
Towards Flexible Messaging for SOAP Based Services
Geoffrey Fox1, Shrideep Pallickara1 and Savas Parastatidis2

Community Grids Lab, Indiana University1

School of Computing Science, University of Newcastle2

gcf@indiana.edu, spallick@indiana.edu and Savas.Parastatidis@newcastle.ac.uk

1. Introduction
NaradaBrokering has been developed as the messaging infrastructure for collaboration, peer-to-peer and Grid applications.
It has undergone extensive functional testing in collaborative sessions and extensive performance measurements have been
made in a variety of configurations including cross-continental applications. The value of NaradaBrokering in the context of
Grid and Web services has been clear for some time. NaradaBrokering provides a messaging abstraction that allows the
system to provide message-related capabilities in a transparent fashion. These capabilities include message-based security
and associated encryption, time and causal ordering, compression, virtualization of transport protocols and addressing, and
fault tolerance related functionalities. NaradaBrokering – combined with further extensions to, and testing of, its existing
capabilities – can also take advantage of the maturing of Web Service specifications to build very powerful general
mechanisms to deploy and integrate it with general Web services.
 In particular we exploit WS-Addressing and the SOAP processing stack to build two distinct ways of interfacing
NaradaBrokering with Web services. The first involves using a NaradaBrokering-proxy that acts as an interface between
services and the NaradaBrokering messaging substrate. This approach has two clear advantages –- (1) It requires no change
to either the original service or the container hosting that service (2) It can be used to facilitate interactions between generic
services (perhaps a non WS approach such as IIOP or native Java) and services based on Web Services.
 The second approach provides an end-point NaradaBrokering “plug-in” that can be used by a Web Service to provide
direct connectivity to the NaradaBrokering network. Since the plug-in resides as a handler within the handler-chain
associated with the SOAP processing stack at a service endpoint, no changes are needed to either the service
implementations or the service requestors. This involves a one-time effort of writing NaradaBrokering handlers for SOAP
implementations in different languages such as Java (Apache Axis and Sun’s JAX-RPC), C++ (gSOAP) and Perl (Soap::Lite).
 This paper is organized as follows. In section 2 we provide an overview of the NaradaBrokering substrate. In section 3
we introduce the concept of the substrate managing services. In sections 4 and 5 we include details of the ongoing effort to
incorporate SOAP support into NaradaBrokering. In section 6 we investigate how the scheme outlined here can be deployed
to augment Grid applications. In section 7 we provide an overview of related work in the area of distributed
publish/subscribe and peer-to-peer systems. Finally, in section 8 we outline our conclusions and future work.

2. NaradaBrokering substrate
NaradaBrokering [1-9] is a distributed messaging infrastructure and provides two closely related capabilities. First, it
provides a message oriented middleware (MoM) which facilitates communications between entities (which includes clients,
resources, services and proxies thereto) through the exchange of messages. Second, it provides a notification framework by
efficiently routing messages from the originators to only the registered consumers of the message in question. The smallest
unit of this substrate should be able to intelligently process and route messages, while working with multiple underlying
communication protocols. We refer to this unit as a broker, where we avoid the use of the term servers to distinguish it clearly
from the application servers.
 Communication within NaradaBrokering is asynchronous and the system can be used to support different interactions
by encapsulating them in specialized messages, which we call events. Events can encapsulate information pertaining to
transactions, data interchange, method invocations, system conditions and finally the search, discovery and subsequent
sharing of resources. NaradaBrokering places no constraints either on the size, rate and scope of the interactions
encapsulated within these events or the number of entities present in the system. Events encapsulate expressive power at
multiple levels. Where, when and how these events reveal their expressive power is what constitutes information flow.
NaradaBrokering manages this information flow.

2.1. Dissemination of events
An event comprises of headers, content descriptors and the payload encapsulating the content. An event’s headers provide
information pertaining to the type, unique identification, timestamps, dissemination traces and other quality of service (QoS)
related information pertaining to the event. The content descriptors and the values these content descriptors take collectively
comprise the event’s content synopsis. Entities within the system can register their interests by specifying constraints on the
event’s synopsis. The destinations associated with an event are computed based on the registered interests and the event’s
synopsis. In NaradaBrokering this synopsis could be based on tag-value pairs, Integers and Strings. Entities can also specify
SQL queries on properties contained in a specialized message. The synopses could also be XML documents, in which case
XPath constraints can be specified. More recently support for regular expression queries on an event’s content synopsis.
 Every event has an implicit or explicit destination list, comprising entities, associated with it. The brokering system as a
whole is responsible for computing broker destinations (targets) and ensuring efficient delivery to these targeted brokers en

mailto:gcf@indiana.edu
mailto:spallick@indiana.edu
mailto:Savas.Parastatidis@newcastle.ac.uk

route to the intended entity(s). Events as they pass through the broker network are updated to snapshot its dissemination
within, which eliminates continuous echoing. The broker network maps (BNM) at individual brokers is used to compute
best broker hops to reach target brokers. The routing is very efficient [4] since for every event, the associated targeted
brokers are usually the only ones involved in disseminations. Furthermore, every broker, either targeted or en route to one,
computes the shortest path to reach target destinations while eschewing links and brokers that have failed or have been
failure-suspected.

2.2. Services within NaradaBrokering
In NaradaBrokering entities can also specify constraints on the QoS related to the delivery of events. The QoS pertain to the
reliable delivery, order, duplicate elimination, security and size of the published events and their encapsulated payloads.
NaradaBrokering provides reliable delivery [5] of events to authorized/registered entities. The delivery guarantee is
satisfied in the presence of both link and node failures. Entities are also able to retrieve events that were missed during
failures or prolonged disconnects. The scheme also facilitates exactly-once ordered delivery of events.

2.2.1 The reliable delivery scheme and achieving exactly-once-delivery
The NaradaBrokering substrate’s reliable delivery guarantee holds true in the presence of four conditions.
1. Broker and Link Failures: The delivery guarantees are satisfied in the presence of individual or multiple broker and link

failures. The entire broker network may fail. Guarantees are met once the broker network (possibly a single broker
node) recovers.

2. Prolonged Entity disconnects: After disconnects an entity can retrieve events missed in the interim.
3. Stable Storage Failures: The delivery guarantees must be satisfied once the storage recovers.
4. Unpredictable Links: Events can be lost, duplicated or re-ordered in transit over individual links.
To ensure the reliable delivery of events (conforming to a specific template) to registered entities three distinct issues need to
be addressed. First, there should be exactly one Reliable Delivery Service (RDS) node that is responsible for providing
reliable delivery for a specific event template. Second, entities need to make sure that their subscriptions are registered with
RDS. Finally, a publisher needs to ensure that any given event that it issues is archived at the relevant RDS. In our scheme
we make use of both positive (ACK) and negative (NAK) acknowledgements. We may enumerate the objectives of our
scheme below.
• Storage type: Underlying storages could be based on flat files or relational/XML databases.
• RDS instances: There could be multiple RDS instances. A given RDS instance can manage reliable delivery for one or

more templates.
• Autonomy: Individual entities can manage their own event templates. This would involve provisioning of stable

storage and authorization of entity constraints.
• Location independence: A RDS node can be present anywhere within the system.
• Fast Recovery schemes: The recovery scheme needs to efficiently route missed events to entities.

2.2.1.1 Experimental Results
We performed two sets of experiments involving a single broker and three brokers. In each set we compared the
performance of NaradaBrokering’s reliable delivery algorithms with the best effort approach in NaradaBrokering.
Furthermore, for best effort all entities/ brokers within the system communicate using TCP, while in the reliable delivery
approach we had all entities/brokers within the system communicate using UDP.
 The experimental setups are depicted Figure 1. The lines connecting entities signify the communication paths that exist
between the entities; this could be a connection oriented protocol such as TCP or a connectionless one such as UDP. The
publishing/subscribing entities (hosted on the same machine to account for clock synchronizations and drifts), brokers and
RDS are all hosted on separate machines (1GHz, 256MB RAM) with each process running in a JRE-1.4 Sun VM. The
machines involved in the experimental setups reside on a 100 Mbps LAN. Currently, in the Reliable Delivery Service (RDS)
node we support flat-file and SQL based archival. The results reported here are for scheme where the RDS utilizes MySQL
4.0 for storage operations. We found that the archival overheads were between 4-6 milliseconds for payloads varying from
100 bytes to 10 KB.

B

Entity Pub/Sub

BrokerB

RDS

B

RDS

B B

Figure 1: Experimental Setups

Figure 2: Results from the single broker setting

Figure 3: Results from the 3 broker setting

0

2

4

6

8

10

12

0 1000 2000 3000 4000 5000 6000 7000 8000 900010000

Ti
m

e
(M

ill
is

ec
on

ds
)

Content Payload Size in Bytes

 Transit delays/Standard deviations in a single broker network.
NB-Best Effort(TCP) Versus NB-Reliable Delivery(UDP)

 Mean delay (NBRD-UDP)
 Mean delay (NB-BETCP)

 Std Dev (NBRD-UDP)
 Std Dev (NBBE-TCP)

0

2

4

6

8

10

12

14

16

0 1000 2000 3000 4000 5000 6000 7000 8000 900010000

Ti
m

e
(M

ill
is

ec
on

ds
)

Content Payload Size in Bytes

 Transit delays/Standard deviations in a 3 broker network.
NB-BestEffort(BE)(TCP) Vs NB-ReliableDelivery(RD)(UDP)

 Mean delay (NBRD-UDP)
 Mean delay (NBBE-TCP)

 Std Dev (NBRD-UDP)
 Std Dev (NBBE-TCP)

We computed the delays associated with the delivery of best-effort and reliable delivery schemes. The results reported
here for the reliable delivery case correspond to the strongest case where the event is not delivered unless the corresponding
archival notification is received. Figure 2 depicts the transit delay and standard deviation associated with a single broker
network, while Figure 3 depicts the same for the 3 broker network.
 In the reliable delivery case there is an overhead of 4-6 milliseconds (depending on payload size) associated with the
archival of the event, with an additional variable delay of 0-2 milliseconds due to wait()-notify() statements in the thread
which triggers archival. These factors, in addition to retransmissions (NAKs) triggered by the subscribing entity due to lost
packets, contributed to higher delays and higher standard deviations in the reliable delivery case. It should be noted that we
can easily have an optimistic delivery scheme which does not wait for archival notifications prior to delivery. This scheme
would then produce overheads similar to the best effort case.

2.2.2 Dealing with large payload sizes: Compression/Fragmentation
To deal with events with large payloads, NaradaBrokering provides services for compressing and decompressing these
payloads. Additionally there is also a fragmentation service which fragments large file-based payloads into smaller ones. A
coalescing service then merges these fragments into the large file at the receiver side. This capability in tandem with the
reliable delivery service was used to augment GridFTP to provide reliable delivery of large files across failures and
prolonged disconnects. The recoveries and retransmissions involved in this application are very precise. Additional details
can be found in Ref [6]. Here, we had a proxy collocated with the GridFTP client and the GridFTP server. This proxy, a
NaradaBrokering entity, utilizes NaradaBrokering’s fragmentation service to fragment large payloads (> 1 GB) into smaller
fragments and publish fragmented events. Upon reliable delivery at the server-proxy, NaradaBrokering reconstructs
original payload from the fragments and delivers it to the GridFTP server.

2.2.3 Time and Buffering Services
The substrate also includes an implementation of the Network Time Protocol (NTP). The NaradaBrokering TimeService [7]
allows NaradaBrokering processes (brokers and entities alike) to synchronize their timestamps using the NTO algorithm
with multiple time sources (usually having access to atomic time clocks) provided by various organizations, like NIST and
USNO. The NaradaBrokering time service plays an important role in collaborative environments and can be used to time
order events from disparate sources. The substrate includes a buffering service which can be used to buffer replays from
multiple sources, time order these events and then proceed to release them.

2.2.4 Performance Monitoring Services
Connections originating from a broker are tracked by a monitoring service. The factors measured on individual links include
loss rates, standard deviations and jitters. This can then be used to augment the weights associated with edges in the BNMs
to facilitate real-time responses, by the routing algorithms, to changing network conditions.

2.3. The transport framework
NaradaBrokering incorporates an extensible transport framework and virtualizes the channels over which entities interact
with each other. Entities are thus free to communicate across firewalls, proxies and NAT boundaries which can prevent
interactions from taking place. Furthermore, NaradaBrokering provides support for multiple transport protocols such as
TCP (blocking and non-blocking), UDP, SSL, HTTP and RTP. The typical delays involved with NaradaBrokering’s transport
framework in LAN settings is around 1 millisecond. Additional information regarding measurements within the transport
framework can be found in Ref [8].

Figure 4: Transit delay for message samples (UCL,

Cardiff and IU)

Figure 5: Standard deviation for message samples

L, Cardiff and IU

100

150

200

250

300

350

400

100 1000 10000M
ea

n
tra

ns
it

de
la

y
 (M

ill
is

ec
on

ds
)

Content Payload Size in Bytes

 Transit delays for Content Payloads.
Brokers at Cardiff and UCL, Clients at Indiana

 Delay

0
10
20
30
40
50
60
70
80

100 1000 10000S
ta

nd
ar

d
D

ev
ia

tio
n

 (M
ill

is
ec

on
ds

)

Content Payload Size in Bytes

 Standard deviation for Content Payloads.
Brokers at Cardiff and UCL, Clients at Indiana

 Standard Deviation

(UC)

In an experiment involving performance of the NaradaBrokering transport framework over trans-Atlantic links we had
machines from the University College London (UCL), Cardiff University and Indiana University involved in the set up. A
broker network comprising two brokers, one each at UCL and Cardiff was set up. The machine at UCL was a SPARC Ultra-5
running SunOS 5.9, while the one at Cardiff was a 1 GHz Pentium-III with a 256MB RAM running Linux. The machine at
Indiana hosting the publishing/receiving clients was a 1.5 GHz AMD with 256 MB RAM running Linux. The JVM for all
processes was 1.4.1. Figure 4 and Figure 5 depict the mean transit delay and standard deviation associated with message
samples involved in individual test cases (each comprising 50 messages). The results varied from 122 milliseconds for 100
bytes to 371 milliseconds for 10 KB messages. The delays increased with increase in payload sizes. The standard deviation
was also higher at higher payload sizes.

3. Service Oriented Architectures and the NaradaBrokering substrate
The emerging Web Services stack comprising XML – the lingua franca of the various standards, SOAP [9] and WSDL [10]
have facilitated sophisticated interactions between services. WSDL describes message formats and message exchange
patterns for services using XML. Interactions are facilitated through the exchange of SOAP messages. The use of XML
throughout the Web Services stack of specifications allow interactions between services running on different platforms,
containers, implemented in different languages, and over multiple transports.
 Existing or emerging Web Services specifications deal with the issues of service discovery, all aspects of message-based
security, transactions, notification, reliability, etc. These specifications can be composed together to facilitate the incremental
addition of features and capabilities when building distributed applications. In some cases there are competing
specifications, e.g. in the reliable messaging area. These competing specifications tend to rely on the same subset of
specifications in the web services stack to achieve its objectives (i.e., SOAP and WSDL). Forcing the user to choose one
specification over another can be quite complicated and error-prone. The overarching goal is the automation of the
negotiation of specifications used for interactions. Automated negotiations eliminate human intervention and concomitant
errors resulting from this. Furthermore, these automated negotiations would be adaptive, where the negotiations could
interoperate between (or deploy the best available specification from a set of) possibly competing specifications. These
automated negotiations thus make these interactions easier, simpler and more reliable.
 These negotiations are facilitated by the substrate, which permeates the hosted services. By hosted services, we mean
those services, which have been registered with the substrate. The substrate will enable services to interact, discover,
compose and utilize other hosted services. It should be noted that these services could continue to exist in a stand alone
mode and be accessed in ways similar to traditional Web Services. In fact because of the nature of the Web Service bindings,
a service could continue to be bound to other transports and not have access to certain features.
 The scheme that is proposed is intended to enable Web Services to interact directly with the NaradaBrokering
substrate. Here the substrate maintains information regarding the services that can be accessed and it uses this information
to locate services. Since the clients/services interact directly with the substrate they have access to all the services provided
by it. We enumerate some of the features of such a system:

a) Guaranteed delivery mechanisms within the substrate can facilitate disconnected operations where a client/service
can access services even if they are not currently online.

b) The substrate can cache the results of an invocation and retrieve them in case the same invocation is made.
c) The substrate can locate services that are closest (in terms of network latency) and least utilized. Such a scheme

facilitates clients/services access service instances that are load-balanced by the substrate.
d) End-to-end secure interactions. The approach within the substrate is consistent with that deployed in WS-Security

which relies on message-level security.
e) Inevitably the realms across which entities communicate involve firewalls, proxies and NAT boundaries. The

substrate facilitates communications over such boundaries.

f) In the event of large payloads/attachments the substrate provides services such as compression, fragmentation of
payload into smaller ones and NaradaBrokering-enhanced GridFTP.

3.1. Grid Services and Web Services
It should be noted that more recently there has been an effort to factor the OGSI [11] functionality to comprise a set of
independent Web Service specifications. These specifications align OGSI with the consensus emerging from the Web
Services Architecture working group of the World Wide Web Consortium. The specifications that comprise the new
proposed framework – the WS-Resource Framework (WSRF) [12] – can co-exist with other specifications in the Web Services
area such as authentication, transactions, reliable messaging and addressing. The WSRF specification also includes WS-
Notification [13] which models notifications using a topic based publish/subscribe mechanism. Work is presently underway
to provide support for WS-Notification within NaradaBrokering and a prototype version will be part of a release scheduled
for May 2004.
 Similarly, the WS-GAF [14] effort in the United Kingdom provides a framework for building Grid applications using
existing Web Services specifications while adhering to the principles of service-oriented architectures. The proposed solution
demonstrates how issues like stateful interactions, logical resource naming, metadata, and lifetime management can be
easily addressed using existing Web Services technologies.
 Throughout our discussions when we refer to services as Web Services the term refers to services that are parts of the
Service Oriented Architecture. The strategies that we discuss through this paper are thus applicable to both the domains –
traditional business oriented Web Services and the science/traditionally-academia oriented Grid Services architecture. Thus
the discussion on load balancing service instances (in a section 5) would be valid for managing stateful resources exposed
using the WS-Resource Framework specification.

4. Approaches to interacting with Web Services
In this section we describe approaches to incorporating support for Web Services within the NaradaBrokering substrate. The
first involves using a NaradaBrokering-proxy that acts as an interface between services and the messaging substrate. The
second approach provides an endpoint NaradaBrokering “plug-in” that can be used by a Web Service to provide direct
connectivity to the NaradaBrokering network. Since the plug-in resides as a handler within the handler-chain associated
with the SOAP processing stack at a service endpoint, no changes are needed to either the service implementations or the
service requestors. This involves a one-time effort of writing NaradaBrokering handlers for SOAP implementations such as
Apache Axis (such a handler can be used with Sun’s JAX-RPC with no changes), gSOAP, Soap::Lite, and ASP.NET. It should
be noted that the schemes outlined in the earlier section, using either the proxy approach or processing based on SOAP
messaging, should be able to interoperate with each other.

4.1. Proxy Approach
This approach is based on SOAP and involves using the proxy architecture to deploy Web Services within the system. Here
a service invocation using a SOAP message is intercepted by the proxy. This SOAP message is then encapsulated in a native
NaradaBrokering event and the substrate routes it to the proxy associated with the service instance. This proxy then
recreates the SOAP message from the native NaradaBrokering event and forwards the SOAP message to the Web Service.
Faults and responses generated by the Web Service are routed back using the same principles which govern the invocation
scheme.
 This approach is a simple one and the costs (specifically network cycles) associated with the additional proxy redirect
can be alleviated by collocating the proxy on the same machine as the client and server. This approach has two clear
advantages –-

1. It requires no change to either the original service or the container hosting that service
2. It can be used to facilitate interactions between generic services (perhaps a non WS approach such as IIOP or native

Java) and services based on Web Service standards.
This solution however was application dependent and the proxy had to be rewritten or tweaked for different applications.
Also, since only the proxies were interacting with the substrate all the guarantees/services provided by the substrate were
accessible only to these proxies and not to the web service client/service.

4.2. Incorporating SOAP processing into the substrate
Incorporating SOAP processing into the substrate eliminates the need to interact with the substrate via a proxy. This is a
very useful feature which will eventually allow Web Services to interact directly with the substrate. To achieve this
interaction with SOAP services we need to address two issues. First, pertains to the ability to use NaradaBrokering as a
transport mechanism for SOAP messages. Second, to interact directly with Web Services the substrate should be able to
function as a SOAP intermediary. This would allow messages to be redirected into the substrate for specialized processing.

4.2.1 A transport mechanism for SOAP messages
Here we use NaradaBrokering as a transport (depicted in Figure 6) for SOAP messages, which have traditionally been sent
over HTTP. There are examples of different protocols that have been used. The Apache AXIS project for example has HTTP,

SMTP/POP3, Java-RMI and JMS as registered transports. The substrate facilitates communications over a variety of
transports, each with different properties. Depending on the SOAP message being issued (large attachments etc) appropriate
lower-level transport would be used for routing the SOAP messages. The SOAP messaging would either be based on
request/response semantics inherent in RPC-style service invocations or they could be based on asynchronous one-way
messaging.

Figure 6: Incorporating support for SOAP in the transport layer

In the asynchronous style of messaging, a lookup service locates the appropriate providers that had previously
registered with a naming service. This is the precursor to sending SOAP messages. A related issue is that of binding it to a
protocol stack so that clients can communicate with the service endpoint using the specified port and address.

4.2.1.1 Using WSIF
The Web Services Invocation Framework (WSIF) [15] considers WSDL to be the standardized representation of a Web
Service. The fundamental tenet here is that while SOAP is great for interoperability between disparate systems, it is not
necessarily the best approach if you are dealing with say a pure Java environment. The approach is meant to have
developers deal with WSDL service descriptions instead of dealing directly with SOAP. There might be multiple bindings of
a WSDL service description, WSIF provides an API so that a given client code can access any of these available bindings
(whether it is SOAP or IIOP). Of course you need to have a registered provider for any binding that you may choose to use
(Java, EJB, SOAP etc). Microsoft’s Indigo approach has been designed and implemented using the same principle.

4.2.2 Interacting directly with Web Services
The approach that is outlined here (depicted in Figure 7) is intended to enable Web Services to interact directly with
NaradaBrokering. Unlike the proxy based approach where the SOAP messages were not inspected, in this scheme the SOAP
message is inspected, targeted to specific broker nodes within the substrate, and in some cases the substrate functioning as
an intermediary can add/remove header elements in the SOAP message.

Figure 7: Web Services interacting with the substrate

4.2.2.1 Incorporating SOAP processing stack into individual brokers
To achieve this we first need to include the SOAP processing layer in individual broker nodes. To do this we would have an
interface which would allow us to plug in different SOAP implementations into the system. We are ultimately interested in
the availability of, and the capability to process, SOAP messages within the substrate.

4.2.2.2 Functioning as a SOAP intermediary
SOAP Headers are important since this is where information pertaining to functionality-specific elements is encoded. For
example, this is the place where we will place all information pertaining to sequences, acknowledgements and
retransmissions of a reliable messaging protocol. A SOAP message may pass through one or more intermediate systems
prior to delivery at its ultimate destination (assuming that faults have not been issued en route). Such an intermediate
system can examine these SOAP messages and initiate actions – issue faults, reroute to another node/final destination, and
finally even update certain headers in the SOAP message.
 To facilitate the use of the broker as an intermediary we use the actor attribute within the SOAP message’s header
element. The attribute identifies the system (substrate) that is intended to process the SOAP header (element in question).
Once the SOAP message is received at the intermediary (a node within the substrate) as indicated in the actor attribute, the
node is allowed to add additional headers some of which could include another actor attribute possibly re-routing
processing to another special node and so forth. Such a scheme could be used to compress messages at a special node and
archive it for subsequent retrieval or audit trails. The actor attribute defines the actor responsible for processing the message
in the chain of SOAP actors. These actors can in turn be configured for special processing on received messages.
 The mustUnderstand attribute in the SOAP message is used to control the optional and mandatory elements within
the SOAP message headers. This is also useful in the generation of faults. Depending on the header element targeted to the
intermediary and the value of the mustUnderstand attribute; a substrate node may either generate a fault
(messageUnderstand set to 1) or ignore (messageUnderstand not set to 1) the targeted header that it does not understand.
This attribute can be used to impose constraints on the processing of certain header elements. Finally, it must be noted that
the substrate can interact with SOAP intermediaries that are not native NaradaBrokering services or for that matter even
services that are directly hosted on the substrate.

4.2.2.3 Use of WS-Routing to facilitate static paths
The one disadvantage of the actor attribute is that at a time it is possible to specify only one actor element since the order
cannot be determined if multiple intermediaries are specified. This issue can be handled by using WS-Routing [15] which
allows us to specify the route a SOAP message will take using the via directive. For reverse paths, (rev) the path is
constructed as the event traverses through the forward path. This is sometimes used for request/response semantics such as
Web Service invocations but does not seem necessary for most cases. WS-Routing allows us to do without specifying the
reverse path.

5. Complementing service interactions
In this section we identify areas such as discovery and load balancing where the substrate can provide additional
functionality to the hosted services. These services are a precursor to a system where the substrate can compose services
from discovered constituent services each of which would be chosen from a set comprising multiple instances. The substrate
then needs to rely on its capabilities to ensure robust delivery to ensure that a task involving coordinated processing
between multiple services (identified based on the task specification) is completed in the presence of failures. The substrate’s
capability to provide order also ensures that the invocations/interactions are consistent. Furthermore, the substrate can also
be used to cache the results from prior interactions to optimize service utilizations.

5.1. Discovering services using advertisements
SOAP handlers can automatically generate service advertisements on service startup. Web Services connect directly to
NaradaBrokering and expose their capabilities through advertisements. The substrate supports a wide variety of querying
schemes such as XPath queries, SQL queries (through JMS), Regular expressions and simple string matching. One or more of
these will be used to support querying of services hosted on the substrate.
 Entities in the system can advertise their services in an XML schema. These advertisements would be stored in the
same way that the profiles are stored within the system. Events propagated by interested clients would essentially be either
XPath or Regular expressions-like queries. These events would then be matched against the stored advertisements with the
matching ones being routed back to the initiating client. The query events can specify the realms within which the query’s
propagation might take place, thus allowing individual entities to control how localized their services can be.
 When we receive SOAP messages destined to services (either as requests or responses from other services), we use
both the advertisements and the directives specified in the SOAP header elements to determine the route for these messages
as well as any special processing (compression, archival, signing, credential delegation etc) that might be needed by these
messages.

5.2. Using Handlers
Special handlers will be associated with service endpoints so that the substrate can interact with these services. These
handlers can then be grouped into a handler chain, and can be inserted in the processing path of either the service requestor,
service implementation or both. Depending on the configuration of the handler, these handlers will process control
messages initiated by the substrate such as heart-beats, latency measurements and utilization counters among others to
facilitate efficient utilization of the resource. It must be noted that these messages need not propagate the entire handler
chain. In the case of clients/services invoking other services the handler chain would add headers to enable easier
processing within the substrate.

Figure 8: SOAP handler chains and the substrate

In the absence of the handler approach headers pertaining to the value added services would need to be processed
within the application logic. This would entail serious rewrites to the application logic and in some cases the complexity of
rewrites would ensure that the feature is rejected as a tradeoff. This would also imply that every application would need to
be rewritten for every feature. Furthermore, the application would need to be rewritten, retested and redeployed every time
there is a change to the value added service.
 There are several advantages to using the handler approach. First, it facilitates incremental addition of value added
functionality to an existing service. This functionality can easily be reused by other services, tested independently of the
application logic. Second, it can be used to ensure that enhanced services continue to interoperate with existing services.
Handlers within a handler chain can add, remove, process or ignore headers pertaining to incremental functionality. A
handler can then choose not to generate faults for messages that arrive without functionality-specific information, thus
enabling interaction with services that do not have the requisite handler to generate that information. The handler can in the
same vein be used to impose constraints on services that communicate with it. For example in the face of a coordinate
distributed denial-of-service attack a handler (or handlers) – which performs packet inspection, checks authentication
information and checks from messages from malicious hosts – can be set up to impose new policy and constraints in an easy
incremental fashion.
 The scheme thus allows Web Services to interact directly with the substrate (depicted in Error! Reference source not
found.). Hosted services can utilize substrate properties such as resilience, load balancing etc through the incorporation of
the appropriate handlers in the handler chain. It should be noted that the service implementations will not change. We can
write these handlers (a one time effort) for gSOAP, SOAP::Lite, AXIS and JAX-RPC. This would allow us to communicate
with messages issued using gSOAP, SOAP::Lite and Axis SOAP.

5.3. Ability to load balance services
Load balancing algorithms operate on the ability to keep track of the number of active service instances as well as the load
on these instances. In the substrate this is done by exchanging information with the instances at regular instances. In
addition to this the substrate also facilitates schemes where an instance may choose not to respond to the discovery request
initiated by an entity. This decision is of course predicated on the contents of the discovery request as well as the load at the
resource in question. Finally, the substrate also uses round-trip delays from an entity to the replicated resources in question
to compute the network distance separating the entity from the resource instance. The resource selection scheme in the
substrate utilizes both the usage metric at a resource and the network distance to arrive at a decision regarding the resource
to use.

 To facilitate the same scheme for services, handlers would be registered with the handler chain associated with both
the service requestors and the service implementations. These handlers would perform functions such as –-

• Constructing usage metric: This handler would construct usage metric at a node based on the number of requests
processed, the rate of requests and the volume of information transferred. Additionally, this handler would also
construct profiles regarding the underlying hardware hosting it – CPU performance, available memory and cache
size.

• Creating round trip delay request and responses: This handler would facilitate the creation of round trip delay
requests, responses and finally calculation of delay based on the response.

• Creating heart-beat monitors: This handler would send out heart beats at regular intervals so that the substrate can
continue to track its availability.

It should be noted that services augmented with this functionality can still continue to interact with services and requestors
that do not posses the requisite handlers. Under such circumstances both the service requestor and the service instance
involved in the interactions will not have access to certain substrate capabilities. For example, even though a requestor does
not have the appropriate handler the substrate will locate the right service; however this service instance might not be the
one that it is closest to.

5.4. The role of WS-Addressing
WS-Addressing [17] is a way to abstract from the underlying transport infrastructures the addressing needs of an
application. WS-Addressing incorporates support for end point references (EPRs) and message information (MI) headers.
EPRs standardize the format for referencing (and passing around references to) both a Web service and Web service
instances as well. The MI headers standardize information pertaining to message processing related to replies, faults,
actions and the relationship to prior messages. This is especially useful in cases where there would be multiple dedicated
entities dealing with these different cases. In fact it has been argued [18] that WS-Addressing facilitates implicit
asynchronous communications through the correct use of these MI headers irrespective of whether this service was defined
asynchronously or not.
 The substrate sitting at an organization's boundary could use WS-Addressing for making runtime decisions on where a
message arriving from the outside world should be delivered within the infrastructure. Finally we could use WS-Addressing
for endpoint references to deal with dynamic usage patterns involving WSDL Service descriptions. WS-Addressing is used
in this scenario to facilitate the identification and specification of service instances for services that would be generated
dynamically.

5.5. Enhanced messaging features and fault tolerance
Depending on the messaging needs of the application the substrate can deploy appropriate protocols for communications
with flexible security and fault tolerance. The transport protocols that can be deployed include TCP, Parallel TCP streams for
large payloads, UDP, Multicast and HTTP. In case the communications need to be secured at the transport layer, the
substrate can deploy either SSL or HTTPS to facilitate this. Furthermore, the choice of transport to deploy can be computed
using the metrics reported by the performance monitoring service.
 The substrate’s robust delivery guarantee – delivery of events after prolonged/intentional disconnects can be used to
augment interactions between service requestors and service implementations. Here requestors may initiate requests and
disconnect, only to reconnect later on and retrieve responses. Similarly, in the event that the service implementation is
offline (either intentional due to a scheduled maintenance or failure) upon recovery the substrate routes all pending requests
to the service implementation. The substrate also provides support for enhanced GridFTP which can be used for robust
transfer of large files (> 1 GB).
 As Web Services have become dominant in the Internet and Grid systems landscape, a need to ensure guaranteed
delivery of interactions (encapsulated in messages) between services has become increasingly important. This highly
important and complex area was previously being addressed in the Web Services community using homegrown proprietary
application specific solutions. It should be noted that the terms guaranteed delivery and reliable delivery tend to be used
interchangeably to signify the same concept. Reliable delivery of messages is now a key component of the Web Services
roadmap, with two promising, and competing, specifications in this area viz. WS-Reliability [19] from OASIS and WS-
ReliableMessaging [20] from IBM and Microsoft among others.
 We have analyzed both these specifications. Our investigations were aimed at identifying the similarities and
divergence in philosophies of these specifications. NaradaBrokering already has the essential functionality of these reliable
messaging standards but needs to support the particular protocols. This support will be available in pure point-to-point
mode (two endpoints linked together) or with the substrate managing interoperations with endpoints conforming to either
standard. We are currently in the process of incorporating support for these standards. We believe it is quite possible that
these specifications may continue to exist alongside each other. To account for such a scenario we also include a scheme for
federating between these specifications. Such a scheme will allow service nodes to belong to either one of these competing
specifications and still continue to interact reliably with each other.
 The substrate provides support for P2P style communications such as JXTA and GridTorrent (a derivate of the
BitTorrent scheme) and can operate with only the endpoints. The substrate provides support for secure delivery of packets
over unreliable links. The scheme deployed within the substrate is one where packets are secured using previously

exchanged secret keys. Individual entities encrypt and sign individual messages. It should be noted that one or more of the
transport, fault-tolerant and security features can be incrementally added by the application logic to facilitate custom
communication protocols.

5.6. Caching of invocation results and Composition of Services
The substrate can be used as a store to cache results from prior invocations. In some cases, depending on the service in
questions, results from the cache will not only be accurate but will eliminate overheads pertaining to processing of the
request. The knowledge of hosted services and load balancing features inherited from the substrate can be used to enable
efficient service compositions. Specifications like WS-CoordinationFramework, WS-Coordination [21] can be used to ensure
the completion of the composed activity. As mentioned in the earlier section, the completion of the activity can be ensured
even in the presence of failures.

6. Grid Computing and using the scheme with frameworks
The proposed approach to introducing part of the NaradaBrokering functionality into the SOAP message processing chain
makes it possible to leverage the NaradaBrokering features when building Grid applications using different Web Services-
based infrastructures, like WS-RF and WS-GAF.

6.1. WS-RF
The Web Services Resources Framework suite of specifications represent a rendering of the OGSI conceptual model for
building Grid applications that is based on existing Web Services specifications like WSDL and WS-Addressing. The
framework introduces the concept of stateful resource on which Web Services may operate. WS-RF concentrates on
modeling the interactions with such stateful resources, defines patterns for managing the lifetime of their states, enables
subscriptions to their state, etc.
 WS-RF can be combined with other Web Services specification when additional functionality, like message-level
security, transactions, coordination, etc., is required. Hence, it is also possible to use the NaradaBrokering SOAP handlers
with WS-RF-enabled services allowing the use of features like load-balancing of interactions with particular stateful
resources, monitoring of the activity on resources, enabling bridging between different implementations of reliability and
notification specifications, etc.

6.2. WS-GAF
The Web Services Grid Application Framework is a proposal on how Grid applications could be built using only existing
Web Services specifications and without the need to explicitly model resources. It addresses the same requirements as OGSI
but in a way that is consistent with Web Services specifications. Unlike WS-RF which is concerned with the modeling of
resources as the building blocks of distributed applications, WS-GAF focuses only on the use of services and messages and
encourages the use of stable and widely accepted specifications. Design patterns on how issues with resource identity,
stateful/contextualized interactions, metadata, and lifetime management are presented in [14]. WS-GAF is not an
infrastructure per se but, rather, a collection of design patterns that software architects could employ when designing Web
Services-based distributed applications.
 Since WS-GAF does not introduce a new infrastructure, NaradaBrokering SOAP handlers could be used to provide
additional QoS features and/or bridges between semantically similar specifications (e.g., in the areas of notification,
coordination, etc.) in applications. There is nothing different in the use of the NaradaBrokering SOAP handlers with
WS-GAF from what was described in the previous sections.

6.3. VPN Grid and Inter-Enterprise NaradaBrokering communications
It is inevitable that the realms across which we try to communicate would be protected by firewalls, DHCP and NAT
boundaries that can stop our elegant application channels dead in their tracks. The substrate facilitates communications
across firewall (HTTP tunneling is used if only HTTP traffic is allowed), DHCP and NAT boundaries. Sometimes
communications would also be through authenticating proxies. The various authentication schemes currently supported
include Basic, Digest and NTLM (a proprietary scheme from Microsoft). The firewalls/packet-inspecting authentication
proxies over which we have conducted testing include Microsoft’s ISA, Checkpoint firewall software and Apache proxies.
The administrative module cycles through a set of protocols before it determines which protocol/authentication-challenge
needs to be deployed to facilitate communications.
 As VPN technology has matured, it has been increasingly deployed within a wide range of organizations. We are
currently planning to incorporate well known VPN protocols such as Point-to-Point Tunneling Protocol (PPTP) from
Microsoft and the more recent Layer Two(2) Tunneling Protocol (L2TP) from Cisco/Microsoft. Like PPTP, L2TP requires
that the ISP's routers support the protocol. IPSec can be used within both these schemes. Since VPN support is currently
available in most organizations, support for these protocols within the substrate will allow us to leverage capabilities in this
technology. This will lead to a Virtual Private Grid explored further in Ref [6].

7. Related Work
In this section we introduce related work in the area of distributed publish/subscribe and peer-to-peer systems. We compare
these systems based on the type of interactions that they support and also on their schemes for robust delivery of events.
Different systems address the problem of event delivery to relevant clients in different ways. In Elvin [22] network traffic
reduction is accomplished through the use of quench expressions, which prevent clients from sending notifications for
which there are no consumers. This, however, entails each producer to be aware of all the consumers and their subscriptions.
In Sienna [23] optimization strategies include assembling patterns of notifications as close as possible to the publishers,
while multicasting notifications as close as possible to the subscribers. In Gryphon [24] each broker maintains a list of all
subscriptions within the system in a parallel search tree (PST). The PST is annotated with a trit vector encoding link routing
information. These annotations are then used at matching time by a server to determine which of its neighbors should
receive that event. Approaches for exploiting group based multicast for event delivery is discussed in Ref [25]. The Event
Service [26] approach adopted by the OMG is one of establishing channels and subsequently registering suppliers and
consumers to the event channels. The approach could entail consumers to be aware of a large number of event channels.
 Unlike Elvin and the OMG Event Service, NaradaBrokering provides decoupled interactions between the interacting
clients. Furthermore, the organization of subscriptions and calculation of destinations do not result in explosive search
spaces. As opposed to the Gryphon approach where all nodes store the complete set of subscriptions at every broker node,
in NaradaBrokering none of the nodes store all the subscriptions within the system. Also not every broker in
NaradaBrokering is involved in the calculation of destinations. This greatly reduces the CPU cycles expended in
NaradaBrokering for computing and routing interactions within the system.
 The Network Weather System (NWS) [27] collects end-to-end throughput and latency information and uses that
information to forecast future performance. Metrics are collected by sensors, which are organized as a hierarchy of sensor
sets called cliques in order to prevent contention and also to provide scalability. The measurement intervals can be adjusted
so that intrusiveness is limited while ensuring scalability. The sensor interface in NWS is designed such that it can easily
incorporate data from other network performance tools. In addition to network metrics, collected over the TCP/IP transport
protocol, NWS also accumulates CPU and available non-paged memory information from various nodes. The
NaradaBrokering Monitoring service is designed such that it can incorporate results from services such as NWS to facilitate
performance based routing (PBR).
 The JXTA [28] (from juxtaposition) project at Sun Microsystems is a research effort to support large-scale P2P
infrastructures. P2P interactions are propagated by a simple forwarding by peers and specialized routers known as
rendezvous peers. These interactions are attenuated by having TTL (time-to-live) indicators. The JXTA approach results in
flooding the peer network, with the range being controlled by the TTL indicators contained in the interactions. The
NaradaBrokering scheme selectively deploys links for disseminating interactions. In Ref [29] we have demonstrated that we
can route JXTA interactions more efficiently than the JXTA core itself.
 Distributed Hash Tables (DHTs) have been quite popular in several P2P systems. Here each data object is associated
with a key. Similar to a traditional hashtable data structure, other operations supported in the DHT include put and get. In
P2P overlay networks the nodes are organized based on the content that they possess. Here DHTs are used to locate,
distribute, retrieve and manage data in these settings. This scheme provides bounded lookup times. However, P2P overlay
networks such as Pastry [30] from Microsoft do not facilitate keyword based searching, the lookups are instead based on
identifiers computed by hashing functions such as SHA-1 and are derived from the content encapsulated within the
communal resource.
 DACE [31] introduces a failure model, for the strongly decoupled nature of pub/sub systems. This model tolerates
crash failures and partitioning, while not relying on consistent views being shared by the members. DACE achieves its goal
through a self-stabilizing exchange of views through the Topic Membership protocol. This however may prove to be very
expensive if the number and rate at which the members change their membership is high. The Gryphon [32] system uses
knowledge and curiosity streams to determine gaps in intended delivery sequences. This scheme requires persistent storage
at every publishing site and meets the delivery guarantees as long as the intended recipient stays connected in the presence
of intermediate broker and link failures. It is not clear how this scheme will perform when most entities within the system
are both publisher and subscribers, thus entailing stable storage at every node in the broker network. Furthermore it is
conceivable that the entity itself may fail, the approach does not clearly outline how it handles these cases. Systems such as
Sienna and Elvin focus on efficiently disseminating events, and do not sufficiently address the reliable delivery problem. The
Fault Tolerant CORBA (FT-CORBA) [33] specification from the OMG defines interfaces, policies and services that increase
reliability and dependability in CORBA applications. The fault tolerance scheme used in FT-CORBA is based on entity
redundancy [34], specifically the replication of CORBA objects. Approaches such as Eternal [35] and Aqua [36], provide fault
tolerance by modifying the ORB. OS level interceptions of have also been used to tolerate faults in applications.
 The WS-Notification [37] specification from IBM and Globus is a high level messaging specification which aims to
abstract notification mechanisms. This specification is still evolving. We are currently incorporating support for WS-
Notification within the substrate and will release a prototype of this in May 2004.

8. Conclusions & Future Work
In this paper we outlined our scheme to exploit the SOAP processing stack to build ways of interfacing the NaradaBrokering
substrate with Web Services. The advantages to this approach include the fact that it would entail no changes to the service

implementations themselves. In the proxy based scheme there would be no changes in the processing stack either. In the
plug-in mode services automatically inherit functionalities and capabilities provided by the substrate. Services in either
scheme and other stand-alone services can continue to interoperate with each other.

9. References
[1] The NaradaBrokering Project at the Community Grids Lab: http://www.naradabrokering.org
[2] Shrideep Pallickara and Geoffrey Fox. NaradaBrokering: A Middleware Framework and Architecture for Enabling Durable

Peer-to-Peer Grids. Proceedings of ACM/IFIP/USENIX International Middleware Conference Middleware-2003.
[3] Geoffrey Fox and Shrideep Pallickara. An Event Service to Support Grid Computational Environments Journal of Concurrency

and Computation: Practice & Experience. Special Issue on Grid Computing Environments. Volume 14(13-15) pp 1097-1129.
[4] Shrideep Pallickara and Geoffrey Fox. On the Matching Of Events in Distributed Brokering Systems. Proceedings of IEEE ITCC

Conference on Information Technology. April 2004. pp 68-76 Volume II.
[5] Shrideep Pallickara and Geoffrey Fox. A Scheme for Reliable Delivery of Events in Distributed Middleware Systems. (To

appear) Proceedings of the IEEE International Conference on Autonomic Computing. 2004.
[6] G. Fox, S. Lim, S. Pallickara and M. Pierce. Message-Based Cellular Peer-to-Peer Grids: Foundations for Secure Federation

and Autonomic Services. (To appear) Journal of Future Generation Computer Systems.
[7] Hasan Bulut, Shrideep Pallickara and Geoffrey Fox. Implementing a NTP-Based Time Service within a Distributed Brokering

System. (To appear) ACM International Conference on the Principles and Practice of Programming in Java.
[8] Shrideep Pallickara et al. A Transport Framework for Distributed Brokering Systems. Proceedings of the International

Conference on Parallel and Distributed Processing Techniques and Applications. (PDPTA'03).
[9] M. Gudgin, et al, "SOAP Version 1.2 Part 1: Messaging Framework," June 2003. http://www.w3.org/TR/2003/REC-soap12-

part1-20030624/
[10] Web Services Description Language (WSDL) 1.1 http://www.w3.org/TR/wsdl
[11] The Open Grid Services Infrastructure (OGSI). http://www.gridforum.org/Meetings/ggf7/drafts/draft-ggf-ogsi-gridservice-

23_2003-02-17.pdf
[12] The Web Services Resource Framework (WSRF) http://www.globus.org/wsrf/
[13] Web Services Notification http://www-106.ibm.com/developerworks/library/specification/ws-notification/
[14] The Web Services Grid Application Framework (WS-GAF) http://www.neresc.ac.uk/ws-gaf
[15] Web Services Invocation Framework (WSIF) http://ws.apache.org/wsif/
[16] Web Services Routing Protocol (WS-Routing) http://msdn.microsoft.com/library/default.asp?url= /library/en-

us/dnglobspec/html/ws-routing.asp
[17] Web Services Addressing (WSAddressing) ftp://www6.software.ibm.com/software/developer/library/ wsadd200403.pdf
[18] Impact of WS-Addressing on SOAP. ftp://www6.software.ibm.com/software/developer/library/ws-address.pdf
[19] Web Services Reliable Messaging TC WS-Reliability. http://www.oasis-open.org/committees/download.php/ 5155/WS-

Reliability-2004-01-26.pdf
[20] Web Services Reliable Messaging Protocol (WS-ReliableMessaging) ftp://www6.software.ibm.com/software/devel

oper/library/ws-reliablemessaging200403.pdf
[21] Web Services Coordination (WS-Coordination) ftp://www6.software.ibm.com/software/developer/library/ws-

coordination.pdf
[22] Bill Segall and David Arnold. Elvin has left the building: A publish/subscribe noti.cation service with quenching. In

Proceedings AUUG97, pages 243–255, Canberra, Australia, September 1997.
[23] A Carzaniga, DS. Rosenblum, and A. L. Wolf. Achieving scalability and expressiveness in an internet-scale event notification

service. In Proceedings of the 19th ACM Symposium on Principles of Distributed Computing, pages 219–227, USA, 2000.
[24] G. Banavar et al. An Efficient Multicast Protocol for Content-Based Publish-Subscribe Systems. In Proceedings of the IEEE

International Conference on Distributed Computing Systems, Austin, Texas, May 1999.
[25] Lukasz Opyrchal et. al. Exploiting IP Multicast in Content-Based Publish-Subscribe Systems. Middleware 2000: 185-207
[26] The Object Management Group (OMG). OMG’s CORBA Event Service. Available from http://www.omg.org/
[27] R. Wolski. Forecasting network performance to support dynamic scheduling using the network weather service.

Proceedings of the 6th IEEE Symp. On High Performance Distributed Computing, August 1997.
[28] Sun Microsystems. The JXTA Project and Peer-to-Peer Technology http://www.jxta.org
[29] Geoffrey Fox, Shrideep Pallickara and Xi Rao. A Scaleable Event Infrastructure for Peer to Peer Grids. Proceedings of ACM

Java Grande ISCOPE Conference 2002. Seattle, Washington. November 2002.
[30] Antony Rowstron and Peter Druschel. Pastry: Scalable, decentralized object location and routing for large-scale peer-to-peer

systems. Proceedings of Middleware 2001.
[31] R. Boichat, P. Th. Eugster, R. Guerraoui, and J. Sventek. Effective Multicastprogramming in Large Scale Distributed Systems.

Concurrency: Practice and Experience, 2000.
[32] S. Bhola, et al. Exactly-once Delivery in a Content-based Publish-Subscribe System. DSN 2002: 7-16
[33] Object Management Group, Fault Tolerant CORBA Specification. OMG Document orbos/99-12-08 edition, 99.
[34] Object Management Group, Fault Tolerant CORBA Using Entity Redundancy RFP. OMG Document orbos/98-04-01.
[35] P. Narasimhan, et al. Using Interceptors to Enhance CORBA. IEEE Computer 32(7): 62-68 (1999)
[36] Michel Cukier et al. AQuA: An Adaptive Architecture that Provides Dependable Distributed Objects. Symposium on Reliable

Distributed Systems 1998: 245-253.
[37] The Web Services Notification (WS-Notification) http://www-106.ibm.com/developerworks/library/specification/ ws-

notification/

http://www.naradabrokering.org/
http://www.w3.org/TR/2003/REC-soap12-part1-20030624/
http://www.w3.org/TR/2003/REC-soap12-part1-20030624/
http://www.w3.org/TR/wsdl
http://www.gridforum.org/Meetings/ggf7/drafts/draft-ggf-ogsi-gridservice-23_2003-02-17.pdf
http://www.gridforum.org/Meetings/ggf7/drafts/draft-ggf-ogsi-gridservice-23_2003-02-17.pdf
http://www.globus.org/wsrf/
http://www-106.ibm.com/developerworks/library/specification/ws-notification/
http://www.neresc.ac.uk/ws-gaf
http://ws.apache.org/wsif/
http://msdn.microsoft.com/library/default.asp?url= /library/en-us/dnglobspec/html/ws-routing.asp
http://msdn.microsoft.com/library/default.asp?url= /library/en-us/dnglobspec/html/ws-routing.asp
ftp://www6.software.ibm.com/software/developer/library/ wsadd200403.pdf
ftp://www6.software.ibm.com/software/developer/library/ws-address.pdf
http://www.oasis-open.org/committees/download.php/ 5155/WS-Reliability-2004-01-26.pdf
http://www.oasis-open.org/committees/download.php/ 5155/WS-Reliability-2004-01-26.pdf
ftp://www6.software.ibm.com/software/developer/library/ws-coordination.pdf
ftp://www6.software.ibm.com/software/developer/library/ws-coordination.pdf
http://www.omg.org/
http://www.jxta.org/
http://www-106.ibm.com/developerworks/library/specification/ ws-notification/
http://www-106.ibm.com/developerworks/library/specification/ ws-notification/

	Introduction
	NaradaBrokering substrate
	Dissemination of events
	Services within NaradaBrokering
	The reliable delivery scheme and achieving exactly-once-deli
	Experimental Results

	Dealing with large payload sizes: Compression/Fragmentation
	Time and Buffering Services
	Performance Monitoring Services

	The transport framework

	Service Oriented Architectures and the NaradaBrokering subst
	Grid Services and Web Services

	Approaches to interacting with Web Services
	Proxy Approach
	Incorporating SOAP processing into the substrate
	A transport mechanism for SOAP messages
	Using WSIF

	Interacting directly with Web Services
	Incorporating SOAP processing stack into individual brokers
	Functioning as a SOAP intermediary
	Use of WS-Routing to facilitate static paths

	Complementing service interactions
	Discovering services using advertisements
	Using Handlers
	Ability to load balance services
	The role of WS-Addressing
	Enhanced messaging features and fault tolerance
	Caching of invocation results and Composition of Services

	Grid Computing and using the scheme with frameworks
	WS-RF
	WS-GAF
	VPN Grid and Inter-Enterprise NaradaBrokering communications

	Related Work
	Conclusions & Future Work
	References

