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Abstract 

 
Many areas of science are seeing a data deluge 

coming from new instruments, myriads of sensors and 
exponential growth in electronic records. We take two 
examples – one the analysis of gene sequence data 
(35339 Alu sequences) and other a study of medical 
information (over 100,000 patient records) in 
Indianapolis and their relationship to Geographic and 
Information System and Census data available for 635 
Census Blocks in Indianapolis. We look at initial 
processing (such as Smith Waterman dissimilarities), 
clustering (using robust deterministic annealing) and 
Multi Dimensional Scaling to map high dimension data 
to 3D for convenient visualization. We show how 
scaling pipelines can be produced that depending on 
data set size, either use multicore laptop or desktop 
clients or supercomputer or modest clusters for the 
computer intensive sections. This study illustrates 
challenges in integrating data exploration tools with a 
variety of different architectural requirements and 
natural programming models. We present preliminary 
results for end to end study of two complete 
applications. 
 
1. Introduction 
 

Data Intensive Computing is very popular at this 
time. Partly this is due to the well understood data 
deluge with all activities including science, 
government and modern Internet (Web 2.0) systems all 
generating exponentially increasing data. One special 
driver is that Web Search and related data mining can 
use an especially simple programming model 
MapReduce of which there are now several 
implementations. It is attractive to understand how 
generally applicable MapReduce is to other data 
intensive problems as one can expect excellent 
commercial support for software in this area. In 
previous papers we have looked at the impact of clouds 
and compared Yahoo (Hadoop) and Microsoft (Dryad) 

implementations of the MapReduce step. These 
technologies are still maturing and their performance 
may not be so important at this stage compared to the 
overall architecture of a complete system extending 
from raw data to scientific discovery. We choose two 
biomedical applications. One studies the structure of 
Gene families and the processing steps involve 
sequence alignment, clustering and visualization after 
projecting sequences to 3 dimensions using 
Multidimensional scaling MDS. The second 
application involves correlating electronic patient 
records with environmental information (from 
Geographical Information Systems)associated with the 
patient location. Here the end to end study involves 
substantial data validation, processing with many 
standard tools such as those in R but also many 
possible other applications such as Multidimensional 
Scaling dimension reductions. 

We present performance results from Tempest – An 
Infiniband connected 32 node system running 
Windows HPCS with each node having 24 cores 
spread over 4 Intel chips.  Such a modest cluster can 
fully process all stages of the 35,000 element Alu study 
in less than a day and is suitable for up to 200,000 
sequences even though all steps in analysis are of 
O(N2) time complexity. We estimate that a 1024 node 
Tempest architecture cluster would tackle well our 
million sequence goal. We find systems easy to use 
and and program as well as giving good wall clock 
execution time. Some of our studies used a slightly 
older cluster Madrid with 8 nodes each with four AMD 
Opteron chips with 4 cores each. 

 
Section 2 presents some overall architecture 

comments while sections 3 and 4 describe the two 
main applications. Section 5 has conclusions and future 
work. 
 
2. Data intensive computing architecture 
 
    Table 1.  Hardware and software configurations of the clusters 



used in this paper. In addition a traditional 8-node Linux Cluster 
“Gridfarm” was used to run statistics package R in section 4. 

 
 The computer architecture needed to support data 
intensive computing is obviously complex and varied. 
Here we do not discuss virtualization or issues of 
distributed systems which although important are not 
the topic of this paper. We abstract many approaches 
as a mixture of pipelined and parallel (good MPI 
performance) systems, linked by a pervasive storage 
system. Here we have many interesting possibilities 
including Amazon and Azure “Blob” storage, 
traditional supercomputer environment like Lustre plus 
importantly the file systems (such as Cosmos from 
Microsoft or HDFS from Hadoop) supporting the new 
MapReduce systems.  
  

 
Figure 1.  A Data intensive computing architecture 

 
These cloud/Web 2.0 technologies support a 

computing style where data is read from one file 
system, analyzed by one or more tools and written 
back to  a database or file system. An important feature 
of the newer approaches is explicit support for data 
parallelism which is needed in our applications.  

In figure 1, we abstract this disc/database-compute 
model and assume it will underlie many applications 
even when some of resources will be local and others 
in the cloud or part of a large grid. In figures 3 and 2 
we give in more detail the data pipelines used in the 
applications of sections 3 and 4 respectively. 

Finally we record in table 1, the major facilities 
used in this study. Note they run Windows (HPC 
Edition) and stress both multicore and traditional 
parallelism. 
 

         Figure 2.  Stages of Gene sequencing application 
 

 
 Figure 3.  Stages of health application 

      
The largest Tempest cluster has 768 Intel Cores spread 
over 32 nodes while the smaller one Madrid has 128 
Opteron cores spread over 8 nodes. Our work [5, 19, 
21] stresses both Windows and Linux so we can 
explore Hadoop, Dryad and the emerging cloud 
approaches. This paper focuses on results from the 
Windows clusters. 
 
3. Gene Sequencing Applications 

 
3.1. Alu Sequencing Studies  
The Alu clustering problem [13] is one of the most 

challenging problem for sequencing clustering because 
Alus represent the largest repeat families in human 
genome. There are about 1 million copies of Alu 
sequences in human genome, in which most insertions 
can be found in other primates and only a small 
fraction (~ 7000) are human-specific insertions. This 
indicates that the classification of Alu repeats can be 
deduced solely from the 1 million human Alu 
elements. Notable, Alu clustering can be viewed as a 
classical case study for the capacity of computational 
infrastructures because it is not only of great biological 
interests, but also a problem of a scale that will remain 
as the upper limit of many other clustering problem in 
bioinformatics for the next few years, e.g. the 
automated protein family classification for a few 
millions of proteins predicted from large 
metagenomics projects.  

 
3.2. Smith Waterman Dissimilarities 
The first step is to identify human Alu gene 

sequences which were obtained by using Repeatmasker 
[14] with Repbase Update [15]. We have been 
gradually increasing the size of our projects with the 
current sample having 35339 sequences the largest and 
requires a modest cluster such as Tempest (768 cores). 
Note from the discussion in section 3.1, we are aiming 
at supporting problems with a a million sequences  -- 
quite practical today on TeraGrid and equivalent 
facilities given basic analysis steps scale like O(N2). 

We used open source version [16] of the Smith 
Waterman – Gotoh algorithm SW-G [17, 18] modified 
to ensure low start up effects by each thread/processing 
large numbers (above a few hundred) at a time. 

System/ 
Size 

CPU  Memory  Operating 
System 

Network

Tempest 
32 
Cluster 
+ 1 Head 

4 Intel Six 
CoreXenon 
E7450 2.4 
GHz 

Cluster:48 GB 
Head: 24 GB 
 
12 MB Cache 

Windows 
Server 
2008 HPC 
Ed. (SP1) 

1 Gbps
Ethernet 

Madrid  
8 Cluster 
+ 1 Head 

4 AMD Quad 
Core. 
Opteron 
8356  2.3GHz 

Cluster:16 GB 
Head: 8 GB 
 
2 MB Cache 

Windows 
Server HPC 
Ed.  (SP1) 

20Gbps 
Infiniband

Database

Files

Database

Files

Database

Files

Database

Files

Database

Files

Database

Files

Database

Files

Database

Files

Database

Files

Initial
Processing

Higher Level Processing
(e.g. R, PCA, Clustering 

Correlations)
maybe MPI

Prepare for 
Visualization

(e.g. MDS)

Instruments

User Data

Users

Visualization
User Portal
Knowledge
Discovery

Visualization
PlotvizBlocking 

Sequence
alignment

MDS

Dissimilarity
Matrix

(624,404,791 
values)

FASTA File
Alu Sequences
(35339)

Form 
block

Pairings

Pairwise
clustering

Health Data
Visualization

Plotviz
validating 
regrouping

PCA 
R 

CCA

Subblock
groups

MDS
PC data

CCA vectors
distance



Memory bandwidth needed was reduced by storing 
data items in as few bytes as possible. 
 

3.2.1 Performance of Smith Waterman Gotoh 
SW-G Algorithm 

The calculation of the 624 million independent 
dissimilarities is of course architecturally simple as 
each computation is independent. Nevertheless it 
shows striking structure shown in figure 4. As in 
previous papers, we look at different patterns denoted a 
(Thread per process) x (MPI process per 24 core node) 
x (Number of Nodes). In pattern txmxn. We have for 
Tempest defined in table 1, n <=32 and txm <= 24. We 
present results in terms of parallel overhead f(P) 
defined for Parallelism P by 

 
  f(P) = [PT(P) –T(1)] /T(1)       (1) 

 
 Where T(1) is replaced in practice by T(on smallest 

number of processes that can run job).                                                                           

 

Figure 4.  Performance of Alu Gene Alignments for different parallel 
patterns 

The striking result for this step is that MPI easily 
outperforms the equivalent threaded version of this 
embarrassingly parallel step. In figure 4, all the peaks 
in the overhead correspond to patterns with large 
values of thread count t. On figure 4, we note that MPI 
intranode 1x24x32 pattern completes the full 624 
billion alignments in 2.33 hours – 4.9 times faster than 
threaded implementation 24x1x32. This 768 core MPI 
run has a parallel overhead of 1.43 corresponding to a 
speed up of 316. 

      The SW-G alignment performance is probably 
dominated by memory bandwidth issues but we are 
still pursuing several points that could effect this but 
not at our highest priority as SW-G is not a dominant 
step. We have tried to identify the reason for the 
comparative slowness of threading. Using Windows 
monitoring tools, we see in figures 5 and 6 that 
threaded version has about a factor of 100 more 
context switches (note different scale factors used) than 
case where in MPI we have one thread per process. 

Figure 5.  Paging and Context Switching for  a pure Threaded SW-G 

 
 Figure 6: Paging and Context Switching for an MPI SW-G  

This could lead to a slow down of threaded approach 
and correspond to Windows handing of paging of 
threads with large memory footprints. However there is 
also an important data transfer effect that we discuss in 
the following subsection. 

3.2.2 The O(N2) Factor of 2 and data transfer 

     There is a well known factor of 2 in many O(N2) 
parallel algorithms such as those in direct simulations 
of astrophysical stems. We initially calculate in parallel 
Distance D(i,j) between points (sequences) i and j and 
as discussed above this is done in parallel over all 
processor nodes selecting criteria i < j to avoid 
calculating both D(i,j) and the identical D(j,i). This can 
require substantial file transfer as it is unlikely that 
nodes requiring D(i,j) in a later step, will find that it 
was calculated on nodes where it is needed.     

     For example the MDS and PW(PairWise) 
Clustering algorithms described in next 2 sections, 
require a parallel decomposition where each of N 
processes (MPI processes, threads) has 1/N of 
sequences and for this subset {i} of sequences stores in 
memory D({i},j) for all sequences  j and the subset {i} 
of sequences for which this node is responsible. This 
implies that we need D (i,j) and D (j,i) (which are 
equal) stored in different processors/disks). This is a 
well known collective operation in MPI called either 
gather or scatter. Note that we did NOT get good 
performance for data transfer of D(i.j) to its needed 



final processor from either MPI (it should be a seconds 
on Petabit/sec Infiniband switch) or Dryad. We intend 
to make the needed collective (reduction) primitives 
more precise and expect substantial performance 
improvement.  However, for the results presented here 
the timings include the I/O necessary to write results 
from each process to local disk.  An additional step 
was necessary in our processing workflow to combine 
the results into a single file used in downstream 
processing such as clustering and MDS. 

3.2.3 Relevance of Hadoop and Dryad 

      We expected to use Dryad for this initial SW-G 
computation and data transfer but were not able to 
complete this work in time for this paper. Clearly this 
step fits MapReduce very well and as technology and 
our experience with it improves [19], we expect to 
include Dryad (on Tempest) and Hadoop (Linux) 
evaluations here and it is quite likely that they will 
deliver preferred implementation. 

3.3 Pairwise Clustering 

    As data sets increase in size, we expect some 
applications to require particularly robust algorithms 
that are as insensitive as possible to well known 
difficulties such as “trapping in local minima”. This 
increases computing challenge which grows to 
accommodate data set and increase robustness of 
results. For example, clustering methods like Kmeans 
are very sensitive to false minima but some 20 years 
ago a more robust EM (Expectation Maximization) 
method using annealing (deterministic not Monte 
Carlo) was developed by Ken Rose (UCSB) [1], Fox 
and others [4]. 

     Here the annealing is in distance (as represented by 
D(i,j) ) resolution. One slowly lowers a Temperature T 
that implements an algorithm sensitive to distance 
scales of order T0.5. This method has interesting feature 
that it automatically splits clusters when instabilities 
detected. Further it has a highly efficient parallel 
algorithm which we have studied in detail in earlier 
papers on smaller problems [5]. These clustering 
approaches are fuzzy methods where points are 
assigned probabilities for belonging to a particular 
cluster. There are striking differences between pattern 
dependence of figures 4, 7 and 8. In all cases MPI is 
used as communication mechanism between nodes but 
we can use any mix of threading and MPI on a single 
node. For figure 4 intranode MPI always gave best 
performance but in figures 7 and 8, intranode threading 
is the best. We have analyzed this in detail elsewhere 
and found it is a consequence of MPI communication 
overheads that increase as data parallel unit (of size 
35339/(m n)) decreases. For large data parallel units 
MPI is fastest but for smaller ones used here, threading 

is superior.

Figure 7: Performance of Pairwise Clustering for 4 clusters on 
Tempest. 10 Clusters take about 3.5 times longer 

        The original clustering work was based in a vector 
space (like Kmeans) where a cluster is defined by a 
vector as its center. However in a major advance 10 
years ago [2, 3], it was shown  how one could use a 
vector free approach and operate with just the distances 
D(i,j). This unfortunately does increase the 
computational complexity from O(N) to O(N2) for N 
sequences. It appears however more natural for studies 
of sequences which do not have Euclidean vectors 
easily associated with them. We completed these 
pairwise vector free algorithms and implemented them 
in parallel. We have discussed elsewhere detailed 
algorithm and performance issues. Here we report the 
clustering as part of a large end to end component of 
our “Million Sequence Analysis as a Service project. 
All capabilities discussed in this paper will be made 
available as cloud or TeraGrid services over next 3-12 
months. 

3.4 Multidimensional Scaling MDS 

     Given dissimilarities D(i,j), MDS finds the best set 
of vectors xi in any chosen dimension d minimizing  
 i,j weight(i,j) (D(i,j) – |xi – xj|

n)2               (2) 

The weight is chosen to reflect importance of point or 
perhaps a desire (Sammon’s method) to fit smaller 
distance more precisely than larger ones. The index n 
is typically 1 (Euclidean distance) but 2 also useful 

    We have previously reported results using 
Expectation Maximization and we are exploring 
adding to this deterministic annealing to improve 
robustness. Here we use a different technique 
exploiting that (2) is “just” 2 and one can use very 
reliable nonlinear optimizers to solve it [20]. We have 
implemented and got good results with the Levenberg–
Marquardt approach (adding suitable multiple of unit 
matrix to nonlinear second derivative matrix) to 2 
solution. 



Figure 8: Performance of Pairwise Clustering on Tempest 

 
Figure 9: Clustering of Alu Sequences 

This “MDS as 2” approach allows us to incorporate 
some powerful features including very general choices 
for the weight(i,j) and n. Our MDS service is fully 
parallel over unknowns xi. Further it allows 
“incremental use”; fixing an MDS solution from a 
subset of data and adding  new points at  a later time. 
One can also optimally align different versions of 
MDS (e.g. different choices of weight(i,j) to allow 
precise comparisons. All our MDS services feed their 
results directly to powerful Point Visualizer. Figure 9 
shows the end to end Alu study after SW-G alignments, 
pairwise clustering and MDS projection. One sees 
three small clusters red (2794 points), yellow (3666) 
and green (1838 sequences) isolated from larger 
(27041) collection of blue sequences that are 
presumably older. Note that total time for all 3 steps on 
the full Tempest system is about 6 hours and clearly 
getting to a million sequences is not unrealistic and 
would take around a week on  a 1024 node cluster. 

4. Linking Environment and Health Data 
4.1. Introduction 
Another area where our tools are naturally used 

comes in Geographical information systems where we 
have already presented results [21]. Here we link 
environmental and patient (health) data. This is 
challenging as a community’s vulnerability and impact 
may depend on special concerns like environmentally 
sensitive areas or historical structures, socioeconomic 
conditions, and various social concerns such as the 
degree of public trust, education levels, literacy, and 

collective action and solidarity. The event impact must 
account for a blend of physical and social measures. 

One example is the SAVI Community Information 
System (www.savi.org)1 is one of the nation’s largest 
community information systems [22]. SAVI, designed 
to improve decision-making in Central Indiana 
communities. SAVI includes over a ~22 million 
individual data values, provides over 161,322 event 
datasets,  3,099 basic indicators on the socio-economic 
conditions, health, economy, housing, and many other 
aspects of the community and makes them available 
for 11 types of geographic areas, such as census tracts, 
neighborhoods, and school corporations. The SAVI 
system now is being used by a variety of other sectors 
for community development, public health research, 
education, program planning, disaster mitigation 
planning and more.  Only recently has the field of 
social epidemiology begun to develop the theoretical 
tools that make possible the identification of 
explanatory pathways from the physical and social 
infrastructure to health-related behaviors, which then 
lead to adverse health outcomes [23-25]. We see 
geographic clustering in many health outcomes 
because social environment has an effect on health 
and/or health behaviors [26-28] 

 
4.2. Obesity  
We used an ongoing childhood obesity study as our 

first application to test the relevance of our tools in the 
area of linking environment and social/health data. [6-
7] Obesity is presently one of the most pervasive, 
serious, and challenging health problems facing the 
world. Over the past 30 years, the obesity rate has 
nearly tripled for children ages 2 to 5 years (from 5 to 
14 percent) and tripled for youth ages 12 to 19 years 
(from 5 percent to 17 percent). The obesity rate for 
children 6 to 11 years of age has quadrupled from 4 to 
19 percent. What is causing the dramatic and 
threatening rise in obesity? Bray concisely captured the 
etiology of obesity in metaphor: “Genes load the gun, 
the environment pulls the trigger.” 23 Genetic factors 
are thought to account for 25-40% of the variance in 
BMI (Body Mass Index) by determining differences in 
such things as resting metabolic rate and weight gain in 
response to overfeeding. However, it is highly 
improbable that changes in genetic factors explain the 
rapid increases in obesity prevalence over the past two 
decades.26 Rather, the obesity epidemic is almost 
certainly rooted in environmental factors that promote 
excessive caloric intake and sedentary lifestyle [8]. 

In addition to physical environmental factors, social 
environmental factors also have bearing on obesity by 
facilitating or constraining behavior. Specific social 
environmental factors that have been examined include 
crime, safety, social support, social networks, and 



neighborhood socioeconomic status. Perceived (or 
actual) lack of a safe environment is a significant 
barrier to physical activity. According to a study 
conducted by the Centers for Disease Control in 2004, 
persons who perceived their neighborhoods as less than 
extremely safe were more than twice as likely to have 
no leisure-time physical activity, and those who 
perceived their neighborhoods as not at all safe were 
nearly three times as likely to have no leisure-time 
physical activity. Research also indicates that parental 
concerns about traffic and crime have a strong 
influence on children’s physical activity levels and that 
child and parent perceptions of the environment are as 
important as the actual environment.  

This motivates studies that study linkage between 
patient health and environment factors.. We can 
examine urban planning data that provides information 
on characteristics of the built environment, such as 
street features, land use mix, and neighborhood 
greenness. We examine insurance information from 
patient medical records as an indicator of family-level 
social environment. We examine U.S. Census and 
Uniform Crime Report information for areas 
surrounding patients’ residential addresses as 
indicators of neighborhood social environment. Here 
we are setting up the infrastructure linking the tool R 
with our other tools described in section 3 and only 
have preliminary results on this use case for a new 
generation of large scale data analysis tools. As there 
are some 30 patient attributes and over one hundred 
environmental attributes, tools like MDS that reduce 
dimensionality were our first focus. 

 
4.3. Canonical Correlation Analysis  
The canonical correlation analysis (CCA) is a tool 

of multivariate statistical analysis for finding 
correlations between two sets of variables [9, 10]. We 
are applying CCA to study how childhood obesity is 
mostly related with what kinds of environmental 
factors. Our full data set we used for this research 
consists of over 314,000 real-life patient records 
collected over 15 years (some records are 20 year old) 
and measured on about 180 variables, mostly related 
with biological and environmental factors. We stored 
our full data set (size of 832 MB) in a database system 
for easy exploration and fast extraction. Among the full 
data set, we only used the cleanest data for our initial 
studies.  

For performing CCA over the patient data set and 
conducting various kinds of statistical analysis, we 
used R, one of the most well-known statistical 
computing environments, to expedite complicated 
statistical data manipulations with ease and utilize 
highly optimized and multi-threaded numeric packages, 
such as BLAS, Goto-BLAS [11], and ATLAS [12]. 

Another advantage in using R is that we can use 
various open-source based add-on packages for 
additional functionalities. For example, with the help 
of packages for databases, such as PostgreSQL and 
MySQL, we can directly access the data stored in the 
database system. Here we focus on integrating R with 
our specialized tools and present initial MDS analysis 
here. 

 
4.3. Multi Dimensional Scaling and Visualization  

The core of CCA is to find an optimal linear 
projection of two sets of data in a sense that the 
correlation of them in the projected space, also called 
“canonical space”, is maximized. More specifically, for 
the given two sets of data matrix X and Y, the CCA 
seeks two optimal projection vectors a and b, which 
make the following correlation maximum: 

cor( , )U V  , 

where TU a X  and TV b Y are vectors in the 
canonical space. One can see that the vector U and V, 
known as canonical correlation variables, are the new 
representation of the data matrix X and Y in the 
canonical space, transformed by the projection vector a 
and b respectively. By further investigating U and V as 
a product of the CCA, one may infer cross-
relationships exist between two sets of variables, which 
are not directly available from the row data set.  

In our project, the CCA is the best match for our 
purpose. We have two sets of data – patient and 
environmental data – and want to find out which 
variables of environmental data have some connections 
to patient’s obesity or more generally health. For this 
purpose, we can use X as an environmental data and Y 
as a patient data into the CCA to find the best optimal 
canonical variables U and V, which maximize the 
correlation between the patient and the environmental 
data in the canonical space. Figure 10 presents one of 
the CCA results on our data set as an example.  

As an alternative to CCA, which maximizes vector 
in both data sets, one can find the vectors a and b by 
using the Principle Component Analysis (PCA) within 
a single sector. For an example, with our health data 
set, we can find new projection vector a by fixing b in 
terms of Principle Components (PC) of the patient data 
matrix Y. 

Since the well known CCA algorithm itself is not 
our focus in this paper, we will not present more details 
in As an example of CCA results to the patient data set, 
we found the optimal correlation in the canonical space 
(Figure 10). Those results can feed in to the MDS to 
find more robust structures in 3-dimension (Figure 11). 



 
Figure 10. The plot of the first pair of canonical variables for 635 

Census Blocks 

Figures 11(a) and 11(b) show this CCA analysis 
projected on an MDS representation of environment 
data. this paper. More details can be found in [9, 10]. 
Each point corresponds to one of 635 Census blocks. 
We color projections on a green (lowest) to red/mauve 
(highest) scale and see clear clustering of the different 
colors in different regions of MDS. The low (green) 
values occur together and are well separated from the 
high weighted red and mauve points. In these plots the 
MDS was weighted (using weight(i,j) in equ. (2) 
proportionally to number of patients in block. Figures 
11(c) and (d) show correlations for a pure principal 
component analysis PCA; this is high for 
environmental PCA (as one would expect) but still 
present for PCA in patient health space. 

In processing CCA in our project, we have used R 
as statistical computing environments to utilize various 
matrix manipulation and linear algebra packages with 
efficiency. Also, by building R with multi-threaded 
enabled BLAS libraries, we got parallel speed up in 
our 8 core Linux cluster nodes “Gridfarm”. As a result, 
we have applied the CCA to our data set with various 
parameter settings and visualized them by using our 
parallel MDS projection described earlier. Figure 11 
illustrate the MDS visualization of PCA and CCA 
analyses. This clearly illustrates that correlations can 
be seen when projecting societal data on MDS of 
environmental information. We are following on with 
both obesity and SAVI datasets with different selection 
s of environmental data. 

 

 
Figure 11. MDS visualization of PCA and CCA analyses for 
correlations between patient and environmental data described below. 

 
5. Conclusion and Future Work 

 This paper examines the technology to support 
rapid analysis of million sequence problems that 
appear to typify today’s high end challenges. As well 
as our local sample problems, we would like to refine 
and test the technology on a broader range of 
problems. To encourage this, we will make key 
capabilities available as services that we eventually be 
implemented on virtual clusters (clouds) to address 
very large problems. This will require work we are 
doing now on Hadoop and Dryad – can they be a single 
unifying technology? Relevant services we will make 
available include the basic Pairwise dissimilarity 
calculations, R (done already by us and others), MDS 
in EM and 2 forms; the vector and pairwise 
deterministic annealing clustering including support of 
fingerprints and other ”unusual” vectors. Our point 
viewer (Plotviz) will be made available either as 
download (to Windows!) or as a Web service. We note 
all our current code is written in C# (high performance 
managed code) and runs on Microsoft HPCS 2008 
(with Dryad extensions) 

We’ve shown two examples of data intensive 
science applications in area of biology and health using 
several modern technologies. We suggest that these 
ideas will support new generations of large scale data 
analysis systems for patient records, demographic data 
and next generation gene sequencers. 
 
6. References 
[1] K. Rose, “Deterministic Annealing for Clustering, 
Compression, Classification, Regression, and Related 



Optimization Problems”, Proceedings of the IEEE, vol. 80, 
pp. 2210-2239, November 1998. 
 
[2] T Hofmann, JM Buhmann, “Pairwise data clustering by 
deterministic annealing”, IEEE Transactions on Pattern 
Analysis and Machine Intelligence 19, pp1-13 1997. 
 
[3] Hansjörg Klock and Joachim M. Buhmann, “Data 
visualization by multidimensional scaling: a deterministic 
annealing approach”, Pattern Recognition, Volume 33, Issue 
4, April 2000, Pages 651-669. 
 
[4]  Granat, R. A., “Regularized Deterministic Annealing EM 
for Hidden Markov Models”, Ph.D. Thesis, UCLA, 2004.  
 
[5] Geoffrey Fox, Seung-Hee Bae, Jaliya Ekanayake, 
Xiaohong Qiu, and Huapeng Yuan, “Parallel Data Mining 
from Multicore to Cloudy Grids”, Proceedings of HPC 2008, 
High Performance Computing and Grids Workshop, Cetraro 
Italy, July 3 2008. 
 
[6] Liu G, Wilson J, Rong Q, Ying J., “Green neighborhoods, 
food retail, and childhood overweight: differences by 
population density”, American Journal of Health Promotion 
2007, March/April, V21, I4 Supplement 317-325 
 
[7] Liu G et al.“Examining Urban Environment Correlates of 
Childhood Physical Activity and Walkability Perception with 
GIS and Remote  Sensing”, In: Geo-spatial Technologies in 
Urban Environments Policy, Practice, and Pixels. 2nd ed. 
Berlin: Springer Verlag; 2007:121-40. 
 
[8] Robert Sandy, Gilbert Liu, et al. “Studying the child 
obesity epidemic with natural experiments”, NBER Working 
Paper in May 2009. http://www.nber.org/papers/w14989 
 
[9] D. Hardoon et al., “Canonical correlation analysis: an 
overview with application to learning methods”, Neural 
Computation, 16(12):2639--2664, 2004. 
 
[10]  W. Härdle and L. Simar, Applied multivariate statistical 
analysis, Springer, 2007. Pages 361-372 
 
[11] K. Goto and R. Van De Geijn, “High-performance 
implementation of the level-3 blas”, ACM Trans. Math. 
Softw., 35(1):1--14, 2008. 
 
[12]  R. Whaley and J. Dongarra, “Automatically tuned linear 
algebra software”, Proceedings of the 1998 ACM/IEEE conf. 
on Supercomputing (CDROM), pages 1--27., 1998. 
 
[13] Batzer MA, Deininger PL, 2002, "Alu repeats and 
human genomic diversity". Nat. Rev. Genet. 3 (5): 370-379. 
 
[14] Smit, A. F. A., Hubley, R. and Green, P. Repeatmasker. 
http://www.repeatmasker.org (2004)  
 
[15] Jurka, J. “Repbase Update:a database and electronic 
journal of repetitive elements”. Trends Genet. 9:418-420 
,2000 
 

[16] Smith Waterman software with Gotoh enhancement 
from http://jaligner.sourceforge.net/naligner/.  
 
[17] Smith, T.F. and Waterman, M.S. 1981. “Identification of 
common molecular subsequences”.  Journal of Molecular 
Biology 147:195-197 
 
[18] Gotoh, O. 1982. “An improved algorithm for matching 
biological sequences”.  J. of Molecular Biology 162:705-708 
 
[19] Jaliya Ekanayake, Atilla Soner Balkir, Thilina 
Gunarathne, Geoffrey Fox, Christophe Poulain, Nelson 
Araujo, Roger Barga “DryadLINQ for Scientific Analyses” 
submitted to eScience 2009 conference 
 
[20] Anthony J. Kearsley, Richard A. Tapia, Michael W. 
Trosset, “The Solution of the Metric STRESS and SSTRESS 
Problems in Multidimensional Scaling Using Newton’s 
Method”, technical report 1995. 
 
[21] Xiaohong Qiu, Geoffrey C. Fox, Huapeng Yuan, Seung-
Hee Bae, George Chrysanthakopoulos, Henrik Frystyk 
Nielsen “PARALLEL CLUSTERING AND 
DIMENSIONAL SCALING ON MULTICORE 
SYSTEMS”; Springer Berlin / Heidelberg LNCS Vol 
5101/2008, Computational Science: ICCS 2008. ISBN 978-
3-540-69383-3 Pages 407-416  
 
[22] Frederickson, K.E. “Enhanced Local Coordination and 
Collaboration through the Social Assets and Vulnerabilities 
Indicators (SAVI) Project”. Proceedings of the American 
Public Health Association Annual Conference. Washington, 
D.C.  1998. 
 
[23] American Public Health Association, National Public 
Health Week, Eliminating Health Disparities: Communities 
Moving from Statistics to Solutions, Toolkit,  2004. 
 
[24] Berkman LF, Glass T. “Social integration, social 
networks, social support, and health”. In: Berkman LF, 
Kawachi I, eds. Social Epidemiology. New York: Oxford 
University Press; 2000:137-73. 
 
[25] Shaw M, Dorling D, Smith GD. “Poverty, social 
exclusion, and minorities”. In: Marmot M, Wilkinson RG, 
eds. Social Determinants of Health. 2nd ed. New York: 
Oxford University Press; 2006:196-223. 
 
[26] Berkman LF, Kawachi I. “A historical framework for 
social epidemiology”. In: Berkman LF, Kawachi I, eds. 
Social Epidemiology. New York: Oxford Univ. Press; 
2000:3-12. 
 
[27] Kawachi I, Berkman LF, eds. “Neighborhoods and 
Health”. New York: Oxford University Press; 2003. 
 
[28] Robert S. “Community-level socioeconomic status 
effects on adult health.” Journal of Health and Social 
Behavior 1998; 39:18-37 


