
dadc113s1 1



Abstract— Most scientific data analysis computations consume

voluminous data distributed across multiple geographic

locations. Moving this data to computational resources is a

standard practice in such data analyses. Several factors preclude

this movement of data to computational resources; these factors

include the sheer volume of the data, the availability of network

bandwidth, and the policies governing the movement of data that

have been put in place by the institutions and individuals that

own the data in question. To cope with such a scenario, an

increasingly appealing choice is to move computations to the

data. This is made possible by the fact that increasingly powerful

commodity machines make it reasonable to assume that powerful

compute capabilities will be available in close network proximity

to the data. In this paper, we present an architecture for

distributed data analysis, which relies on the notion of moving

computations to data. For an important class of scientific

applications this approach is especially well-suited.

Index Terms— Collaborative work, Distributed computing,

Distributed information systems, Data processing

I. INTRODUCTION

N recent years, there has been an exponential growth in the

amount of data processed by the scientific applications.

Most of these data is distributed across different geographical

locations. For example, many experiments such as CMS and

Atlas under the Large Hadron Collider will produce an

enormous amount of data, once it is in operation. It is expected

to produce tens of Petabytes (PB) of data per year even after

multiple layers of online filtrations. These data will be stored

in many geographic locations. The Large Synoptic Survey

Telescope produces astronomical images reaching about 20

Terabytes (TB) a night. Similarly, large distributed data sets

are available in many other domains such as biology,

chemistry, seismology, and healthcare. Most data analyses on

these data fall into the category of data intensive analysis,

where the CPU:IO ratios are well below 10000:1[1].

The state of the art requires moving data to the processing

Manuscript received March 7, 2008. This work was supported by the

National Science Foundation's Division of Earth Sciences under Grant EAR-

0446610, and the Department of Energy under STTR grant number DE-FG02-
 J. Ekanayake is with the Indiana University, Bloomington, IN 47405

USA. (corresponding author to provide phone: 812-855-4810; fax: 812-856-

7972; e-mail: jekanaya@ cs.indiana.edu).
S. Pallickara is with Indiana University, Bloomington, IN 47405 USA. (e-

mail: spallick@indiana.edu).

G. Fox is with Indiana University, Bloomington, IN 47405 USA (e-mail:
gcf@indiana.edu).

power to perform various analyses on these distributed data.

Many grid technologies focus on building a large computation

power by connecting distributed compute resources to a single

computation grid. These computation grids provide the

necessary flops for today's scientific data analyses. However,

the movement of data is inevitable when a large amount of

distributed data is processed using the grid technology.

Although we use matured high performance file transfer

protocols such as GridFTP[2], still, the transfer of large

amount of data over wide area networks is not an optimized

solution.

Cycle harvesting techniques such as Berkeley Open

Infrastructure for Network Computing [3] achieve massive

computational power by aggregating the compute time

donated by the voluntary participants around the globe. This

technique requires the movement of both data and the

computation in a more fine grain level, and an analysis takes

longer time to complete.

Jim Gray presented a key matrix for various costs

associated with moving data over the Internet [4]. He pointed

out that the movement of data over a wide area network to a

computational resource is only worth if the problem requires

more than 100,000 CPU cycles per byte of data.

Apart from the above, some special limitations exist, where

the movement of data is constrained due to the rules and

regulations of organizations and the countries, which own

these data. For example, when performing various data

analyses on healthcare related data, the data itself is not

allowed to be moved, but only the computed averages.

Amazon.com’s Simple Storage Service(S3) and its Elastic

Compute Cloud(EC2) provide a new paradigm for data

storage and compute power. However, large data transfers

from the S3 storage system to the outside, increase the cost of

using S3. The data transfer between the S3 storage system and

the EC2 compute cloud is free. By adopting the approach of

moving computation to data, and by performing the necessary

computations on EC2, the users can eliminate the costly data

transfers between S3 and the other compute resources.

According to the above, we believe that this approach-

moving computation to data – will allow us to accrue

significant performance benefits in processing voluminous,

distributed data, as it precludes the necessity of voluminous

data transfers by performing the analysis (either entirely or a

large portion of it) in a close network-proximity to the data.

The availability of results of data analysis in near real-time

is another especially critical feature in domains such as

An Architecture for Composable Scientific Data

Analysis

Jaliya Ekanayake, Shrideep Pallickara, and Geoffrey Fox

I

dadc113s1 2

meteorology and seismology. This real-time availability of

results is also desirable in other domains such as particle

physics since it allows physicists to perform multiple analyses

until a desired goal is achieved. Scalability is a crucial

consideration to support real time or near real-time results.

We are interested in the class of scientific applications

where the processing exhibits the composable property. Here,

the processing can be split into smaller computations, and the

partial-results from these computations merged after some

post-processing to constitute the final result. This is distinct

from the tightly-coupled parallel applications where the

synchronization constraints are typically in the order of

microseconds instead of the 50-200 millisecond coupling

constraints in composable systems. The level of coupling

between the sub-computations is higher than those in the

decoupled-model such as the multiple independent sub-tasks

in job processing systems such as Nimrod[5].

To delve a little deeper into the composable property,

consider a common practice in many particle physics data

analyses where the aim is to identify a particular type of

events within a collection of millions of events. The result of

such analysis would be a histogram of possible events. We can

easily break the initial set of events into smaller subsets and

run the same analysis software on these subsets concurrently.

The resulting histograms can then be combined to produce the

final result.

Online retrieval of information from distributed information

collections is another example of composable computation.

The results obtained from each information collection are

communicated to the client application where it merges the

results according to their relevance values. Google’s map-

reduce framework [6] is also based on the composability

property.

When the volume of the data is large, even the tightly

coupled parallel applications can withstand looser

synchronization constraints. This observation can be exploited

to highlight the composable features of the algorithm, and

thereby achieve better scalability. We are currently working

on enhancing the scalability of a clustering and dimension

reduction algorithm[7], implemented using MPI like

synchronization. The initial data set is divided into sub data

sets, and the program is executed on each data set in a

different computer. At the synchronization points, the results

are communicated to another set of services, which performs

the necessary operations, and post the results back(equivalent

to MPI_Allreduce). This will continue until the entire

computation is over.

The composable property of an application not only

supports better scalability, but also supports moving

computation to data. In this paper, we present an architecture

for composable scientific data analysis, which utilizes the

approach of moving computation to data and also achieve

better scalability. Security and fault tolerance are two crucial

aspects, which we support in our architecture. Collaboration in

data analysis is also a feature of our architecture.

The rest of the paper is organized as follows. Section II

discusses the proposed architecture and the core software

components. Section III of the paper discusses the advanced

research prototype of the system and section IV presents the

initial performance evaluation of our system. Section V

discusses the related work in this area of research. We present

our conclusions and future work in section VI.

II. ARCHITECTURE

A. Proposed Architecture

Two main features that our architecture supports are: (i)

composable data analysis and (ii) collaboration. We expect the

data and the computational power used for various analyses

can be distributed across many organizations, and hence our

architecture should be able to support such settings. These

factors define the main functionalities that our architecture

should support, namely:

1. Locate data and the computational power available

2. Perform the analysis in a scalable manner

3. Retrieve results/partial results or locations of results

4. Collaborative data analysis

5. Perform the above in secure and fault tolerant manner

We derive an architecture capable of performing the above

by integrating three key software subsystems. They are:

1. A software system that performs the role of a gateway to

both data and computational resources in a particular

domain, and also handles the computation jobs (we call

this Compute Server)

2. A content dissemination network as the communication

sub system

3. Software component to keep track of the entities, analysis

sessions, and the meta data of the entire system.

 Fig. 1 shows the architecture of the proposed system with

the above software components.

The proposed architecture uses a Compute Server (CX in

Fig. 1) at each remote site where the data and the

computational power are available. It can operate at each

individual computer or in a head node of a cluster or in a node

(or nodes) of a grid-computing infrastructure. The only

assumption we made with respect to the Compute Server is

that it is in a close network proximity to the data and data is

accessible to it.

We use publish/subscribe messaging feature of

NaradaBrokering[8] as the main communication mechanism

in our architecture. NaradaBrokering is a content distribution

infrastructure, and comprises of a distributed network of

cooperating broker nodes. It can be used as a message-

oriented middleware or as a notification framework.

Communication within NaradaBrokering is asynchronous, and

the substrate places no constraints on the size, rate, or scope of

the interactions encapsulated within events or the number of

entities present in the system. In addition, it incorporates

support for wide verity of transport protocols making it an

ideal communications infrastructure for heterogeneous

distributed systems.

Distributed set of agents keeps track of the overall state of

the system including the available Compute Servers, and the

dadc113s1 3

data accessible to each Compute Server. We have given

complete details of a scalable approach to tracking entities in a

distributed system in a secure and authorized manner in [9].

Agents also keep track of the data analysis sessions, and use a

gossip protocol to synchronize this information between the

agents. Entities in the system use a discovery mechanism to

locate agents.

Fig. 1. Architecture of the Proposed Collaborative Data Analysis Framework.

B. Distributed Analysis

At the startup, each Compute Server publishes its

availability and the data that it can access to an agent, which

starts keeping track of the Compute Server and the data

accessible to it. A scientist who needs to perform a distributed

data analysis, first, discovers an agent using his/her client

application, and then proceeds to locate the Compute Server

and the data using the agent. After identifying the necessary

data, the scientist creates a data analysis session by specifying

the location of the data, the analysis functions, and the

configurations such as communication topics over which the

results are published. Then the client application constructs the

necessary computation job descriptions, and publishes them

using NaradaBrokering. The client application also relays this

information to the agent to facilitate the collaborative data

analysis.

The Compute Servers subscribed to topics receive job

descriptions via NaradaBrokering. Once a Compute Server

receives a job description, it performs the necessary security

constraints, and proceeds to execut the job in a temporary

directory that it created to hold the various data files related to

the job. At the end of each job, the Compute Server publishes

the output of the job using the messaging substrate. These

results are directly received by the client applications where

they perform necessary post processing functions such as

merging, fitting, and plotting operations.

The client application may not necessarily perform the final

post processing functions as stated above. At the start of each

analysis, the Compute Servers can be instructed to send the

location of the results, instead of the results itself after an

analysis job. This way the client application can start another

layer of the analysis from these results without moving the

data from its original location. This feature of our architecture

allows hierarchical data analyses where the analyses are

performed in a series of stages.

The scientist can decide the granularity of the analysis jobs

by specifying a value for the grouping of data to each sub

analysis. This information is used by the Compute Server to

start multiple sub analyses (as shown RXMX in Fig. 1) once a

job description is received. The composability nature of the

analysis allows this fragmentation where each sub analysis

operates on a part of the data. This feature in our architecture

improves the overall scalability of the data analyses, and it can

utilize the computational power available as a cluster of

computers or as many-core architectures better.

The architecture also supports collaboration on sharing

results of a particular data analysis among a group of

collaborating participants. We have given a complete

description of the collaborative aspect of the above

architecture in [10] and hence do not describe it here.

C. Security

The above infrastructure spans multiple domains of control,

and therefore the security aspect of the framework is an

important consideration. We use NaradaBrokering's secure

and authorized end-to-end delivery of streams feature [11] to

secure the communications between all the entities in our

architecture. This ensures that only the authorized entities can

discover and publish messages to the topics created within the

framework. The analysis job descriptions carry the

credentials(a X.501 security certificate) of the scientists who

initiate the analysis. A gridmap file, similar to other grid

frameworks such as the GlobusToolkit [12], is used at the

Compute Servers to map the Distinguished Name of the

credential to the user account in the computational resource.

This ensures that a particular scientist can only access the data

and the computational resources authorized to him/her by the

domain.

D. Fault Tolerance

The proposed architecture does not have a central control

point. The messaging infrastructure can be configured as a set

of broker network, which supports fault tolerance [13]. A

collection of agents is used to maintain the overall status of the

system. Agents use a gossip protocol to synchronize the status

of the entities that they maintain at each agent. The first task,

the client application performs, before any data analysis, is to

discover an agent. Once discovered, the client application uses

dadc113s1 4

that agent to discover data and Compute Servers available and

proceed with the analysis. Having multiple agents prevents the

failure of some agents from stopping the function of the entire

system. Failure of a Compute Server results an incomplete

result set. However, the composability property of the data

analysis allows users to restart the analysis in a different

instance of the Compute Server for the data files that have not

been analyzed. In our current architecture, user intervention is

required in selecting a new Compute Server and for restarting

the analysis.

III. IMPLEMENTATION

As part of an effort funded by the DoE we are working with

the High Energy Physics group at Caltech with their particle

physics analysis tool – Clarens, which allows scientists to

launch computations related to their analysis, followed by

visualization of histograms produced by these computations.

ROOT[14] was the data analysis framework for the particle

physicist, and the Clarens server also supports execution of

data analysis functions written in ROOT.

The goal of the analysis is to execute a set of analysis

functions on a collection of data files produced by the high-

energy physics experiments. After processing each data file,

the analysis produces a histogram of identified features. These

histograms are then combined to produce the final result of the

overall analysis. The physicists, first, try the analysis functions

on the data available locally, and once the analysis functions

are fine-tuned, they want the functions to be performed on all

the relevant data available. The sheer volume and the

distributed nature of the data require a better scalable

architecture to perform the above.

We used the above data analysis as our first proof of

concept implementation of the proposed architecture, and

demonstrated that our system can perform the data analysis in

a much more scalable manner while minimizing the

movement of data.

Clarens is a grid enabled web service framework,

implemented in Python, which supports most common web

service protocol stacks comprising HTTP and SOAP/XML-

RPC with SSL/TLS encryption and X.509 certificate-based

authentication. Although the server implementation of Clarens

is Python-based, it provides client libraries for other languages

such as Python, Iguana, JavaScript, and most importantly, the

C++ based interpreted language (CINT [15]) supported by the

ROOT Analysis framework. All the above features make the

Clarens an ideal candidate for the Compute Server in our

architecture, and hence we decided to use it for this proof of

concept.

NaradaBrokering is implemented in Java and it is the main

communication medium in our architecture. Therefore, every

entity in the architecture should be able to access

NaradaBrokering. We developed a C++ API for

NaradaBrokering so that it can be accessible from both ROOT

and Python (Clarens is implemented in Python) using a set of

wrappers. During the first phase of the work, we exclude the

implementation of agents, and we are currently working on

completing the implementation to comply with the proposed

architecture.

Fig. 2 shows a screenshot of the user interface captured

during one of our benchmarks. The top right corner of the

image shows the available Clarens servers (in this case, there

are three). Once a server is located, the user interface displays

the number of data files accessible to each Clarens server.

Then the user creates a session specifying the number of data

files to be grouped into each analysis job (we call them

rootlets). At this point, the interface displays the individual

analysis jobs under the corresponding Clarens server. Next,

the user can proceed to submit these jobs to Clarens servers

using the user interface.

Fig. 2. User Interface of Proof of Concept Implementation.

At the end of processing each rootlet, the respective Clarens

server notifies the client by publishing the result. Once a result

event is received, the user interface performs the necessary

post-processing. In our use-case, the size of a single data file is

33MB and we group multiple of these files for a single

execution unit (rootlet) for the analysis. The resulting

histogram of an analysis job is nearly 9KB in size. Once a

histogram is received by the user interface, it merges the

histogram with the existing histograms and executes a

―fitting‖ function to fit a curve to the available data, and

finally, it updates the current result displayed in the canvas. It

also shows the progress of the overall data analysis by

changing the color of each compute job shown on the canvas.

IV. RESULTS

We performed several benchmarks to evaluate the

scalability of the proof of concept implementation. Fig. 3

shows the benchmark setup we used for all our measurements.

We setup three Clarens servers in three different computers,

and placed an equal amount (but different data) of data in each

computer. Although we placed the data on the computers

where the Clarens server are installed, it is not a must. The

only requirement in this regard is that the Clarens servers

should be able to access the data. We placed nearly 2.11 GB

of data in each computer.

First, we measured the various execution times involved in

the analysis application that we use. Fig, 4 shows our findings.

In Fig. 4 the data analysis is performed in one of the servers

(Server1 in Fig. 3) and the corresponding post processing is

dadc113s1 5

performed in the client’s computer.

Next, we performed a benchmark to evaluate the scalability

of our implementation with respect to a single Clarens server.

We measured the total execution time of the analysis by

varying the number of sub execution units (rootlets). Fig. 5

shows the results of the above benchmark.

Fig. 3. Benchmark Setup.

Fig. 4. Main Processing Tasks and their Execution Times

The results clearly indicate that the increase in the number

of sub analyses reduces the overall data analysis time (bottom

line in the graph – Fig. 5). In our use case, each sub analysis

produce a histogram of similar size (≈ 9KB in size)

irrespective of the amount of data analyzed. Therefore, as we

increase the number of sub execution units, the total

communication overhead, the job creation overhead, and the

post processing costs increase. This is the reason for the shift

in the top line (total time) in the graph (Fig. 5).

After measuring the scalability using a single Clarens

server, we performed a similar benchmark including all three

servers to simulate a distributed data analysis scenario. The

amount of data analyzed is three times larger (≈6.33 GB) than

the earlier benchmark. Fig. 6 shows the results of the above

benchmark.

Fig. 5. Data Analysis Time under Varying Number of Sub Analysis (rootlets)

Performed using One Clarens Server (Compute Server)

 Fig. 6. Data Analysis Time under varying Number of Sub Analysis (rootlets)

Performed in Three Clarens Servers (Compute Server) to Simulate a

Distributed Data Analysis Scenario.

Fig. 6 clearly highlights the scalability in our architecture.

Even though the data set we used in this benchmark is three

times larger than the previous one, the overall minimum data

analysis time is still closer to the minimum value in previous

benchmark. As we increase the number of sub analysis, after a

certain point, the overhead costs associated with the

communication, job creation and the post processing

dominates the overall data analysis cost. This is the reason for

the upward shift in the top line of the graph in Fig. 6.

The amount of the data transferred between the Client

Application and the Clarens servers depends on two factors

viz. (i) the size job description (including the data analysis

functions) and (ii) the total amount of results generated from

the sub analyses. Although the size of the job description does

not change with the number of sub analyses performed, as we

increase the number of sub analyses, the amount of data

transferred as results increases. However, in our use case, the

total amount of data transferred between the Client

Application and the Clarens servers is less than 1 MB.

In hierarchical data analyses, the results generated from one

dadc113s1 6

set of sub analyses may be the input to the next set of sub

analyses. Therefore, the amount of data movement is higher

than a two-step data analyses. However, by performing a large

fraction of the analysis in a close network proximity to the

data we can avoid the bulk data transfers using our

architecture.

V. RELATED WORK

Most scientific applications can be categorized either as

compute intensive or as data intensive applications.

Performing the computation in multiple compute resources is

the key concept in parallelization, and it is often exploited to

achieve better scalability for the application. Many grid

infrastructures[16], such as Open Sceince Grid[17] and

TeraGrid[18] and also the cycle harvesting techniques such as

BOINC, focus on building a large computational power by

integrating distributed set of compute resources to a single

computation grid. This approach has proven to be very

successful in performing large scientific analyses and

simulations that require large processing power. However, the

above model does not fit best to the second category of

scientific applications i.e. the data intensive applications, as

the underlying infrastructure requires moving the data to the

computational power, which is inefficient, costly in terms of

network bandwidth, and sometimes impossible due to rules

and regulations.

Our architecture provides a scalable framework for

performing data intensive scientific applications that are

composable in nature. We do this by adopting the approach –

moving computation to data. We assume that the scientist has

access to a set of computers, and that these computers are able

to access the data needed for the computations. Scientists have

continued to prefer this model due to its responsiveness and

the ability to launch multiple concurrent experiments while

enforcing security constraints.

Google’s map-reduce programming paradigm exploit the

composability feature to achieve scalability. Jeffrey Dean and

Sanjay Ghemawat discuss the map reduce programming style

in detail, and also provide sample use cases relevant to

Google’s computation needs such as computing ReverseWeb-

Link Graph , performing distributed sorts etc, on the large

volume of information collections they have. Rob Pike et al.

introduce the programming language Sawzall[19] that is

developed in Google to streamline the mapreduce style

programming. The Sawzall also provides various library

routines specific to the domain of web search related data

processing. Google’s mapreduce implementation has the

following general characteristics; (i) Data is stored in a

distributed file system (Google File System- GFS[20]), (ii)

Processing is handled by large clusters of shared nothing

commodity nodes, and (iii)Intermediate results are stored

locally and their locations are communicated to the required

processes. The availability of data in a single file system

favors their way of using the above paradigm. However, this

assumption does not hold true for the scientific applications

processing data distributed across different organizations. In

addition, the closed operation (both data and computational

power is available within the organizational boundaries)

allows them to relax the security constraints.

Dryad presented by Micheal Isard et al. is a distributed

execution engine for coarse grain data parallel

applications[21]. It combines the mapreduce programming

style with dataflow graphs to solve the computation tasks.

Dryad's computation task is a set of vertices connected by

communication channels, and hence it processes the graph to

solve the problem. Hung-chin Yang et al.[22] adds another

phase ―merge‖ to mapreduce style programming mainly to

handle the various join operations in database queries.

Hadoop[23] is an apache project that support map-reduce style

programming.

One observation we made regarding the map reduce

paradigm and the composable scientific applications is that the

adaptation of a generic programming framework for scientific

applications is difficult. The scientific applications have the

domain specific constraints in implementing them. For

example, the particle physics data analysis we used, is

completely implemented in ROOT specific C++

language(CINT), and the post processing functions are

embedded in a graphical user interface, again developed using

CINT. This observation leads us to place the programming

model in our architecture in a very abstract level.

We expect the scientists to implement two functions: first,

the Compute Task and the second the Post Processing

Function (or the driver of the remaining analysis). These can

simply be some wrapper scripts developed to execute the

functions that they have. Both these functions expect a

message containing a set of bytes as the input parameter.

These messages can be encoded using any scheme preferable

to the scientists such as SOAP, JSON[24] etc. In the Compute

Function, the scientist program, how the results of the

computation are communicated back to the Post processing

Function as well. We provide the necessary API for the

content dissemination network and the other system

configurations. Once a result is received by the Post

Processing Function, again as a message, it can decide

whether to proceed with another analysis or simply render the

results in a GUI. We believe that this approach is much more

easier for scientist to adopt than a programming paradigm.

Lei Pan et al. in their paper[25] present an agent based

implementation to execute sequential algorithms in much

more scalable manner. Their architecture can be used to avoid

moving large amounts of data by placing the agents in a close

network proximity to the data. However, the paper does not

describe how such a setting can be used for processing data

distributed across organizational boundaries.

PROOF [26] provides a cluster based scalable solution for

analyzing large amount of particle physics data files in

parallel. A master node controls PROOF’s analyses. PROOF

also supports multi-tier masters. The tree structured master-

participant connections may cause a single point of failure

where as in the proposed architecture we do not impose any

such single point of control over the data analysis. Also the

metadata regarding the analysis jobs are maintained by

multiple agents. Client can always connect to a different agent

if the one that it was connected to fails

 GRID IR [27, 28] describes a proposed architecture for

building an information retrieval system based on grid

dadc113s1 7

technology where Matthew at el. explain how the subtask

processing can be exploited using grid technology. However,

the document does not explain a possible method to combine

the retrieved results by multiple searches. J. Callan [29]

discusses the advantages of using multiple databases to

retrieve information with a detailed discussion on merging

document rankings from multiple results sets from different

databases.

N. Yamamoto et al. [30] discuss worldwide parallel and

distributed data analysis in the observational astronomical

field based on a network shared file system Gfarm. Here the

main focus is to allow multiple processors to access data files

and their replicas in an efficient manner.

VI. CONCLUSION AND FUTURE WORK

 In this paper, we have presented a scalable architecture for

composable data analysis tasks. Our architecture adopts the

approach -moving computation to data - and thereby

minimizes the data movement present in many standard data

analyses techniques. The architecture exploits the composable

property of the class of data analyses that we are interested, to

achieve better scalability by executing the overall analysis as a

collection of sub analysis that can be executed concurrently.

The proposed architecture is domain-independent, failure

resilient, and enforces security constraints such as

authorization, integrity and confidentiality. Ultimately, we

expect that for the class of applications that have the

composable property, this research would make the scientific

analysis process faster, collaborative and more efficient.

 The initial proof of concept implementation provides

promising results establishing the claims that we made on

scalability and data movement. We are working on completing

the implementation with respect to the proposed architecture

and also to come with a more general implementation that can

be used in other scientific data analysis tasks with minimum

modifications. Hierarchical data analysis using our

architecture is another area that we are currently working on,

and we expect that the knowledge gain in this path will also

help us to understand the class of applications and their

requirements better and hence allow us to refine the

architecture. We also expect this research to extend to a class

of applications that use a variant of workflow that satisfies

real-time execution constraints [31].

REFERENCES

[1] G. Bell, J. Gray, and A. Szalay, ―Petascale Computational
Systems:Balanced CyberInfrastructure in a Data-Centric World,‖ IEEE

Computer, vol. 39, no 1, pp. 110-112, Jan. 2006.

[2] GridFTP, http://www.globus.org/grid_software/data/gridftp.php
[3] D.P. Anderson, ―BOINC: A System for Public-Resource Computing and

Storage,‖ GRID 2004, pp. 4-10.

[4] J. Gray, ―Distributed Computing Economics‖, Computer Systems
Theory, Technology, and Applications, A Tribute to Roger Needham, A.

Herbert and K. Sparck Jones eds., Springer, 2004,pp 93-101.

[5] R. Buyya, D. Abramson, and J. Giddy, ―Nimrod/G: An Architecture for
a Resource Management and Scheduling System in a Global

Computational Grid,‖ Proc. 4th Int'l Conf. on High Performance

Computing in Asia-Pacific Region (HPC Asia 2000), IEEE CS Press,
Los Alamitos, Calif., USA, 2000.

[6] J. Dean and S. Ghemawat, ―Mapreduce: Simplified data processing on

large clusters,‖ Proc. OSDI’04: 6th Symposium on Operating Systems.
[7] X. Qiu. G. C. Fox, H. Yuan, S. Bae, G. Chrysanthakopoulos, H. F.

Nielsen, ―Parallel Clustering and Dimensional Scaling on Multicore

Systems‖, Technical Report at Community Grids Lab Publications, Feb,
2008, http://grids.ucs.indiana.edu/ptliupages/publications/hpcsfeb21-

08.pdf

[8] S. Pallickara, G. Fox, ―NaradaBrokering: A Distributed Middleware
Framework and Architecture for Enabling Durable Peer-to-Peer Grids,‖

Middleware 2003, pp. 41-61.

[9] S. Pallickara, J. Ekanayake, and G. Fox, ―A Scalable Approach for the
Secure and Authorized Tracking of the Availability of Entities in

Distributed Systems,‖ IPDPS 2007, pp. 1-10.

[10] J. Ekanayake, S. Pallickara, and G. Fox, ―A Collaborative Framework
for Scientific Data Analysis and Visualization,‖ The 2008 International

Symposium on Collaborative Technologies and Systems, submitted for

publication.
[11] S. Pallickara, M. Pierce, H. Gadgil, G. Fox, Y. Yan, and Y. Huang, ―A

Framework for Secure End-to-End Delivery of Messages in

publish/Subscribe Systems,‖ GRID 2006, pp. 215-222.
[12] I. Foster and C. Kesselman, ―Globus: A Metacomputing Infrastructure

Toolkit,‖ Proceedings of the Workshop on Environments and Tools for

Parallel Scientific Computing, Lyon, France, August 1996.
[13] S. Pallickara, H. Bulut, and G. Fox, ―Fault-Tolerant Reliable Delivery of

Messages in Distributed Publish/Subscribe Systems,‖ Proceedings of the

4th IEEE International Conference on Autonomic Computing.
[14] ROOT - An Object Oriented Data Analysis Framework,

http://root.cern.ch/
[15] CINT - The CINT C/C++ Interpreter,

http://root.cern.ch/twiki/bin/view/ROOT/CINT

[16] I. Foster, C. Kesselman, J. Nick, and S. Tuecke, ―The physiology of the
grid: an open grid services architecture for distributed systems

integration,‖ 2002.

[17] Open Science Grid, http://www.opensciencegrid.org
[18] TeraGrid, http://www.teragrid.org

[19] R. Pike, S. Dorward, R. Griesemer, and S. Quinlan, ―Interpreting the

data: Parallel analysis with sawzall,” Scientific Programming Journal
Special Issue on Grids and Worldwide Computing Programming Models

and Infrastructure," vol. 13, no. 4, pp. 227–298, 2005.

[20] S. Ghemawat, H. Gobioff, and S. Leung, "The Google file system,‖
Symposium on Op-erating Systems Principles, pages 29–43, Lake

George, New York, 2003.

[21] M. Isard, M. Budiu, Y. Yu, A. Birrell, and D. Fetterly,
―Dryad:Distributed data-parallel programs from sequential building

blocks,‖ European Conference on Computer Systems , March 2007.

[22] H. chih, A. Dasdan, R. L. Hsiao, and D. S. Parker, ―Map-reducemerge:
Simplified relational data processing on large clusters,‖ SIGMOD, 2007.

[23] Hadoop Project at Apache, http://hadoop.apache.org

[24] JSON -JavaScript Object Notation, http://www.json.org/
[25] L. Pan, L. F. Bic, and M.B. Dillencourt,"Distributed sequential

computing using mobile code: moving computation to data," ICPP2001:

30th International Conference on Parallel Processing, Valencia, Spain,
IEEE (2001) 77—86

[26] PROOF – The Parallel ROOT Facility,

http://root.cern.ch/twiki/bin/view/ROOT/PROOF
[27] GRID IR - GRID Information Retrieval,

http://www.w3c.rl.ac.uk/Euroweb/poster/112/gridir.html

[28] M. J. Dovey,‖ Music GRID: A Collaborative Virtual Organization for
Music Information Retrieval Collaboration and Evaluation,‖ In the

MIR/MDL Evaluation Project White Paper Collection (2nd ed., pp. 50--

52), Champaign, IL: GSLIS.
[29] J. Callan, Distributed information retrieval, In W.B. Croft, editor,

Advances in information retrieval, chapter 5, pages 127-150, Kluwer

Academic Publishers, 2000.
[30] N. Yamamoto, O. Tatebe, S. Sekiguchi, "Parallel and Distributed

Astronomical Data Analysis on Grid Datafarm", Proceedings of 5th

IEEE/ACM International Workshop on Grid Computing,2004, pp.461-
466, 2004.

[31] N. Vydyanathan et.al., ―Toward Optimizing Latency Under Throughput

Constraints for Application Workflows on Clusters‖, Euro-Par 2007
Parallel Processing, Springer Berlin / Heidelberg, Vol. 4641,2007,pp.

173-183

