
The Online Knowledge Center: Building a Component Based
Portal

Ozgur Balsoy1,2,3, Mehmet S. Aktas2, Galip Aydin2, Mehmet N. Aysan2, Cevat Ikibas2, Ali Kaplan2,

Jungkee Kim2, Marlon Pierce2,3, Ahmet Topcu2, Beytullah Yildiz2, and Geoffrey Fox2

1Computer Science Department, Florida State University
2Community Grid Labs, Indiana University

Postal Address: Community Grid Labs

501 N. Morton Street, Bloomington, IN 47402
Email Addresses: {obalsoy,maktas,gaydin,maysan,cikibas,alikapla,kimjungk,mpierce,

atopcu,byildiz}@indiana.edu

3Corresponding Authors
Telephone Number for Corresponding Authors: (812) 856-0751, (812) 856-1212

Fax Number for Corresponding Authors: (812) 856-7972

Submitted to Information and Knowledge Engineering ’02 as RRR

Abstract
This paper presents an overview of the Online Knowledge Center (OKC) web portal. The

OKC is built around a portlet/container architecture: a central control portal is composed of
several portlets that can deliver both local content and content from remote servers. The modular
structure allows us to develop sophisticated portal components independently and plug them into
the portal container using well defined XML interfaces. We describe problems we have
discovered with this architecture and extensions and solutions that we are implementing. We
also describe two advanced services that can be plugged into the overall framework: XML
message-based newsgroups and hybrid structured/unstructured data searches.

1. Introduction
The Online Knowledge Center (OKC) is a component based portal system that we are

designing to support distributed web content display, management, and authoring. The OKC
will potentially be used to provide access to a wide range of information in various formats,
including but not limited to presentation slides, software repositories, contact information,
training announcements, and newsgroup postings.

 Component-based portals represent an important area for investigation and
development. Essentially, this allows us to treat all web accessible content as objects that can be
wrapped inside standard XML interfaces. Through a standard web service framework such as
WSRP[1], portal containers will be able to dynamically discover and bind to desired content
portlets. We view this as the correct interface management system for user interfaces to web
services: portals become an aggregate of distributed portlets, each of which in turn is a client to
one or more web services. All components describe themselves and communicate with XML.

In summary, the OKC development and research focuses on the following major areas:
portal components that manage information delivered from distributed content servers; a
distributed content management system; dynamic content creation “wizards” to support
newsgroups, training and conference registration; and multiple search capabilities, including
searches over semi-structured web site material, structured searches over XML data, and hybrid
searches over linked documents.

The OKC server contains only the central portal control and display code and OKC specific
web content. We use Jetspeed [2] for this portal framework. Other web content is maintained on
separate servers that double as content management servers. Apache-Jakarta’s Slide [3] project is
a WebDAV-based [4] content management system that we are evaluating.

Remote content is organized into portlets, which are mapped to HTML tables for display
in browsers. The central portal server controls the arrangement and display of the portlets.
Portlet content can be as simple as static web pages, or it can be a user interface to sophisticated
custom services.

In the remainder of the paper we present extensions and modifications that we have made
to standard portlets. We then describe two examples of sophisticated services (newsgroups and
hybrid searches) that we are developing. Web interfaces for these services plug naturally into the
portal container framework as portlet components.

2. Portlet Development for OKC
2.1. Introduction

The OKC Web Portal is built on an open source project from Apache’s Jakarta project [5],
called Jetspeed. Jetspeed provides user authentication and profiling, screen layout management
and configuration, HTML aggregation from different sources, and other various portal services.
We have considered Jetspeed as a starting point to implement OKC distributed content
management portal. However, further research and development was needed to extend Jetspeed
functionality to accomplish our goal.

2.2. Navigation Problem
Jetspeed serves as a thin Web interface with no content depth. All the content, except

Jetspeed’s menu and navigation links, is retrieved from remote hosts and users are directed to
these hosts whenever a link is chosen. The OKC Portal presents HTML content from different
sources while it keeps users navigating through the content within the portal environment. That
is, we need to be able to display linked pages within the same portlet, delivering “deep” content
developed by independent content developers.

Jetspeed’s standard mechanism for delivering remote web content is through the
WebPagePortlet. This portlet also uses other API functions, such as HTMLRewriter, to replace all
the HTML links with their absolute forms.

The OKC development team has developed a new version of WebPagePortlet, called
OKCWebPagePortlet. In the new version, we have assigned a unique identification to each portlet
to distinguish between them. This allows us to maintain separate state in several different
navigable portlets. This ID system may be superseded by future standard Jetspeed conventions.

We have also rewritten HTML links fetched from the remote content so that instead of
spawning a new browser window with an absolute URL address, we now redirect this absolute
URL as a parameter to our modified WebPagePortlet. This is summarized in Figure 1.

A link on a page at http://remote.host/parent_directory:
 link info
After WebPagePortlet processes the link:
 link info
After OKCWebPagePortlet processes the link:
 <a href=”http://jetspeed.host/jetspeed/portal?unique_id=

 http://remote.host/parent_directory/directory/file.html”>link info

Figure 1: How links change after being processed.

Jetspeed runs on a Turbine [6] servlet which constructs a special object, called rundata,
that maintains all servlet request, session and user profiler data, and distributes it to each portlet.
Following the user click, the portal request URL is formed as
“http://…/portal?unique_id=http://…/&…,” and, from rundata objects, the URL
parameters are retrieved by each portlet using their unique IDs. Finally, the new URL is used to
fetch the selected page, an action which simulates Web navigation.

In case of multiple portlets used by the same user, each OKCWebPagePortlet stores the last
clicked URL in the servlet session. When the portal view is reconstructed without clicking a link,
i.e. returning from layout customizer, all the portlets retrieve their current URLs from the servlet
session. If no URL is found, the initial URL from the registry is used.

2.3. HTML Aggregation Problems
All the HTML content and resources accessed by the portal have their own elements and

characteristics according to the context they are produced for. The title information, metadata
information, scripts, colors, font faces, styles, images, Java applets, ActiveX controls and many
other technologies are widely used. However, forming a new portal page from different HTML
sources requires sacrifice of features which do not work with others quite well, or scripts which
do not fit into the portal environment.

OKC Web Portal discriminates among the HTML features as needed. Javascript sections
are preserved but their behaviors may change. OKC includes a script library to resolve problems
that content developers might face for adapting their scripts. All the HTML header tags except
META tags are preserved. LINK tags are moved to the portal’s header section so that developers’
style may take effect. Any HTML content with frames is displayed in a new browser window
outside the portal environment. Content files with systematic names for each frame can be
displayed within the portal. HTML links with window and frame targets are altered to suit OKC
Portal environment.

2.4. Restricted Hosts
As we solved the navigation problem, we also had to prevent HTML content from

different sources displayed within the portal because of the problems mentioned in Section 2.3.
We define each content host and specific location within that host as an OKC area. An OKC area
consists of remote content in a single directory that has all been produced following OKC content
guidelines. All the HTML links from an area are local and relative paths. Such content is
displayed in an area portlet inside the portal. Links to other areas are valid and area portlets can
switch from area to area. Any link to resources outside an area is not guaranteed to possess valid,
OKC-compatible web content, so it is displayed outside of the portal view in a new window.

Each area is registered in an area configuration file in XML with its name, host and path
information. Also, each area is expected to have a stem links file at their top level content
directory. The stem links file is an XML file that defines the content’s top level menu. This file
contains a menu title, description, and a list of menu items, each having a relative path from the
top level directory to the content file, an item title and a brief description. The OKC Web Portal
provides area sensitive menus along with the area portlets which constructs a sub menu while
users navigate through the content. Any changes in areas are detected and the sub menu is
replaced with another menu using stem links files inside the content.

3. XML Messaging for News Groups
The OKC Web Portal is enriched by collaborative tools. As one of the first attempts to

make this happen, we have added newsgroups capability to the portal where users can interact
through both online and offline messaging. The OKC not only provides interfaces to read and

post messages but also allow e-mail distributions to and from group subscribers. This service
resembles mailing lists; however, the architecture is built on distributed modules operating
separately and communicating by a JMS-compliant event brokering system [7,8] so that each
module can serve as a Web service to multiple clients or other services as systems grow and have
new functionalities. This represents an example of using forms with XML targets.

The newsgroup system’s major components and interactions are shown in Figure 3.

W iz a rd

M a ilH a n d le r J M S
S e rv e r

N e w s R e c o rd e r D a ta b a s e

N e w s F e e d e r

N e w s R e a d e r

P O R T A L

JM S p ub l ish

JM S su bsc rib e

J D B C

JD B C

R S S & X M L

H T M L to
P o r ta l

JM S pu b lish

U s e rs H T T P

S M TP

M a ilb o x

N e w p os t
& re p ly

P o r ta l m e n u

M a ilD is tr ib u to r

J M S
sub scr ibe

S M T P

J M S
c lie n ts

J S P
In te rfa c e s

S M T P
H o s t

N u m b e rG e n er ato r
(R e so u rc e c ou n te r)

S oc k e t

S o ck et

Figure 2 OKC's newsgroup architecture supports both email and JSP clients and readers.

Newsgroup messages are nothing but events for the system, whose structures are defined

by an XML schema, enveloped in SOAP [9] messages with attachments, and handled as other
system events are handled. Newsgroup modules listen to distributed events and distinguish the
newsgroup messages from others and act accordingly.

There are two major event generators in newsgroups architecture. These are the News
Wizard and the E-mail Handler. The Wizard is a JSP[10] interface based on the event schema. For
newsgroup users, it is an interface to post messages to the system. After users post their
messages, the Wizard generates XML event instances and publishes them to the event broker as
system events. The second major event generator is the Handler. It interacts with an SMTP host,
validates and converts users’ e-mail messages to system events.

Each event is identified by a unique URI such as gxos://okc/events/2334 and messages
contained by events as gxos://okc/newsgroups/agroup/44332. Each URI corresponds to an
XML document or XML metaobject whose schema and management are defined by GXOS [11].
Each XML metaobject contains information about where and how an actual resource is accessed
and preserved.

The Number Generator service is deployed to ensure a system-wide unique naming. This
service is used by event publishers before any URI is assigned to events and messages.

As events are published, there are two subscribers of such events, the News Recorder which
provides persistency for system events. Each user message is recorded in a database for later
referrals. The other subscriber is the E-mail Distributor. The Distributor detects events with user
messages and sends them out to the subscribers of the news group the message was sent to.

Recorded events or user messages can be reviewed as a list of resources in Rich Site
Summary format [12], which is meant to publish recent content changes of a Web site in an XML
format to remote subscribers. RSS contains a topic, description, and items with link titles and
addresses to the related resources. The News Feeder module provides such RSS feeds to any other
parts of the system. Any resource chosen from the items list can be retrieved from the database
by using its address information through the Feeder.

The front-end of the newsgroups architecture is the News Reader. This module interacts
with users and retrieves RSS feeds for selected groups or news messages in XML if a particular
message is selected to display. The Reader uses XSLT [13] transformers to generate HTML
content for the portal from XML messages.

4. Hybrid Search Prototype
We made a test prototype of the hybrid search for the XML documents attached with

external files. An XML document can have link tags, which designate external documents. The
external documents may be Microsoft Word files, Microsoft Power Point files, PDF documents, or
Post Script files. Hybrid searches allow us to simultaneously search semi-structured documents
and structured metadata about those documents. For this, we will incorporate Oracle database
and searching tools [14,15,16,17].

Actually, we cannot know specific information of the paper document without an XML
instance that represents meta-data with a title, authors, affiliations, the source, and the published
year. The benefits of the meta-data are not only the particular meta-information but also the
performance improvement with narrowing the group to be searched for the context index.
However, the large amount of XML documents may drop the performance for extracting
particular nodes from XMLType columns in the Oracle database tables. In that case, we can
consider ordinary indexed column types mapping to the nodes of the XML instances. In the test
prototype, an XML instance has a single external document to simplify the architecture. We
made an XMLType column type table for the XML instances, a BFILE large object type column
table for the document, and a relationship table described the relationship between the XML and
the file. The Entity-Relationship diagram for the test prototype is in Figure 3.

Figure 3 E-R diagram of the test prototype

The descriptions attribute of the Papers entity set represents the XML instances with
XMLType object type and the PaperND (Paper Name and Directory) is a key field with a unique
value of Name and Directory in the Papers table. The Contents attribute of the PaperFiles entity set
has the BFILE large object type and the actual file will be stored in the designated subdirectory in
the outside of the database. The DocType column has a filtering option: BINARY will be filtered
and TEXT is not necessary to filter when indexed. The additional update, insert, or delete will

PaperFiles

Filename

DocType

Contents

FileLocator Papers

PaperND

descriptionsonns

change the status of the index and the new information will be reflected into the index using
synchronize package included in the Oracle 9i database system. The FileLocator table shows the
relationship between two data tables: Papers and PaperFiles.

Users interact with the search tool through a web interface. User queries are handled by a
Java servlet that makes a SQL query from the parameters passing from the user search Web page,
gets the result set querying through JDBC connection from the database tables.

5. Summary and Future Work
In this paper we have described extensions to portlet capabilities that are needed to

support entire remote areas within a single portlet. We have also described important example
services: the newsgroup system will serve as a prototype for all of our dynamic content creation
and management, and hybrid search capabilities can be applied to search online libraries.
Important future work includes more sophisticated content management services, including page
validity services that check HTML compliance and message-based authoring systems similar to
the newsgroup system. We also plan to develop portlets that support multimedia content.
Finally, we must also support WSRP-style web services for finding and binding to distributed
portlets. This will require support for distributed events within a web services framework, which
will be an important area for development.

6. Acknowledgements
The Online Knowledge Center is funded by the US Department of Defense’s High

Performance Computing Modernization Program through the Programming Environment and
Training initiative. We gratefully acknowledge their support.

7. Reference
[1] Web Services for Remote Portals: http://www.oasis-open.org/committees/wsrp/
[2]Jetspeed Overview: http://jakarta.apache.org/jetspeed/site/index.html
[2] The Jakarta Slide Project: http://jakarta.apache.org/slide
[3] WebDav Resources: http://www.webdav.org
[4] The Apache Jakarta Project home page: http://jakarta.apache.org
[5] Jakarta Turbine: http://jakarta.apache.org/turbine
[6] Java Message Service API 1.0.2: http://java.sun.com/products/jms
[7] Narada Event Brokering System, http://grids.ucs.indiana.edu/ptliupages/projects/narada/
[8] Simple Object Access Protocol (SOAP) 1.1: http://www.w3c.org/TR/SOAP
[9] JavaServer Pages Technology: http://java.sun.com/products/jsp
[10] Garnet XML Object Specification: http://aspen.ucs.indiana.edu/project/gxos/
[11] RDF Site Summary Specification:
http://groups.yahoo.com/group/rssdev/files/specification.html.
[12] Extensible Stylesheet Language Tranformations: http://www.w3c.org/Style/XSL
[13] Oracle Corporation, Oracle 9i Application Developer’s Guide – XML, June 2001.
[14] Oracle Corporation, Oracle Text Application Developer’s Guide Release 9.0.1, June 2001.

[15] Oracle Corporation, Oracle 9i New Features Summary, Technical white paper.
http://www.orcle.com/xml/documents, October 2000.

[16] Oracle Corporation, Oracle Ultra Search Architecture, Technical white paper,
http://otn.oracle.com/docs/products/ultrasearch/, May 2001.

