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Abstract— Most scientific data analysis computations consume 

voluminous data distributed across multiple geographic 

locations. Moving this data to computational resources is a 

standard practice in such data analyses. Several factors preclude 

this movement of data to computational resources; these factors 

include the sheer volume of the data, the availability of network 

bandwidth, and the policies governing the movement of data that 

have been put in place by the institutions and individuals that 

own the data in question. To cope with such a scenario, an 

increasingly appealing choice is to move computations to the 

data. This is made possible by the fact that increasingly powerful 

commodity machines make it reasonable to assume that powerful 

compute capabilities will be available in close network proximity 

to the data. In this paper, we present an architecture for 

distributed data analysis, which relies on the notion of moving 

computations to data. For an important class of scientific 

applications this approach is especially well-suited. 

 
Index Terms— Collaborative work, Distributed computing, 

Distributed information systems, Data processing 

 

I. INTRODUCTION 

N recent years, there has been an exponential growth in the 

amount of data processed by the scientific applications.  

Most of these data is distributed across different geographical 

locations. For example, many experiments such as CMS and 

Atlas under the Large Hadron Collider will produce an 

enormous amount of data, once it is in operation. It is expected 

to produce tens of Petabytes (PB) of data per year even after 

multiple layers of online filtrations. These data will be stored 

in many geographic locations.  The Large Synoptic Survey 

Telescope produces astronomical images reaching about 20 

Terabytes (TB) a night. Similarly, large distributed data sets 

are available in many other domains such as biology, 

chemistry, seismology, and healthcare. Most data analyses on 

these data fall into the category of data intensive analysis, 

where the CPU:IO ratios are well below 10000:1[1]. 

The state of the art requires moving data to the processing 
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power to perform various analyses on these distributed data. 

Many grid technologies focus on building a large computation 

power by connecting distributed compute resources to a single 

computation grid. These computation grids provide the 

necessary flops for today's scientific data analyses. However, 

the movement of data is inevitable when a large amount of 

distributed data is processed using the grid technology. 

Although we use matured high performance file transfer 

protocols such as GridFTP[2], still, the transfer of large 

amount of data over wide area networks is not an optimized 

solution. 

Cycle harvesting techniques such as Berkeley Open 

Infrastructure for Network Computing [3] achieve massive 

computational power by aggregating the compute time 

donated by the voluntary participants around the globe. This 

technique requires the movement of both data and the 

computation in a more fine grain level, and an analysis takes 

longer time to complete. 

Jim Gray presented a key matrix for various costs 

associated with moving data over the Internet [4]. He pointed 

out that the movement of data over a wide area network to a 

computational resource is only worth if the problem requires 

more than 100,000 CPU cycles per byte of data. 

Apart from the above, some special limitations exist, where 

the movement of data is constrained due to the rules and 

regulations of organizations and the countries, which own 

these data. For example, when performing various data 

analyses on healthcare related data, the data itself is not 

allowed to be moved, but only the computed averages. 

Amazon.com’s Simple Storage Service(S3) and its Elastic 

Compute Cloud(EC2) provide a new paradigm for data 

storage and compute power.  However, large data transfers 

from the S3 storage system to the outside, increase the cost of 

using S3. The data transfer between the S3 storage system and 

the EC2 compute cloud is free. By adopting the approach of 

moving computation to data, and by performing the necessary 

computations on EC2, the users can eliminate the costly data 

transfers between S3 and the other compute resources.  

According to the above, we believe that this approach-

moving computation to data – will allow us to accrue 

significant performance benefits in processing voluminous, 

distributed data, as it precludes the necessity of voluminous 

data transfers by performing the analysis (either entirely or a 

large portion of it) in a close network-proximity to the data. 

The availability of results of data analysis in near real-time 

is another especially critical feature in domains such as 
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meteorology and seismology. This real-time availability of 

results is also desirable in other domains such as particle 

physics since it allows physicists to perform multiple analyses 

until a desired goal is achieved. Scalability is a crucial 

consideration to support real time or near real-time results. 

We are interested in the class of scientific applications 

where the processing exhibits the composable property. Here, 

the processing can be split into smaller computations, and the 

partial-results from these computations merged after some 

post-processing to constitute the final result. This is distinct 

from the tightly-coupled parallel applications where the 

synchronization constraints are typically in the order of 

microseconds instead of the 50-200 millisecond coupling 

constraints in composable systems. The level of coupling 

between the sub-computations is higher than those in the 

decoupled-model such as the multiple independent sub-tasks 

in job processing systems such as Nimrod[5]. 

To delve a little deeper into the composable property, 

consider a common practice in many particle physics data 

analyses where the aim is to identify a particular type of 

events within a collection of millions of events. The result of 

such analysis would be a histogram of possible events. We can 

easily break the initial set of events into smaller subsets and 

run the same analysis software on these subsets concurrently. 

The resulting histograms can then be combined to produce the 

final result.  

Online retrieval of information from distributed information 

collections is another example of composable computation.  

The results obtained from each information collection are 

communicated to the client application where it merges the 

results according to their relevance values. Google’s map-

reduce framework [6] is also based on the composability 

property. 

When the volume of the data is large, even the tightly 

coupled parallel applications can withstand looser 

synchronization constraints. This observation can be exploited 

to highlight the composable features of the algorithm, and 

thereby achieve better scalability. We are currently working 

on enhancing the scalability of a clustering and dimension 

reduction algorithm[7], implemented using MPI like 

synchronization. The initial data set is divided into sub data 

sets, and the program is executed on each data set in a 

different computer. At the synchronization points, the results 

are communicated to another set of services, which performs 

the necessary operations, and post the results back(equivalent 

to MPI_Allreduce). This will continue until the entire 

computation is over. 

The composable property of an application not only 

supports better scalability, but also supports moving 

computation to data.  In this paper, we present an architecture 

for composable scientific data analysis, which utilizes the 

approach of moving computation to data and also achieve 

better scalability.  Security and fault tolerance are two crucial 

aspects, which we support in our architecture. Collaboration in 

data analysis is also a feature of our architecture. 

The rest of the paper is organized as follows. Section II 

discusses the proposed architecture and the core software 

components. Section III of the paper discusses the advanced 

research prototype of the system and section IV presents the 

initial performance evaluation of our system. Section V 

discusses the related work in this area of research. We present 

our conclusions and future work in section VI. 

 

II. ARCHITECTURE 

A. Proposed Architecture 

 

Two main features that our architecture supports are: (i) 

composable data analysis and (ii) collaboration. We expect the 

data and the computational power used for various analyses 

can be distributed across many organizations, and hence our 

architecture should be able to support such settings. These 

factors define the main functionalities that our architecture 

should support, namely: 

1. Locate data and the computational power available 

2. Perform the analysis in a scalable manner 

3. Retrieve results/partial results or locations of results 

4. Collaborative data analysis 

5. Perform the above in secure and fault tolerant manner 

 

We derive an architecture capable of performing the above 

by integrating three key software subsystems. They are: 

1. A software system that performs the role of a gateway to 

both data and computational resources in a particular 

domain, and also handles the computation jobs (we call 

this Compute Server) 

2. A content dissemination network as the communication 

sub system 

3. Software component to keep track of the entities, analysis 

sessions, and the meta data of the entire system. 

 Fig. 1 shows the architecture of the proposed system with 

the above software components. 

The proposed architecture uses a Compute Server (CX in 

Fig. 1) at each remote site where the data and the 

computational power are available. It can operate at each 

individual computer or in a head node of a cluster or in a node 

(or nodes) of a grid-computing infrastructure. The only 

assumption we made with respect to the Compute Server is 

that it is in a close network proximity to the data and data is 

accessible to it. 

We use publish/subscribe messaging feature of 

NaradaBrokering[8] as the main communication mechanism 

in our architecture. NaradaBrokering is a content distribution 

infrastructure, and comprises of a distributed network of 

cooperating broker nodes. It can be used as a message-

oriented middleware or as a notification framework. 

Communication within NaradaBrokering is asynchronous, and 

the substrate places no constraints on the size, rate, or scope of 

the interactions encapsulated within events or the number of 

entities present in the system. In addition, it incorporates 

support for wide verity of transport protocols making it an 

ideal communications infrastructure for heterogeneous 

distributed systems. 

Distributed set of agents keeps track of the overall state of 

the system including the available Compute Servers, and the 
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data accessible to each Compute Server. We have given 

complete details of a scalable approach to tracking entities in a 

distributed system in a secure and authorized manner in [9]. 

Agents also keep track of the data analysis sessions, and use a 

gossip protocol to synchronize this information between the 

agents. Entities in the system use a discovery mechanism to 

locate agents. 

 

 
Fig. 1.  Architecture of the Proposed Collaborative Data Analysis Framework. 

 

B. Distributed Analysis 

At the startup, each Compute Server publishes its 

availability and the data that it can access to an agent, which 

starts keeping track of the Compute Server and the data 

accessible to it. A scientist who needs to perform a distributed 

data analysis, first, discovers an agent using his/her client 

application, and then proceeds to locate the Compute Server 

and the data using the agent. After identifying the necessary 

data, the scientist creates a data analysis session by specifying 

the location of the data, the analysis functions, and the 

configurations such as communication topics over which the 

results are published. Then the client application constructs the 

necessary computation job descriptions, and publishes them 

using NaradaBrokering. The client application also relays this 

information to the agent to facilitate the collaborative data 

analysis. 

The Compute Servers subscribed to topics receive job 

descriptions via NaradaBrokering. Once a Compute Server 

receives a job description, it performs the necessary security 

constraints, and proceeds to execut the job in a temporary 

directory that it created to hold the various data files related to 

the job. At the end of each job, the Compute Server publishes 

the output of the job using the messaging substrate. These 

results are directly received by the client applications where 

they perform necessary post processing functions such as 

merging, fitting, and plotting operations. 

The client application may not necessarily perform the final 

post processing functions as stated above. At the start of each 

analysis, the Compute Servers can be instructed to send the 

location of the results, instead of the results itself after an 

analysis job. This way the client application can start another 

layer of the analysis from these results without moving the 

data from its original location. This feature of our architecture 

allows hierarchical data analyses where the analyses are 

performed in a series of stages. 

The scientist can decide the granularity of the analysis jobs 

by specifying a value for the grouping of data to each sub 

analysis. This information is used by the Compute Server to 

start multiple sub analyses (as shown RXMX in Fig. 1) once a 

job description is received. The composability nature of the 

analysis allows this fragmentation where each sub analysis 

operates on a part of the data. This feature in our architecture 

improves the overall scalability of the data analyses, and it can 

utilize the computational power available as a cluster of 

computers or as many-core architectures better. 

The architecture also supports collaboration on sharing 

results of a particular data analysis among a group of 

collaborating participants. We have given a complete 

description of the collaborative aspect of the above 

architecture in [10] and hence do not describe it here. 

 

C. Security 

The above infrastructure spans multiple domains of control, 

and therefore the security aspect of the framework is an 

important consideration. We use NaradaBrokering's secure 

and authorized end-to-end delivery of streams feature [11] to 

secure the communications between all the entities in our 

architecture. This ensures that only the authorized entities can 

discover and publish messages to the topics created within the 

framework. The analysis job descriptions carry the 

credentials(a X.501 security certificate) of the scientists who 

initiate the analysis. A gridmap file, similar to other grid 

frameworks such as the GlobusToolkit [12], is used at the 

Compute Servers to map the Distinguished Name of the 

credential to the user account in the computational resource. 

This ensures that a particular scientist can only access the data 

and the computational resources authorized to him/her by the 

domain.  

 

D. Fault Tolerance 

The proposed architecture does not have a central control 

point. The messaging infrastructure can be configured as a set 

of broker network, which supports fault tolerance [13]. A 

collection of agents is used to maintain the overall status of the 

system. Agents use a gossip protocol to synchronize the status 

of the entities that they maintain at each agent. The first task, 

the client application performs, before any data analysis, is to 

discover an agent. Once discovered, the client application uses 
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that agent to discover data and Compute Servers available and 

proceed with the analysis. Having multiple agents prevents the 

failure of some agents from stopping the function of the entire 

system. Failure of a Compute Server results an incomplete 

result set. However, the composability property of the data 

analysis allows users to restart the analysis in a different 

instance of the Compute Server for the data files that have not 

been analyzed. In our current architecture, user intervention is 

required in selecting a new Compute Server and for restarting 

the analysis. 

III. IMPLEMENTATION 

As part of an effort funded by the DoE we are working with 

the High Energy Physics group at Caltech with their particle 

physics analysis tool – Clarens, which allows scientists to 

launch computations related to their analysis, followed by 

visualization of histograms produced by these computations. 

ROOT[14] was the data analysis framework for the particle 

physicist, and the Clarens server also supports execution of 

data analysis functions written in ROOT.  

The goal of the analysis is to execute a set of analysis 

functions on a collection of data files produced by the high-

energy physics experiments. After processing each data file, 

the analysis produces a histogram of identified features. These 

histograms are then combined to produce the final result of the 

overall analysis. The physicists, first, try the analysis functions 

on the data available locally, and once the analysis functions 

are fine-tuned, they want the functions to be performed on all 

the relevant data available. The sheer volume and the 

distributed nature of the data require a better scalable 

architecture to perform the above. 

We used the above data analysis as our first proof of 

concept implementation of the proposed architecture, and 

demonstrated that our system can perform the data analysis in 

a much more scalable manner while minimizing the 

movement of data. 

Clarens is a grid enabled web service framework, 

implemented in Python, which supports most common web 

service protocol stacks comprising HTTP and SOAP/XML-

RPC with SSL/TLS encryption and X.509 certificate-based 

authentication. Although the server implementation of Clarens 

is Python-based, it provides client libraries for other languages 

such as Python, Iguana, JavaScript, and most importantly, the 

C++ based interpreted language (CINT [15]) supported by the 

ROOT Analysis framework. All the above features make the 

Clarens an ideal candidate for the Compute Server in our 

architecture, and hence we decided to use it for this proof of 

concept. 

NaradaBrokering is implemented in Java and it is the main 

communication medium in our architecture. Therefore, every 

entity in the architecture should be able to access 

NaradaBrokering. We developed a C++ API for 

NaradaBrokering so that it can be accessible from both ROOT 

and Python (Clarens is implemented in Python) using a set of 

wrappers. During the first phase of the work, we exclude the 

implementation of agents, and we are currently working on 

completing the implementation to comply with the proposed 

architecture.  

Fig. 2 shows a screenshot of the user interface captured 

during one of our benchmarks. The top right corner of the 

image shows the available Clarens servers (in this case, there 

are three). Once a server is located, the user interface displays 

the number of data files accessible to each Clarens server. 

Then the user creates a session specifying the number of data 

files to be grouped into each analysis job (we call them 

rootlets). At this point, the interface displays the individual 

analysis jobs under the corresponding Clarens server. Next, 

the user can proceed to submit these jobs to Clarens servers 

using the user interface. 

 

 
Fig. 2.  User Interface of Proof of Concept Implementation. 

 

At the end of processing each rootlet, the respective Clarens 

server notifies the client by publishing the result. Once a result 

event is received, the user interface performs the necessary 

post-processing. In our use-case, the size of a single data file is 

33MB and we group multiple of these files for a single 

execution unit (rootlet) for the analysis. The resulting 

histogram of an analysis job is nearly 9KB in size. Once a 

histogram is received by the user interface, it merges the 

histogram with the existing histograms and executes a 

―fitting‖ function to fit a curve to the available data, and 

finally, it updates the current result displayed in the canvas. It 

also shows the progress of the overall data analysis by 

changing the color of each compute job shown on the canvas. 

IV. RESULTS 

We performed several benchmarks to evaluate the 

scalability of the proof of concept implementation. Fig. 3 

shows the benchmark setup we used for all our measurements. 

We setup three Clarens servers in three different computers, 

and placed an equal amount (but different data) of data in each 

computer. Although we placed the data on the computers 

where the Clarens server are installed, it is not a must. The 

only requirement in this regard is that the Clarens servers 

should be able to access the data. We placed nearly 2.11 GB 

of data in each computer. 

First, we measured the various execution times involved in 

the analysis application that we use. Fig, 4 shows our findings. 

In Fig. 4 the data analysis is performed in one of the servers 

(Server1 in Fig. 3) and the corresponding post processing is 
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performed in the client’s computer. 

Next, we performed a benchmark to evaluate the scalability 

of our implementation with respect to a single Clarens server. 

We measured the total execution time of the analysis by 

varying the number of sub execution units (rootlets). Fig. 5 

shows the results of the above benchmark. 

 

 
Fig. 3.  Benchmark Setup.  

 

 
Fig. 4.  Main Processing Tasks and their Execution Times 

 

The results clearly indicate that the increase in the number 

of sub analyses reduces the overall data analysis time (bottom 

line in the graph – Fig. 5). In our use case, each sub analysis 

produce a histogram of similar size (≈ 9KB in size) 

irrespective of the amount of data analyzed. Therefore, as we 

increase the number of sub execution units, the total 

communication overhead, the job creation overhead, and the 

post processing costs increase. This is the reason for the shift 

in the top line (total time) in the graph (Fig. 5). 

After measuring the scalability using a single Clarens 

server, we performed a similar benchmark including all three 

servers to simulate a distributed data analysis scenario. The 

amount of data analyzed is three times larger (≈6.33 GB) than 

the earlier benchmark. Fig. 6 shows the results of the above 

benchmark. 

 

 
Fig. 5.  Data Analysis Time under Varying Number of Sub Analysis (rootlets) 

Performed using One Clarens Server (Compute Server) 

 

 Fig. 6.  Data Analysis Time under varying Number of Sub Analysis (rootlets) 

Performed in Three Clarens Servers (Compute Server) to Simulate a 

Distributed Data Analysis Scenario. 

 

Fig. 6 clearly highlights the scalability in our architecture. 

Even though the data set we used in this benchmark is three 

times larger than the previous one, the overall minimum data 

analysis time is still closer to the minimum value in previous 

benchmark. As we increase the number of sub analysis, after a 

certain point, the overhead costs associated with the 

communication, job creation and the post processing 

dominates the overall data analysis cost. This is the reason for 

the upward shift in the top line of the graph in Fig. 6.  

The amount of the data transferred between the Client 

Application and the Clarens servers depends on two factors 

viz. (i) the size job description (including the data analysis 

functions) and (ii) the total amount of results generated from 

the sub analyses. Although the size of the job description does 

not change with the number of sub analyses performed, as we 

increase the number of sub analyses, the amount of data 

transferred as results increases. However, in our use case, the 

total amount of data transferred between the Client 

Application and the Clarens servers is less than 1 MB. 

In hierarchical data analyses, the results generated from one 
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set of sub analyses may be the input to the next set of sub 

analyses. Therefore, the amount of data movement is higher 

than a two-step data analyses. However, by performing a large 

fraction of the analysis in a close network proximity to the 

data we can avoid the bulk data transfers using our 

architecture. 

 

V. RELATED WORK 

Most scientific applications can be categorized either as 

compute intensive or as data intensive applications. 

Performing the computation in multiple compute resources is 

the key concept in parallelization, and it is often exploited to 

achieve better scalability for the application. Many grid 

infrastructures[16], such as Open Sceince Grid[17] and 

TeraGrid[18] and also the cycle harvesting techniques such as 

BOINC, focus on building a large computational power by 

integrating distributed set of compute resources to a single 

computation grid. This approach has proven to be very 

successful in performing large scientific analyses and 

simulations that require large processing power. However, the 

above model does not fit best to the second category of 

scientific applications i.e. the data intensive applications, as 

the underlying infrastructure requires moving the data to the 

computational power, which is inefficient, costly in terms of 

network bandwidth, and sometimes impossible due to rules 

and regulations. 

Our architecture provides a scalable framework for 

performing data intensive scientific applications that are 

composable in nature. We do this by adopting the approach –

moving computation to data. We assume that the scientist has 

access to a set of computers, and that these computers are able 

to access the data needed for the computations. Scientists have 

continued to prefer this model due to its responsiveness and 

the ability to launch multiple concurrent experiments while 

enforcing security constraints.  

Google’s map-reduce programming paradigm exploit the 

composability feature to achieve scalability. Jeffrey Dean and 

Sanjay Ghemawat  discuss the map reduce programming style 

in detail, and also provide sample use cases relevant to 

Google’s computation needs such as computing ReverseWeb-

Link Graph , performing distributed sorts etc, on the large 

volume of information collections they have. Rob Pike et al.  

introduce the programming language Sawzall[19] that is 

developed in Google to streamline the mapreduce style 

programming. The Sawzall also provides various library 

routines specific to the domain of web search related data 

processing. Google’s mapreduce implementation has the 

following general characteristics; (i) Data is stored in a 

distributed file system (Google File System- GFS[20]), (ii) 

Processing is handled by large clusters of shared nothing 

commodity nodes, and (iii)Intermediate results are stored 

locally and their locations are communicated to the required 

processes. The availability of data in a single file system 

favors their way of using  the  above paradigm. However, this 

assumption does not hold true for the scientific applications 

processing data distributed across different organizations. In 

addition, the closed operation (both data and computational 

power is available within the organizational boundaries) 

allows them to relax the security constraints.  

Dryad presented by Micheal Isard et al. is a distributed 

execution engine for coarse grain data parallel 

applications[21]. It combines the mapreduce programming 

style with dataflow graphs to solve the computation tasks. 

Dryad's computation task is a set of vertices connected by 

communication channels, and hence it processes the graph to 

solve the problem. Hung-chin Yang et al.[22] adds another 

phase ―merge‖ to mapreduce style programming mainly to 

handle the various join operations in database queries. 

Hadoop[23] is an apache project that support map-reduce style 

programming. 

One observation we made regarding the map reduce 

paradigm and the composable scientific applications is that the 

adaptation of a generic programming framework for scientific 

applications is difficult. The scientific applications have the 

domain specific constraints in implementing them. For 

example, the particle physics data analysis we used, is 

completely implemented in ROOT specific C++ 

language(CINT), and the post processing functions are 

embedded in a graphical user interface, again developed using 

CINT. This observation leads us to place the programming 

model in our architecture in a very abstract level.  

We expect the scientists to implement two functions: first, 

the Compute Task and the second the Post Processing 

Function ( or the driver of the remaining analysis). These can 

simply be some wrapper scripts developed to execute the 

functions that they have. Both these functions expect a 

message containing a set of bytes as the input parameter. 

These messages can be encoded using any scheme preferable 

to the scientists such as SOAP, JSON[24] etc. In the Compute 

Function, the scientist program, how the results of the 

computation are communicated back to the Post processing 

Function as well. We provide the necessary API for the 

content dissemination network and the other system 

configurations. Once a result is received by the Post 

Processing Function, again as a message, it can decide 

whether to proceed with another analysis or simply render the 

results in a GUI. We believe that this approach is much more 

easier for scientist to adopt than a programming paradigm. 

Lei Pan et al. in their paper[25] present an agent based 

implementation to execute sequential algorithms in much 

more scalable manner. Their architecture can be used to avoid 

moving large amounts of data by placing the agents in a close 

network proximity to the data. However, the paper does not 

describe how such a setting can be used for processing data 

distributed across organizational boundaries.  

PROOF [26] provides a cluster based scalable solution for 

analyzing large amount of particle physics data files in 

parallel.  A master node controls PROOF’s analyses. PROOF 

also supports multi-tier masters. The tree structured master-

participant connections may cause a single point of failure 

where as in the proposed architecture we do not impose any 

such single point of control over the data analysis. Also the 

metadata regarding the analysis jobs are maintained by 

multiple agents. Client can always connect to a different agent 

if the one that it was connected to fails 

 GRID IR [27, 28] describes a proposed architecture for 

building an information retrieval system based on grid 
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technology where Matthew at el. explain how the subtask 

processing can be exploited using grid technology. However, 

the document does not explain a possible method to combine 

the retrieved results by multiple searches.  J. Callan [29] 

discusses the advantages of using multiple databases to 

retrieve information with a detailed discussion on merging 

document rankings from multiple results sets from different 

databases.  

N. Yamamoto et al. [30] discuss worldwide parallel and 

distributed data analysis in the observational astronomical 

field based on a network shared file system Gfarm. Here the 

main focus is to allow multiple processors to access data files 

and their replicas in an efficient manner. 

 

VI. CONCLUSION AND FUTURE WORK 

 

 In this paper, we have presented a scalable architecture for 

composable data analysis tasks. Our architecture adopts the 

approach -moving computation to data - and thereby 

minimizes the data movement present in many standard data 

analyses techniques. The architecture exploits the composable 

property of the class of data analyses that we are interested, to 

achieve better scalability by executing the overall analysis as a 

collection of sub analysis that can be executed concurrently. 

The proposed architecture is domain-independent, failure 

resilient, and enforces security constraints such as 

authorization, integrity and confidentiality. Ultimately, we 

expect that for the class of applications that have the 

composable property, this research would make the scientific 

analysis process faster, collaborative and more efficient.  

 The initial proof of concept implementation provides 

promising results establishing the claims that we made on 

scalability and data movement. We are working on completing 

the implementation with respect to the proposed architecture 

and also to come with a more general implementation that can 

be used in other scientific data analysis tasks with minimum 

modifications. Hierarchical data analysis using our 

architecture is another area that we are currently working on, 

and we expect that the knowledge gain in this path will also 

help us to understand the class of applications and their 

requirements better and hence allow us to refine the 

architecture. We also expect this research to extend to a class 

of applications that use a variant of workflow that satisfies 

real-time execution constraints [31]. 
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