 
(Windows) 

EC2 Small  1.7 1/1 160 0.06 0.091 
EC2 Medium 3.75 1/2 410 0.12 0.182 
EC2 Large 7.5 4/2 850 0.24 0.364 
EC2 Extra Large 15 8/4 1690 0.48 0.728 
EC2 High-CPU Extra Large 7 20/2.5 1690 0.58 0.9 
EC2 High-Memory Extra Large 68.4 26/3.25 1690 1.64 2.04 
Azure Small 1.75 X/1 224+70 0.06 0.09 
Azure Medium 3.5 X/2 489+135 0.12 0.18 
Azure Large 7 X/4 999+285 0.24 0.36 
Azure Extra Large 14 X/8 2039+605 0.48 0.72 

 

Table 2. Amazon EC2 and Azure clouds pricing snapshot (X represents unknown) 
 
IV. Research Issues 
As computer scientists, we will always investigate the possibilities of finding effective solutions 
for various algorithms such that we optimize these applications with different systems, 
implementations and network communications. Numerous scientists have investigated 
MapReduce in-depth and they have gotten their own algorithms to run on specified models. 
Mostly, these related studies can be categorized as MapReduce framework and its extensions. 
In this study, we introduce these systems in the perspective of data locality. 
 
IV.1 MapReduce framework and its extensions research 
MapReduce provides users a simple application interface and executes their single program 
across a distributed environment. Normally, a user will first put their program inputs into HDFS. 
A job is then submitted to the master node jobtracker, which then creates tasks based on the 
data location. As a research angle, tasks scheduling thus becomes a very interesting topic. 
Zhuhua et al. [10] investigated default Hadoop data locality scheduling and observed that the 
original design does not guarantee optimal data local tasks assignment as it assigned tasks in 
sequential orders to idle compute slots. It therefore suggests a new LSAP-scheduling, which 
presents a new cost-evaluated model to generate an overview of unscheduled tasks to instant 
idle compute slots, which in turn improves the quality of data locality. This model performs better 
dl-task assignment when the system has more instant idle compute slots. 



In addition to scheduling, another interesting study found that the shuffling stage is one of the 
most significant barriers to the MapReduce job [32]. Originally, in order to avoid interference to 
reduce tasks, reducers only begin when all results for the map tasks are locally sorted and 
passed. If a job has a long final map task, the reserved computing resource does not perform 
efficiently. In order to improve the use of idle resources, Verma et al. [32] proposes a 
modification to bypass the sorting and invokes the reduce function as soon as there has been a 
partial record emitted by map tasks. In addition to the shift reducer stage in advance, for 
applications that generate large intermediate data in the shuffling stage, Twister [12] introduces 
local reduction across tasks on the same compute nodes before sending it to the reducer.  
 
For very large data sets, such as TB-level data, a single commodity cluster may not be able to 
serve computation efficiently even if it is using MapReduce technology. Yuo et al. [33] presents 
a hierarchical MapReduce, a “Map-Reduce-Global-Reduce” model, and solves this lack of 
computation resource issue.  User-trusted clusters are gathered across the Internet and then 
conduct a global MapReduce framework, the program inputs are split or pre-allocated to each 
cluster and map-reduce tasks are assigned by the global controller. At the end of each job, a 
global reducer collects all output/result from reducers distributed on each cluster and generates 
the final output. The drawback of this study does not consider the data locality of input, which 
always moves data to computation. Figure 10 shows the architecture and data flow of this work. 

 

 
Figure 9. Sustained performance of clouds [4] Figure 10. Map-Reduce-Global-Reduce 

 
V. Conclusion 
The new era of big data has boosted the growth of the parallel computing community and from 
this has emerged the need for Big data solutions. The MapReduce framework, originally 
inspired by Google developers, provides a parallel programming model that solves many large-
scale data problems. With its SPMD model, scientists save their energy and focus on their data 
analysis problems, rather than struggling with parallelism and computing scalability issues. In 
addition, many companies and research communities have deployed their own Hadoop 
MapReduce clusters in order to serve increasing needs for big data analysis. To meet different 
requirements for various perspectives, many MapReduce studies have been released and these 
are optimized for different targets. However, due to the variety and complexity of data-intensive 
applications, the MapReduce model generally fit some of applications, but it may not be suitable 
for multi-tier data mining algorithms with heavy internal data exchange [34].  
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