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1.  Introduction. 

There is data deluge today. In some domains, such as high energy physical, and next generation gene sequencing, 

the speed to obtain scientific raw data is faster than Moore’s law. The volumes of data evolved from MB to GB, and 

it is in TB scale now. The computing resources infrastructures evolved from mainframe system to mini computer 

system, MPP, cluster of commodity PC, and Cloud. The programming tools for HPC evolved from C, high 

performance fortran, OpenMP, MPI, and MapReduce, Dryad/DryadLINQ[1][2].  

The MapReduce programming model is proposed by Google, and it has been proved to be a good model for the data 

intensive computation. There are two main reasons why MapReduce framework satisfied the requirement of 

processing data intensive applications. First, it is simple, but it is of good theorem foundation. The idea comes from 

divide and conquer algorithm. The programming model comes from function programming. Second, it can deliver 

excellent scalability and fault tolerance features which are significant for distributed computation system.  

The goal of my Y790 during the last two semesters is to study the features of DryadLINQ and MapReduce 

programming model, and study their corresponding runtimes: Dryad[1], Twister[3], Hadoop. Further, I applied these 

runtimes to few data intensive applications, which include: DryadLINQ PhyloD on HIV Gag p17 and p24 protein 

codons, Twister/Hadoop PageRank on ClueWeb data set which includes 1.4 billion web links, and EMR SWG, 

which ran on Aamazon cloud infrastructure. 

2. Dryad/DryadLINQ 

2.1 Dyrad/DryadLINQ 

Dryad is a distributed execution engine for coarse grain data parallel applications. A Dryad application combines 

computational “vertices” with communication “channels” to form a dataflow graph. Dryad runs the application by 

executing the vertices of this graph on a set of available computers, communicating as appropriate through files, 

TCP pipes, and shared-memory FIFOs[1].  

DryadLINQ is a system and a set of language extensions that enable a new programming model for large scale 

distributed computing. It generalizes previous execution environments such as SQL, MapReduce, and Dryad in two 

ways: by adopting an expressive data model of strongly typed .NET objects; and by supporting general-purpose 

imperative and declarative operations on datasets within a traditional high-level programming language [2]. 

My experience about the Dryad is that it is coupled with Windows HPC Job Manager and HPC Cluster Manager 

tightly. So it is easy to monitor the status of compute nodes, and the status of running tasks, which is very 

convenient for debugging. More important, the process of developing data parallel application with DryadLINQ is 

as simple as sequential program. The developers do not even know much knowledge about the MapReduce 

programming model.  

2.2 DryadLINQ PhyloD 

2.2.1 PhyloD Applicatoin 

The Human Leukocyte Antigen can help to eliminate the HIV virus.  However, the HIV virus can avoid the 

elimination by evolution of escape mutation. HIV mutations can be considered as HIV codons changing or 

evolution. The PhyloDError! Reference source not found.[5] application uses statistical method to identify HLA-

associated viral evolution from the sample data of HIV-infected individuals.  



2.2.2 PhyloD Algorithm 

PhyloD is a new statistical package to derive the association among HLA and HIV by counting given sample data. 

The PhyloD package have three kinds of input data: (i) the phylogenic tree information of the codons, (ii) the 

information about HLA alleles, and (iii) the information about HIV codons. A run of PhyloD job have three main 

steps. First, it computes a cross product of input files to produce all allele-codon pairs. Second, it computes the p-

value for each pair, which is used to measure the association between allele-codon pair. Third, it computes a q-value 

per p-value, which is an indicative measure of the significance of the p-value.  

 

The running time of PhyloD algorithm is a function of the number of different HLA alleles -|X|, the number of 

different HIV codons -|Y|, and the number of individuals in the study -N, which is equal to the number of leaves of 

the phylogenic tree. To calculate p-value of one allele-codon pair, it will cost O(N*logN) and there are |X|*|Y| 

allele-codon pairs. So the PhyloD algorithm runs in time O(|X|*|Y|*NlogN). The computation of the p-value of one 

pair can be done independently of other p-value computations. This makes it easy to implement a parallel version of 

PhyloD using DryadLINQ. 

 

PhyloD executable allows user to divide the PhyloD job into a set of tasks each of which works on the assigned part 

of the HLA allele file and the HIV codon file. Assuming the set of HLA alleles is {A[0],A[1],..A[|X|-1]}, and the set 

of HIV codons is {C[0],C[1],…C[|Y|-1]}, then the set of HLA and HIV pairs is stored in the order of 

{(A[0],C[0]),(A[1],C[0]),(A2,C[0]),..(A[|X|-1],C[0]); (A[0],C[1]), (A[1],C[1]),(A[2],C[1]),.. (A[|X|-2],C[|Y|-

1]),(A[|X|-1],C[|Y|-1])}. Accordingly, PhyloD executable divides the PhyloD job into N tasks (divide the set of all 

pairs into N partitions) in the same order. The index bounds of set of pairs of the K
th

 task can be calculated by 

following formulas.  

      Set B = (|X|*|Y|+N-1)/N;  

      If 0<=K<=N-2 

  Start index: (Ai,Ci)    A[i] = A[K*B%|X|];  C[i] = C[K*B/|X|] 

  End index:   (Aj,Cj)  A[j] = A[((K+1)*B – 1)%|X|];  C[j] = C[(K+1)*B/|X|] 

      If K=N-1 

       Start index: (Ai,Ci)    A[i] = A[K*B%|X|];  C[i] = C[K*B/|X|]; 

  End index:   (Aj,Cj)                A[j] = A[|X|-1];    C[j] = C[|Y|-1]; 

 

2.2.3 DryadLINQ PhyloD Implementation 

 Table 1. Details of the computation clusters used in the tests 

Cluster ID Cluster-I Cluster-II Cluster-III 

Nodes 32 32 8 

Total CPU cores 768 256 64 

Memory 48GB 8GB 7GB 

Platform Windows HPC Server RedHat Linux Enterprise 5 Amazon VMs 

 

We implemented a parallel version of the PhyloD application using DryadLINQ and the standalone PhyloD runtime 

available from Microsoft Research Error! Reference source not found..  As mentioned above the first phase 

of the PhyloD computation requires calculation of p-values for each HLA alleles and HIV codons. To increase the 

granularity of the parallel tasks, we group the individual computations into computation blocks containing a number 

of HLA alleles and HIV codons. Next these groups of computations are performed as a set of independent 

computations using DryadLINQ’s “Select” construct. As the number of patients samples in each pair are quite 

different, the PhyloD tasks are inhomogeneous in running time. To ameliorate this effect we partitioned the data 

(computation blocks) randomly so that the assignment of blocks to nodes will happen randomly.  

 



After completion of the first step of PhyloD, we get one output file for each task (computation block). The second 

step will merge the K*M output files together to get one final output file with the q-values of all pairs. The 

DryadLINQ PhyloD task decomposition and Dryad vertex hierarchy of the DryadLINQ PhyloD are shown in the 

Figure 1.  

 

Figure 1. PhyloD task decompostion (left) and the Dryad vertex hierarchy (right) of the DryadLINQ implementation 

of PhyloD application 

 

Figure 2. Part PhyloD DryadLINQ result about HIV Gag p17 and p24 protein codons 

To explore the results of HLA-codon and codon-codon associations, Microsoft Research developed PhyloD viewer. 

Figure 2 is a PhyloDvError! Reference source not found. picture of part of PhyloD results for HIV Gag p17 and 

p24 protein codons with the DryadLINQ implementation. HLA-codon associations are drawn as external edges, 

whereas codon-codon associations are drawn as arcs within the circle. Colors indicate p-values of the associations. 

Some associations showed on this figure have already been well-studied by scientists before. For example, the B57 

allele has been proved to be strongly associated with effective HIV control Error! Reference source not 

found.. 
 



2.2.4 DryadLINQ PhyloD Performance 

We investigated the scalability and speed up of DryadLINQ PhyloD implementation. The data set includes 136 

distinct HLA alleles and 841 distinct HIV codons, resulting in 114376 HIL-HIV pairs. The cluster Ref C is used for 

these studies. Figure 9 depicts the speedup of running 114376 pairs when number of cores increasing. When the 

number of cores increase from 192 to 384, the speed up is not as good as cases with smaller number of cores. This 

increasing of overhead is due to the granularity becoming smaller with the increase of number of cores. The speed 

up would have been better on a larger data set.  

 

  

Figure 3. Speed up and parallel efficiency                               Figure 4. Scalability with increasing data size 

In the scalability experiment, we run data sets with increasing data size on 2 compute nodes. As shown in figure 10 

the DryadLINQ PhyloD implementation scales well when data size increase.  

 

The current data set we have is too small for a definitive study. We intend further study of the DryadLINQ PhyloD 

application behavior with larger data sets. Further related job may deploy the DryadLINQ PhyloD on Azure 

infrastructure.  

 

3. Twister 

3.1 Twister Architecture 

Twister is an enhanced MapReduce runtime that supports iterative MapReduce computations efficiently. There are 

two main features that allow Twister to support iterative MapReduce computations highly efficiently.  First, it 

caches the static data in the memory, which enable these static data can be used in “configure once and use many 

times” approach. Second, it uses a publish/subscribe messaging infrastructure for communication and data transfers 

[3].   

 

3.2 Twister PageRank 

PageRank algorithm calculates numerical value to each web page in World Wide Web, which reflects the 

probability that the random surfer will access that page. The process of PageRank can be understood as a Markov 

Chain which needs recursive calculation to converge.  An iteration of the algorithm calculates the new access 

probability for each web page based on values calculated in the previous computation. The iterating will not stop 
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until the difference (δ) is less than a predefined threshold, where the δ is the vector distance between the page access 

probabilities in Nth iteration and those in (N+1)
th

 iteration. 

There already exist many published work optimizing PageRank algorithm, like some of them accelerate computation 

by exploring the block structure of hyperlinks[10][11]. In this paper we do not create any innovative PageRank 

algorithm, but rather implement the most general RageRank algorithm [12] with MapReduce programming model 

on Twister system. The web graph is stored as an adjacency matrix (AM) and is partitioned to use as static data in 

map tasks. The variable input of map task is the initial page rank score. The output of reduce task is the input for the 

map task in the next iteration. 

By leveraging the features of Twister, we did several optimizations of PageRank so as to extend it to larger web 

graphs; (i) configure the adjacency matrix as a static input data on each compute node and (ii) broadcast variable 

input data to different compute nodes so that the map tasks on the same node access the same copy of data using the 

object cache of Twister. Further optimizations that are independent of Twister include; (i) increase the map task 

granularity by wrapping certain number of URLs entries together and (ii) merge all the tangling nodes as one node 

to save the communication and computation cost.  

3.3 Hadoop PageRank 

To make the performance comparison of Twister and Hadoop, we also implemented the Hadoop PageRank. Its 

algorithm is similar to the Twister PageRank, but there still few differences due to the features of Hadoop. We store 

all the input data, adjacency matrix files, into the HDFS. All the intermediate output (the updated partial PageRank 

scores) are written into HDFS during multiple iterations, rather than stored in the memory. Besides, we write an 

extended class of FileInputFormat, so that Map task can read one am file as data. 

Further, we did following optimizations to try to get the best result for Hadoop PageRank. 1) Write the merge class 

to do a minor merge of the intermediate results produced on the same compute node. 2) Tune the number of mappers 

and reducers per node to get the better results. 3) Assign the replication of data in HDFS as three. 4) Enable 

unlimited JVM reuse for mappers and reducers. 

3.4 Performance Analysis 

We make performance comparison between Twister PageRank and Hadoop PageRank with ClueWeb data set[13] 

collected in January 2009 and with the computing resources of Cluster-II in the table I. We built the adjacency 

matrix (AM) with ClueWeb data set, and splitted it into more than 4200 sub AM files. Then we made five sub data 

sets with these AM files, which named as CWDS1~5. Table 2 summarizes the characteristics of parts of the five sub 

data sets. 

Table 2. Characteristics of data sets (B stands for Billions) 

ClueWeb data set CWDS1 CWDS3 CWDS5 

Number of AM partitions 4000 2400 800 

Number of web pages 49.5M 31.2M 11.7M 

Number of links 1.40B 0.83B 0.27B 

Average out-degree 28.3 26.8 22.9 

 



 

Figure 5. Job turnaround rime for 20 iterations of the PageRank implementation 

We run both Twister and Hadoop PageRank for 20 iterations with the same data sets and with the same compute 

resources list in Cluster II. Figure 6 shows the job turnaround time of Twister/Hadoop PageRank in 5 tests. Both 

Twister and Hadoop PageRank have the linear increase in the job turnaround time when the size of data set increase. 

But we find that Hadoop PageRank is much slower than Twister PageRank due to the accumulated cost of 

reading/writing the input data and intermediate data from/to hard disk in the 20 iterations.   

4. EMR SWG 

Amazon Elastic MapReduce (EMR)  is a web service that enables users easily and cost-effectively process vast 

amounts of data. It utilizes a hosted Hadoop framework running on the web-scale infrastructure of Amazon Elastic 

Compute Cloud (Amazon EC2) and Amazon Simple Storage Service (Amazon S3). It allows user to dynamically 

obtain the resources pool based on requirement of their data intensive applications. Besides, users can focus on 

crunching or analyzing the data without setting up or tuning the Hadoop clusters [14]. 

The implementation of EMR SWG[9] is similar to Hadoop SWG, but there are two small differences. First, EMR 

use Hadoop 0.18 with patches rather than 0.20.x. Second, the SWG input data is stored in the S3 storage service in 

advance. When the computation starts, the input data will be downloaded to VMs for the further processing. We run 

the EMR SWG with five data sets with 8 High-CPU Extra large Instances of EC2. The computation complexity of 

SWG is O(N
2
), but there is performance degradation in EMR for large input data. Further optimizations or study 

should be to done for this problem. 

 

Figure 6. EMR SWG job turnaround time when input data size increase 
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5. Future work 

5.1 HDFS 

Some primary study of HDFS and Sector distributed file system has been made. Besides, the Hadoop PageRank 

application already employs the HDFS. The future job is to merge the HDFS with Twister, so as that Twister can 

handle the large scale input data more conveniently. Actually, it is easy for Twister to read/write files from/to HDFS 

with HDFS API. The point is how to use it in an appropriate way. In other words, the Map task of Twister should be 

scheduled to the compute node where the data file located.  

Figure 1 shows the possible architecture and workflow for Twister to employ HDFS. There are three main steps in 

the work flow. 1) Twister Client invokes the HDFS API to query the file name and its storage location (host name or 

IP) from the HDFS name node. 2) It creates the data partition file which records all pairs of file name and its 

location. 3) It schedules the Map tasks according to the created partition file. Further, there are still few problems to 

consider about. First, there may be multiple data replication in HDFS, so it needs to decide which replication will be 

used for computation. Second, in this scheme, the work load balance depends on the data distribution in HDFS. The 

work load may not be even among multiple compute nodes. For example, the node with large disk space may 

process more Map tasks. Besides, this method only allows Twister to access the data in the unit of file. To make 

Twister access the data in the unit of block, we need to extend input format class. 

 

Figure 7. Architecture of Twister coupled with HDFS 

5.2 FutureGrid 

As Cloud technologies can help users leverage the computation resources more conveniently with lower cost, both 

the industry and academic community put much effort in this domain. EMR is good example of this kind of effort. It 

not only provides users elastic computer resources, but also hides the details of setting up resources pool, configure 

Hadoop cluster from the users. Deploying Twister on FutureGrid is the academic version of EMR in some degree.    

The first step is to deploy Twister in FutureGrid as software, so that FutureGrid users can use Twister runtime. The 

next step is to couple Twister with Eucalyptus. The following figure shows the possible architecture. The Twister 

Client provides three kinds of interfaces for the users: web console, web service API, command API. There are two 
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components in Eucalyptus[15]. The storage controller provides a mechanism for storing and accessing virtual 

machine images and user data. The cloud controller is the entry-point into the cloud for users and administrators. 

There are three main steps in this flow chart. 1) Twister Client uploads the user data, and application jar file onto the 

storage Cloud. 2) Twister Client obtains a resources pool from Cloud controller dynamically. 3) The compute nodes 

download the user data and application jar file from storage Cloud to their own local disk.  

 

Figure 8. Architecture of Twister coupled with Eucalyptus 
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