
SWARM: Scheduling Large-scale Jobs over the Loosely-Coupled HPC Clusters 
 

Sangmi Lee Pallickara 
Research Technology, UITS,  

Indiana University,   
Bloomington, Indiana, USA 
leesangm@cs.indiana.edu 

Marlon Pierce 
Community Grid Lab, 

Indiana University,   
Bloomington, Indiana, USA 

mpierce@cs.indiana.edu  
 
 

Abstract— Compute-intensive scientific applications are 
heavily reliant on the available quantity of computing 
resources. The Grid paradigm provides a large scale 
computing environment for scientific users. However, 
conventional Grid job submission tools do not provide a 
high-level job scheduling environment for these users 
across multiple institutions. For extremely large number 
of jobs, a more scalable job scheduling framework that 
can leverage highly distributed clusters and 
supercomputers is required. In this paper, we propose a 
high-level job scheduling Web service framework, 
Swarm. Swarm is developed for scientific applications 
that must submit massive number of high-throughput 
jobs or workflows to highly distributed computing 
clusters. The Swarm service itself is designed to be 
extensible, lightweight, and easily installable on a 
desktop or small server. As a Web service, derivative 
services based on Swarm can be straightforwardly 
integrated with Web portals and science gateways.  This 
paper provides the motivation for this research, the 
architecture of the Swarm framework, and a 
performance evaluation of the system prototype. 
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I.  INTRODUCTION (HEADING 1) 
In response to the growing need for high-performance 

computing resources and data storage, several research 
centers have contributed to projects based on the Grid 
computing paradigm such as the TeraGrid project [1] and the 
Open Grid Science project [2]. The NSF funded TeraGrid 
project provides access to high performance computing 
(HPC) resources hosted by 11 institutions in the US. 
Cumulatively, the Teragrid project provides access to more 
than 110,000 CPUs that can deliver a peak computing 
throughput of 900 Teraflops.   The size of the TeraGrid 
resources should increase dramatically over the next several 
years as large new resources (Big Blue at NCSA and Kraken 
at the University of Tennessee/Oak Ridge National Lab) 
come on line.  Scientific users have obviously benefitted 
from this dramatic enhancement in the available computing 
resources. However, seamlessly adapting remote HPC 
resources continues to be a challenge. This is especially true 
for the Cyberinfrastructure or Gateway user community, 

where Grids resources need to be integrated within a larger 
group of users and research projects. 

 
Although the Grid paradigm provides an excellent model 

for accessing remote resources, emerging scientific problems 
in high throughput workflows pose a challenge. We have 
encountered these computational challenges in our work on 
research projects in the bioinformatics and biochemistry 
domains. The PlantGDB project [3], in the bioinformatics 
domain, assembles unique transcripts from plant mRNA 
(messenger RNA)) sequences. Here, mRNA is a copy of the 
information carried by a gene on the DNA. Records 
downloaded from GenBank are processed through a data 
processing pipeline. This pipeline involves clustering and 
assembly sequences, which are highly compute intensive. 
The overlapping sequences among the parts of gene 
sequences are grouped by software, PaCE [4] that is often 
run in parallel. The results of this clustering process are then 
fed to the assembly process to generate contigs, which are 
the consensus sequences derived from multiple mRNA 
sequences. Depending on the species, the number of the 
clustered sequences varies from a few to several millions, in 
which case a large number of assembly processes are 
required. 

 
To benefit from powerful computing resources, users 

login to remote machines or submit jobs through Grid 
toolkits such as the Globus Toolkits [5]. However, the sheer 
number of jobs easily exceeds one’s ability to manage them 
manually. Finding the most efficient resource to submit, and 
monitoring such submitted jobs, is not feasible without 
intelligent support from the middleware.  Furthermore, the 
Gateway-style applications also require interfaces to 
distributed resources on behalf of the users.  

 
To cope with issues related to scale and management in 

such large-scale settings we have developed a high-level job 
scheduling framework, Swarm which provides the 
following features: 

• Scheduling millions of jobs over distributed 
clusters 

• A monitoring framework for large scale jobs 
• User based job scheduling  
• Ranking resources based on predicted wait times 
• Standard Web Service interface for web 

applications 



 
In grid environment, it has been realized that job 

scheduling is a fundamental issue to improve resource 
utilization and performance. GridWay[6], and PanDa[7] 
project provide job submission environment over the multi-
site resources. On top of the scheduling functionality, 
Swarm provides the resource prioritizing feature which 
searches the batch queue system with the minimum wait 
time. Falkon[8], and myCluster[9] enable user to access 
provisioned resources to submit large-scale scientific jobs. 
Instead of provisioning resources, Swarm provides user-
based resource pool which limits maximum number 
submissions to the batch queue system. It enables Swarm to 
incorporate with the policies from each batch queue systems 
more flexibly. In addition, the highly extensible design for 
the domain specific applications and lightweight software 
distinguish Swarm from other approaches. 

 
The aims of this paper are threefold: first, to present the 

architecture of the Swarm job scheduling framework; 
second, to describe the scheme that prioritizes resources and 
distributes a massive number of jobs over distributed 
clusters; and finally, to evaluate performance at the client 
level of the standard Web Service. 

 
The rest of the paper is organized as follows: Section 2 

describes some of the scientific research projects that 
motivated our research. Related work is discussed in the 
section 3. In the section 4, we describe the architecture of 
Swarm. Performance evaluation of the Swarm system is 
presented in section 5. Conclusions and future work are 
discussed in section 6. 

II. MOTIVATIONS AND COMPUTATIONAL CHALLENGES 
For compute-intensive scientific applications, Grid 

enabled resources opened up the possibility of an on-
demand experimental environment. Here we describe the 
computational challenges that we faced that in turn 
motivated us to develop the Swarm framework. 

 
Challenge 1: Executing millions of jobs. 
 
The PlantGDB project [3], in the bioinformatics domain, 

clusters and assembles mRNA sequences. To assemble the 
clustered sequences, the data processing pipeline runs from 
a few to millions of sequence assembling jobs, which are 
independent of each other. Similarly, the Meroueh’s 
research [10, 11] in the biochemistry domain has similar 
issues in their scheme for drug discovery. Here, the 
compound discovery process launches millions of jobs 
identifying the low-energy binding modes of a small 
molecule within the active site of a receptor, whose 
structure is known. In both these projects, the number of 
jobs submitted by a single experiment could vary from a 
handful to several millions. Currently, job submission 
mechanism provided by Globus Toolkit which is de facto 
software in grid community does not allow the users to 
submit 1000s of jobs concurrently to the PBS like batch 
queue systems [12, 13].   

 
Challenge 2: In different clusters, the same job can have 

different wait times in the batch queue. 
 
Users also have to deal with the policies at these remote 

sites. These policies are applied to the batch system to 
which the jobs are submitted. Based on information 
provided by the users a given batch system prioritizes jobs 
within its queue. Queue wait-times typically have a 
significant effect on the total computing time for a given 
scientific experiment. Two other factors also play a very 
important role: the WallClockTime, which is the duration of 
the execution, and the number of available nodes for parallel 
jobs. To optimize the job execution times, users need to take 
into account the queue waits, the WallClockTime, and the 
number of available nodes. 

 
Challenge 3: What if some of the jobs are incomplete or 

failed?    
          
Fault handling is another critical challenge. There are 

potential failures in the resource side such as hardware 
failure or system shutdown. Some of the errors are program 
specific. For example, WallClockTime is specified based on 
the user’s estimation. Therefore, there is a possibility to 
have incomplete executions due to WallClockTime 
violation. Fault detection and more intelligent reaction to the 
execution fault are required for the convenience. 

 
Challenge 4: Monitoring millions of jobs running over 

several clusters. 
 
After submitting millions of jobs, monitoring each of 

these jobs − based on their individual job IDs − is not 
practically feasible. Compounding these tracking problems 
is the fact that these jobs might be submitted to several 
different clusters. Traditional monitoring will not suffice: a 
more statistical approach is needed.  

 

III. RELATED WORK 
There have been several approaches in the HPC 

community and the Grid community. Condor [14] is a well-
known high-throughput resource management system that 
has been widely adopted in the scientific computing 
community. The Condor system provides advanced features 
including fault tolerance. The CondorG [15] release of 
Condor interoperates with other Grid computing resource 
management services such as the Globus toolkit. CondorG 
does not provide direct support for a scheduling policy for 
jobs submitted to Grid resources. However, it does supply 
mechanisms that may be useful for meta-schedulersat 
higher-levels in the stack; examples of such meta-schedulers 
include systems like ClassAd [16] and DAGMan 
[17].ClassAd allows users to specify the remote resources 
for jobs within the matchmaking process. DAGMan is a 
workflow manager where interdependencies between jobs 
or data can be specified. Swarm utilizes CondorG as the 
basic job submitter. 



GridWay [6]is another metascheduling framework for 
grid resources. Besides the scheduling capability, GridWay 
provides other advanced features − such as fault tolerance, 
checkpoints, and process migration − that are not available 
to users who access Grid resources directly. Similarly, 
PanDa[7] provides large-scale job scheduling and analysis 
framework. PanDa is originally developed for a particle 
physics experiment at the Large Hadron Collider. For their 
large size datasets, PanDa interacts with own data 
management service to pre-place the dataset. CondorG, 
GridWay, and PanDa harness the Globus toolkit to cope 
with security and policy issues in Grid settings.   

 
To utilize remote clusters managed by different 

institutions the glide-in style approach is useful. Glide-in 
style tools utilize computing nodes in the user’s personal 
resource pool by submitting parallel jobs on these pools. 
CondorG provides a condor glide-in server [14], where 
users can submit jobs to these provisioned clusters as if they 
were the condor computing nodes.  

 
myCluster [9]  and Falkon[8] are built on top of the 

glide-in approach. myCluster provides the capability of 
provisioning a large number of distributed resources across 
the TeraGrid into personal clusters created on-demand. 
Falkon provides support for provisioning a large number of 
distributed resources and allows user groups access to 
resources via a Web service interface. It also factors in data 
management techniques to improve the performance. Glide-
in style approach provides transparent access to remote 
resources.   

 
At its lowest level of job management, Swarm also 

utilizes Globus technology along with the Grid’s security 
scheme. As described in Section 5, we utilize Condor-G and 
BirdBath [18], Condor’s Web Service interface. Unlike the 
glide-in style approaches, Swarm does not provide 
provisioning of resources. Swarm’s resource pool is a set of 
tokens that can limit the utilization of resources. These 
tokens are not shared by users. Resources are allocated by 
the matchmaking process based on the predicted queue wait 
times. Large number of users can thus utilize Swarm for 
submitting jobs to the most efficient resources available in 
different grid clusters. 

IV. MANAGING MANY JOBS WITH SWARM 

A. Submitting Jobs 
Users access the Swarm framework through a simple 

Web service client. This is useful for desktop users and 
Gateway style applications that need lightweight clients. 
This ease-of-use feature is also applied to file management. 
Swarm provides support for third party job submissions. 
Users or applications do not have to maintain input files 
allowing them to be lightweight: valid URLs to these input 
files can be specified instead. Similarly, the generated 
output files are also provided as URLs. Swarm can thus 
satisfy requirements of high-throughput computing users 
who also prefer thin clients.    

The need for launching millions of jobs is often 
associated with a single scientific experiment. To track large 
scale experiments, Swarm requires users to get a ticket 
before submitting millions of jobs. This ticket is randomly 
generated by Swarm and the user must provide this ticket 
for subsequent accesses related to submitting jobs, checking 
status, getting outputs, and canceling jobs. 

 
Jobs are managed on a per user (user’s account) basis. 

Since most supercomputing clusters manage their batch 
queue systems based on the users’ accounts, Swarm 
provides queuing and submission mechanisms based on 
such individual accounts. Individual users have their own 
resource pool to track the usage of the resources. The tokens 
in the resource pool control the maximum number of jobs in 
the batch system. 

B. Tracking the Status 
Once the user submits a large group of jobs, tracking the 

status of these jobs is critical. Checking each of the jobs 
with millions of ids in several or more computing sites 
manually is not practical. Therefore, Swarm provides 
statistical status reports to the users. Each of the jobs 
maintains the status of: 

• Requested: For jobs that stay in the backend 
Database 
• Queued: For jobs in the Swarm user queue 
• Submitted: For the jobs with available resources 
• Idle: For the jobs waiting in batch queue system in 
the cluster 
• Completed: For jobs that have completed 
• Held: For jobs that been held 
• Running: For the jobs being executed in the cluster 

A status check provides the summary of the job status. 

C. Dynamic Resource Allocation 
Although Swarm is client-side job submission 

middleware, Swarm is designed to work with a wide scale 
of computing resources. Unlike glide-in style solutions, 
Swarm does not require large time slot of a given computing 
resource. Instead of waiting for longer time in the queue to 
get a bigger chunk of the time slot from the batch queue 
system, Swarm targets any of the available resources for 
running the jobs. The scheduler evaluates the resources 
within the list of resources that the user has provided. This 
evaluation is based on the wait-time prediction by means of 
adapting the QBETS service [19]. This scheme provides 
better flexibility to utilize different clusters and their batch 
queue systems. 

V. ARCHITECTURE 
Swarm is a set of Web services and local servers. Figure 

1 depicts the architecture of the Swarm framework. From 
top to bottom, Swarm provides a standard set of Web 
service interfaces. Desktop users and gateway style 
applications can easily access Swarm via standard Web  



  

 

Figure 1. Swarm architecture.  Client applications interact with the Swarm WSDL using standard Web service tools. In practice, we extend 
Swarm to make problem-specific services that inherit Swarm capabilities but provide a code-specific WSDL. 

 
service interfaces. Each of the operations and parameters are 
defined in WSDL. 

 
The requests from the user are delivered to the Request 

Manager. The Request Manager creates a ticket for the 
series of jobs, which is a 128 bit universally unique 
identifier. To provide the capability to track a large number 
of jobs, Swarm provides a simple structure to the submitted 
jobs. Jobs are identified with their ticket and internal ID. 
Here, internal ID is the identity of the job which is unique 
within the job group. This structure is especially useful for 
the web application, which deals with multiple experiments 
launched by multiple users.  

 
As seen on the right hand side of the Request Manager 

in Figure 1, the Job submission process interacts with the 
Resource Ranking Manager, which prioritizes the 
resources over which the job is submitted to optimize the 
job execution process. This will be discussed in detail in the 
subsection 4.1. 

 
Under the Request Manager and Resource Ranking 

Manager, there is a group of software components; referred 
to as Job Board. Swarm maintains a Job Board for each 
user. Each of the Job Board contains a Job Queue, Job 
Distributor, and Resource Pool. Users do not share any of 

these components. Matchmaking between the jobs and the 
resources are done in the user’s Job Board. Subsection 5.2 
will describe this in more detail. 

 
When the Job Distributor finds the available match of 

the remote resource, the Job Execution Manager will 
submit the job through CondorG’s Web service APIs. The 
user’s certificate (based on the X.509) is retrieved by means 
of interacting with MyProxy service and used to access to 
the Globus GRAM job manager. In addition, users are 
allowed to submit jobs to the ordinary Condor computing 
nodes through Swarm. 

A. Ranking the Resources for the Requested Job 
In a lot of cases, a scientist has an account that is valid 

for multiple computing clusters. Popular scientific software 
is typically available from multiple clusters without the need 
to do any additional installations. Some scientists install 
their own software at multiple computing sites to achieve 
better performance. Swarm provides automated prioritizing 
process for each of the jobs.   

 
Well-grouped and site-prioritized jobs are in the user’s 

individual job queue awaiting available resources. Swarm 
provides matchmaking between the jobs in the queue and 
resources in the pool by using the following criteria: 



 
• “First In First Out” internal queue for the jobs, and 
• Available resources with the smallest wait-time 

first 
 
If the user specifies priority or preference for the 

resources, Swarm utilizes that during the matchmaking 
process. 

Batch queues of 
HPC clusters

Sort the list of the 
resources

Resource 
Ranking 
Manager

QBETS Web 
Service

Predicted wait time for the 
WallClockTime and 
number of nodes

Table of the sample values
 updated periodically

 

Figure 2. Interation between Swarm and QBETS webs services.  
Swarm uses QBETS information for resource matching. 

 
Users are allowed to specify multiple resources to 

submit a job. To prioritize the resources listed in the user's 
job description, Swarm interacts with the QBETS batch 
queue prediction service. Figure 2 depicts the interaction 
between Swarm and QBETS service. The QBETS service 
provides queue delay predictions. The WallClockTime and 
number of nodes are key factors to get the predicted delay. 
Here the WallClockTime is duration of the execution of the 
job and the number-of-nodes is number of the computing 
nodes for the parallel jobs. The WallClockTime and number 
of nodes are specified in the job description and Resource 
Ranking Manager passes that information to the QBETS 
Web service and gets the result of predicted wait time in the 
batch queue. 

 
The wait time does not change gradually; it is also not 

very time sensitive. Therefore, we sample the range of key 
parameters and the predicted delay. The Resource Ranking 
Manager keeps a table, which is a set of combinations of 
{batch queue, range of the number of node, range 
of the WallClockTime, predicted delay} and refers to it 
when the resource list is required to be prioritized. 

 

B. Matchmaking 
The Job Distributor is the core component of the 

matchmaking between jobs and resources. As depicted in 
the Figure 1, each of the users has their own instance of the 

Job Board containing the Job Distributor. The Job 
Distributor scans the user’s job queue in a FIFO fashion. 
For the each of the jobs, Job Distributor evaluates the 
resource pool to determine whether there is a token which is 
not taken. As soon as the Job Distributor finds an available 
resource, the Job Execution Manager submits the job to 
the relevant resource. 

 
If the number of jobs exceeds 1000s, keeping all of the 

information about jobs in the memory and scanning the 
queue every time is not very efficient. Therefore, individual 
users keep a few hundred jobs in their queues and keep the 
rest in the backend database. Job updates are also 
synchronized between Swarm and the database. Keeping 
backend database provides fault tolerance by coping with 
hardware failures or a system shutdown.   

 
The Job Board maintains a resource pool which is a set 

of tokens for the individual resources. The number of tokens 
is the maximum number of the jobs that can stay in the 
specific batch queue system concurrently.  

 
Finally, if the Job Distributor finds the resource 

available for the job, the job is submitted to the remote 
resource. Each of the matchmaking process is based on the 
user’s account that is often valid over multiple 
supercomputing clusters. Therefore, if an individual 
scientist has multiple accounts, the job submission will 
process jobs independently for each of these accounts.  
Similarly, in the case of educational software, if there is a 
need to provide the computing resource with a community-
shared account, the matchmaking process will serve those 
users as single account. 

VI. PERFORMANCE EVALUATION 
We have implemented a prototype of the Swarm 

framework, in Java, based on Apache Axis2 [20].  The 
server was hosted on a machine with 3.40GHz Intel Pentium 
4 CPUs and 1GB RAM. The client software was hosted on a 
machine with a 2.33 GHz Intel Xeon CPU and 8GB RAM. 
The machines involved in the benchmark were hosted on 1 
Gbps network. 

Our first benchmark measured the total turnaround time 
for operations in a single user environment. Table 1 depicts 
turnaround times for two operations: job submissions and 
status check. We compared the average turnaround time as 
we increased the number of jobs. This job submission time 
includes operations related to creating a group job and 
submitting jobs. For a given web service request, we 
batched 100 jobs for measurement.  

 
We then setup N clients, in a different JVM, that sends 

requests actively. The behavior of the N clients mirrors that 
of a scientist who submits large-scale jobs and subsequently 
checks the status of these jobs periodically (we set this to 
one-per-minute). The size of the jobs submitted by the N 
clients and the distribution of the various job sizes for the 
clients are specified in the Table 2.   



 
The total turnaround times from the Swarm client to the 
Swarm service for the job submission request are shown in 
Figure 3. As can be observed, the total turnaround time for 
the job group grows directly proportional to the number of 
jobs. Similarly the turnaround time to create a job group 
increased in proportion to the number of users who access 
the server concurrently. For N users, the Swarm service 
maintains N Job Boards.  

Here the user is identified by the user account used for 
the remote HPC clusters. Therefore, this user is not 
necessarily one-to-one matched to the portal users for the 
gateway application.   For the administrative convenience, 
gateway applications often map a group of portal 
identifications to a single community style account for the 
HPC clusters. 
 

 
 

TABLE 1. TOTAL TURNAROUND TIME FOR THE JOB SUBMISSION AND STATUS CHECK WITH VARIOUS JOB SIZES IN THE SINGLE USER ENVIRONMENT 

Type of Operation Total turnaround 
time for 100 jobs 

Total turnaround 
time for  1000 jobs 

Total turnaround 
time for 10,000 jobs 

Total turnaround time 
for 100,000 jobs 

Total turnaround time for 
1,000,000 jobs 

Job Submission 184 msec 1,590 msec 15,993 msec 157,183 msec 1,581,947 msec 

Status Query   19 msec    53 msec  375 msec  796 msec        7,878 msec 

 
 

 
TABLE 2.   TEST SCENARIO FOR THE MULTI-USERS ENVIRONMENT 

Size of the Job Group Job submission(creating 
group, submitting jobs) 

Job management(status, get 
output, etc) 

Distribution 

Small group (<1,000 jobs) 30%  of total duration 70% of total duration 40% of total groups 

Medium group (1,000~100,000jobs) 20%  of total duration 80% of total duration 50% of total groups 

Large group (> 100,000 jobs) 10%  of total duration 90% of total duration 10% of total groups 
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Figure 3. Average turnaround time for the various job size with various number of concurrent users 
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Figure 4. Average turnaround time per operations with various numbers of concurrent users 

Figure 4 provides the average turnaround time for the 
different operations. The job group creation operation 
registers information about the job group and creates the 
ticket identifier for the associated jobs. The average 
turnaround time for the job submission increased as the 
number of concurrent users increased. Meanwhile, the 
average turnaround time for the job status query was not 
significantly affected by the number of concurrent users 
unless it was a single-user environment. 

VII. CONCLUSIONS AND FUTURE WORK 
In this paper, we have introduced a high-level job 

scheduling framework, Swarm. The Swarm service is 
designed to be extensible and lightweight so that users 
working on desktops or small servers can easily install and 
host it. Since it is Web service based, derivative services 
based on Swarm can be integrated in Web portals and 
science gateways. In this paper, we have discussed the 
motivation for this research, the architecture of the Swarm 
framework, and a performance evaluation of the system 
prototype.  

 
We have implemented a prototype of the Swarm 

framework. As shown in section 6, we could submit 1 
million jobs to Swarm service within 25 minutes. We also 
demonstrated the performance for the multiple concurrent 
users. Considering that the users of the gateway application 
often share the community style account of the HPC 
clusters, Swarm achieved acceptable performance to support 
gateway application as a standalone service. 
 

As part of our future work, we plan to enhance our 
service with an intelligent error-handling scheme. On top of 
the potential system failure, current job submission 
mechanisms are often prone to have the task specific errors. 
The job scheduler should provide the scheme to cope with 
various task specific errors. We also plan to implement a 
batch job submission that can optimize the possible 

overhead of the batch queuing process in the remote cluster. 
We expect that proactive batch job mechanism can offer 
significant performance improvements for applications that 
submit a large number of small-scale jobs.  
 

Currently, Swarm service identifies users with the user’s 
ID and passphrase that are used later to retrieve the X.509 
based credential from MyProxy server. The universally 
unique identification generated by Swarm service limits 
each of the users to access only to the group job that they 
created. However, we realize potential privacy issues 
between the users sharing the community style credential. 
We assume that each of the gateway application should 
provide infrastructure to share their community credential 
with reasonable privacy. To provide service level security, 
we plan to enhance our security scheme to use standard WS-
Security and SSL. In addition, for certain key operations 
such as creating group jobs, we consider the mutual 
authentication.  
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