

Abstract— As the Service Oriented Architecture (SOA)

principles have gained importance, an emerging need has
appeared for methodologies to locate desired services that
provide access to their capability descriptions. These services
must typically be assembled into short-term service collections
that, together with code execution services, are combined
into a meta-application to perform a particular task. To address
metadata requirements of these problems, we introduce XML
Metadata Services to manage both stateless and stateful
(transient) metadata. We leverage the two widely used web
service standards: Universal Description, Discovery, and
Integration (UDDI) and Web Services Context (WS-Context) in
our design. We describe our approach and experiences when
designing “semantics” for XML Metadata Services. We outline
various application usage scenarios in which our design has
successfully been used. We report results from a prototype of the
system that is applied to mobile environment for optimizing Web
Service communications.

Index Terms—XML metadata services, Grid/Web services,
Service Oriented Architectures, WS-Context

I. INTRODUCTION
As the Service Oriented Architecture (SOA) principles

have gained importance, an emerging need has appeared
for methodologies to locate desired services that provide
access to their capability descriptions. As these services
interact with each other within a workflow session to
produce a common functionality, another emerging need
has also appeared for storing, querying, and sharing the
resulting metadata needed to describe session state
information.

Geographical Information Systems (GIS) provide very
useful problems in supporting “virtual organizations” and
their associated information systems. These systems are
comprised of various archival data services (Web Feature
Services), data sources (Web-enabled sensors), and map
generating services. All of these services are metadata-rich, as

This work was supported in part by the U.S. National Aeronautical and
Space Administration’s Advanced Information Systems Technology program.

Mehmet S. Aktas is with Department of Computer Science and the
Community Grids Laboratory, Indiana University Bloomington, IN 47404.
(Phone: 812-856-0755, email: maktas@cs.indiana.edu).

Sangyoon Oh is with Department of Computer Science and the Community
Grids Laboratory, Indiana University Bloomington, IN 47404. (email:
ohsangy@cs.indiana.edu).

G. C. Fox is with Indiana University Departments of Computer Science
and Physics, Bloomington, IN 47404. (email: gcf@indiana.edu.)

M. E. Pierce is with the Community Grids Laboratory, Indiana University
Bloomington, IN 47404 (email: mpierce@cs.indiana.edu).

each of them must describe their capabilities (What sorts
of features do they provide? What geographic bounding
boxes do they support?). Organizations like the Open
Geospatial Consortium define these metadata standards.
These services must typically be assembled into short-term,
stateful service collections that, together with code
execution services and filter services (for data
transformations), are combined into a composite application
(i.e. a workflow).

To address metadata requirements of these problems, we
introduce XML Metadata Services to manage both stateless
and stateful (transient) metadata. We use and extend the two
Web Service standards: Universal Description, Discovery, and
Integration (UDDI) [1] and Web Services Context (WS-
Context) [2] in our design. We utilize existing UDDI
Specifications and design an extension to UDDI Data
Structure and UDDI XML API to be able to associate both
prescriptive and descriptive metadata with service entries. We
extend WS-Context specifications to provide
search/access/storage interface to session metadata.

In this paper, we describe the “semantics” of the proposed
XML Metadata Services. In addition, we also discuss a) the
motivating applications, and b) the ways that these
applications are utilizing XML Metadata Services. We report
results from a prototype that has been applied to mobile
environment for optimizing Web Service communications.

II. BACKGROUND
There have been some approaches introduced to

provide better retrieval mechanism by extending existing
UDDI Specifications. UDDI-M [3] and UDDIe [4] projects
introduce the idea of associating metadata and lifetime with
UDDI Registry service descriptions where retrieval relies
on the matches of attribute name-value pairs between service
description and service requests. In our design, we too extend
UDDI’s Information Model, by providing an extension
where we associate metadata with service descriptions
similar to existing solutions where we use name-value
pairs to describe characteristics of services. Apart from
the existing methodologies, we provide both general and
domain-specific query capabilities. An example for domain-
specific query capability could be XPATH and RDQL queries
on the auxiliary and domain-specific metadata files stored in
the UDDI Registry.

The primary use of our approach is to support
information in dynamically assembled workflow-style Grid
applications where services are tied together in a dynamic

Mehmet S. Aktas, Sangyoon Oh, Geoffrey C. Fox, and Marlon E. Pierce

XML Metadata Services and Application Usage
Scenarios

workflow to solve a particular problem. There are varying
specifications, such as WSRF [5], WS-Context, WS-Transfer
[6], and WS-Metadata Exchange [7], that have been
introduced to define stateful interactions among services.
Among them, we have chosen the WS-Context specifications
to create a metadata catalog system for storing transitory
metadata needed to describe distributed session state
information. Unlike the other specifications defining service
communications, WS-Context models a session
metadata repository as an external entity where more
than two services can easily access/store highly dynamic,
shared metadata.

III. XML METADATA SERVICES: SEMANTICS,
AUTHENTICATION, AND AUTHORIZATION MECHANISMS

We have designed and built a novel architecture [8] for
an hybrid WS-Context complaint metadata catalog service
supporting handling and discovery of not only quasi-static,
stateless metadata, but also session related metadata. We
based the information model and programming interface of
our system on two widely used specifications: WS-Context
and Universal Description, Discovery and Integration (UDDI)
as depicted in Figure 1.

HTTP

Extended
UDDI

Service

WSDL

HTTP(S)

WSDL

Client

WSDL

Client

WSDL WSDL

Hybrid
UDDI – WSContext XML

Metadata Service

W
S

D
L

Figure 1. This figure illustrates the two clients interacting with the Hybrid
UDDI – WSContext XML Metadata Service, while the hybrid service is
interacting with an external UDDI Service for handling and discovering of
static metadata.
We have identified following base elements of the

semantics of proposed system: a) data semantics, b) semantics
for publication and inquiry XML API, and c) semantics for
security and access control XML API. These semantics have
been designed under two constraints. First, both UDDI and
WS-Context Specifications should be extended in such a way
that client applications to these specifications can easily be
integrated with the proposed system. Second, the semantics of
the proposed system should be modular enough sot that it can
easily be operated with future releases of these specifications..

A. Extensions to UDDI Data Model
The extended version of UDDI information model consists

of various additional entities to existing UDDI Specifications
(Detailed design documents can be found at
http://www.opengrids.org/-extendeduddi). These entities are
represented in XML. We describe extensions to UDDI
information model as following: serviceAttributeEntity: A
service attribute data structure describes metadata associated
with service entities. Each “serviceAttribute” corresponds to a
piece of metadata and it is simply expressed with (name,

value) pairs. A “serviceAttribute” can be categorized based on
custom classification schemes. A simple classification could
be whether the “serviceAttribute” is prescriptive or
descriptive. A service attribute may also correspond to a
domain-specific metadata and could be directly related with
functionality of the service. leaseEntity: A lease entity
describes the lifetime associated with services or context. This
entity indicates that the service or context will be considered
alive and can be discovered by client applications until the
lease expires.

B. WS-Context Data Model
Although WS-Context Specification presents XML API to

standardize behavior and communication of the service, it
does not define an information model. We introduce an
information model comprised of various entities. Here, entities
are represented in XML and stored by the WS-Context
Service. The proposed information model composed of
instances of the entities as following. sessionEntity: A session
entity describes a period of time devoted to a specific activity,
associated contexts, and services involved in the activity. A
session can be considered as an information holder for the
dynamically generated information. Each session is associated
with its participant web services. Also, each session contains
contexts which might be associated with either services or
session or both. contextEntity: A context entity describes
dynamically generated metadata that is associated either to a
session or a service or both. leaseEntity: A lease entity
describes a period of time during which a service or a context
can be discoverable. A lease entity is associated to both
session and context entities.

C. Extended UDDI and WS-Context Inquiry and
Publication API Sets

We present extensions/modifications to existing WS-
Context and UDDI APIs to standardize the additional
capabilities of our implementation. We then integrate both
extended UDDI and WS-Context API sets within a uniform
programming interface: Hybrid WS-Context XML Metadata
Web Service. The API sets of the hybrid service can be
grouped as following: ExtendedUDDI Inquiry,
ExtendedUDDI Publication, WS-Context Inquiry, WS-
Context Publication, WS-Context Security and Publisher
XML APIs.

1) Extended UDDI Inquiry API: We introduced various
APIs representing inquiries that can be used to retrieve data
from extended UDDI Service as following: find_service: Used
to extend the out-of-box UDDI find service functionality. The
find_service API call locates specific services within the
UDDI Service. It takes additional input parameters such as
serviceAttributeBag, contextBag and Lease to facilitate
additional capabilities of the proposed system.
find_serviceAttribute: Used to find aforementioned
serviceAttribute elements. The find_serviceAttribute API call
returns a list of serviceAttribute structure matching the
conditions specified in the arguments.
get_serviceAttributeDetail: Used to retrieve semi-static
metadata associated to a unique identifier. The

get_serviceAttributeDetail API call returns the
serviceAttribute structure corresponding to each attributeKey
values specified in the arguments.

2) Extended UDDI Publication API: We introduce various
extensions to UDDI Publication API set to publish and update
semi-static metadata associated with service. save_service:
Used to extend the out-of-box UDDI save service
functionality. The save_service API call adds/updates one or
more web services into the UDDI service. Each service entity
may contain one to many serviceAttribute and/or one to many
contextEntity elements and may have a life time (lease).
save_serviceAttribute: Used to register or update one or more
semi-static metadata associated to a web service.
delete_serviceAttribute: Used to delete existing
serviceAttribute element from the UDDI Service.

3) WS-Context Inquiry API: We introduce extensions to
WS-Context Specification for both inquiry and publication
functionalities. The extensions to WS-Context Inquiry API set
are outlined as following: find_session: Used to find
sessionEntity elements. The find_session API call returns a
session list matching the conditions specified in the
arguments.
get_sessionDetail: Used to retrieve sessionEntity data
structure corresponding to each of the session key values
specified in the arguments. find_context: Used to find
contextEntity elements. The find_context API call returns a
context list matching the criteria specified in the arguments.
get_contextDetail: Used to retrieve the context structure
corresponding to the context key values specified.

4) WS-Context Publication API: We outline the extensions
to WS-Context Specification Publication API set to publish
and update dynamic metadata as following: save_session:
Used to add/update one or more session entities into the
service. Each session may contain one to many
serviceAttribute, have a life time (lease) and be associated
with service entries. delete_session: Used to delete one or
more sessionEntity structures. save_context: Used to
add/update on or more context (dynamic metadata) entities
into the service. delete_context: Used to delete one or more
contextEntity structures.

D. Authentication Mechanism
In order to avoid unauthorized access to the system, we

adopted semantics from existing UDDI Security XML API
and implemented a simple authentication mechanism. In this
scenario, each publication/inquiry request is required to
include authentication information (authInfo XML element).
Although this information may enable variety of
authentication mechanisms such as X.509 certificates, for
simplicity, we implemented a username/password based
authentication scheme. A client can only access to the system
if he/she is an authorized user by the system and his/her
credentials match. If the client is authorized, he/she is granted
with an authentication token. An authentication token needs to
be passed in the argument lists of publication and inquiry
functions, so that these operations can take place.

1) WS-Context Security API: We adopt the semantics from
out-of-box UDDI Security API set in our design. The Security
API includes following function calls. get_authToken: Used
to request an authentication token as an “authInfo”
(authentication information) element from the service. The
autInfo element allows the system implement access control.
To this end, both publication and inquiry API set includes
authentication information in their input arguments.
discard_authToken: Used to inform hybrid WSContext
service that an authentication token is no longer required and
should be considered as invalid.

E. Authorization Mechanism
When a context is published to the system, by default an

owner-relationship is established between the publisher and
the context. The owner of the context specify various
permissions such as what access rights a) the owner, b) the
members of the owner’s group, and c) the rest of the users will
have to the context. For each of these categories there exist
read, write and read/write access rights. This basic security
mechanism is also used in UNIX operating system. Upon
receiving a request, the system checks access permission
rights specified in a context, before granting
inquiry/publication request to the context.

1) WSContext Publisher API: We introduce various APIs to
provide find/add/modify/delete on the publisher list, i.e.,
authorized users of the system. These APIs include the
following function calls. find_publisher: Used to find
publishers registered with the system matching the conditions
specified in the arguments. save_publisher: Used to add or
update information about a publisher. delete_publisher: Used
to delete information about a publisher with a given
publisherID from the metadata service. get_publisherDetail:
Used to retrieve detailed information regarding one or more
publishers with given publisherID(s).

Given these capabilities, one can simply populate the hybrid
service with metadata as in the following scenario. Say, a user
publishes a new service into the system. In this case, the user
constructs both “metadataBag” filled with “serviceAttributes”
and “contextBag” filled with “contexts” where each context
describes the sessions that this service will be participating.
As both the “metadataBag” and “contextBag” is constructed,
they can be attached to a new “service” element which can
then be published with extended “save_service” functionality
of the hybrid WS-Context XML Metadata Service. On
receiving publishing service metadata request, the system
applies following steps to process service metadata. First, the
system separates the dynamic and static portions of the
metadata. Then, the system delegates the task of handling
discovery of static portion (“metadataBag”) to extended
UDDI service. Next, the system itself provides handling and
discovery using dynamic portions of the metadata in the
metadata replica hosting environment. Further design
documentation on both hybrid WS-Context and extended
UDDI XML Metadata Services is available at
http://www.opengrids.org.

IV. APPLICATION USE CASES
In order to present the applicability of our system, we

outline following components of different application use
domains in which the proposed XML Metadata Services are
used: a) a Workflow Session Metadata Manager, b) a
Metadata Catalog Service, c) a WS-Context Service, d) a
Context-store, and e) a Session Manager.

A. Workflow Session Metadata Manager
Description: A Workflow Session Manager is responsible

for storing context (transient metadata) needed to describe
distributed session state information in a workflow.

Requirements: Participants of the workflow must know
about the state of the system, so that they can perform their
assigned tasks within a specific sequence. This is done by
either pull or push based approaches. In pull-based approach,
each participant continuously checks with the system if the
state is changed. In push-based approach, participants are
notified of the state changes.

Usage Scenario: Our system has been applied into
following two practical application use domains: Pattern
Informatics and The Interdependent Energy Infrastructure
Simulation System (IEISS). The Pattern Informatics, a
technique to detect seismic activities and make earthquake
predictions, was developed at University of Southern
California at Davis. The Pattern Informatics GIS Grid [9]
integrates the Pattern Informatics code with publicly-
available, Open GIS Consortium (OGC)-compatible, geo-
spatial data and visualization services. In this system, the WS-
Context Metadata Service was utilized as the workflow
session manager. Since PI GIS-Grid application employs
various browser-based applications and pushing the states to
the web-applications through http server is rather complicated,
pull-based approach was used to interact with the service to
get the state updates. The Interdependent Energy
Infrastructure Simulation System is a suite of analysis
software tool developed by Los Alamos and Argonne National
Laboratories (LANL). IEISS provides assessment of the
technical, economic and security implications of the energy
interdependencies (more at http://www.lanl.gov/orgs/d/d4/-
interdepend). IEISS GIS Grid, a workflow-style GIS Grid
application developed at LANL, supports IEISS analysis tools
by integrating them with openly available geo-spatial data
sources and visualization services. In this application, push-
based approach was used to interact with the WS-Context
Service. This way, we were able reduce the server load caused
by continuous information polling.

B. Metadata Catalog Service
 Description: A Metadata Catalog Service is responsible for

providing access/store interface to both prescriptive and
descriptive metadata about services.

Requirements: GIS based Grid applications are comprised
of various archival services, data sources, and visualization
services. These data services provide different data and data
formats with varying spatial coverage. They describe their

capabilities with “capabilities.xml” files. Thus we see the need
for metadata services to manage information in GIS domain.
Usage Scenario: Extended UDDI XML Metadata Services
present various features to serve as metadata catalog service in
GIS domain. Among these features, dynamic metadata
retrieval capability is worth to mention. Upon receiving the
service publication request, the Metadata Service dynamically
invokes the getCapabilities() API call of the data service and
retrieves the capabilities file associated to the service under
consideration. Thus the extended UDDI Service serves as a
dynamic, domain-specific metadata catalog (particularly for
GIS domain) and enables users to pose geo-spatial queries to
locate appropriate services satisfying the query. This service
has been used in aforementioned Pattern Informatics and
IEISS application use domains.

C. WS-Context Service
Description: A WS-Context Service component is

responsible for preserving various dynamic metadata
generated during a session.

Requirements: The Virtual Laboratory for Earth and
Planetary Materials (VLab) project [10] forms a
computational grid environment where users may upload
input data to execute scientific applications on remote
computers. The input data is usually given through input form
pages which are tedious to fill out and it is more likely that
users will have minor changes on the input parameters to a
particular job and resubmit it later. To this end, the input data
must be preserved as serialized Java Bean Objects to be
reused later in user-system interaction. These serialized
session beans must be stored associated with each other and
organized under a session.

Usage Scenario: Here, each Java Bean Object is simply
being considered as context, and WS-Context XML Metadata
Services are being used to store serialized session beans. Our
design provides an important capability which is to associate
contexts with each other such as organizing them into trees.
When storing a context, we first create a session in the WS-
Context Service and then save the context associated with the
session. Here, a session is considered as an information
holder; in other words, it is a directory where contexts with
similar properties are stored. One can create a hierarchical
session tree where each branch can be used as an information
holder for contexts with similar characteristics. This
enables the WS-Context XML Metadata Services to be
queried for contexts associated to a session under
consideration.

D. Context-store
Description: A Context-store component is responsible for

storing redundant/unchanging parts of messages used in
service communication.

Requirements: Let’s consider a user has a cell phone,
which is running a videoconferencing application packaged
as a “lightweight” Web Service. Such service could be a
conferencing, streaming, or instant messaging service. To

optimize service communication, the redundant/unchanging
parts of the messages, exchanged between two services, must
be stored on a third-party repository, i.e., Context-store.

Usage Scenario: The redundant/unchanging parts of a
SOAP message are XML elements which are encoded in
every SOAP message exchanged between two services.
These XML elements can be considered as “context”, i.e.
metadata associated to a conversation. Here, WS-Context
XML Metadata Services are being used as the Context-store
[11]. Each context is referred with a system defined URI
where the uniqueness of the URI is ensured by the
system. The corresponding URI replaces the redundant
XML elements in the SOAP messages which in turn reduce
the size of the message for faster message transfer. Upon
receiving the SOAP message, the corresponding parties in
service conversation interact with WS-Context Service to
retrieve the context associated with the URIs listed in the
SOAP message.

E. Managing Real-Time Session Metadata
Description: A Session Metadata Manager component is

responsible for managing dynamic metadata generated during
audiovisual sessions.

Requirements: Collaborative audio/video sessions may
have varying types of metadata describing the group of
participants, clients as well as the associated media services.
Such metadata can be investigated as static and dynamic. For
example, the number of available sessions and their associated
detailed information is static in nature, while, participant
entities, streams, services or filters involved in a session is
dynamic. For real-time audio/video conferencing applications,
dynamically changing information must be managed by a
third-party metadata repository. This way, the system can
keep track of audio/video streams.

Usage Scenario: The Global Multimedia Collaboration
System (Global-MMCS) project [12] is a service-oriented
multimedia collaboration system that mainly process varying
multimedia streams such as audio, video and so forth. Global-
MMCS multimedia sessions generate real-time metadata
describing various entities of a session such as streams. The
WS-Context XML Metadata Service is used as the Session
Metadata Manager for providing access/store/search interface
to dynamic metadata generated in real-time conferencing
applications.

V. PERFORMANCE EVALUATIONS
We have performed two application-specific experiments to

investigate the performance of aforementioned XML
Metadata Services. (General evaluations are extensively
documented in [8]) First, we investigated the baseline-
performance of both extended UDDI and hybrid WS-Context
Services. Second, we analyzed the scalability of the hybrid
WS-Context XML Metadata Services.

We tested the prototype implementation of the system by
using a linux server (gf6.ucs.indiana.edu) and two desktop
machines: {kilimanjaro and ural}.ucs.indiana.edu located at

our facilities. We ran the XML Metadata Services on the linux
server. The first client application for the baseline-
performance experiment was running on kilimanjaro, while
other client application for scalability experiment was running
on ural. These experiments were performed separately on
different dates. The server was equipped with Intel® Xeon™
CPU (2.40GHz), 2 GB RAM and ran Linux kernel 2.4.22.
Both desktop machines ran Windows XP and was equipped
with Intel Pentium 4 CPU (3.4 GHz) and 1 GB RAM. We
wrote all our code in Java, using the Java 2 Standard Edition.
In the experiments, we used Tomcat Apache Server with
version 5.5.8 and Axis software with version 1.2beta3 as a
service deployment container.

In the first experiment, we investigated three different
testing cases: a) a single client publishes metadata to a hybrid
WSContext Service, b) a client publishes metadata to an
extended UDDI Service, and c) a client publishes metadata to
a dummy service where the round trip message is extracted to
and from container but no processing is applied. At each
testing case the client sends 100 sequential publication
requests and average response time was recorded. We
repeated these tests in five different test sets. We used 10
byte-size metadata in the test cases. The result of this
experiment is depicted in Figure-2.

STD: 4.18STD: 4.14STD: 3.75STD: 3.89
STD: 3.009

STD: 2.7STD: 2.68STD: 2.79STD: 2.79STD: 3.09

STD: 15.28STD:17.16
STD:15.25

STD:17.87

STD: 16.309

10

15

20

25

30

35

40

45

50

55

set1 set2 set3 set4 set5

av
er

ag
e

re
sp

on
se

 ti
m

e
(m

se
c)

 p
er

 re
qu

es
t WS-Context

publication

Dummy Service
publication

UDDI publication

Figure 2. Average Response Time Graph for Publication Requests.

In the second experiment, we investigated the scalability of
the system as a Context-store. As mentioned earlier, a
Context-store is used for optimizing Web Service
communication performance in mobile environment. In this
experiment, a single client sends 100 sequential publication
requests with varying message sizes to a hybrid WS-Context
Service. We measured the time to finish a Context-store
request message processing (i.e. Taxis + Twsctx) and a time to
process setContext() operation (i.e. Twsctx). The result of this
experiment is depicted in Figure-3.

Based on the results from first experiment (see Figure-2),
we observe that hybrid WS-Context Service publication
function performed with 30% performance increase compared
to UDDI-publication function. The hybrid WS-Context
Service employs a built-in cache mechanism for primary
storage which in turn improves the performance. We also
observe that the network latency is considerably high,
although the context data size is very small and the
performance measurements were taken on a tight cluster.
However, in a wide area network, one could expect the
network latency to be a bottleneck for system performance.

Figure-3 shows the Taxis + Twsctx time compared with Twsctx
time. Both Taxis + Twsctx and Twsctx increase linearly as the size

of context increases (This is of course for the message size
ranging from 100 btyes to 1.2 kbtyes). However, we observe
that Taxis + Twsctx increases faster than Twsctx. Thus if the time
consumed for container processing (i.e. Taxis) was reduced,
throughput would increase. Let’s consider a mobile-
environment scenario in which the two web services are
communicating via SOAP message exchanges (within a
session) and utilizing a Context-store for optimization.

• Let N to be number of simultaneous sessions
• Let Twsctx to be the time to process setContext() operation
• Let Taxis to be the time spent by Axis for XML processing
• Let Tsession to be the length of a given session

Figure 3. Comparison between (Taxis + Twsctx) and Twsctx

Based on the optimized communication model discussed in
[11], each participant Web Service makes one access to the
Context-store at the beginning of a session. Once the session
is completed, another access is made by one of the participants
to finalize the session. (There are two services exchanging
messages. Thus we have three Context-store accesses per
session.) Let’s consider N simultaneous sessions happening
during the time period of Tsession. One can conclude that, per
second, there exist

sessionT
N3 times Context-store accesses for N

simultaneous sessions. A publication access to the Context-
store takes (Taxis + Twsctx) execution time. Thus we can
formulize the calculation of maximum number of supported
simultaneous sessions as following:

 () sessionaxiswsctx TTTN ≤+×3
()axiswsctx

session

TT
TN

+×
≤

3
 (1)

Provided with the formula at (1) and our measurements from
second experiment (see Figure-3), we can calculate the
maximum number of simultaneous sessions supported by the
Context-store. Let’s say we have a session with a length of 10
minutes i.e. Tsession = 600 seconds. Then, using the formula
and Taxis + Twsctx time (from Figure-3) for a 100 byte-size
context, we can calculate the number of maximum
simultaneous sessions as following.

()sec125.03

sec600
×

≤N 1600≤N

Thus if we have 100 byte-size contexts, the Context-store can
support maximum 1600 sessions in mobile-environment
optimized service communication. Please note that this
illustration only indicates the optimal upper-bound (not the
practical case) for a small XML message. Furthermore, this is

based on the assumption that Tomcat server and the Context-
store can handle this many simultaneous connections.

VI. CONCLUSION AND FUTURE WORK
We examined XML Metadata Services as an important tool

to knowledge and information grids. We focused on the
semantics and identified the base elements of the architecture:
data semantics and semantics for XML API sets such as
publication, inquiry, security and access control. With this
identification made, we discussed our approach and
experiences in designing “semantics” for XML Metadata
Services. Also, we outlined various components of real-life
application use scenarios to identify the ways and reasons of
using XML Metadata Services in Grids.

We implemented centralized versions of both extended
UDDI and hybrid WS-Context XML Metadata Services as
open-source software which have been used successfully in
varying types of Grids: collaboration, earth science and so
forth. We are currently working on implementing fault
tolerance by using replication as a technique. We plan on
investigating scalability and performance limitations of the
system when it is decentralized and comprised of widely
distributed nodes.

Acknowledgement: The authors would like to thank Prof.
Gordon Erlebacher for his critique on the WS-Context project
and Community Grids Laboratory graduate research assistants
who have been using XML Metadata Services in their
applications.

REFERENCES
[1] Bellwood, T., et al. UDDI Version 3.0.1: UDDI Spec Technical

Committee Specification. Available from http://uddi.org/pubs/uddi-
v3.0.1-20031014.htm.

[2] Bunting, B., et al. K. Web Services Context (WS-Context), available
from http://www.arjuna.com/library/-specs/ws_caf_1-0/WS-CTX.pdf

[3] V. Dialani. UDDI-M Version 1.0 API Specification. University of
Southampton – UK. 02.

[4] Ali ShaikhAli, el al. UDDIe: An Extended Registry for Web Services.
Proc. of the Service Oriented Computing: Models, Architectures and
Applications, SAINT-2003 IEEE Comp. Society Press., USA

[5] Czajkowski, K., et al. 2004. The WS-Resource Framework.
http://www.globus.org/wsrf/specs/ws-wsrf.pdf

[6] Alexander, J., et al. 2004 The Web Service Transfer (WS-Transfer)
http://msdn.microsoft.com/library/en-us/dnglobspec/html/wstransfer.pdf

[7] Ballinger, K., et al. 2004 The Web Services Metadata Exchange
http://specs.xmlsoap.org/ws/2004/09/mex/WS-MetadataExchange.pdf

[8] Aktas, M. S, Fox, G. C., Pierce, M. Fault Tolerant High Performance
Information Services for Dynamic Collections of Grid and Web Services
FGCS Special issue from SKG2005 Beijing China November, 2005.

[9] Aydin G., Aktas M. et al. SERVOGrid Complexity Computational
Environments(CCE) Integrated Performance Analysis, Accepted as
poster and short paper in Grid2005, Seattle, USA

[10] Nacar M. A., Aktas M. et al. VLab: Collaborative Grid Services and
Portals to Support Computational Material Science, Special Issue on
Grid Portals based on SC05 GCE'05 Workshop, Concurrency and
Computation: Practice and Experience.

[11] Oh, S., Aktas, M. S., Pierce, M., Fox, G. C., Optimizing Web Service
Messaging Performance Using a Context Store for Static Data, 5th
WSEAS Int.Conf. on Telecommunications and Informatics, Turkey, 05

[12] Wu W., et al. “Design and Implementation of A Collaboration Web-
services system”, Journal of Neural, Parallel & Scientific Computations
(NPSC), Volume 12, 2004.

