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Goals of NG Cyberinfrastructure 

● We want to discover a very small number of classes of Hardware-Software systems that 
together will support all major Cyberinfrastructure (CI) needs for researchers in the next 
5 years. It is unlikely to be a single class but a ​small​ number of shared major system 
classes will be attractive as it 

○ Implies not many distinct software stacks and hardware types to support 
○ The size of resources in any area goes like Fixed Total Budget/Number of distinct 

types and so will be larger if we just have a few key types. 
● Note projects like BDEC2 are aiming at new systems and it is not clear how important 

constraints from continuity to the past should be. 
● Almost by definition, any big data computing must involve HPC technologies but not 

necessarily classic HPC systems. 
● The growing demand from Big Data and from the use of ML with simulations 

(MLAutotuning, MLaroundHPC) implies new demands for new algorithms and new ideas 
for hardware/software of the supporting cyberinfrastructure CI. This note is a start to 
address this. 

● The AI for science initiative from DoE will certainly need new CI and implicitly it is 
contained in the discussion below. 

● We will call the systems HPC Clouds, which are linked to HPC Edge computing as seen 
in hardware like the  Google Edge TPU. Both the Cloud and Edge systems can be 
considered Intelligent 

 
Application Requirements for NG Cyberinfrastructure 
Four clear classes of applications  are 

a) Classic simulations​  which are addressed excellently by DoE exascale program and 
although our focus is Big Data, one should consider this application area as we need to 
integrate simulations with data analytics and ML (Machine Learning) -- item d) below 

b) Classic Big Data Analytics​ as in the analysis of LHC data, SKA, Light sources, health, 
and environmental data. 

c) Cloud-Edge​ applications that certainly overlap with b) as data in many fields come from 
the edge. However, streaming and Edge applications have special requirements.  

d) Integration of ML and Data analytics with simulations​. Under the rubric “learning 
everywhere”, this has been discussed in detail by Fox and Jha. 

 
Remarks on Deep Learning in NG Cyberinfrastructure 

● We expect growing use of deep learning (DL) replacing older machine learning methods 
and DL will appear in many different forms such as Perceptrons, Convolutional NN's, 



Recurrent NN's, Graph Representational NN's, Autoencoders, Variational Autoencoder, 
Transformers, Generative Adversarial Networks, and Deep Reinforcement Learning.  

● For industry, growth in reinforcement learning is increasing the computational 
requirements of systems. However, it is hard to predict the computational complexity, 
parallelizability, and algorithm structure for DL even just 3 years out.  

● Note we always have the training and inference phases for DL and these have very 
different system needs. Training will give large often parallel jobs; Inference will need a 
lot of small tasks. 

● Note in parallel DL, one MUST change both batch size and # training epochs as one 
scales to larger systems (in fixed problem size case) and this is implicit in MLPerf results 

● For DL as well as other forms of machine learning, there are important special 
considerations for Edge and Streaming use cases. 

  
Compute and Data Patterns 
The application classes listed in “Application Requirements for NG Cyberinfrastructure” will all 
require aspects of the four capabilities below. 

1) Parallel simulations; 
2) Data Management; 
3) Data analytics; 
4) Streaming  

but the proportion of these will differ in the four classes and application class d) (“Integration of 
ML and Data analytics with simulations”) is particularly hard as it intermixes all of them in a 
dynamic heterogeneous fashion.  

● A system for class d) will be able to run the other classes as it will have “everything” but 
a “d” system may not be the most cost-effective for a pure class a) or b) application.  

● The growing complexity of work implies that dynamic heterogeneity will characterize all 
major problems of each class.  

● In the absence of consensus application requirements and software systems to support 
ML-driven HPC, it is unclear whether scaled up machines should have the same design 
but larger sizing or have a  radically different design and performance point. 

 
Cloud-Edge computing 
Here the fog concept suggests that the Cloud model extends to compute resources near the 
edge as in AWS Greengrass but doesn’t affect the “central” HPC Cloud much except to insist 
that cloud support streaming systems such as the Apache Storm/Kafka model. This does not 
seem difficult to support as a modest upgrade to any design aimed at classes a), b), d). 
Real-time machine learning is important and discussed later. 
 
Common Practices underlying HPC Cloud  
 
Low level structure​ -- Industry important leader 

● Docker/Openshift/Singularity containers 



● Kubernetes container orchestration/management with Slurm supporting high 
performance 

● Build everything as services OpenAPI REST standard 
● DevOps 
● Possibly Bare metal or hypervisor-based nodes (but always containers) 
● Use MLAutotuning or Dean’s Systems for ML 

 
Middleware 

● Service Mesh to link services e.g.Openshift offers Docker Kubernetes Service mesh 
● HDFS based on node storage with the growing use of high-speed storage (NVMe, Intel 

Optane) 
● Variety of databases as a service 
● Data Management: Hadoop, Spark, Flink. Twister2 offers a high-performance version 

 
Edge-Cloud Link 

● Storm/Heron-Kafka style streaming -- dataflow compute engine plus buffered edge 
messages. Twister2 offers a High-performance version of Storm API. 

● Fog (cloudlets) implies environment should run on on small systems near the edge. See 
AWS Greengrass. Industry must solve this anyway 

● Real-time machine learning is an important part of many edge problems and here one 
either needs just real-time inference but sometimes real-time inference and training. 
Supporting real-time ML is more dependent on the algorithm used and edge systems 
than on the HPC Cloud. 

 
Languages  

● Different Languages inevitable and Industry needs to alleviate as not specific to science 
● Python as either frontend (~universal) or main tool (several important libraries); 

MDAnalysis and Keras as examples 
● Jupyter notebooks and environments like Google Colab built on them are growing in 

importance, 
● C or C++ Best performance 
● Java -- most data management 

 
Simulation 

● Parallelism is very important in application class a) 
● Simulation has important issues where there is typically agreement among the experts 

on the issues, if not the solutions. Obviously these issues underlie the exascale 
initiatives, which will produce great hardware and software 

● MPI remains important 
● Science is probably lead stakeholder in  

 
Data analytics  

● Parallelism is of growing importance in data analytics especially in deep learning 



● Data analytics is of great importance to industry and of course, science is smaller than 
industry but data analytics is of central importance to science 

● Keras, Tensorflow, MXNET, PyTorch are key tools for deep learning 
● Graph databases and graph analytics key in some important areas and are perhaps the 

hardest parallel algorithms 
● Decreasing but still nontrivial interest in general Machine learning such as Scikit-Learn 
● Note the different communication needs of different classes. DL is dominantly AllReduce 

and Broadcast. Graph analytics is Scatter and Gather. The local communication 
structure of most simulations is not seen in data analytics. There is a lot of study of this 
but could affect optimal interconnect and messaging software. 

● See interesting MLPerf benchmarks  
● See results from SPIDAL project 

http://dsc.soic.indiana.edu/publications/FormattedSPIDALPaperJune2019.pdf for a 
survey of HPCforML 

● Real-time and online algorithms and systems are critical in some applications such as 
speech recognition on edge, autonomous driving, etc. 

● Link to simulation with  MLaroundHPC integrating ML with the simulation. 
● Link to simulation with MLafterHPC; data analytics processing results of a simulation. 

 
Scheduling 

● In Slurm, the unit is a node but in Mesos or Kubernetes it is a container. This needs to 
be resolved. Large scale data analytics will need to be allocated at the node level as for 
example parallel deep learning will use classic synchronizing algorithms. 

● HPC tends to emphasize single job performance whereas industry focus is throughput 
i.e.total system performance 

● Need Resource management for dynamic heterogeneity,  
● Rutgers Radical Pilot addresses some of these issues 

 
Not necessary but could be important for HPC Cloud -- need to watch Industry 
Here are four trends that are important in today’s cloud computing but may not have huge 
impact on BDEC’s next-generation cyberinfrastructure 

● Serverless 
● Microservices 
● Event-based computing 
● Cloud-native for fault tolerance and microservices 

 
High-performance System Principles 

● Accelerators that have commonality across simulation and ML, allow one to 
straightforwardly deploy a system good at all four application classes. This could be true 
for GPUs and TPU’s as accelerators but the more exotic ANN accelerators may not be 
very useful in simulations. In fact, some accelerators may not be good at all variants of 
DL/ML. For example, in some cases, RNN and CNN behave differently in performance 
studies 



● High speed interconnect will always be useful 
● Always minimize data transfer; bring compute to data 

 
Workflow  

● There is little overlap between approaches to orchestration and workflow in simulation 
and big data fields. This is perhaps historical as the requirements are not very different. 
Probably one could support either the HPC or the Big Data approaches to workflow on 
most system designs.  

● In more detail, Big data systems like Spark or Flink support a dataflow computing model 
that is at a finer grain size than that supported by HPC systems such as Pegasus or 
Kepler. Developments such as Function as a Service and event-driven computing also 
suggest a finer grain size (microservices) computing model. 

● NiFi is a big data workflow system that is similar to HPC approaches. 
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