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Abstract. We describe Community Grids built around Integration of 
technologies from the peer-to-peer and Grid fields. We focus on the 
implications of Web Service ideas built around powerful event services using 
uniform XML interfaces. We go through collaborative systems in detail 
showing how one can build an environment that can use either P2P approaches 
like JXTA or more conventional client-server models.  

1. Introduction 

The Grid [1-5] has made dramatic progress recently with impressive technology and 
several large important applications initiated in high-energy physics [6,7], earth 
science [8,9] and other areas [29,30]. At the same time, there have been equally 
impressive advances in broadly deployed Internet technology. We can cite the 
dramatic growth in the use of XML, the “disruptive” impact of peer-to-peer (P2P) 
approaches [10,11] and the more orderly but still widespread adoption of a universal 
Web Service approach to Web based applications [12-14]. We have discussed this 
recently [15,16] with an emphasis on programming environments for the Grid [17]. In 
particular we described the important opportunities opened up by using Web service 
ideas as the basis of a component model for scientific computing [18-22]. This builds 
on the DoE Common Component Architecture (CCA).  This paper also discussed the 
implications for portals and computational science applications on the Grid. In the 
following, we look at other facets of the integration of Grid with P2P and Web 
Service technology. In particular we discuss the overall architecture in section 2 with 
attention to the implications of adopting a powerful event service as a key building 
block [23-24]. Web services are discussed in section 3 with special focus on the 
possibility of building science and Engineering as a Web Service – what can be 



termed e-Science. P2P technologies are very relevant for collaboration [25,26] and we 
discuss this in section 4; an area addressed for the Grid [31], including a seminal 
paper by Foster and collaborators [27] addressing broad support for communities. 
Section 5 gives more detail on our proposed event model, which integrates both P2P 
and more traditional models – in particular, that of the commercial Java Message 
Service [28]. 

2. Architecture 

We view the “world” as built of three categories of distributed system components: 
raw resources, clients and servers shown in fig. 1. These describe the different roles of 
machines in our distributed system. Clients provide user interfaces; raw resources 

provide “raw data” either from simulations or data sources; servers map between 
clients and raw resources and are specified by two XML specified interfaces; that 
between raw resource and server and that between client and server. Actually 
exploding the “server” layer inside fig. 1 finds an interlinked set of servers each of 
which linkage is itself described by XML interfaces. Note that the three functions can 
be thought of as roles and a given computer can have one, two or all of these three 
roles. Our architecture then should be termed as a three-role model rather than the 
more traditional three-tier model used in many current systems.  We need to view our 
system in this way because in a peer-to-peer (P2P) system [11,23], one does not see 
the clear identification of machine and roles found in a classic Grid application 
involving say a workstation client going through some middleware to clearly 
identified back-end supercomputers.  
The components of our system of whatever role are linked by message passing 
infrastructure shown in fig. 2. This we also term the event-bus and it has significant 
features, which we will elaborate later. We assume that all messages will be defined 
in XML and the message infrastructure – called GMS (Grid Message Service) in fig. 

Fig. 1: XML-based Architecture 

Fig. 2: Distributed  Raw 
Resources, Servers, and Clients 



Fig. 3: One View of System Components

Fig. 4: Simplest View of System Components

2 – can support the publish-subscribe mechanism. Messages are queued by GMS from 
“publishers” and then clients subscribe to them. XML tag values are used to define 

the “topics” or “properties” that 
label the queues. We can 
simplify and abstract the 
system as shown in figs. 3 and 
4. We have divided what is 
normally called Middleware 
into two. There are routers 
and/or brokers whose function 
is to distribute messages 
between the raw resources, 
clients and servers of the 
system. We consider that the 

servers provide services (perhaps defined in the WSDL [12] and related XML 
standards) and do NOT distinguish at this level between what is provided (a service) 
and what is providing it (a server). Actually the situation is even simpler as shown in 
fig. 4. All entities in the system are resources labeled in the spirit of W3C [32,33] by 
URI’s of form gxos://category/someheader/blah/…/blah/foo/bar/leaf and resources 
communicate by events. We do not distinguish between events and messages; an 
event is defined by some XML Schema including a time-stamp but the latter can of 
course be absent to allow a simple message to be thought of as an event. Note an 

event is itself a resource 
and might be archived in a 
database raw resource. 
Routers and brokers 
actually provide a service – 
the management of (queued 
events) and so these can 
themselves be considered 
as the servers 
corresponding to the event 
or message service. Note 
that in fig. 1, we call the 

XML Interfaces “virtual”. 
This signifies that the interface is logically defined by an XML Schema but could in 
fact be implemented differently. As a trivial example, one might use a different syntax 
with say <sender>meoryou</sender> replaced by sender:meoryou which is an easier 
to parse but less powerful notation. Such simpler syntax seems a good idea for “flat” 
Schemas that can be mapped into it. Less trivially, we could define a linear algebra 
web service in WSDL but compile it into method calls to a Scalapack routine for high 
performance implementation. This compilation step would replace the XML SOAP 
based messaging [34] with serialized method arguments of the default remote 
invocation of this service by the natural in memory stack based use of pointers to 
binary representations of the arguments. 



Fig 5: Communication Model showing 
Sub-services of Event Service

In the next four subsections we summarize some features and issues for the four 
components of the architecture events/messages, clients/users, servers/services and 
raw resources. 

2.1 Event and Message Subsystem 

We discuss the event or message service further in Sec. 5 but we elaborate 
first on our choice of this as an essential feature. We see several interesting 
developments in this area where we can give four examples: there is SOAP messaging 
[34]; the JXTA peer-to-peer protocols [10]; the commercial JMS message service 
[28]; and finally a growing interest in SIP [35] and its use in instant messenger 
standards [36]. All these approaches define messaging principles but not always at the 
same level of the OSI stack; further they have features that sometimes can be 
compared but often they make implicit architecture and implementation assumptions 
that hamper interoperability and functionality. We suggest breaking such frameworks 
into subsystem capabilities describing common core primitives. This will allow us to 
compose them into flexible systems, which support a range of functionality without 
major change in application interfaces. Here SOAP defines a message structure and is 
already a “core primitive” as described above; it is “only” XML but as discussed 
above, a message specified in XML could be “compiled to other forms such as RMI 
either for higher performance or “just” because the message was linking two Java 
programs. In some of our work, we use publish-subscribe messaging mechanisms but 

of course this is often unnecessary 
and indeed occurs unacceptable 
overhead. However it does appears 
useful to define an event 
architecture such as that of fig. 5, 
allowing communication channels 
between Web services which can 

either be direct or pass through 
some mechanism allowing various 

services on the events. These could be low-level such as routing between known 
source and destination or the higher-level publish-subscribe mechanism that identifies 
the destinations for a given published event. Some routing mechanisms in peer-to-
peer systems in fact use dynamic routing mechanisms that merge these high and low 
level approaches to communication. We use the term virtual queue in fig. 5 because 
again we can in many cases preprocess (or “compile”) away the queue and transmit 
messages directly. As an example, consider an audio-video conferencing web service. 
It would use a simple publish/subscribe mechanism to advertise the availability of 
some video feed. A client interested in receiving the video would negotiate (using the 
SIP protocol perhaps) the transmission details. The video could either be sent directly 
from publisher to subscriber; alternatively from publisher to web service and then 
from web service to subscriber; as a third option, we could send from the web service 
to the client but passing through a filter that converted one codec into another if 
required. In the last case, the location of the filter would be negotiated based on 
computer/network performance issues – it might also involve proprietary software 



only available at special locations. The choice and details of these three different 
video transport and filtering strategies would be chosen at the initial negotiation and 
one would at this stage “compile” a generic interface to its chosen form. One could of 
course allow dynamic “run-time compilation” when the event processing strategy 
needs to change during a particular stream. This scenario is not meant to be 
innovative but rather to illustrate the purpose of our architecture building blocks in a 
homely example. Web services are particularly attractive due to their support of 
interoperability, which allows the choices described. One could argue that the 
complexity of fig. 5 is unnecessary as its “luxury” features are an unacceptable 
overhead. However as the performance of networks and computers increase, this 
“luxurious” approach can be used more and more broadly. For instance, we have 
shown that JMS (the Java Message Service which is a simple but highly robust 
commercial publish-subscribe mechanism) can be used to support real-time 
synchronous collaboration. Note this application only requires latencies of 
milliseconds and not the microseconds needed by say MPI for parallel computing. 
Thus JMS with a message-processing overhead of a millisecond in good 
implementations can be used here. As explained in Sec. 5, we have developed a 
system that allows general XML-based selection on our message queues and this 
generalizes the simple topic and property model of JMS. The XML selection can 
specify that the message be passed though a general Web service, and so the 
“subscription” mechanism supports both event selection and filtering of the messages. 
In the collaboration application, this mechanism allows the same event service to 
support multiple clients – say a hand-held device and a high-end workstation – which 
would need different views (versions) of an event. 

2.2 Clients 

In the “pure view” of the architecture of the previous two sections, the traditional 
workstation (desktop) client has at least two roles – rendering and providing services. 
There has been a trend away from sophisticated clients (Java Applets and complex 
JavaScript) towards server based dynamic pages using technologies like ASP and JSP 
(Active and Java Server Pages). This reflects both the increased performance of 
networks and the more robust modular systems that can be built in the server-based 
model. There are several good XML standards for rendering – XHTML [37] and SVG 
[38] define traditional browser and 2D vector graphics respectively. These are the 
XML display formats of fig. 1; their support of the W3C Document Object Model 
[39] (DOM) allows both more portable client-side animation and shared export 
collaboration systems described in sec. 4. We do not expect this to replace server side 
control of “macroscopic” dynamic pages but built in animation of SVG (which can be 
considered a portable text version of Flash technology) and scripted event control will 
allow important client side animation. XML standards on the client should also allow 
universal access and customization for hand-held devices  -- possibly using the WML 
[40] standard for PDA’s and VoiceXML [41] for (Cell)-phones. The 3D graphics 
standard X3D [42] is likely to be another important XML rendering standard. 



2.3 Servers and Services 

Servers are the most important feature of our community grid architecture. They 
“host” all application and system services ranging in principle from Microsoft word 
through a 1024 node parallel simulation. They have multiple input and output ports 
defined by (virtual) XML Interfaces. There has been substantial work on many system 
Services in both the Grid and broader communities. We find Object registration, 
lookup and persistence; security, fault tolerance, information and collaboration. There 
are also the set of services common in computing environments such as Job 
submission, transparent login, accounting, performance, file access, parameter 
specification, monitoring, and visualization. An online education system using this 
architecture would have curriculum authoring, course scheduling and delivery, 
registration, testing, grading, homework submission, knowledge discovery, 
assessment, and learning paths as some of the services. We see current typically 
monolithic systems being broken up into small Web services and this will enable 
easier delivery of capabilities customized to particular communities. As one makes 
the basic services “smaller”, flexibility increases but typically performance suffers as 
communication overhead increases. Here efficient “compilation” techniques will be 
important to use the optimal implementation of communication between the ports (see 
fig. 5) of linked web services.  Static “compilation” can be supplemented by 
dynamic choice of communication mechanism/stub that will use the optimal solution 
(based on many criteria such as bandwidth, security, etc.). Looking at peer-to-peer 
technology, we see important issues as to the appropriate implementation 
infrastructure. Is it to be based on a relatively large servers or a horde of smaller 
peers.  

2.4 Raw Resources 

The XML interfaces exhibited by servers represented “knowledge” or processed data 
and have typically “universal” form. The raw resources – databases, sensors, and 
supercomputers – also use XML interfaces but these can reflect nitty gritty detail. One 
sees approaches like JDBC (databases), SLE (spacecraft sensors [43]), HDF 
(scientific data) and MathML. The first two are true interfaces, the last two “raw” data 
format. 

Fig. 6. An Online Shopping system with component Web Services 



Fig. 7. Schematic of two bindings of a Web Service 
(a) Single address Space and (b) Distributed 

3. Web Services 

Web Services are being developed actively by many major companies (Ariba, IBM, 
Microsoft, Oracle, Sun) with the idea typified in fig. 6 of componentizing Business to 
Business and Business to Customers applications.  
We suggest that a similar approach is useful in both Grid system services shown in 
table 1 but also more generally to develop „Science as a Web Service“ – one could 
term the latter e-Science.   

Table 1. Basic Grid services 

Security Services Authorization, authentication, privacy 
Scheduling Advance reservations, resource co-scheduling  
Data Services Data object name-space management, file staging, 

data stream management, caching 
User Services Trouble tickets,  problem resolution 
App Services Application tracking, performance analysis 
Monitoring Service Keep-alive meta-services 

 
We see WSDL [12-14] – 
the Web Services 
Definition Language – as 
a well thought through 
proposal. It is incomplete 
in some ways and more 
research is needed to 
decide how best to 
enhance it in such areas as 
the integration of multiple 
services together to form 
composite systems. 

Figure 6 shows 4 
component Web 
services, which integrate 
to form an online 

shopping Web Service. WSFL [44] and WSCL [45] are candidate integration 
standards but another possibility is to build a programming environment on top of 
basic XML (for data) and WSDL (for methods). Then integration of services could be 
specified by scripts in this environment. There are several interesting research 
projects in this area [49,50]. WSDL has (at least) two important features: 
1) An XML specification of properties and methods of the Web Service. This is an 

XML „equivalent“ of IDL in CORBA or Java in RMI. 
2) A distinction between the abstract application interface and its realization gotten 

by binding to particular transport (such as HTTP) and message (such as SOAP) 
formats. 



Fig. 8. An approach to integrating high performance 
and commodity systems 

The result is a model for Services with ports communicating by messages with a 
general XML specified structure. WSDL allows multiple bindings of a given interface 
and so supports the “compilation model” described in section 2. As an extreme 

example, fig. 7 illustrates 
that one could use WSDL 
to specify purely local 
methods and allow 
implementations that are 
either distributed or 
confined within a given 
address space. This 
carefully defined model 
can be integrated with the 
ideas of DoE’s common 
component architecture 
(CCA) project [18-20] 
and this leads to an 
interesting “Grid 
programming model for 
high performance 
applications”. Substantial 
research is needed into the 
optimization 
(“compiling”) of Web 
services but we seem to 

finally have a promising approach to integrating the best approaches of the high 
performance computing and commodity software communities. In fig. 8, we show 
how one can potentially define (composite) Web services with both commodity 
(SOAP, IIOP, RMI) messaging and high performance parallel MPI standards. For 
instance the Gateway [46-48] approach to integrating distributed object and high 
performance modules, builds a wrapper for the latter and implements a very loose 
coupling between a backend “parallel raw resource” and its proxy in the commodity 
layer. WSDL allows a tighter integration and this could lead to better commodity 
interfaces to high performance services. In the same vein as fig. 7, some variant of 
WSDL could provide a portable framework for linking shared and distributed 
memory parallel programming models. A WSDL formulation of MPI could involve 
two types of ports; firstly high performance with “native bindings” where basic data 
transfer would implemented; however one could use “commodity ports” for the less 
compute intensive MPI calls and for resetting some of the overall MPI parameters.  

It is very important to note that Web Services are and should be composable. 
However as long as composed service can be exposed through WSDL it does not 
matter how they were composed. Therefore all those composition mechanisms are 
really interchangeable by means of WSDL - this is layer of abstraction that adds up to 
the robustness of Web Services technology. There are other Web Service technologies 
-- UDDI [51] and WSIL [52] are two approaches for registering and lookup of such 
services. This is a critical service but current approach seems incomplete. The 
matching of syntax of Web Service port interfaces is addressed but not their 



semantics. Further the field of XML meta-data registering and look up is much 
broader than Web Services. It seems likely that future versions of UDDI should be 
built on terms of more general XML Object infrastructure for searching. Possibly 
developments like the Semantic Web [53,54] will be relevant. 
We expect there to be many major efforts to build Web Services throughout a broad 
range of academic and commercial problem domains. One will define web services in 
a hierarchical fashion. There will be a set of broadly defined services such as those 
defined in table 2. These (WSDL) standards will presumably be defined either 
through a body like W3C or through de facto standards developed by the commodity 
industry. 

 Table 2. General Collaboration, Planning and Knowledge Grid Services 

People Collaboration Access Grid - Desktop AV 
Resource Collaboration P2P based document Sharing,  WebDAV, 

News groups, channels, instant messenger, 
whiteboards, annotation systems 

Decision Making Services Surveys, consensus, group mediation 
Knowledge Discovery Service Data mining, indexes (myGoogle: directory 

based or unstructured), metadata indexes, 
digital library services 

Workflow Services Support flow of information (approval) 
through some process, secure authentication of 
this flow.  Planning and documentation 

Authoring Services Multi-fragment pages, Charts, Multimedia 
Universal Access  From PDA/Phone to disabilities 

 

Table 3. Science and Engineering Generic Services  

Authoring and Rendering Storage Rendering and Authoring of 
Mathematics, scientific whiteboards, nD (n=2,3) 
support, GIS, Virtual worlds 

Multidisciplinary Services Optimization (NEOS), image processing, 
netsolve, ninf, Matlab as a collaborative Grid 
Service 

Education Services Authoring, curriculum specification, 
assessment and evaluation, self paced learning 
(from K-12 to Lifelong) 

 
Although critical for e-Science, one will build Science and engineering Services on 
the top of those in table 2. e-Science itself will define its own generic services as in 
table 3 and then refine them into areas like research (table 4) and education. Further 
hierarchical services would be developed on the basis of particular disciplines or 
perhaps in terms of approaches such as theory and experiment. 



Table 4. Science and Engineering Research  

Portal Services Job control/submission, scheduling, 
visualization, parameter specification 

Legacy Code Support Wrapping, application Integration, version 
control, monitoring 

Scientific Data Services High Performance, special formats, virtual 
data as in Griphyn, scientific journal publication, 
Geographical Information Systems 

Research Support Services Scientific notebook/whiteboard, 
brainstorming, seminars, theorem proving 

Experiment Support Virtual Control Rooms (accelerator to 
satellite), Data analysis, virtual instruments, 
sensors (Satellites to field work to wireless to 
video to medical instruments (Telemedicine Grid 
Service) 

Outreach  Multi-cultural customization, multi-level 
presentations 

 

4. Collaboration 

One of the general services introduced in the earlier sections was collaboration. This 
is the capability for geographically distributed users to share information and work 
together on a single problem. The basic distributed object and Web Service model 
described in this paper allows one to develop a powerful collaborative model. We 
originally built a collaborative system TangoInteractive [55,56], which was in fact 
designed for Command and Control operations, which is the military equivalent of 
crisis management. It was later evolved to address scientific collaboration and 
distance education [57,58]. Our new system Garnet has been built from scratch 
around the model of section 2. In particular Garnet views all collaboration as 
mediated by the universal event brokering and distribution system described in 
sections 2.1 and 5.  
 
One of the attractive features of the web and distributed objects is the natural support 
for asynchronous collaboration. One can post a web page or host a Web Service and 
then others can access it on their own time. Asynchronous collaboration as enabled by 
basic web infrastructure, must be supplemented by synchronous or real-time 
interactions between community members. The field of synchronous collaboration is 
very active at the moment and we can identify several important areas: 
(1) Basic Interactive tools including Text chat, Instant Messenger and White boards 
(2) Shared resources including shared documents (e.g. PowerPoint presentation,), as 

well shared visualization, maps, or data streaming from sensor. 



Fig. 9. Typical Shared Document 
System from Centra commercial 
collaboration system 

(3) Audio-video conferencing illustrated 
by both commercial systems and the 
recent high-end Access Grid from 
Argonne [59] shown in fig. 5. 

There are several commercial tools that 
support (1) and (2) – Interwise, Centra, 
Placeware and WebEx are best known 
[60-63]. They look to the user similar to 
the screen in fig. 9 – a shared document 
window surrounded by windows and 
control panels supporting the collaborative 
function. All clients are presented the 
same or a similar view and this is ensured 
by an event service that transmits 

messages whenever an object is updated. There are several ways objects can be 
shared: 

Shared Display: The master system brings up an application and the system shares 
the bitmap defining display window of this application [64]. This approach has the 
advantage that essentially all applications can be shared and the application does not 
need any modification. The disadvantage is that faithful sharing of dynamic windows 
can be CPU intensive (on the client holding the frame-buffer). If the display changes 
rapidly, it may not be possible to accurately track this and further the network traffic 
could be excessive, as this application requires relatively large messages to record the 
object changes 

Native Shared Object: Here one changes the object to be shared so that it 
generates messages defining its state changes. These messages are received by 
collaborating clients and used to maintain consistency between the shared object’s 
representations on the different machines. In some cases this is essentially impossible, 
as one has no access to the code or data-structures defining the object. In general 
developing a native shared object is a time consuming and difficult process. It is an 
approach used if you can both access the relevant code and if the shared display 
option has the problems alluded to earlier. Usually this approach produces much 
smaller messages and lower network traffic than shared display – this or some variant 
of it (see below) can be the only viable approach if some clients have poor network 
connectivity. This approach has been developed commercially by Groove Networks 
using COM objects. It appears interesting to look at this model with Web services as 
the underlying object model. 

Shared Export: This applies the above approach but chooses a client form that 
can be used by several applications. Development of this client is still hard but worth 
the cost if useable in many applications. For example one could export applications to 
the Web and build a general shared web browser, which in its simplest form just 
shares the defining URL of the page. The effort in building a shared browser can be 
amortized over many applications. We have built quite complex systems around this 
concept – these systems track frames, changes in HTML forms, JSP (Java Server 
Page) and other events. Note the characteristic of this approach – the required sharing 
bandwidth is very low but one now needs each client to use the shared URL and 
access common (or set of mirrored) servers. The need for each client to access servers 



to fetch the object can lead to substantial bandwidth requirements, which are 
addressed by the static shared archive model described below. Other natural shared 
export models are PDF, SVG [38], X3D [42], Java3D or whatever formats ones 
scientific visualization system uses. 

Static Shared Archive: This is an important special case of shared export that can 
be used when one knows ahead of time what objects are to be shared, and all that 
changes in the presentation is the choice of object and not the state within the object. 
The system downloads copies of the objects to participating clients (these could be 
URL’s, PowerPoint foils or Word documents). Sharing requires synchronous 
notification as to which of the objects to view. This is the least flexible approach but 
gives in real-time, the highest quality with negligible real-time network bandwidth. 
This approach requires substantially more bandwidth for the archive download – for 
example, exporting a PowerPoint foil to JPEG or Windows Meta File (WMF) format 
increases the total size but can be done as we described before the real-time session. 

 
It can be noted that in all four approaches, sharing objects does not require 

identical representations on all the collaborating systems. Even for shared display, one 
can choose to resize images on some machines – this we do for a palmtop device with 
a low-resolution screen sharing a display from a desktop.  

Real-time collaborative systems can be used as a tool in Science in different 
modes: 
(a) Traditional scientific interactions – seminars, brainstorming, conferences – but 

done at a distance. Here the easiest to implement are structured sessions such as 
seminars. 

(b) Interactions driven by events (such as earthquakes, unexpected results in a phsics 
experiment on-line data system, need to respond to error-condition in a sensor) 
that require collaborative scientific interactions, which must be at a distance to 
respond to a non-planned event in a timely fashion. Note this type of use suggests 
the importance of collaborating with diverse clients – a key expert may be needed 
in a session but he or she may only have access through a PDA.  

 
We are developing in Garnet a shared SVG browser in the shared export model. The 
new SVG standard has some very attractive features [38]. It is a 2D vector graphics 
standard, which allows hyperlinked 2D canvases with a full range of graphics support 
– Adobe Illustrator supports it well. SVG is a natural export format for 2D maps on 
which one can overlay simulations and sensor data. As well as its use in 2D scientific 
visualization, SVG is a natural framework for high quality educational material – we 
have built a filter that automates the PowerPoint to SVG conversion. The work on 
SVG can viewed as a special case of a shared W3C DOM [39] environment and it can 
be extended to sharing any browser (such as XHTML [37]) supporting this document 
object model. 
We mentioned audio-video conferencing earlier in this section where we have used a 
variety of commercial and research tools with the Access Grid [59] as high-end 
capability. We are investigating using the Web Service ideas of the previous sections 
to build a Audio Video Conferencing Web Service with clients using publish-
subscribe metaphor to stream audio-video data to the port of the web service that 



Fig. 10. Message Transit times (labeled latencies) for 
Narada Event Infrastructure as a function of Event size and 
publish rate for three different subscription rates 

integrates the different systems using the H323 and SIP standards. More generally we 
expect shared Web Services to be an attractive framework for future work in Garnet. 

5. Event Service 

There are some important new developments in collaboration that come from the 
peer-to-peer (P2P) networking field[32]. Traditional systems such as TangoInteractive 
and our current Garnet environment [26] have rather structured ways of forming 
communities and controlling them with centralized servers. The P2P approach [23] 
exemplified by Napster, Gnutella and JXTA [10] uses search techniques with “waves 
of agents” establishing communities and finding resources As described in section 2, 
Peer-to-Peer Grids [16] should be built around Web services whose collaborative 
capabilities support the P2P metaphors.  

As one approach to this, we are generalizing the design of the Garnet collaboration 
system described in the previous section. Currently this uses a central publish-
subscribe server for coordinating the collaboration with the current implementation 
built around the commercial JMS (Java Message Service) [28] system. This has 
proved very successful, with JMS allowing the integration of real-time and 
asynchronous collaboration with a more flexible implementation than the custom Java 
Server used in our previous TangoInteractive environment.  

Originally we realized that Garnet’s requirements for a publish/subscribe model 
were rather different than that for which JMS was developed.  Thus we designed 
some extensions, which we have prototyped in Narada [25,66,67] – a system first 
described in the PhD thesis of Pallickara [68]. Narada was designed to support the 
following capabilities 
• The matching of Published messages with subscribers is based on the comparison 

of XML based publisher topics or advertisements (in a JXTA parlance) with 
XML based subscriber profiles.  

• The matching involves software agents and not just SQL-like property 
comparisons at the server as used by JMS. 

• Narada servers form a distributed network with servers created and terminated as 
needed to get high performance fault tolerant delivery. 

The Narada server 
network was 
illustrated in fig. 2 
where each cluster of 
clients instantiates a 
Narada server. The 
servers communicate 
with each other while 
peer-to-peer methods 
are used within a 
client subgroup. Fig. 
10 illustrates some 
results from our 



initial research where we studied the message delivery time as a function of load. The 
results are from a system with the event brokering service supported by 22 server 
processes and with the “measuring” subscriber 10 hops away from publisher. The 
three matching values correspond to the percentages of subscribing clients to which 
messages are delivered. We found that the distributed network scaled well with 
adequate latency (a few milliseconds) unless the system became saturated. On the 
average, the time per hop between brokers was about 2 milliseconds. We expect this 
to decrease by a factor of about three in an “optimized production system”. 
Nevertheless, our current pure Java system has adequate performance for several 
applications. The distributed cluster architecture allows Narada to support large 
heterogeneous client configurations that scale to arbitrary size. Now we are evolving 
these ideas to explicitly include both P2P and Web service ideas. We have already 
extended Narada so that it can function in a mode equivalent to JMS and are currently 
comparing it with our commercial JMS (from SonicMQ [69]) when used in Garnet 
and other circumstances. Soon we will integrate Narada with JXTA so that it can 
interpolate between “central server” (JMS) and distributed P2P (JXTA) models. Web 
services designed to use the event model of section 2 will then be able to run 
“seamlessly” with the same API to either classic 3-tier (client-server) or distributed 
P2P architectures. 

Garnet supports PDA access and for this uses a modification – HHMS (Hand Held 
Message Service) – of the event service. Currently a conventional client subscribes to 
events of interest to the PDA on the JMS server. This special client acts as an adaptor 
and exchanges HHMS messages with one or more PDA’s. It seems that PDA’s and 
Cell-phones are a especially good example on the opposite end of the scale to clusters 
and supercomputers. They also require specialized protocols because of performance 
and size considerations but here because they are slow and constrained devices. In 
these cases an optimized protocol is not a luxury, it is requirement and a pure XML 
approach does not perform well enough. However we can still describe what is to be 
done in XML/WSDL and then translate it into binary (by an adaptor as described 
above). This is another example of run-time compilation. 

We emphasis that it is unlikely that there will be a single event service standard 
and in this case using XML for events and messages will prove very important in 
gaining interoperability on the Grid. As long as there are enough similarities between 
the event systems, the XML specified messages can be automatically transformed by 
use of an event system adapter that can run as web service and allow for seamless 
integration of event services as part of middle tier (perhaps this is a filter in Fig. 5). 
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