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Abstract 
The service-oriented architecture has come a 

long way in solving the problem of reusability of 
existing software resources. Grid applications 
today are composed of a large number of loosely 
coupled services. While this has opened up new 
avenues for building large, complex applications, 
it has made the management of the application 
components a non-trivial task. Management is 
further complicated when services exist on 
different platforms, are written in different 
languages, present in varying administrative 
domains restricted by firewalls and are susceptible 
to failure. 

This paper investigates problems that emerge 
when there is a need to uniformly manage a set of 
distributed services. We present a scalable, fault-
tolerant management framework. Our empirical 
evaluation shows that the architecture adds an 
acceptable number of additional resources making 
the approach feasible.   

Keywords: Scalable, Fault-tolerance, Service Oriented 
Architecture, Web Services 

1. Introduction 
This Service Oriented Architecture (SOA) [1]  

delivers unprecedented flexibility and cost savings by 
promoting reuse of software components. This has 
opened new avenues for building large complex 
distributed applications by loosely coupling interacting 
software services. A distributed application benefits 
from properly managed (configured, deployed and 
monitored) services. However the various technologies 
used to deploy, configure, secure, monitor and control 
distributed services have evolved independently. For 
instance, many network devices use Simple Network 
Management Protocol [2], Java applications use Java 
Management eXtensions (JMX) [3] while servers 
implement management using Web-based Enterprise 
Management [4] or Common Information Model [5].  

The Web Services community has addressed this 
challenge by adopting a SOA using Web Services 
technology to provide flexible and interoperable 
management protocols. The flexibility comes from the 
ability to quickly adapt to rapidly changing 
environments. The interoperability comes from the use 

of XML based interactions that facilitate 
implementations in different languages, running on 
different platforms and over multiple transports. 

1.1. Aspects of Resource / Service Management 

Before we proceed further, we clarify the use of 
term Resource in this paper. Distributed applications 
are composed of components which are digital entities 
on the network. We consider a specific case of 
distributed applications where such digital entities can 
be controlled by zero or modest state. We define 
modest state as being one which can be exchanged 
using very few messages (typically 1 message 
exchange). These digital entities in turn can bootstrap 
and control components with much higher state. Such 
components could be hardware (e.g. network, CPU, 
memory) or software (e.g. file-systems, databases, 
services). We consider the combination of such a 
digital entity and the component associated with it as a 
manageable resource. Note that we do not imply any 
relation to other definitions of the term "resource" 
elsewhere in literature (e.g. WS-Resource as defined 
by WSRF). Further, if the digital entity is a service we 
add appropriate management interfaces. If the digital 
entity is not a service we create a Web Service wrapper 
that augments a Web Service based management 
interface to the manageable resource. 

Next, we discuss the scope of management with 
respect to the discussion presented in this paper. The 
primary goal of Resource Management is the efficient 
and effective use of an organization’s resources. 
Resource management can be defined as “Maintaining 
the system’s ability to provide its specified services 
with a prescribed quality of service”. Resource 
management can be divided into two broad domains: 
one that primarily deals with efficient resource 
utilization and other that deals with resource 
administration. 

In the first category, resource management provides 
resource allocation and scheduling, the goal being 
sharing resources fairly while maintaining optimal 
resource utilization. For example, operating systems 
[6] provide resource management by providing fair 
resource sharing via process and memory management. 
Condor [7] provides specialized job management for 
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compute intensive tasks. Similarly Grid Resource 
Allocation Manager [8] provides an interface for 
requesting and using remote system resources for job 
execution. 

The second category deals with appropriately 
configuring and deploying resources / services while 
maintaining a valid run-time configuration according 
to some user-defined criteria. In this case management 
has static (configuring, bootstrapping) and dynamic 
(monitoring and event handling) aspects.  

This paper deals with the second category of 
resource / service management. 

1.2.  Motivation 

As suggested by Moore’s Law [9], the phenomenal 
progress of technology has driven the deployment of 
an increasing number of devices ranging from RFID 
devices to supercomputers. These devices are widely 
deployed, spanning corporate administrative domains 
typically protected by firewalls. Low cost of hardware 
has made replication a cost-effective approach to fault-
tolerance especially when using software replication. 
These factors have contributed to the increasing 
complexity of today’s applications which are 
composed of ever increasing number of resources: 
hardware (hard-drives, CPUs, networks) and software 
(services). Management is required for maintaining a 
properly running application; however existing 
approaches have shown limitations to successfully 
manage such large scale systems. 

First, as the size of an application increases in terms 
of factors such as hardware components, software 
components and geographical scale, it is certain that 
some parts of the application will fail. An analysis [10] 
of causes of failure in Internet services shows that most 
of the services’s downtime can be attributed to 
improper management (such as wrong configuration) 
while software failures come second. 

Second, administration tasks are mainly performed 
by persons. A great deal of knowledge needed for 
administration tasks is not formalized and is part of 
administrator’s know-how and experience. With the 
growing size and complexity of applications, the cost 
of administration is increasing while the difficulty of 
administration tasks approaches the limits of 
administrator’s skills.  

Third, different types of resources in as system 
require different resource specific management 
frameworks. As discussed before, the resource 
management systems have evolved independently. 
This complicates application implementation by 
requiring the use of different proprietary technologies 
for managing different types of resources or using ad-

hoc solutions to interoperate between different 
management protocols. 

Finally, a central management system poses 
problems related to scalability and vulnerability to a 
single point of failure.  

These factors motivate the need for a distributed 
management infrastructure. We envisage a generic 
management framework that is capable of managing 
any type of resource. By implementing interoperable 
management protocols we can effectively integrate 
existing management systems. Finally the management 
framework must automatically handle failures within 
itself.  

1.3. Desired Features 

In this section, we provide a summary of the desired 
characteristics of the management framework: 
Fault-tolerance: As applications span wide area 
networks, they become difficult to maintain and 
resource failure is normal. Failure could be a result of 
the actual resource failure or because of some related 
component such as network making resource 
inaccessible or even because of the failure of the 
management framework itself. While the framework 
must provide self-healing capabilities, resource failure 
must be handled by providing appropriate policies to 
detect and handle failures while avoiding 
inconsistencies. 
Scalability: With the increase in number of 
manageable resource, the framework must scale to 
accommodate the management of additional resources. 
Further, additional components are typically required 
to provide fault-tolerance. The framework must also 
scale in terms of the number of these additional 
components. 
Performance: Additional components required to 
support the framework increases the initialization cost. 
While initialization costs are acceptable, they 
contribute to increasing the cost of recovery from 
failure. Runtime events generated by resources require 
a finite amount of time to process. The challenge is to 
achieve acceptable performance in terms of recovery 
from failure and responsiveness to faults. 
Interoperability: As previously discussed, resources 
exist on different platforms and may be written in 
different languages. While proprietary management 
systems such as JMX and Windows Management 
Instrumentation [11] have been quite successful, they 
are not interoperable limiting their use in 
heterogeneous systems and platforms. The 
management framework must address the 
interoperability issue. We leverage a Web Service 
based management protocol to address interoperability. 
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Generality: Resource management must be generic, 
i.e. the framework must apply equally well to hardware 
as well as software resources. Resource specific 
management would still be required while the 
framework guarantees the basic features such as 
scalability and fault-tolerance. 
Usability: As explained before, large scale systems are 
difficult to manage especially when components fail. 
The management framework must be usable in terms 
of autonomous operation provided whenever possible. 
Thus, the framework must provide self-healing 
properties by appropriately detecting failures and 
instantiating new instances of failed management 
framework components with minimum user 
interaction. 
The rest of the paper is organized as follows: We 
describe the framework in Section 2. We evaluate our 
system in Section 3 and discuss the feasibility of the 
system. A sample application is presented in Section 4. 
We present related work in Section 5. Section 6 is 
conclusion and future work. 

2. Architecture 
Our approach uses intrinsically robust and scalable 

management services and relies only on the existence 
of a reliable, scalable database to store system state. 
The system leverages well known strategies for 
providing fault-tolerance such as passive replication 
that helps provide simplicity of implementation. 

To scale the system to a wide area we use a 
hierarchical bootstrapping mechanism. Scaling is 
improved locally by using a publish/subscribe based 
distributed messaging systems such as 
NaradaBrokering [12] by multiplexing communication 
over single connection and appropriately publishing or 
subscribing to relevant topics. Further 
NaradaBrokering helps provide a transport independent 
communication framework that can tunnel through 
firewalls thus enabling resources in restricted 
administrative domains to be managed. 

2.1. Components 

The overall management framework is shown in 
Figure 1. It consists of units arranged hierarchically 
and controlled by a bootstrap node. The hierarchical 
organization (discussed in Section 2.1.6) of units 
makes the system scalable in a wide-area deployment. 
A unit of management framework consists of one or 
more manageable resources, their associated resource 
managers, one or more messaging nodes 
(NaradaBrokering brokers, for scalability) and a 
scalable, fault-tolerant database which serves as a 
registry.  

2.1.1. Resource As defined in Section 1.1 we refer to 
Resource as the component that requires management. 
We employ a service-oriented management 
architecture and hence we assume that these Resources 
have a Web Service interface that accepts management 
related messages. In the case where the Resource is not 
a Web Service we augment the Resource with a service 
adapter that serves as a management service proxy. 
The service adapter is then responsible for exposing 
the managed Resource. 

2.1.2. Service Adapter Service adapter serves as a 
mediator between the resource manager and the 
resource. Service adapter is responsible for  
1. Sending periodic heartbeats to the associated 

Manager. 
2. Providing a transport neutral connection to the 

manager (possibly via a messaging node). If there 
are multiple brokers, the Service Adapter may try 
different Messaging nodes to connect to, should 
the default messaging node be unreachable after 
several tries. An alternate way of connecting to the 
best available messaging node is to use the Broker 
Discovery Protocol [13]. 

3. Hosting a service oriented messaging based 
management processor protocol such as WS 
Management (Refer [14] for details on our 
implementation). The WS – Management 
processor provides basic management framework 
and a resource wrapper is expected to provide the 
correct functionality (mapping WS Management 
messages to resource-specific actions). 

Additionally the Service Adapter may provide an 
interface to a persistent storage to periodically store the 
state to recover from failures. Alternatively, recovery 
may be done by resource-specific manager processes 
as has been implemented in our prototype. 

2.1.3. Manager A manager is a multi threaded process 
and can manage multiple resources at once. Typically, 
one resource-specific manager module thread is 
responsible for managing exactly one resource and is 
also responsible for maintaining the resource 
configuration. Since every resource-specific manager 
only deals with the state specific to the resource it is 
managing, it can independently checkpoint the runtime 
state of the resource to the registry. Manager processes 
usually maintain very little or no state as the state can 
be retrieved easily by either querying the resource or 
looking up in the registry. This makes the managers 
robust as they can be easily replaced on failure. 

The Manager process also runs a heartbeat thread 
that periodically renews the Manager in the Registry. 
This allows other Manager processes to check the state 
of the currently managed resources and if a Manager 
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2.1.6. Bootstrap Service The bootstrap service mainly 
exists to serve as a starting point for all components of 
the system. The bootstrap service also functions as a 
key fault-prevention component that ensures the 
management architecture is always up and running. 
The service periodically starts, checks the overall 
system health and if some component has failed, 
reinstates that component. The system health check 
specifically checks for presence of a working 
messaging node, an available registry endpoint and 
enough number of managers to manage all registered 
resources. This service may be replicated for additional 
fault-tolerance. 

process has not renewed its existence within a 
specified time, all resources assigned to the failed 
Manager are then distributed among other Manager 
processes. 

On failure, a finite amount of time is spent in 
detecting failure and re-assigning management to new 
manager processes (passive replication). When no 
communication is received from a managed resource, 
the manager always verifies if it is still responsible for 
managing the resource before re-establishing 
management ownership with the resource. This helps 
in preventing two managers from managing the same 
resource. 

The bootstrap services are arranged hierarchically 
as shown in Figure 2. As shown in the figure, we call 
the leaf nodes of the bootstrap hierarchy as being 
active bootstrap nodes.  This means that these nodes 
are responsible for maintaining a working management 
framework for the specified set of machines 
(henceforth, domain). 

2.1.4. Registry The Registry stores system state. 
System state comprises of runtime information such as 
availability of managers, list of resources and their 
health status (via periodic heartbeat events) and system 
policies, if any. General purpose information such as 
default system configuration may also be maintained in 
the registry.  The non-leaf nodes are passive bootstrap nodes and 

their only function is to ensure that all registered 
bootstrap nodes which are their immediate children are 
always up and running. This is done through periodic 
heartbeat messages. The child nodes send periodic 
heartbeats to the parent node. Failure is detected when 
a heartbeat is not received within a specified 
timeframe. 

The registry may be backed by a Persistent Store 
Service which allows the data written in registry to be 
written to some form of persistent store. Persistent 
stores could be as simple as a local file system or a 
database or an external service such as a WS – Context 
[15] service. Usually read operations can be directly 
served from an in-memory cache but writes are always 
written directly to the persistent store. We assume the 
persistent store to be distributed and replicated for 
performance and fault-tolerance purposes.  

2.1.7. User The user component of the system is the 
service requestor. A user (system administrator for the 
resources being managed) specifies the system 
configuration per Resource which is then appropriately 
set by a Manager. In some cases there would be a 
group of Resources which require collective 
management. An example of this is the broker network 
where the overall configuration of the broker network 
is dependent on the configuration of individual nodes. 
Dependencies in the system in such cases are set by the 
user while the execution of dependencies is performed 
by the management architecture in a fault-tolerant 
manner. 

A Request Processor provides the necessary logic 
for invalidating managers that have not renewed within 
a predefined time frame, generating a unique Instance 
ID for every new instance of resource and manager and 
assigning resources to managers. 

2.1.5. Messaging Node Messaging nodes consist of 
statically configured NaradaBrokering broker nodes. 
The messaging nodes form a scalable message routing 
substrate to route messages between the Managers and 
Service Adapters. These nodes provide multiple 
transport features such as TCP, UDP, HTTP and SSL. 
This allows a resource, present behind a firewall or a 
NAT router, to be managed (for e.g. connecting to the 
messaging node and utilizing tunneling over 
HTTP/SSL through a firewall). 

One may employ multiple messaging nodes to 
achieve fault-tolerance as the failure of the default 
node automatically causes the system to try and use the 
next messaging node. We assume that these nodes 
rarely require a change of configuration. Thus on 
failure, these nodes can be restarted automatically 
using the default static configuration for that node. 

2.2. Consistency  

While the framework handles the basic fault-
tolerance and scalability issues, it still faces many 
consistency issues such as duplicate requests and out of 
order messages. This leads to a number of consistency 
issues such as  
1. Two or more managers managing the same 

resource 
2. Old messages reaching after new requests 
3. Multiple copies of same resource 
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Figure 1 Overview showing components of the Management Architecture 

To handle these issues, we assume the request 
processor in registry to generate a monotonically 
increasing unique instance ID (IID) for each instance 
of resource (managed resource or resource specific 
manager). Every outgoing message is tagged with a 
message id that comprises of the sender’s instance id 
and a monotonically increasing sequence number. This 
allows us to resolve consistency issues as follows: 
1. Requests from manager A is considered obsolete 

when IID(A) < IID(B). 
2. Service adapter stores the last successfully 

processed message’s message id allowing it to 
distinguish between duplicates and obsoletes. 

3. While multiple copies of same resource should be 
handled by policy mechanism, typically if IID 
(Resource 1) < IID (Resource 2) then Resource 1 
is an obsolete resource so it may be detected and 
shutdown, thus resolving inconsistencies. 

2.3. Security 

A distributed system gives rise to several security 
issues such as but not limited to denial or service, 
unauthorized access to resources and modification of 
messages when traveling over insecure intermediaries. 
Although we have currently not implemented any 
security framework, our use of NaradaBrokering 
allows us to leverage the security features of the 
substrate to cope with such attacks. The Topic Creation 
and Discovery mechanism [16] ensures that physical 
location (host and port) of any entity is never revealed. 
Further communication with entities can be restricted 
by providing access control. The security framework  
[17] provides end-to-end secure delivery of messages. 

Encrypted communication prevents unauthorized 
access to messages while use of digital signatures help 
detect possible message modifications. 

 
Figure 2 Achieving scalability through 

hierarchical arrangement 

3. Performance Evaluation 
In this section we analyze the system from 

scalability point of view. Failure recovery of 
framework components is currently based on timeouts 
as described in Section 2.1 while correctness is handled 
as described in Section 2.2. Recovery time of managed 
resources is very resource specific and sample recovery 
costs for proof-of-concept implementation are 
presented in Section 4.1. 
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Our system adds a few components apart from the 
actual resources being managed, in order to achieve 
scalable, fault-tolerant management. We describe our 
benchmarking approach and include observed 
measurements. All our experiments were conducted on 
the Community Grids Lab’s GridFarm cluster (GF1 – 
GF8). The Gridfarm machines consist of Dual Intel 
Xeon hyper-threaded CPUs (2.4 GHz), 2 GB RAM 
running on Linux (Linux 2.4.22-1.2199.nptlsmp). They 
are interconnected using a 1 Gbps network. The Java 
version used was Java Hotspot™ Client VM (build 
1.4.2_03-b02, mixed mode). 

3.1. Runtime State 

Our architecture uses asynchronous communication 
between components. Typically a domain would have 
one registry endpoint but the registry itself would be 
replicated for fault-tolerance and performance 
purposes. This introduces a bottleneck when 
performing registry read/write operations. Thus the 
goal is to minimize registry accesses, which in turn 
implies that the runtime state maintained per resource 
must be sufficiently small so that it can be read/written 
using as few a number of calls as possible. 

3.2. Test Setup 

 
Figure 3 Test Setup 

The most important factor in implementing a multi-
threaded manager process is the maximum number of 
resources a single manager process should manage. 
This in turn is dependent on the response time required 
to handle an event from the resource. Typically the 
response time is resource dependent and is also 
affected by the actual work required in handling an 
event from the resource. If the handling entails one or 
more registry access, additional time is spent in 
handling the event. This would also enable us to 
formulate the number of Manager processes required 
and the number of resources that can be managed by a 
single instance of the management architecture. We 
define a single instance as comprising of one or more 
messaging nodes, 1 registry (possibly backed by a 
stable storage via WS Context service) and one or 
more Manager processes. Finally this number also 
determines how the system scales. 

The test setup is shown in Figure 3. We ran multiple 
resources on the Grid cluster machines GF1 – GF4. 
The Messaging node and registry were run on GF5 
while the Manager process was run on GF6. A 
benchmark accumulator process was run on GF7.  

The testing methodology was as follows. The 
Benchmark Accumulator process sends a message to 
all the Resources and starts a timer. These Resources 
then generate an event and send it to their associated 
Manager process. The Manager process processes the 
event (i.e. it simply responds back to the resource with 
a message which corresponds to the handling of the 
event). Once a response is received, the resource 
responds back to the benchmark accumulator process. 
When all resources have reported, the time is noted and 
the difference corresponds to the overall response time. 
Note that this time includes an additional latency for 
sending the message to all resources and for all 
resources to respond back which is ignored considering 
the fact that processing time is typically much higher 
than latency of a message in a closed cluster of 
machines. 

3.3. Observations 

The measured response time shows a case with 
catastrophic failures, one in which every single 
resource being managed generates an event. As 
expected, with an increase in the number of managed 
resources, the average response time increases. In our 
case, there was no registry access during processing of 
the event, however this behavior is resource specific 
and may require one or more registry accesses in 
certain cases.  

 
Figure 4 Average response time when 

handling multiple concurrent requests from 
different resources when using a single 

Manager process 

- 6 - 



 
Figure 5 Average Response Time after 

increasing the number of manager processes 
on the same machine 

 
Figure 6 Average response time when 

handling concurrent requests using 2 and 4 
manager processes on same machine 

 
Figure 7 Average response time when 

handling concurrent requests using 2 and 4 
manager processes on different machines 
The average response time is shown in Figure 4. 

The figure shows the metrics when multiple concurrent 
failures are handled by a single manager process. As 
we increase the number of managers, we see a huge 

performance benefit by increasing the processes from 1 
to 2 as shown in Figure 5. Figure 6 shows the 
performance (close-up of Figure 5) when there are 2 
and 4 manager processes respectively. Note that if 4 
manager processes are used, instead of 2, we see that 
the average response time slightly increases. The 
reason is primarily due to the fact that our test 
machines had only 2 physical processors and the 
system takes time to context switch between various 
processes. We conclude that adding more manager 
processes than the number of available processors on a 
particular node, does not necessarily improve system 
performance especially when handling multiple 
failures. 

Finally, we distribute the manager processes on 
different machines. Thus for instance, running manager 
processes on 2 or 4 machines instead of just 1, 
improves performance (comparing Figure 7 and Figure 
4). We note a slight gain when distributing processes 
over multiple machines (compare Figure 6 and Figure 
7). As observed from Figure 7, the gain (increasing 
machines from 2 to 4) is not very high because of the 
finite amount of time it takes to process each message. 

3.4. Discussion of results 

A single manager process can handle 1000s of 
requests from resources. This is because of the use of a 
publish/subscribe framework for communication that 
can multiplex requests to multiple endpoints using a 
single connection channel via the messaging node. 
However the response time when handling multiple 
concurrent requests increases as the number of requests 
increases. We note that as the number of concurrent 
requests increases beyond 200, the response time 
increases rapidly. Further, note that the number 200 is 
typical with respect to our test setup and could easily 
be higher especially in the case where the resources 
can tolerate higher delays. Finally, depending on the 
quality of service (response time) desired, the number 
200 may be appropriately adjusted. For the sake of 
discussion in the next section, we consider 200 as an 
illustrative value. 

Further, most resources do not require constant 
management (e.g. on millisecond scale) hence running 
more managers per processor is still acceptable. The 
graphs indicate a very specific case of catastrophic 
failure where every single resource being managed 
generates an event. The experiment indicates how the 
worst case scenario affects the average response time.  

Additionally, note that the benchmark results 
presented here deal with only one unit of management 
infrastructure. We expect multiple units in a wide area 
deployment (Ref. Figure 2) to behave similarly. 

 

- 7 - 



3.5. Amount of Management Infrastructure 
Required 

We now try to answer the research question, “How 
much Management Infrastructure is required to handle 
N Resources?” We define the term “Management 
Infrastructure” as the additional resources (processes 
and not physical hardware) required for providing 
fault-tolerant management.  

Let N be the number of resources requiring 
management. If D is the maximum number of resources 
that is configured to be managed by a single manager 
process, then we require at-least N/D manager 
processes. Let M be the maximum number of resources 
that a single messaging node can support. Thus to 
manage N resources we require CEILING (N/M) 
messaging nodes. With 1 messaging node per leaf 
domain we require N/M leaf domains. Further, we need 
at least M/D manager processes per leaf domain. Let R 
be the number of registry replicas used to provide 
fault-tolerant scalable registry. Thus total number of 
management infrastructure processes at the lowest leaf 
level is  
(R registry + 1 messaging node + 1 
bootstrap node + M/D managers) * (N/M 
such leaf domains) 
= (2 + R + M/D)*N/M

In our measurements a single broker could reliably 
support about (M = 800) simultaneous TCP 
connections. To scale to a larger number of resources, 
a different protocol such as UDP may be used that 
improves the value of M. However, additional logic 
must be used to account for dropped messages via 
message retry and timeouts. The second approach is to 
use a cluster of strongly connected messaging nodes 
however this requires additional management in setting 
up links between the various messaging nodes and 
maintaining them in a fault-tolerant fashion. A third 
way is to redistribute resources such that they are in 
different management domains.  

To manage the N/M leaf domains, an additional 
number of passive bootstrap nodes are required. 
Typically the number of passive nodes would be << 
N/M and we ignore it for the purpose of this analysis. 
Thus for managing N resources we require an 
additional (2 + R + M/D)*N/M processes. Thus, 
the percentage of management infrastructure required 
with respect to number of resources N is 
MGMTINFRASTRUCTURE
= [(2 + R + M/D)*N/M]/N * 100 % 
= [(2+R)/M + 1/D] * 100 % 
As an illustration, if D = 200, R = 4 and M = 
800, then MGMT  = [(2+4)/800 + 
1/200] * 100 % = 1.2 % 

INFRASTRUCTURE

Thus, as the number of resources to manage 
increases, fault-tolerant management of the system can 
be achieved by adding about 1% more resources. Note 
that, when the number of resources N is small (e.g. N 
= 10), we still require the basic infrastructure 
(consisting of 1 manager, 1 bootstrap node, 1 
messaging node and R registries) to manage them. 
Assuming R = 4, the minimum infrastructure 
components are 7. Thus the architecture scales when N 
* 1.2% = 7, i.e. N ≈ 600. Thus we conclude that 
when N is large (> 600), we can achieve fault-
tolerant management by adding approximately 1% 
additional resources.  

Finally, as discussed in Section 3.4, the value of D 
may be suitably adjusted which would determine the 
number of manager processes required and the 
percentage of extra resources (MGMTINFRASTRUCTURE). 

4. Sample Application 
The system feasibility as determined in the previous 

section is mainly dependent on modest run-time state 
maintained per resource-specific manager thread and 
the number of registry accesses required to retrieve / 
store state. One such application is management of a 
Grid Messaging Middleware: NaradaBrokering. The 
motivation for management is discussed in more detail 
in Ref. [18]. In this paper we present a discussion on 
application of our architecture to NaradaBrokering.  

While the failures of system components are 
handled by the framework, resource failure handling is 
handled by defining resource specific policies and 
implemented by resource-specific managers. As a 
proof-of-concept, we implemented the 
AUTOInstantiate policy which automatically 
instantiates a broker process when the manager is 
unable to successfully establish contact with an 
existing broker’s service adapter. 

A broker topology determines the number of 
outgoing links from the managed broker. For instance 
consider a ring topology where each broker has one 
link to the next broker in the ring. In a cluster 
topology, each cluster has brokers connected in a ring. 
Each super cluster has clusters connected in a ring, 
while each super-super-cluster has super-clusters 
connected in a ring. With such a topology, the number 
of outgoing links range from 0 to 3 links. 

4.1. Benchmarking 

To find the recovery cost after failure, we 
benchmark the actual time it takes to create a broker 
from scratch after it has failed. The managed broker 
creates links to a static broker and we time recovery 
after failure. While network partitions and slowed 
processes would typically raise false alarms about 
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resource failures, we delegate the functionality of 
handling such situations to the resource specific 
manager. For our purpose, we rely on a heartbeat 
mechanism and timeouts to determine resource failure. 
The step-wise procedure followed is as follows: 
1. Resource manager sends a shutdown message to 

broker which kills itself on receiving it. 
2. Resource manager times out and starts a timer. 
3. The resource manager then instantiates a copy of 

the failed resource which re-registers itself in the 
registry and the manager process (spawn remote 
process). The current broker state is read from 
registry (read state). 

4. The manager then brings the resource back up 
(restore) to the state before failure. This includes 
restoring any configured outgoing links. After this, 
a full recovery of the failed resource has occurred 
and we time this recovery. 

Table 1 Observed Recovery Time (msec) 
Operation Mean Std. Dev. 

Spawn Remote Process 2362 56 
Read State 8 2 
Restore (1 broker + 1 Link) 1420 27 
Restore (1 broker + 3 links) 1615 258 

The results are presented in Table 1. We note that a 
single broker resource can be recovered in about 5 sec. 
If there are dependencies between brokers (one 
managed broker connects to another managed broker), 
timing differences between failure detection and 
recovery phase could easily worsen the recovery time.  

We believe that appending such management 
capabilities to NaradaBrokering framework is an 
important contribution as the management framework 
not only provides ease of deployment of brokers but 
also maintains the runtime configuration in a fault 
tolerant manner transparent to the administrator of 
deployed system. 

5. Related Work 
The Web Services Resource Framework (WSRF) is 

a suite of specifications that align the OSGI conceptual 
model to be in agreement with existing Web standards. 
WSRF defines a WS-Resource as a “composition of 
Web Service and a stateful Resource”. The WSRF 
defines conventions for managing state in distributed 
system comprising of such WS-Resources. The WSRF 
community has adopted Web Services Distributed 
Management (WSDM) that defines a complete 
management model that includes Management of Web 
Services (MOWS) [19] and Management using Web 
Services(MUWS) [20]. By contrast, we define any 
service that needs configuration, lifecycle and runtime 
management as a resource and wrap it with a service 
interface to expose management capabilities. 
Management is provided by a complementary 

specification, WS-Management [21] which is a SOAP-
based protocol for managing systems (including Web 
Services) and functionally overlaps with MUWS. WS-
Management identifies a core set of Web Service 
specification and usage requirements to expose a 
common set of operations central to all management 
systems. These include lifecycle operations, 
enumeration of collection and handling of resource-
specific events. The specification provides extensibility 
for a manageable resource to extend its manageability 
by defining resource-specific management methods. 
We selected WS Management primarily due to its 
simplicity and because we could leverage WS – 
Eventing [22] from NaradaBrokering’s Web Service 
support.  

SNMP (Simple Network Management Protocol) [2] 
deals primarily with network resources. SNMP is an 
application layer protocol that facilitates exchange of 
management information between network devices. 
Lack of security features however reduces SNMP to a 
monitoring facility only. As we have discussed in 
Section 1.1, monitoring is an important aspect of 
management but not all of it. There are a variety of 
distributed monitoring frameworks such as Ganglia 
[23], Network Weather Service [24] and MonALISA 
[25]. The primary purpose of these distributed 
monitoring frameworks is to provide monitoring of 
global Grid systems and aggregation of metrics.  Some 
systems such as MonALISA also provide the 
capability of configuring and managing services via 
RMI calls.  

In the Java community, the JMX [3] technology 
provides tools for building distributed, Web-based 
management system for managing and monitoring Java 
applications, devices and service driven networks. 
However JMX can typically be accessed only by 
clients using Java technology making it non-
interoperable. This issue is being partly addressed by 
providing a Web Service connector for JMX Agents 
[26]. While JMX presents the capability to instrument 
applications with appropriate messages, metrics and 
control mechanisms, a Web Service based management 
protocol provides a more cross-platform, standards-
based interface.  

6. Conclusion and Future Work 
A successful distributed application benefits from 

properly managed services. In this paper we have 
presented the need and our approach to uniformly 
manage a set of distributed services. To make the 
management framework interoperable we employed a 
service-oriented architecture based on WS-
Management. This work leveraged the 
publish/subscribe paradigm to scale locally and a 
hierarchical distribution to scale in wide area 
deployments. The system is tolerant to faults within the 
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management framework while resource failure is 
handled by implementing user-defined policies. When 
applied to resources with modest external state, the 
approach is feasible since it adds about 1% additional 
resources to provide fault-tolerant management to a 
large set of distributed resources.  

In the future we would like to apply the framework 
to broader areas that would help carry out more 
detailed performance benchmarks tests. We believe 
that application of management framework to such 
systems can bring up many interesting research issues, 
specifically challenging scalability of the system. We 
also plan to implement Naradabrokering’s security 
infrastructure that would help resolve the security 
issues as detailed in Section 2.3. Our current 
implementation uses WS – Management. In the future 
we would like to investigate implementing the merged 
[27] Web Service based management specifications. 
Finally, more metrics (such as CPU utilization, 
available memory and locality) need to be taken into 
account when assigning managers to resources. 
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