
Scalable, Fault-tolerant Management in a Service Oriented Architecture

Harshawardhan Gadgil, Geoffrey Fox, Shrideep Pallickara, Marlon Pierce
Community Grids Lab, Indiana University, Bloomington IN 47404

(hgadgil, gcf, spallick, marpierc)@indiana.edu

Abstract
The service-oriented architecture has come a

long way in solving the problem of reusability of
existing software resources. Grid applications
today are composed of a large number of loosely
coupled services. While this has opened up new
avenues for building large, complex applications,
it has made the management of the application
components a non-trivial task. Management is
further complicated when services exist on
different platforms, are written in different
languages, present in varying administrative
domains restricted by firewalls and are susceptible
to failure.

This paper investigates problems that emerge
when there is a need to uniformly manage a set of
distributed services. We present a scalable, fault-
tolerant management framework. Our empirical
evaluation shows that the architecture adds an
acceptable number of additional resources making
the approach feasible.

Keywords: Scalable, Fault-tolerance, Service Oriented
Architecture, Web Services

1. Introduction
This Service Oriented Architecture (SOA) [1]

delivers unprecedented flexibility and cost savings by
promoting reuse of software components. This has
opened new avenues for building large complex
distributed applications by loosely coupling interacting
software services. A distributed application benefits
from properly managed (configured, deployed and
monitored) services. However the various technologies
used to deploy, configure, secure, monitor and control
distributed services have evolved independently. For
instance, many network devices use Simple Network
Management Protocol [2], Java applications use Java
Management eXtensions (JMX) [3] while servers
implement management using Web-based Enterprise
Management [4] or Common Information Model [5].

The Web Services community has addressed this
challenge by adopting a SOA using Web Services
technology to provide flexible and interoperable
management protocols. The flexibility comes from the
ability to quickly adapt to rapidly changing
environments. The interoperability comes from the use

of XML based interactions that facilitate
implementations in different languages, running on
different platforms and over multiple transports.

1.1. Aspects of Resource / Service Management

Before we proceed further, we clarify the use of
term Resource in this paper. Distributed applications
are composed of components which are digital entities
on the network. We consider a specific case of
distributed applications where such digital entities can
be controlled by zero or modest state. We define
modest state as being one which can be exchanged
using very few messages (typically 1 message
exchange). These digital entities in turn can bootstrap
and control components with much higher state. Such
components could be hardware (e.g. network, CPU,
memory) or software (e.g. file-systems, databases,
services). We consider the combination of such a
digital entity and the component associated with it as a
manageable resource. Note that we do not imply any
relation to other definitions of the term "resource"
elsewhere in literature (e.g. WS-Resource as defined
by WSRF). Further, if the digital entity is a service we
add appropriate management interfaces. If the digital
entity is not a service we create a Web Service wrapper
that augments a Web Service based management
interface to the manageable resource.

Next, we discuss the scope of management with
respect to the discussion presented in this paper. The
primary goal of Resource Management is the efficient
and effective use of an organization’s resources.
Resource management can be defined as “Maintaining
the system’s ability to provide its specified services
with a prescribed quality of service”. Resource
management can be divided into two broad domains:
one that primarily deals with efficient resource
utilization and other that deals with resource
administration.

In the first category, resource management provides
resource allocation and scheduling, the goal being
sharing resources fairly while maintaining optimal
resource utilization. For example, operating systems
[6] provide resource management by providing fair
resource sharing via process and memory management.
Condor [7] provides specialized job management for

- 1 -

compute intensive tasks. Similarly Grid Resource
Allocation Manager [8] provides an interface for
requesting and using remote system resources for job
execution.

The second category deals with appropriately
configuring and deploying resources / services while
maintaining a valid run-time configuration according
to some user-defined criteria. In this case management
has static (configuring, bootstrapping) and dynamic
(monitoring and event handling) aspects.

This paper deals with the second category of
resource / service management.

1.2. Motivation

As suggested by Moore’s Law [9], the phenomenal
progress of technology has driven the deployment of
an increasing number of devices ranging from RFID
devices to supercomputers. These devices are widely
deployed, spanning corporate administrative domains
typically protected by firewalls. Low cost of hardware
has made replication a cost-effective approach to fault-
tolerance especially when using software replication.
These factors have contributed to the increasing
complexity of today’s applications which are
composed of ever increasing number of resources:
hardware (hard-drives, CPUs, networks) and software
(services). Management is required for maintaining a
properly running application; however existing
approaches have shown limitations to successfully
manage such large scale systems.

First, as the size of an application increases in terms
of factors such as hardware components, software
components and geographical scale, it is certain that
some parts of the application will fail. An analysis [10]
of causes of failure in Internet services shows that most
of the services’s downtime can be attributed to
improper management (such as wrong configuration)
while software failures come second.

Second, administration tasks are mainly performed
by persons. A great deal of knowledge needed for
administration tasks is not formalized and is part of
administrator’s know-how and experience. With the
growing size and complexity of applications, the cost
of administration is increasing while the difficulty of
administration tasks approaches the limits of
administrator’s skills.

Third, different types of resources in as system
require different resource specific management
frameworks. As discussed before, the resource
management systems have evolved independently.
This complicates application implementation by
requiring the use of different proprietary technologies
for managing different types of resources or using ad-

hoc solutions to interoperate between different
management protocols.

Finally, a central management system poses
problems related to scalability and vulnerability to a
single point of failure.

These factors motivate the need for a distributed
management infrastructure. We envisage a generic
management framework that is capable of managing
any type of resource. By implementing interoperable
management protocols we can effectively integrate
existing management systems. Finally the management
framework must automatically handle failures within
itself.

1.3. Desired Features

In this section, we provide a summary of the desired
characteristics of the management framework:
Fault-tolerance: As applications span wide area
networks, they become difficult to maintain and
resource failure is normal. Failure could be a result of
the actual resource failure or because of some related
component such as network making resource
inaccessible or even because of the failure of the
management framework itself. While the framework
must provide self-healing capabilities, resource failure
must be handled by providing appropriate policies to
detect and handle failures while avoiding
inconsistencies.
Scalability: With the increase in number of
manageable resource, the framework must scale to
accommodate the management of additional resources.
Further, additional components are typically required
to provide fault-tolerance. The framework must also
scale in terms of the number of these additional
components.
Performance: Additional components required to
support the framework increases the initialization cost.
While initialization costs are acceptable, they
contribute to increasing the cost of recovery from
failure. Runtime events generated by resources require
a finite amount of time to process. The challenge is to
achieve acceptable performance in terms of recovery
from failure and responsiveness to faults.
Interoperability: As previously discussed, resources
exist on different platforms and may be written in
different languages. While proprietary management
systems such as JMX and Windows Management
Instrumentation [11] have been quite successful, they
are not interoperable limiting their use in
heterogeneous systems and platforms. The
management framework must address the
interoperability issue. We leverage a Web Service
based management protocol to address interoperability.

- 2 -

Generality: Resource management must be generic,
i.e. the framework must apply equally well to hardware
as well as software resources. Resource specific
management would still be required while the
framework guarantees the basic features such as
scalability and fault-tolerance.
Usability: As explained before, large scale systems are
difficult to manage especially when components fail.
The management framework must be usable in terms
of autonomous operation provided whenever possible.
Thus, the framework must provide self-healing
properties by appropriately detecting failures and
instantiating new instances of failed management
framework components with minimum user
interaction.
The rest of the paper is organized as follows: We
describe the framework in Section 2. We evaluate our
system in Section 3 and discuss the feasibility of the
system. A sample application is presented in Section 4.
We present related work in Section 5. Section 6 is
conclusion and future work.

2. Architecture
Our approach uses intrinsically robust and scalable

management services and relies only on the existence
of a reliable, scalable database to store system state.
The system leverages well known strategies for
providing fault-tolerance such as passive replication
that helps provide simplicity of implementation.

To scale the system to a wide area we use a
hierarchical bootstrapping mechanism. Scaling is
improved locally by using a publish/subscribe based
distributed messaging systems such as
NaradaBrokering [12] by multiplexing communication
over single connection and appropriately publishing or
subscribing to relevant topics. Further
NaradaBrokering helps provide a transport independent
communication framework that can tunnel through
firewalls thus enabling resources in restricted
administrative domains to be managed.

2.1. Components

The overall management framework is shown in
Figure 1. It consists of units arranged hierarchically
and controlled by a bootstrap node. The hierarchical
organization (discussed in Section 2.1.6) of units
makes the system scalable in a wide-area deployment.
A unit of management framework consists of one or
more manageable resources, their associated resource
managers, one or more messaging nodes
(NaradaBrokering brokers, for scalability) and a
scalable, fault-tolerant database which serves as a
registry.

2.1.1. Resource As defined in Section 1.1 we refer to
Resource as the component that requires management.
We employ a service-oriented management
architecture and hence we assume that these Resources
have a Web Service interface that accepts management
related messages. In the case where the Resource is not
a Web Service we augment the Resource with a service
adapter that serves as a management service proxy.
The service adapter is then responsible for exposing
the managed Resource.

2.1.2. Service Adapter Service adapter serves as a
mediator between the resource manager and the
resource. Service adapter is responsible for
1. Sending periodic heartbeats to the associated

Manager.
2. Providing a transport neutral connection to the

manager (possibly via a messaging node). If there
are multiple brokers, the Service Adapter may try
different Messaging nodes to connect to, should
the default messaging node be unreachable after
several tries. An alternate way of connecting to the
best available messaging node is to use the Broker
Discovery Protocol [13].

3. Hosting a service oriented messaging based
management processor protocol such as WS
Management (Refer [14] for details on our
implementation). The WS – Management
processor provides basic management framework
and a resource wrapper is expected to provide the
correct functionality (mapping WS Management
messages to resource-specific actions).

Additionally the Service Adapter may provide an
interface to a persistent storage to periodically store the
state to recover from failures. Alternatively, recovery
may be done by resource-specific manager processes
as has been implemented in our prototype.

2.1.3. Manager A manager is a multi threaded process
and can manage multiple resources at once. Typically,
one resource-specific manager module thread is
responsible for managing exactly one resource and is
also responsible for maintaining the resource
configuration. Since every resource-specific manager
only deals with the state specific to the resource it is
managing, it can independently checkpoint the runtime
state of the resource to the registry. Manager processes
usually maintain very little or no state as the state can
be retrieved easily by either querying the resource or
looking up in the registry. This makes the managers
robust as they can be easily replaced on failure.

The Manager process also runs a heartbeat thread
that periodically renews the Manager in the Registry.
This allows other Manager processes to check the state
of the currently managed resources and if a Manager

- 3 -

2.1.6. Bootstrap Service The bootstrap service mainly
exists to serve as a starting point for all components of
the system. The bootstrap service also functions as a
key fault-prevention component that ensures the
management architecture is always up and running.
The service periodically starts, checks the overall
system health and if some component has failed,
reinstates that component. The system health check
specifically checks for presence of a working
messaging node, an available registry endpoint and
enough number of managers to manage all registered
resources. This service may be replicated for additional
fault-tolerance.

process has not renewed its existence within a
specified time, all resources assigned to the failed
Manager are then distributed among other Manager
processes.

On failure, a finite amount of time is spent in
detecting failure and re-assigning management to new
manager processes (passive replication). When no
communication is received from a managed resource,
the manager always verifies if it is still responsible for
managing the resource before re-establishing
management ownership with the resource. This helps
in preventing two managers from managing the same
resource.

The bootstrap services are arranged hierarchically
as shown in Figure 2. As shown in the figure, we call
the leaf nodes of the bootstrap hierarchy as being
active bootstrap nodes. This means that these nodes
are responsible for maintaining a working management
framework for the specified set of machines
(henceforth, domain).

2.1.4. Registry The Registry stores system state.
System state comprises of runtime information such as
availability of managers, list of resources and their
health status (via periodic heartbeat events) and system
policies, if any. General purpose information such as
default system configuration may also be maintained in
the registry. The non-leaf nodes are passive bootstrap nodes and

their only function is to ensure that all registered
bootstrap nodes which are their immediate children are
always up and running. This is done through periodic
heartbeat messages. The child nodes send periodic
heartbeats to the parent node. Failure is detected when
a heartbeat is not received within a specified
timeframe.

The registry may be backed by a Persistent Store
Service which allows the data written in registry to be
written to some form of persistent store. Persistent
stores could be as simple as a local file system or a
database or an external service such as a WS – Context
[15] service. Usually read operations can be directly
served from an in-memory cache but writes are always
written directly to the persistent store. We assume the
persistent store to be distributed and replicated for
performance and fault-tolerance purposes.

2.1.7. User The user component of the system is the
service requestor. A user (system administrator for the
resources being managed) specifies the system
configuration per Resource which is then appropriately
set by a Manager. In some cases there would be a
group of Resources which require collective
management. An example of this is the broker network
where the overall configuration of the broker network
is dependent on the configuration of individual nodes.
Dependencies in the system in such cases are set by the
user while the execution of dependencies is performed
by the management architecture in a fault-tolerant
manner.

A Request Processor provides the necessary logic
for invalidating managers that have not renewed within
a predefined time frame, generating a unique Instance
ID for every new instance of resource and manager and
assigning resources to managers.

2.1.5. Messaging Node Messaging nodes consist of
statically configured NaradaBrokering broker nodes.
The messaging nodes form a scalable message routing
substrate to route messages between the Managers and
Service Adapters. These nodes provide multiple
transport features such as TCP, UDP, HTTP and SSL.
This allows a resource, present behind a firewall or a
NAT router, to be managed (for e.g. connecting to the
messaging node and utilizing tunneling over
HTTP/SSL through a firewall).

One may employ multiple messaging nodes to
achieve fault-tolerance as the failure of the default
node automatically causes the system to try and use the
next messaging node. We assume that these nodes
rarely require a change of configuration. Thus on
failure, these nodes can be restarted automatically
using the default static configuration for that node.

2.2. Consistency

While the framework handles the basic fault-
tolerance and scalability issues, it still faces many
consistency issues such as duplicate requests and out of
order messages. This leads to a number of consistency
issues such as
1. Two or more managers managing the same

resource
2. Old messages reaching after new requests
3. Multiple copies of same resource

- 4 -

Figure 1 Overview showing components of the Management Architecture

To handle these issues, we assume the request
processor in registry to generate a monotonically
increasing unique instance ID (IID) for each instance
of resource (managed resource or resource specific
manager). Every outgoing message is tagged with a
message id that comprises of the sender’s instance id
and a monotonically increasing sequence number. This
allows us to resolve consistency issues as follows:
1. Requests from manager A is considered obsolete

when IID(A) < IID(B).
2. Service adapter stores the last successfully

processed message’s message id allowing it to
distinguish between duplicates and obsoletes.

3. While multiple copies of same resource should be
handled by policy mechanism, typically if IID
(Resource 1) < IID (Resource 2) then Resource 1
is an obsolete resource so it may be detected and
shutdown, thus resolving inconsistencies.

2.3. Security

A distributed system gives rise to several security
issues such as but not limited to denial or service,
unauthorized access to resources and modification of
messages when traveling over insecure intermediaries.
Although we have currently not implemented any
security framework, our use of NaradaBrokering
allows us to leverage the security features of the
substrate to cope with such attacks. The Topic Creation
and Discovery mechanism [16] ensures that physical
location (host and port) of any entity is never revealed.
Further communication with entities can be restricted
by providing access control. The security framework
[17] provides end-to-end secure delivery of messages.

Encrypted communication prevents unauthorized
access to messages while use of digital signatures help
detect possible message modifications.

Figure 2 Achieving scalability through

hierarchical arrangement

3. Performance Evaluation
In this section we analyze the system from

scalability point of view. Failure recovery of
framework components is currently based on timeouts
as described in Section 2.1 while correctness is handled
as described in Section 2.2. Recovery time of managed
resources is very resource specific and sample recovery
costs for proof-of-concept implementation are
presented in Section 4.1.

- 5 -

Our system adds a few components apart from the
actual resources being managed, in order to achieve
scalable, fault-tolerant management. We describe our
benchmarking approach and include observed
measurements. All our experiments were conducted on
the Community Grids Lab’s GridFarm cluster (GF1 –
GF8). The Gridfarm machines consist of Dual Intel
Xeon hyper-threaded CPUs (2.4 GHz), 2 GB RAM
running on Linux (Linux 2.4.22-1.2199.nptlsmp). They
are interconnected using a 1 Gbps network. The Java
version used was Java Hotspot™ Client VM (build
1.4.2_03-b02, mixed mode).

3.1. Runtime State

Our architecture uses asynchronous communication
between components. Typically a domain would have
one registry endpoint but the registry itself would be
replicated for fault-tolerance and performance
purposes. This introduces a bottleneck when
performing registry read/write operations. Thus the
goal is to minimize registry accesses, which in turn
implies that the runtime state maintained per resource
must be sufficiently small so that it can be read/written
using as few a number of calls as possible.

3.2. Test Setup

Figure 3 Test Setup

The most important factor in implementing a multi-
threaded manager process is the maximum number of
resources a single manager process should manage.
This in turn is dependent on the response time required
to handle an event from the resource. Typically the
response time is resource dependent and is also
affected by the actual work required in handling an
event from the resource. If the handling entails one or
more registry access, additional time is spent in
handling the event. This would also enable us to
formulate the number of Manager processes required
and the number of resources that can be managed by a
single instance of the management architecture. We
define a single instance as comprising of one or more
messaging nodes, 1 registry (possibly backed by a
stable storage via WS Context service) and one or
more Manager processes. Finally this number also
determines how the system scales.

The test setup is shown in Figure 3. We ran multiple
resources on the Grid cluster machines GF1 – GF4.
The Messaging node and registry were run on GF5
while the Manager process was run on GF6. A
benchmark accumulator process was run on GF7.

The testing methodology was as follows. The
Benchmark Accumulator process sends a message to
all the Resources and starts a timer. These Resources
then generate an event and send it to their associated
Manager process. The Manager process processes the
event (i.e. it simply responds back to the resource with
a message which corresponds to the handling of the
event). Once a response is received, the resource
responds back to the benchmark accumulator process.
When all resources have reported, the time is noted and
the difference corresponds to the overall response time.
Note that this time includes an additional latency for
sending the message to all resources and for all
resources to respond back which is ignored considering
the fact that processing time is typically much higher
than latency of a message in a closed cluster of
machines.

3.3. Observations

The measured response time shows a case with
catastrophic failures, one in which every single
resource being managed generates an event. As
expected, with an increase in the number of managed
resources, the average response time increases. In our
case, there was no registry access during processing of
the event, however this behavior is resource specific
and may require one or more registry accesses in
certain cases.

Figure 4 Average response time when

handling multiple concurrent requests from
different resources when using a single

Manager process

- 6 -

Figure 5 Average Response Time after

increasing the number of manager processes
on the same machine

Figure 6 Average response time when

handling concurrent requests using 2 and 4
manager processes on same machine

Figure 7 Average response time when

handling concurrent requests using 2 and 4
manager processes on different machines
The average response time is shown in Figure 4.

The figure shows the metrics when multiple concurrent
failures are handled by a single manager process. As
we increase the number of managers, we see a huge

performance benefit by increasing the processes from 1
to 2 as shown in Figure 5. Figure 6 shows the
performance (close-up of Figure 5) when there are 2
and 4 manager processes respectively. Note that if 4
manager processes are used, instead of 2, we see that
the average response time slightly increases. The
reason is primarily due to the fact that our test
machines had only 2 physical processors and the
system takes time to context switch between various
processes. We conclude that adding more manager
processes than the number of available processors on a
particular node, does not necessarily improve system
performance especially when handling multiple
failures.

Finally, we distribute the manager processes on
different machines. Thus for instance, running manager
processes on 2 or 4 machines instead of just 1,
improves performance (comparing Figure 7 and Figure
4). We note a slight gain when distributing processes
over multiple machines (compare Figure 6 and Figure
7). As observed from Figure 7, the gain (increasing
machines from 2 to 4) is not very high because of the
finite amount of time it takes to process each message.

3.4. Discussion of results

A single manager process can handle 1000s of
requests from resources. This is because of the use of a
publish/subscribe framework for communication that
can multiplex requests to multiple endpoints using a
single connection channel via the messaging node.
However the response time when handling multiple
concurrent requests increases as the number of requests
increases. We note that as the number of concurrent
requests increases beyond 200, the response time
increases rapidly. Further, note that the number 200 is
typical with respect to our test setup and could easily
be higher especially in the case where the resources
can tolerate higher delays. Finally, depending on the
quality of service (response time) desired, the number
200 may be appropriately adjusted. For the sake of
discussion in the next section, we consider 200 as an
illustrative value.

Further, most resources do not require constant
management (e.g. on millisecond scale) hence running
more managers per processor is still acceptable. The
graphs indicate a very specific case of catastrophic
failure where every single resource being managed
generates an event. The experiment indicates how the
worst case scenario affects the average response time.

Additionally, note that the benchmark results
presented here deal with only one unit of management
infrastructure. We expect multiple units in a wide area
deployment (Ref. Figure 2) to behave similarly.

- 7 -

3.5. Amount of Management Infrastructure
Required

We now try to answer the research question, “How
much Management Infrastructure is required to handle
N Resources?” We define the term “Management
Infrastructure” as the additional resources (processes
and not physical hardware) required for providing
fault-tolerant management.

Let N be the number of resources requiring
management. If D is the maximum number of resources
that is configured to be managed by a single manager
process, then we require at-least N/D manager
processes. Let M be the maximum number of resources
that a single messaging node can support. Thus to
manage N resources we require CEILING (N/M)
messaging nodes. With 1 messaging node per leaf
domain we require N/M leaf domains. Further, we need
at least M/D manager processes per leaf domain. Let R
be the number of registry replicas used to provide
fault-tolerant scalable registry. Thus total number of
management infrastructure processes at the lowest leaf
level is
(R registry + 1 messaging node + 1
bootstrap node + M/D managers) * (N/M
such leaf domains)
= (2 + R + M/D)*N/M

In our measurements a single broker could reliably
support about (M = 800) simultaneous TCP
connections. To scale to a larger number of resources,
a different protocol such as UDP may be used that
improves the value of M. However, additional logic
must be used to account for dropped messages via
message retry and timeouts. The second approach is to
use a cluster of strongly connected messaging nodes
however this requires additional management in setting
up links between the various messaging nodes and
maintaining them in a fault-tolerant fashion. A third
way is to redistribute resources such that they are in
different management domains.

To manage the N/M leaf domains, an additional
number of passive bootstrap nodes are required.
Typically the number of passive nodes would be <<
N/M and we ignore it for the purpose of this analysis.
Thus for managing N resources we require an
additional (2 + R + M/D)*N/M processes. Thus,
the percentage of management infrastructure required
with respect to number of resources N is
MGMTINFRASTRUCTURE
= [(2 + R + M/D)*N/M]/N * 100 %
= [(2+R)/M + 1/D] * 100 %
As an illustration, if D = 200, R = 4 and M =
800, then MGMT = [(2+4)/800 +
1/200] * 100 % = 1.2 %

INFRASTRUCTURE

Thus, as the number of resources to manage
increases, fault-tolerant management of the system can
be achieved by adding about 1% more resources. Note
that, when the number of resources N is small (e.g. N
= 10), we still require the basic infrastructure
(consisting of 1 manager, 1 bootstrap node, 1
messaging node and R registries) to manage them.
Assuming R = 4, the minimum infrastructure
components are 7. Thus the architecture scales when N
* 1.2% = 7, i.e. N ≈ 600. Thus we conclude that
when N is large (> 600), we can achieve fault-
tolerant management by adding approximately 1%
additional resources.

Finally, as discussed in Section 3.4, the value of D
may be suitably adjusted which would determine the
number of manager processes required and the
percentage of extra resources (MGMTINFRASTRUCTURE).

4. Sample Application
The system feasibility as determined in the previous

section is mainly dependent on modest run-time state
maintained per resource-specific manager thread and
the number of registry accesses required to retrieve /
store state. One such application is management of a
Grid Messaging Middleware: NaradaBrokering. The
motivation for management is discussed in more detail
in Ref. [18]. In this paper we present a discussion on
application of our architecture to NaradaBrokering.

While the failures of system components are
handled by the framework, resource failure handling is
handled by defining resource specific policies and
implemented by resource-specific managers. As a
proof-of-concept, we implemented the
AUTOInstantiate policy which automatically
instantiates a broker process when the manager is
unable to successfully establish contact with an
existing broker’s service adapter.

A broker topology determines the number of
outgoing links from the managed broker. For instance
consider a ring topology where each broker has one
link to the next broker in the ring. In a cluster
topology, each cluster has brokers connected in a ring.
Each super cluster has clusters connected in a ring,
while each super-super-cluster has super-clusters
connected in a ring. With such a topology, the number
of outgoing links range from 0 to 3 links.

4.1. Benchmarking

To find the recovery cost after failure, we
benchmark the actual time it takes to create a broker
from scratch after it has failed. The managed broker
creates links to a static broker and we time recovery
after failure. While network partitions and slowed
processes would typically raise false alarms about

- 8 -

resource failures, we delegate the functionality of
handling such situations to the resource specific
manager. For our purpose, we rely on a heartbeat
mechanism and timeouts to determine resource failure.
The step-wise procedure followed is as follows:
1. Resource manager sends a shutdown message to

broker which kills itself on receiving it.
2. Resource manager times out and starts a timer.
3. The resource manager then instantiates a copy of

the failed resource which re-registers itself in the
registry and the manager process (spawn remote
process). The current broker state is read from
registry (read state).

4. The manager then brings the resource back up
(restore) to the state before failure. This includes
restoring any configured outgoing links. After this,
a full recovery of the failed resource has occurred
and we time this recovery.

Table 1 Observed Recovery Time (msec)
Operation Mean Std. Dev.

Spawn Remote Process 2362 56
Read State 8 2
Restore (1 broker + 1 Link) 1420 27
Restore (1 broker + 3 links) 1615 258

The results are presented in Table 1. We note that a
single broker resource can be recovered in about 5 sec.
If there are dependencies between brokers (one
managed broker connects to another managed broker),
timing differences between failure detection and
recovery phase could easily worsen the recovery time.

We believe that appending such management
capabilities to NaradaBrokering framework is an
important contribution as the management framework
not only provides ease of deployment of brokers but
also maintains the runtime configuration in a fault
tolerant manner transparent to the administrator of
deployed system.

5. Related Work
The Web Services Resource Framework (WSRF) is

a suite of specifications that align the OSGI conceptual
model to be in agreement with existing Web standards.
WSRF defines a WS-Resource as a “composition of
Web Service and a stateful Resource”. The WSRF
defines conventions for managing state in distributed
system comprising of such WS-Resources. The WSRF
community has adopted Web Services Distributed
Management (WSDM) that defines a complete
management model that includes Management of Web
Services (MOWS) [19] and Management using Web
Services(MUWS) [20]. By contrast, we define any
service that needs configuration, lifecycle and runtime
management as a resource and wrap it with a service
interface to expose management capabilities.
Management is provided by a complementary

specification, WS-Management [21] which is a SOAP-
based protocol for managing systems (including Web
Services) and functionally overlaps with MUWS. WS-
Management identifies a core set of Web Service
specification and usage requirements to expose a
common set of operations central to all management
systems. These include lifecycle operations,
enumeration of collection and handling of resource-
specific events. The specification provides extensibility
for a manageable resource to extend its manageability
by defining resource-specific management methods.
We selected WS Management primarily due to its
simplicity and because we could leverage WS –
Eventing [22] from NaradaBrokering’s Web Service
support.

SNMP (Simple Network Management Protocol) [2]
deals primarily with network resources. SNMP is an
application layer protocol that facilitates exchange of
management information between network devices.
Lack of security features however reduces SNMP to a
monitoring facility only. As we have discussed in
Section 1.1, monitoring is an important aspect of
management but not all of it. There are a variety of
distributed monitoring frameworks such as Ganglia
[23], Network Weather Service [24] and MonALISA
[25]. The primary purpose of these distributed
monitoring frameworks is to provide monitoring of
global Grid systems and aggregation of metrics. Some
systems such as MonALISA also provide the
capability of configuring and managing services via
RMI calls.

In the Java community, the JMX [3] technology
provides tools for building distributed, Web-based
management system for managing and monitoring Java
applications, devices and service driven networks.
However JMX can typically be accessed only by
clients using Java technology making it non-
interoperable. This issue is being partly addressed by
providing a Web Service connector for JMX Agents
[26]. While JMX presents the capability to instrument
applications with appropriate messages, metrics and
control mechanisms, a Web Service based management
protocol provides a more cross-platform, standards-
based interface.

6. Conclusion and Future Work
A successful distributed application benefits from

properly managed services. In this paper we have
presented the need and our approach to uniformly
manage a set of distributed services. To make the
management framework interoperable we employed a
service-oriented architecture based on WS-
Management. This work leveraged the
publish/subscribe paradigm to scale locally and a
hierarchical distribution to scale in wide area
deployments. The system is tolerant to faults within the

- 9 -

management framework while resource failure is
handled by implementing user-defined policies. When
applied to resources with modest external state, the
approach is feasible since it adds about 1% additional
resources to provide fault-tolerant management to a
large set of distributed resources.

In the future we would like to apply the framework
to broader areas that would help carry out more
detailed performance benchmarks tests. We believe
that application of management framework to such
systems can bring up many interesting research issues,
specifically challenging scalability of the system. We
also plan to implement Naradabrokering’s security
infrastructure that would help resolve the security
issues as detailed in Section 2.3. Our current
implementation uses WS – Management. In the future
we would like to investigate implementing the merged
[27] Web Service based management specifications.
Finally, more metrics (such as CPU utilization,
available memory and locality) need to be taken into
account when assigning managers to resources.

7. References

[1] Channabasavaiah, K., K. Holley, and J. Edward
Tuggle. Migrating to a Service Oriented Architecture.
Dec 2003 http://www-
128.ibm.com/developerworks/library/ws-migratesoa/

[2] Case, J., et al. A Simple Network Management Protocol
(SNMP). 1990 RFC: 1157,
http://www.ietf.org/rfc/rfc1157.txt

[3] Kreger, H., Java Management Extensions for
application management. IBM Systems Journal, 2001.
40(1).

[4] Distributed Management Task Force, I. Web-Based
Enterprise Management (WBEM).
http://www.dmtf.org/standards/cim/

[5] Distributed Management Task Force, I. Common
Information Model (CIM).
http://www.dmtf.org/standards/cim/

[6] Silberschatz, A. and P.B. Galvin, Operating Systems
Concepts. Fifth Edition ed. 1999: Addison Wesley
Longman, Inc.

[7] Condor Project. http://www.cs.wisc.edu/condor/
[8] Grid Resource Allocation Manager.

http://www.globus.org/toolkit/docs/3.2/gram/ws/index.
html

[9] Moore's Law. http://en.wikipedia.org/wiki/Moore's_law
[10] Oppenheimer, D., A. Ganapathi, and D.A. Patterson.

Why do Internet services fail, and what can be done
about it ? in USENIX Symposium on Internet
Technologies and Systems (USITS '03). March 2003.

[11] Microsoft. Windows Management Instrumentation
(WMI).
http://www.microsoft.com/whdc/system/pnppwr/wmi/d
efault.mspx

[12] Pallickara, S. and G. Fox. NaradaBrokering: A
Middleware Framework and Architecture for Enabling

Durable Peer-to-Peer Grids. in ACM/IFIP/USENIX
International Middleware Conference. 2003.

[13] Pallickara, S., H. Gadgil, and G. Fox. On the Discovery
of Brokers in Distributed Messaging Infrastructures. in
IEEE Cluster. Sep 27 - 30, 2005, Boston, MA.

[14] Pallickara, S., et al., A Retrospective on the
Development of Web Service Specifications, Chapter in
Book Securing Web Services: Practical Usage of
Standards and Specifications, P. Panos, Editor. 2006,
Idea Group Inc.: University of Newcastle Upon
Tynehttp://grids.ucs.indiana.edu/ptliupages/publication
s/CGL-WebServices-Chapter.pdf

[15] Bunting, B., et al. Web Services Context (WS-Context).
http://www.arjuna.com/library/specs/ws_caf_1-0/WS-
CTX.pdf

[16] Pallickara, S., G. Fox, and H. Gadgil. On the Discovery
of Topics in Distributed Publish/Subscribe systems. in
6th IEEE/ACM International Workshop on Grid
Computing Grid 2005. 2005, p. 25-32, Seattle, WA.

[17] Pallickara, S., et al. A Framwork for Secure End-to-
End Delivery of Messages in Publish / Subscribe
Systems. in 7th IEEE/ACM International Conference
on Grid Computing (Grid 2006). 2006, Barcelona,
Spain.

[18] Gadgil, H., et al. Managing Grid Messaging
Middleware. in Challenges of Large Applications in
Distributed Environments (CLADE). 2006, p. 83 - 91,
Paris, France.

[19] OASIS-TC. Web Services Distributed Management:
Management of Web Services (WSDM-MOWS) 1.0
OASIS Standard. http://www.oasis-
open.org/committees/tc_home.php?wg_abbrev=wsdm

[20] OASIS-TC. Web Services Distributed Management:
Management Using Web Service (MUWS 1.0) Part 1 &
2, OASIS Standard. http://www.oasis-
open.org/committees/tc_home.php?wg_abbrev=wsdm

[21] Arora, A., et al. Web Services for Management. June
2005
https://wiseman.dev.java.net/specs/2005/06/manageme
nt.pdf

[22] Microsoft, IBM, and BEA. Web Services Eventing (WS
– Eventing). Aug 2004
http://ftpna2.bea.com/pub/downloads/WS-Eventing.pdf

[23] Massie, M., B. Chun, and D. Culler, The Ganglia
Distributed Monitoring System: Design,
Implementation and Experience. Parallel Computing,
July 2004. 30(7).

[24] Wolski, R. Forecasting Network Performance to
Support Dynamic Scheduling using the Network
Weather Service. in High Performance Distributed
Computing (HPDC). 1997, p. 316 - 325.

[25] Newman, H.B., et al. MonALISA: A Distributed
Monitoring Services Architecture. in CHEP 2003.
MArch 2003, La Jola, CA.

[26] BEA, et al. JSR 262: Web Services Connector for Java
Management Extensions (JMX) Agents. 2006
http://jcp.org/en/jsr/detail?id=262

[27] HP, et al. Toward Converging Web Service Standards
for Resources, Events, and Management.
http://msdn.microsoft.com/library/en-
us/dnwebsrv/html/convergence.asp

- 10 -

http://www-128.ibm.com/developerworks/library/ws-migratesoa/
http://www-128.ibm.com/developerworks/library/ws-migratesoa/
http://www.ietf.org/rfc/rfc1157.txt
http://www.dmtf.org/standards/cim/
http://www.dmtf.org/standards/cim/
http://www.cs.wisc.edu/condor/
http://www.globus.org/toolkit/docs/3.2/gram/ws/index.html
http://www.globus.org/toolkit/docs/3.2/gram/ws/index.html
http://en.wikipedia.org/wiki/Moore's_law
http://www.microsoft.com/whdc/system/pnppwr/wmi/default.mspx
http://www.microsoft.com/whdc/system/pnppwr/wmi/default.mspx
http://grids.ucs.indiana.edu/ptliupages/publications/CGL-WebServices-Chapter.pdf
http://grids.ucs.indiana.edu/ptliupages/publications/CGL-WebServices-Chapter.pdf
http://www.arjuna.com/library/specs/ws_caf_1-0/WS-CTX.pdf
http://www.arjuna.com/library/specs/ws_caf_1-0/WS-CTX.pdf
http://www.oasis-open.org/committees/tc_home.php?wg_abbrev=wsdm
http://www.oasis-open.org/committees/tc_home.php?wg_abbrev=wsdm
http://www.oasis-open.org/committees/tc_home.php?wg_abbrev=wsdm
http://www.oasis-open.org/committees/tc_home.php?wg_abbrev=wsdm
http://ftpna2.bea.com/pub/downloads/WS-Eventing.pdf
http://jcp.org/en/jsr/detail?id=262
http://msdn.microsoft.com/library/en-us/dnwebsrv/html/convergence.asp
http://msdn.microsoft.com/library/en-us/dnwebsrv/html/convergence.asp

	1. Introduction
	1.1. Aspects of Resource / Service Management
	1.2. Motivation
	1.3. Desired Features

	2. Architecture
	2.1. Components
	2.1.1. Resource As defined in Section 1.1 we refer to Resource as the component that requires management. We employ a service-oriented management architecture and hence we assume that these Resources have a Web Service interface that accepts management related messages. In the case where the Resource is not a Web Service we augment the Resource with a service adapter that serves as a management service proxy. The service adapter is then responsible for exposing the managed Resource.
	2.1.2. Service Adapter Service adapter serves as a mediator between the resource manager and the resource. Service adapter is responsible for
	2.1.3. Manager A manager is a multi threaded process and can manage multiple resources at once. Typically, one resource-specific manager module thread is responsible for managing exactly one resource and is also responsible for maintaining the resource configuration. Since every resource-specific manager only deals with the state specific to the resource it is managing, it can independently checkpoint the runtime state of the resource to the registry. Manager processes usually maintain very little or no state as the state can be retrieved easily by either querying the resource or looking up in the registry. This makes the managers robust as they can be easily replaced on failure.
	2.1.4. Registry The Registry stores system state. System state comprises of runtime information such as availability of managers, list of resources and their health status (via periodic heartbeat events) and system policies, if any. General purpose information such as default system configuration may also be maintained in the registry.
	2.1.5. Messaging Node Messaging nodes consist of statically configured NaradaBrokering broker nodes. The messaging nodes form a scalable message routing substrate to route messages between the Managers and Service Adapters. These nodes provide multiple transport features such as TCP, UDP, HTTP and SSL. This allows a resource, present behind a firewall or a NAT router, to be managed (for e.g. connecting to the messaging node and utilizing tunneling over HTTP/SSL through a firewall).
	2.1.6. Bootstrap Service The bootstrap service mainly exists to serve as a starting point for all components of the system. The bootstrap service also functions as a key fault-prevention component that ensures the management architecture is always up and running. The service periodically starts, checks the overall system health and if some component has failed, reinstates that component. The system health check specifically checks for presence of a working messaging node, an available registry endpoint and enough number of managers to manage all registered resources. This service may be replicated for additional fault-tolerance.
	2.1.7. User The user component of the system is the service requestor. A user (system administrator for the resources being managed) specifies the system configuration per Resource which is then appropriately set by a Manager. In some cases there would be a group of Resources which require collective management. An example of this is the broker network where the overall configuration of the broker network is dependent on the configuration of individual nodes. Dependencies in the system in such cases are set by the user while the execution of dependencies is performed by the management architecture in a fault-tolerant manner.

	2.2. Consistency
	2.3. Security

	3. Performance Evaluation
	3.1. Runtime State
	3.2. Test Setup
	3.3. Observations
	3.4. Discussion of results
	3.5. Amount of Management Infrastructure Required

	4. Sample Application
	4.1. Benchmarking

	5. Related Work
	6. Conclusion and Future Work
	References

