
SWARM: Scheduling Large-scale Jobs over the Loosely-Coupled HPC Clusters

Sangmi Lee Pallickara
Research Technology, UITS,

Indiana University,
Bloomington, Indiana, USA
leesangm@cs.indiana.edu

Marlon Pierce
Community Grid Lab,

Indiana University,
Bloomington, Indiana, USA

mpierce@cs.indiana.edu

Abstract— Compute-intensive scientific applications are
heavily reliant on the available quantity of computing
resources. The Grid paradigm provides a large scale
computing environment for scientific users. However,
conventional Grid job submission tools do not provide a
high-level job scheduling environment for these users
across multiple institutions. For extremely large number
of jobs, a more scalable job scheduling framework that
can leverage highly distributed clusters and
supercomputers is required. In this paper, we propose a
high-level job scheduling Web service framework,
Swarm. Swarm is developed for scientific applications
that must submit massive number of high-throughput
jobs or workflows to highly distributed computing
clusters. The Swarm service itself is designed to be
extensible, lightweight, and easily installable on a
desktop or small server. As a Web service, derivative
services based on Swarm can be straightforwardly
integrated with Web portals and science gateways. This
paper provides the motivation for this research, the
architecture of the Swarm framework, and a
performance evaluation of the system prototype.

Keywords-high performance computing; Grid computing;
Job schedulig;

I. INTRODUCTION (HEADING 1)
In response to the growing need for high-performance

computing resources and data storage, several research
centers have contributed to projects based on the Grid
computing paradigm such as the TeraGrid project [1] and the
Open Grid Science project [2]. The NSF funded TeraGrid
project provides access to high performance computing
(HPC) resources hosted by 11 institutions in the US.
Cumulatively, the Teragrid project provides access to more
than 110,000 CPUs that can deliver a peak computing
throughput of 900 Teraflops. The size of the TeraGrid
resources should increase dramatically over the next several
years as large new resources (Big Blue at NCSA and Kraken
at the University of Tennessee/Oak Ridge National Lab)
come on line. Scientific users have obviously benefitted
from this dramatic enhancement in the available computing
resources. However, seamlessly adapting remote HPC
resources continues to be a challenge. This is especially true
for the Cyberinfrastructure or Gateway user community,

where Grids resources need to be integrated within a larger
group of users and research projects.

Although the Grid paradigm provides an excellent model

for accessing remote resources, emerging scientific problems
in high throughput workflows pose a challenge. We have
encountered these computational challenges in our work on
research projects in the bioinformatics and biochemistry
domains. The PlantGDB project [3], in the bioinformatics
domain, assembles unique transcripts from plant mRNA
(messenger RNA)) sequences. Here, mRNA is a copy of the
information carried by a gene on the DNA. Records
downloaded from GenBank are processed through a data
processing pipeline. This pipeline involves clustering and
assembly sequences, which are highly compute intensive.
The overlapping sequences among the parts of gene
sequences are grouped by software, PaCE [4] that is often
run in parallel. The results of this clustering process are then
fed to the assembly process to generate contigs, which are
the consensus sequences derived from multiple mRNA
sequences. Depending on the species, the number of the
clustered sequences varies from a few to several millions, in
which case a large number of assembly processes are
required.

To benefit from powerful computing resources, users

login to remote machines or submit jobs through Grid
toolkits such as the Globus Toolkits [5]. However, the sheer
number of jobs easily exceeds one’s ability to manage them
manually. Finding the most efficient resource to submit, and
monitoring such submitted jobs, is not feasible without
intelligent support from the middleware. Furthermore, the
Gateway-style applications also require interfaces to
distributed resources on behalf of the users.

To cope with issues related to scale and management in

such large-scale settings we have developed a high-level job
scheduling framework, Swarm which provides the
following features:

• Scheduling millions of jobs over distributed
clusters

• A monitoring framework for large scale jobs
• User based job scheduling
• Ranking resources based on predicted wait times
• Standard Web Service interface for web

applications

In grid environment, it has been realized that job

scheduling is a fundamental issue to improve resource
utilization and performance. GridWay[6], and PanDa[7]
project provide job submission environment over the multi-
site resources. On top of the scheduling functionality,
Swarm provides the resource prioritizing feature which
searches the batch queue system with the minimum wait
time. Falkon[8], and myCluster[9] enable user to access
provisioned resources to submit large-scale scientific jobs.
Instead of provisioning resources, Swarm provides user-
based resource pool which limits maximum number
submissions to the batch queue system. It enables Swarm to
incorporate with the policies from each batch queue systems
more flexibly. In addition, the highly extensible design for
the domain specific applications and lightweight software
distinguish Swarm from other approaches.

The aims of this paper are threefold: first, to present the

architecture of the Swarm job scheduling framework;
second, to describe the scheme that prioritizes resources and
distributes a massive number of jobs over distributed
clusters; and finally, to evaluate performance at the client
level of the standard Web Service.

The rest of the paper is organized as follows: Section 2

describes some of the scientific research projects that
motivated our research. Related work is discussed in the
section 3. In the section 4, we describe the architecture of
Swarm. Performance evaluation of the Swarm system is
presented in section 5. Conclusions and future work are
discussed in section 6.

II. MOTIVATIONS AND COMPUTATIONAL CHALLENGES
For compute-intensive scientific applications, Grid

enabled resources opened up the possibility of an on-
demand experimental environment. Here we describe the
computational challenges that we faced that in turn
motivated us to develop the Swarm framework.

Challenge 1: Executing millions of jobs.

The PlantGDB project [3], in the bioinformatics domain,

clusters and assembles mRNA sequences. To assemble the
clustered sequences, the data processing pipeline runs from
a few to millions of sequence assembling jobs, which are
independent of each other. Similarly, the Meroueh’s
research [10, 11] in the biochemistry domain has similar
issues in their scheme for drug discovery. Here, the
compound discovery process launches millions of jobs
identifying the low-energy binding modes of a small
molecule within the active site of a receptor, whose
structure is known. In both these projects, the number of
jobs submitted by a single experiment could vary from a
handful to several millions. Currently, job submission
mechanism provided by Globus Toolkit which is de facto
software in grid community does not allow the users to
submit 1000s of jobs concurrently to the PBS like batch
queue systems [12, 13].

Challenge 2: In different clusters, the same job can have

different wait times in the batch queue.

Users also have to deal with the policies at these remote

sites. These policies are applied to the batch system to
which the jobs are submitted. Based on information
provided by the users a given batch system prioritizes jobs
within its queue. Queue wait-times typically have a
significant effect on the total computing time for a given
scientific experiment. Two other factors also play a very
important role: the WallClockTime, which is the duration of
the execution, and the number of available nodes for parallel
jobs. To optimize the job execution times, users need to take
into account the queue waits, the WallClockTime, and the
number of available nodes.

Challenge 3: What if some of the jobs are incomplete or

failed?

Fault handling is another critical challenge. There are

potential failures in the resource side such as hardware
failure or system shutdown. Some of the errors are program
specific. For example, WallClockTime is specified based on
the user’s estimation. Therefore, there is a possibility to
have incomplete executions due to WallClockTime
violation. Fault detection and more intelligent reaction to the
execution fault are required for the convenience.

Challenge 4: Monitoring millions of jobs running over

several clusters.

After submitting millions of jobs, monitoring each of

these jobs − based on their individual job IDs − is not
practically feasible. Compounding these tracking problems
is the fact that these jobs might be submitted to several
different clusters. Traditional monitoring will not suffice: a
more statistical approach is needed.

III. RELATED WORK
There have been several approaches in the HPC

community and the Grid community. Condor [14] is a well-
known high-throughput resource management system that
has been widely adopted in the scientific computing
community. The Condor system provides advanced features
including fault tolerance. The CondorG [15] release of
Condor interoperates with other Grid computing resource
management services such as the Globus toolkit. CondorG
does not provide direct support for a scheduling policy for
jobs submitted to Grid resources. However, it does supply
mechanisms that may be useful for meta-schedulersat
higher-levels in the stack; examples of such meta-schedulers
include systems like ClassAd [16] and DAGMan
[17].ClassAd allows users to specify the remote resources
for jobs within the matchmaking process. DAGMan is a
workflow manager where interdependencies between jobs
or data can be specified. Swarm utilizes CondorG as the
basic job submitter.

GridWay [6]is another metascheduling framework for
grid resources. Besides the scheduling capability, GridWay
provides other advanced features − such as fault tolerance,
checkpoints, and process migration − that are not available
to users who access Grid resources directly. Similarly,
PanDa[7] provides large-scale job scheduling and analysis
framework. PanDa is originally developed for a particle
physics experiment at the Large Hadron Collider. For their
large size datasets, PanDa interacts with own data
management service to pre-place the dataset. CondorG,
GridWay, and PanDa harness the Globus toolkit to cope
with security and policy issues in Grid settings.

To utilize remote clusters managed by different

institutions the glide-in style approach is useful. Glide-in
style tools utilize computing nodes in the user’s personal
resource pool by submitting parallel jobs on these pools.
CondorG provides a condor glide-in server [14], where
users can submit jobs to these provisioned clusters as if they
were the condor computing nodes.

myCluster [9] and Falkon[8] are built on top of the

glide-in approach. myCluster provides the capability of
provisioning a large number of distributed resources across
the TeraGrid into personal clusters created on-demand.
Falkon provides support for provisioning a large number of
distributed resources and allows user groups access to
resources via a Web service interface. It also factors in data
management techniques to improve the performance. Glide-
in style approach provides transparent access to remote
resources.

At its lowest level of job management, Swarm also

utilizes Globus technology along with the Grid’s security
scheme. As described in Section 5, we utilize Condor-G and
BirdBath [18], Condor’s Web Service interface. Unlike the
glide-in style approaches, Swarm does not provide
provisioning of resources. Swarm’s resource pool is a set of
tokens that can limit the utilization of resources. These
tokens are not shared by users. Resources are allocated by
the matchmaking process based on the predicted queue wait
times. Large number of users can thus utilize Swarm for
submitting jobs to the most efficient resources available in
different grid clusters.

IV. MANAGING MANY JOBS WITH SWARM

A. Submitting Jobs
Users access the Swarm framework through a simple

Web service client. This is useful for desktop users and
Gateway style applications that need lightweight clients.
This ease-of-use feature is also applied to file management.
Swarm provides support for third party job submissions.
Users or applications do not have to maintain input files
allowing them to be lightweight: valid URLs to these input
files can be specified instead. Similarly, the generated
output files are also provided as URLs. Swarm can thus
satisfy requirements of high-throughput computing users
who also prefer thin clients.

The need for launching millions of jobs is often
associated with a single scientific experiment. To track large
scale experiments, Swarm requires users to get a ticket
before submitting millions of jobs. This ticket is randomly
generated by Swarm and the user must provide this ticket
for subsequent accesses related to submitting jobs, checking
status, getting outputs, and canceling jobs.

Jobs are managed on a per user (user’s account) basis.

Since most supercomputing clusters manage their batch
queue systems based on the users’ accounts, Swarm
provides queuing and submission mechanisms based on
such individual accounts. Individual users have their own
resource pool to track the usage of the resources. The tokens
in the resource pool control the maximum number of jobs in
the batch system.

B. Tracking the Status
Once the user submits a large group of jobs, tracking the

status of these jobs is critical. Checking each of the jobs
with millions of ids in several or more computing sites
manually is not practical. Therefore, Swarm provides
statistical status reports to the users. Each of the jobs
maintains the status of:

• Requested: For jobs that stay in the backend
Database
• Queued: For jobs in the Swarm user queue
• Submitted: For the jobs with available resources
• Idle: For the jobs waiting in batch queue system in
the cluster
• Completed: For jobs that have completed
• Held: For jobs that been held
• Running: For the jobs being executed in the cluster

A status check provides the summary of the job status.

C. Dynamic Resource Allocation
Although Swarm is client-side job submission

middleware, Swarm is designed to work with a wide scale
of computing resources. Unlike glide-in style solutions,
Swarm does not require large time slot of a given computing
resource. Instead of waiting for longer time in the queue to
get a bigger chunk of the time slot from the batch queue
system, Swarm targets any of the available resources for
running the jobs. The scheduler evaluates the resources
within the list of resources that the user has provided. This
evaluation is based on the wait-time prediction by means of
adapting the QBETS service [19]. This scheme provides
better flexibility to utilize different clusters and their batch
queue systems.

V. ARCHITECTURE
Swarm is a set of Web services and local servers. Figure

1 depicts the architecture of the Swarm framework. From
top to bottom, Swarm provides a standard set of Web
service interfaces. Desktop users and gateway style
applications can easily access Swarm via standard Web

Figure 1. Swarm architecture. Client applications interact with the Swarm WSDL using standard Web service tools. In practice, we extend
Swarm to make problem-specific services that inherit Swarm capabilities but provide a code-specific WSDL.

service interfaces. Each of the operations and parameters are
defined in WSDL.

The requests from the user are delivered to the Request

Manager. The Request Manager creates a ticket for the
series of jobs, which is a 128 bit universally unique
identifier. To provide the capability to track a large number
of jobs, Swarm provides a simple structure to the submitted
jobs. Jobs are identified with their ticket and internal ID.
Here, internal ID is the identity of the job which is unique
within the job group. This structure is especially useful for
the web application, which deals with multiple experiments
launched by multiple users.

As seen on the right hand side of the Request Manager

in Figure 1, the Job submission process interacts with the
Resource Ranking Manager, which prioritizes the
resources over which the job is submitted to optimize the
job execution process. This will be discussed in detail in the
subsection 4.1.

Under the Request Manager and Resource Ranking

Manager, there is a group of software components; referred
to as Job Board. Swarm maintains a Job Board for each
user. Each of the Job Board contains a Job Queue, Job
Distributor, and Resource Pool. Users do not share any of

these components. Matchmaking between the jobs and the
resources are done in the user’s Job Board. Subsection 5.2
will describe this in more detail.

When the Job Distributor finds the available match of

the remote resource, the Job Execution Manager will
submit the job through CondorG’s Web service APIs. The
user’s certificate (based on the X.509) is retrieved by means
of interacting with MyProxy service and used to access to
the Globus GRAM job manager. In addition, users are
allowed to submit jobs to the ordinary Condor computing
nodes through Swarm.

A. Ranking the Resources for the Requested Job
In a lot of cases, a scientist has an account that is valid

for multiple computing clusters. Popular scientific software
is typically available from multiple clusters without the need
to do any additional installations. Some scientists install
their own software at multiple computing sites to achieve
better performance. Swarm provides automated prioritizing
process for each of the jobs.

Well-grouped and site-prioritized jobs are in the user’s

individual job queue awaiting available resources. Swarm
provides matchmaking between the jobs in the queue and
resources in the pool by using the following criteria:

• “First In First Out” internal queue for the jobs, and
• Available resources with the smallest wait-time

first

If the user specifies priority or preference for the

resources, Swarm utilizes that during the matchmaking
process.

Batch queues of
HPC clusters

Sort the list of the
resources

Resource
Ranking
Manager

QBETS Web
Service

Predicted wait time for the
WallClockTime and
number of nodes

Table of the sample values
 updated periodically

Figure 2. Interation between Swarm and QBETS webs services.
Swarm uses QBETS information for resource matching.

Users are allowed to specify multiple resources to

submit a job. To prioritize the resources listed in the user's
job description, Swarm interacts with the QBETS batch
queue prediction service. Figure 2 depicts the interaction
between Swarm and QBETS service. The QBETS service
provides queue delay predictions. The WallClockTime and
number of nodes are key factors to get the predicted delay.
Here the WallClockTime is duration of the execution of the
job and the number-of-nodes is number of the computing
nodes for the parallel jobs. The WallClockTime and number
of nodes are specified in the job description and Resource
Ranking Manager passes that information to the QBETS
Web service and gets the result of predicted wait time in the
batch queue.

The wait time does not change gradually; it is also not

very time sensitive. Therefore, we sample the range of key
parameters and the predicted delay. The Resource Ranking
Manager keeps a table, which is a set of combinations of
{batch queue, range of the number of node, range
of the WallClockTime, predicted delay} and refers to it
when the resource list is required to be prioritized.

B. Matchmaking
The Job Distributor is the core component of the

matchmaking between jobs and resources. As depicted in
the Figure 1, each of the users has their own instance of the

Job Board containing the Job Distributor. The Job
Distributor scans the user’s job queue in a FIFO fashion.
For the each of the jobs, Job Distributor evaluates the
resource pool to determine whether there is a token which is
not taken. As soon as the Job Distributor finds an available
resource, the Job Execution Manager submits the job to
the relevant resource.

If the number of jobs exceeds 1000s, keeping all of the

information about jobs in the memory and scanning the
queue every time is not very efficient. Therefore, individual
users keep a few hundred jobs in their queues and keep the
rest in the backend database. Job updates are also
synchronized between Swarm and the database. Keeping
backend database provides fault tolerance by coping with
hardware failures or a system shutdown.

The Job Board maintains a resource pool which is a set

of tokens for the individual resources. The number of tokens
is the maximum number of the jobs that can stay in the
specific batch queue system concurrently.

Finally, if the Job Distributor finds the resource

available for the job, the job is submitted to the remote
resource. Each of the matchmaking process is based on the
user’s account that is often valid over multiple
supercomputing clusters. Therefore, if an individual
scientist has multiple accounts, the job submission will
process jobs independently for each of these accounts.
Similarly, in the case of educational software, if there is a
need to provide the computing resource with a community-
shared account, the matchmaking process will serve those
users as single account.

VI. PERFORMANCE EVALUATION
We have implemented a prototype of the Swarm

framework, in Java, based on Apache Axis2 [20]. The
server was hosted on a machine with 3.40GHz Intel Pentium
4 CPUs and 1GB RAM. The client software was hosted on a
machine with a 2.33 GHz Intel Xeon CPU and 8GB RAM.
The machines involved in the benchmark were hosted on 1
Gbps network.

Our first benchmark measured the total turnaround time
for operations in a single user environment. Table 1 depicts
turnaround times for two operations: job submissions and
status check. We compared the average turnaround time as
we increased the number of jobs. This job submission time
includes operations related to creating a group job and
submitting jobs. For a given web service request, we
batched 100 jobs for measurement.

We then setup N clients, in a different JVM, that sends

requests actively. The behavior of the N clients mirrors that
of a scientist who submits large-scale jobs and subsequently
checks the status of these jobs periodically (we set this to
one-per-minute). The size of the jobs submitted by the N
clients and the distribution of the various job sizes for the
clients are specified in the Table 2.

The total turnaround times from the Swarm client to the
Swarm service for the job submission request are shown in
Figure 3. As can be observed, the total turnaround time for
the job group grows directly proportional to the number of
jobs. Similarly the turnaround time to create a job group
increased in proportion to the number of users who access
the server concurrently. For N users, the Swarm service
maintains N Job Boards.

Here the user is identified by the user account used for
the remote HPC clusters. Therefore, this user is not
necessarily one-to-one matched to the portal users for the
gateway application. For the administrative convenience,
gateway applications often map a group of portal
identifications to a single community style account for the
HPC clusters.

TABLE 1. TOTAL TURNAROUND TIME FOR THE JOB SUBMISSION AND STATUS CHECK WITH VARIOUS JOB SIZES IN THE SINGLE USER ENVIRONMENT

Type of Operation Total turnaround
time for 100 jobs

Total turnaround
time for 1000 jobs

Total turnaround
time for 10,000 jobs

Total turnaround time
for 100,000 jobs

Total turnaround time for
1,000,000 jobs

Job Submission 184 msec 1,590 msec 15,993 msec 157,183 msec 1,581,947 msec

Status Query 19 msec 53 msec 375 msec 796 msec 7,878 msec

TABLE 2. TEST SCENARIO FOR THE MULTI-USERS ENVIRONMENT

Size of the Job Group Job submission(creating
group, submitting jobs)

Job management(status, get
output, etc)

Distribution

Small group (<1,000 jobs) 30% of total duration 70% of total duration 40% of total groups

Medium group (1,000~100,000jobs) 20% of total duration 80% of total duration 50% of total groups

Large group (> 100,000 jobs) 10% of total duration 90% of total duration 10% of total groups

 100

 1000

 10000

 100000

 1e+006

 100 1000 10000 100000

Av
er

ag
e

tu
rn

ar
ou

nd
 ti

m
e

(m
se

c)

Number of jobs per user

Single user
 20 concurrent users
 40 concurrent users
 60 concurrent users

Figure 3. Average turnaround time for the various job size with various number of concurrent users

 0

 500

 1000

 1500

 2000

1 20 40 60

A
ve

ra
ge

 tu
rn

ar
ou

nd
 ti

m
e

(m
se

c)

Number of concurrent users

Creating Job Group
Job Submission (100 jobs)

Status Checking Query

Figure 4. Average turnaround time per operations with various numbers of concurrent users

Figure 4 provides the average turnaround time for the
different operations. The job group creation operation
registers information about the job group and creates the
ticket identifier for the associated jobs. The average
turnaround time for the job submission increased as the
number of concurrent users increased. Meanwhile, the
average turnaround time for the job status query was not
significantly affected by the number of concurrent users
unless it was a single-user environment.

VII. CONCLUSIONS AND FUTURE WORK
In this paper, we have introduced a high-level job

scheduling framework, Swarm. The Swarm service is
designed to be extensible and lightweight so that users
working on desktops or small servers can easily install and
host it. Since it is Web service based, derivative services
based on Swarm can be integrated in Web portals and
science gateways. In this paper, we have discussed the
motivation for this research, the architecture of the Swarm
framework, and a performance evaluation of the system
prototype.

We have implemented a prototype of the Swarm

framework. As shown in section 6, we could submit 1
million jobs to Swarm service within 25 minutes. We also
demonstrated the performance for the multiple concurrent
users. Considering that the users of the gateway application
often share the community style account of the HPC
clusters, Swarm achieved acceptable performance to support
gateway application as a standalone service.

As part of our future work, we plan to enhance our
service with an intelligent error-handling scheme. On top of
the potential system failure, current job submission
mechanisms are often prone to have the task specific errors.
The job scheduler should provide the scheme to cope with
various task specific errors. We also plan to implement a
batch job submission that can optimize the possible

overhead of the batch queuing process in the remote cluster.
We expect that proactive batch job mechanism can offer
significant performance improvements for applications that
submit a large number of small-scale jobs.

Currently, Swarm service identifies users with the user’s
ID and passphrase that are used later to retrieve the X.509
based credential from MyProxy server. The universally
unique identification generated by Swarm service limits
each of the users to access only to the group job that they
created. However, we realize potential privacy issues
between the users sharing the community style credential.
We assume that each of the gateway application should
provide infrastructure to share their community credential
with reasonable privacy. To provide service level security,
we plan to enhance our security scheme to use standard WS-
Security and SSL. In addition, for certain key operations
such as creating group jobs, we consider the mutual
authentication.

REFERENCES
[1] Catlett, C. et al. “TeraGrid: Analysis of Organization, System

Architecture, and Middleware Enabling New Types of Applications.,”
HPC and Grids in Action, Ed. Lucio Grandinetti, IOS Press
'Advances in Parallel Computing' series, Amsterdam, 2007.

[2] Pordes, R., et al. “The Open Science Grid,” Journal of Physics:
Conference Series, 78:012057, 2007.

[3] Qunfeng Dong, Shannon D. Schlueter, Volker Brendel, “ PlantGDB,
plant genome database and analysis tools,” Nucleic Acids Research
32(Database-Issue): 354-359

[4] Anantharaman Kalyanaraman, Srinivas Aluru, Suresh C. Kothari,
“Space and Time Efficient Parallel Algorithms and Software for EST
Clustering,” in ICPP 2002: 331-338

[5] Ian T. Foster, “Globus Toolkit Version 4. Software for Service-
Oriented Systems,” Journal of Computter Science Technology.
21(4): 513-520, 2006

[6] Eduardo Huedo, Rubén S. Montero, Ignacio Martín Llorente, “A
framework for adaptive execution in grids,” Soft., Pract. Exper.
34(7): 631-651, 2004

[7] Tadashi Maeno,“PanDA: distributed production and distributed
analysis system for ATLAS,” Journal of Physics: Conference Series,
119 062036. 2008

[8] Ioan Raicu, Yong Zhao, Catalin Dumitrescu, Ian Foster, Mike
Wilde,“Falkon: a Fast and Light-weight tasK executiON framework,”
in the IEEE/ACM SuperComputing, 2007

[9] Edward Walker, J. P. Gardner, V. Litvin, and E. P. Turner, “Personal
Adaptive Clusters as Containers for Scientific Jobs,” Cluster
Computing, vol. 10(3), September, 2007

[10] Li, Liwei; O’Callaghan, B. J.; Dantzer, J. J. and Meroueh S. O.,
“PDBcal: A Comprehensive Dataset for Receptor-Ligand Interactions
with Three-Dimensional structures and Binding Thermodynamics
from Isothermal Titration Calorimetry,” Chem. Biol. & Drug Design.
71:529-32, 2008

[11] Li, Liwei; Uversky N. V.; Dunker, K. A.; Meroueh, S. O., “A
Computational Investigation of Allostery in the Catabolite Activator
Protein. J.,” Am. Chem. Soc. 129(50), 15668-76, 2007

[12] D. Angulo, I. Foster, C. Liu, and L. Yang, “Design and Evaluation of
a Resource Selection Framework for Grid Applications,” in IEEE
International Symposium on High Performance Distributed
Computing (HPDC-11), Edinburgh, Scotland, July.2002

[13] Globus Toolkit, Overview and Status of Current GT Performance
Studies. [online][accessed 2008 August 9]. Available:
http://www.globus.org/toolkit/docs/4.0/perf_overview.html

[14] Todd Tannenbaum, Derek Wright, Karen Miller, and Miron Livny,
Condor - A Distributed Job Scheduler. Ed. Thomas Sterling, Beowulf
Cluster Computing with Linux, The MIT Press, 2002, ISBN: 0-262-
69274-0

[15] Alexandru Iosup, Dick H.J. Epema, Todd Tannenbaum, Matthew
Farrellee, Miron Livny, “ Inter-Operating Grids through Delegated
MatchMaking,” in the International Conference for High Performance
Computing, Networking, Storage and Analysis (SC07), Reno,
Nevada, November, 2007

[16] Alain Roy and Miron Livny, “Condor and Preemptive Resume
Scheduling,”Grid Resource Management: State of the Art and Future
Trends, Fall 2003, pages 135-144, Ed. Jarek Nabrzyski, Jennifer M.
Schopf and Jan Weglarz, Kluwer Academic Publishers.

[17] Douglas Thain, Todd Tannenbaum, and Miron Livny, “Distributed
Computing in Practice: The Condor Experience,” Concurrency and
Computation: Practice and Experience, Vol. 17, No. 2-4, pages 323-
356, February-April, 2005

[18] Clovis Chapman, Charaka Goonatilake, Wolfgang Emmerich,
Matthew Farrellee, Todd Tannenbaum, Miron Livny, Mark Calleja,
and Martin Dove, “Condor BirdBath: Web Service interfaces to
Condor,”in the 2005 UK e-Science All Hands Meeting, ISBN 1-
904425-53-4, pages 737-744, Nottingham, UK, September 2005.

[19] Daniel Nurmi, John Brevik, Richard Wolski, “QBETS: queue bounds
estimation from time series,” SIGMETRICS, 2007: 379-380

[20] Srinath Perera, Chathura Herath, Jaliya Ekanayake, Eran Chinthaka,
Ajith Ranabahu, Deepal Jayasinghe, Sanjiva Weerawarana, Glen
Daniels, “Axis2, Middleware for Next Generation Web Services” in
the ICWS 2006: 833-840, 2006

