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Abstract 
  With the emergence of Service-based 
architectures, management of an application 
which comprises of a large number of distributed 
services becomes difficult as resources appear, 
move and disappear across the network. As 
service components span different network 
boundaries, constraints such as network policies, 
firewalls and NAT devices further complicate 
management by limiting direct access to the 
resource. Services and resources may exist on 
different platforms and may be written in 
different languages, which promotes use of 
proprietary solutions thus affecting 
interoperability. 

 In this paper we present a novel 
architecture that leverages “publish-subscribe” 
principles for enabling scalable and fault-
tolerant management of a set of distributed 
entities. We make management interoperable by 
leveraging service-oriented principles. Our 
empirical evaluation shows that fault-tolerance 
overhead is about 1% in terms of additional 
resources required thus making the approach 
feasible. 

Keywords: Scalable, Fault-tolerance, 
Service Oriented Management, Architecture 

1. Introduction 
With the explosion of the internet, a new 
class of Web-based applications has 
emerged. These applications have connected 
end users to existing, traditional, centralized 
services. Distributed applications today are 
composed of multiple distributed 
components and are increasing in 
complexity. As the individual components 
get widely dispersed, they tend to span 
different administrative domains. Differing 
network and security policies restrict access 

to application components while resource 
management access is further limited due to 
presence of network firewalls and Network 
Address Translation (NAT) devices. Further, 
different services may be running on 
different platforms and could have been 
written in different languages. As 
application complexity grows, the need for 
an efficient management system emerges. 

Various system specific management 
architectures have been developed and have 
been quite successful in their areas. 
Examples include SNMP (Simple Network 
Management Protocol) [1] CMIP [2] and 
CIM [3]. The Java community has 
introduced JMX [4] (Java Management 
eXtensions) which enables any Java-based 
resource to be automatically manageable. 
WMI [5] (Windows Management 
Instrumentation) from Microsoft enables 
local and remote monitoring and 
management of Microsoft Windows based 
machines. A main lacking feature among 
these management systems is 
interoperability. 

In this paper we propose a simple, universal 
mechanism for managing a set of distributed 
entities. Every entity implicitly has or can be 
explicitly augmented with a Web service 
interface. The only assumption in providing 
fault-tolerance is the existence of a scalable 
and reliable database for storing system 
state. Our current implementation leverages 
the WS-Management [6] specification, but 
could very well use WS – Distributed 
Management (WSDM) [7]. WS 
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Management was primarily chosen for its 
simplicity and also to leverage an existing 
implementation of WS-Eventing [8] in the 
NaradaBrokering [9] project. 

1.1. Service-oriented Management 
To address interoperability, the distributed 
systems community has been orienting 
towards the Web Services architecture 
which is based on a suite of specifications 
that defines rich functions while allowing 
services to be composed to meet varied QoS 
(Quality of Service) requirements. Proposals 
[10] that leverage the Web Services 
management principles in context of 
existing management frameworks already 
exist. The service-oriented architecture 
provides a simple and flexible framework 
for building sophisticated applications. The 
use of XML in implementing Web Services 
facilitates interactions between services 
implemented in different languages, running 
on different platforms and communicating 
over multiple transports. 

WS Management and WSDM are two 
competing specifications in the area of 
management using Web Services 
architecture.  

Both specifications focus on providing a 
Web service model for building system and 
application management solutions, 
specifically focusing on resource 
management. This includes basic 
capabilities such as creating and deleting 
resource instances and setting and querying 
service specific properties and providing an 
event driven model to connect services 
based on the publish / subscribe paradigm. 

WSDM breaks management in two parts, 
Management using Web Services (MUWS 
[11]) and Management of Web Services 
(MOWS [12]). MUWS focuses on providing 
a unifying layer on top of existing 
management specifications such as CIM, 
SNMP and OMI (Open Management 

Interface) models. MOWS presents a model 
where a Web Service is itself treated as a 
manageable resource. Thus, MOWS will 
serve to provide support for the management 
framework and support varied activities 
such as service metering, auditing, SLA 
(Service Level Agreement) management, 
problem detection and root cause failure 
analysis, service deployment, performance 
profiling and life cycle management.  

WS Management on the other hand attempts 
to identify a core set of Web Service 
specifications and usage requirements to 
expose a common set of operations central 
to all management systems. This minimum 
functionality includes ability to discover 
management resources, CREATE, DELETE, 
RENAME resources, GET and PUT individual 
settings and dynamic values, ENUMERATE 
contents of containers and collections, 
SUBSCRIBE to events emitted by managed 
resources and EXECUTE resource specific 
management actions. Thus the majority of 
overlapping areas with the WSDM 
specification are in the MUWS 
specification. Ref. [13] presents a proposal 
for evolution of a common management 
specification. 

1.2. Generic Management 
Application components require specific 
configuration to provide optimum Quality of 
Service (QoS). The “Component-Specific 
Configuration” is usually dependent on 
user-defined criteria and may require 
components to be individually configured. 
As again components present behind 
firewalls are usually unreachable via 
standard means. 

Figure 1 shows the basic components of a 
generic management framework. We 
assume that the resource to manage and the 
resource manager are Web Services.  
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large number of distributed resources. 
Further, as systems span wide networks they 
become difficult to maintain and failure is 
norm. Systems must have the capability to 
detect failure and restart the failed service 
(resource) or re-instantiate a copy of the 
failed component that takes over the 
functionality of the failed resource. 

Figure 1 Generic Management Framework 

The Resource that requires management is 
any application specific component. We 
term such a resource as a manageable 
resource. Usually, with the right 
configuration, a Resource-specific manager 
can directly interact with the resource and 
manage it, however when the resource being 
managed is not intrinsically a Web Service, 
a wrapper service that provides a Web-
service front-end is required. The 
Management Interface is an entity specific 
proxy that has a Web-service interface on 
one end and an entity-specific interface on 
the other end. This proxy acts as translator 
of Web-service based messages to entity-
specific commands. 

The rest of the paper is organized as follows. 
We present our architecture in Section 2 and 
present evaluation results in Section 3. 
Section 4 describes the application of our 
architecture towards managing a grid 
messaging middleware. We present a 
summary of existing fault-tolerance 
strategies in section 5. In section 6 we 
present our conclusion and future work. 

2. Architecture 
Our architecture is based on existing fault-
tolerance schemes. The approach uses 
intrinsically robust and scalable 
management services and relies only on the 
existence of a reliable, scalable database to 
store system state.  

Management of resources includes1 resource 
configuration and performing life-cycle 
operations such as CREATE and DELETE 
resource instances whenever applicable. 
Management also includes processing 
runtime events, monitoring status and 
performance of the resources and 
maintaining system state as defined by some 
user-defined criteria. Management 
operations change system state which raises 
a number of consistency considerations not 
present in monitoring systems such as 
MonaLISA [14] and Astrolabe [15]. 

The overall management framework consists 
of units arranged hierarchically. Each unit is 
controlled via a bootstrap node. The 
hierarchical organization of units makes the 
system scalable in a wide-area deployment. 
We now describe the main components of 
each unit of the framework. A unit of 
management framework consists of one or 
more manageable resources, their associated 
resource managers, one or more messaging 
nodes (NaradaBrokering brokers, for 
scalability) and a scalable, fault-tolerant 
database which serves as a registry. The 
arrangement of components is shown in 
Figure 2. The function of various 
components is discussed below:

In our architecture, we assume there could 
be multiple such services that require 
management. Examples of systems with 
large number of manageable resources are 
cell phones, large clusters of machines or 
even brokers in distributed brokering 
systems. The scheme should thus be 
scalable, incorporating management of a 

                                                 
1  From WS – Distributed Management, 

http://devresource.hp.com/drc/slide_presentations/wsdm/index.jsp 
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Figure 2 Overview showing components of the Management Architecture 

2.1. Resource 
We refer to Resource as the component that 
requires management. We employ a service-
oriented management architecture and hence 
we assume that these Resources have a Web 
Service port that accepts management 
related messages. In the case where the 
Resource is not a Web Service we augment 
the Resource with a service adapter that 
serves as a management service proxy. The 
service adapter is then responsible for 
exposing the managed resources of the 
Resource. 

2.2. Service Adapter 
Service adapter serves as a mediator 
between the manager and the Resource. We 
assume that there is one Service adapter per 
Resource. Service adapter is responsible for  

1. Sending periodic heartbeats to the 
associated Manager. 

2. Providing a transport neutral connection 
to the manager (possibly via a messaging 
node). The Service Adapter may try 
different Messaging nodes to connect to, 
should the default messaging node be 

unreachable after several tries. An 
alternate way of connecting to the best 
available messaging node is to use the 
Broker Discovery Protocol [16]. 

3. Hosting a service oriented messaging 
based management processor protocol 
such as WS Management (our 
implementation). The WS – 
Management processor provides basic 
management framework and a resource 
wrapper is expected to provide the 
correct functionality (mapping WS 
Management messages to resource-
specific actions). 

Additionally the Service Adapter may 
provide an interface to a persistent storage to 
periodically store the state to recover from 
failures. Alternatively, recovery may be 
done by resource-specific manager 
processes as has been implemented in our 
prototype. 

2.3. Manager 
A manager is a multi threaded process and 
can manage multiple resources at once. 
Typically, one resource-specific manager 
module thread is responsible for managing 

- 4 - 



exactly one resource and is also responsible 
for maintaining the resource configuration. 
This resource specific manager 
independently commits runtime state of the 
resource to the registry. Thus, the manager 
process implements the Independent Check-
pointing scheme. The Manager process also 
runs a heartbeat thread that periodically 
renews the Manager in the Registry. This 
allows other Manager processes to check the 
state of the currently managed resources and 
if a Manager process has not renewed its 
existence within a specified time, all 
resources assigned to the failed Manager are 
then distributed among other Manager 
processes.  

On failure, a finite amount of time is spent 
in detecting failure and re-assigning 
management to new manager processes. 
Thus the architecture implements a Passive 
Replication scheme. The primary purpose of 
independent check-pointing and passive 
replication is simplicity of implementation. 

2.4. Registry 
The Registry stores system state. System 
state comprises of runtime information such 
as availability of managers, list of resources 
and their health status (via periodic heartbeat 
events) and system policies, if any. General 
purpose information such as default system 
configuration may also be maintained in the 
registry.  

The registry may be backed by a Persistent 
Store Service which allows the data written 
in registry to be written to some form of 
persistent store. Persistent stores could be as 
simple as a local file system or a database or 
an external service such as a WS – Context 
[17] service. Usually read operations can be 
directly served from an in-memory cache 
but writes are always written directly to the 
persistent store. The presence of a persistent 
store provides fault-tolerance to the registry 
service. We assume the persistent store to be 

distributed and replicated for performance 
and fault-tolerance purposes.  

A Request Processor provides logic for 
manipulating the data stored in the registry. 
This mainly includes checking for manager 
processes that have not renewed within the 
system defined time frame, serving as a 
matching engine to match new resources to 
managers and updating appropriate fields in 
the metadata maintained by the Registry. 

2.5. Messaging Node 
Messaging nodes consist of statically 
configured NaradaBrokering broker nodes. 
The messaging nodes form a scalable 
message routing substrate to route messages 
between the Managers and Service 
Adapters. These nodes provide multiple 
transport features such as TCP, UDP, HTTP 
and SSL. This allows a Resource, present 
behind a firewall or a NAT router, to be 
managed (for e.g. connecting to the 
messaging node and utilizing tunneling over 
HTTP/SSL through a firewall). 

One may employ multiple messaging nodes 
to achieve fault-tolerance as the failure of 
the default node automatically causes the 
system to try and use the next messaging 
node. We assume that these nodes rarely 
require a change of configuration. Thus on 
failure, these nodes can be restarted 
automatically using the default static 
configuration for that node. 

2.6. Bootstrap Service 
The bootstrap service mainly exists to serve 
as a starting point for all components of the 
system. The bootstrap service also functions 
as a key fault-prevention component that 
ensures the management architecture is 
always up and running. The service 
periodically starts, checks the overall system 
health and if some component has failed, 
reinstates that component. The system health 
check specifically checks for presence of a 
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working messaging node, an available 
registry endpoint and enough number of 
managers to manage all registered resources. 

 
Figure 3 Achieving scalability through 

hierarchical management 

The bootstrap services are arranged 
hierarchically as shown in Figure 3. As 
shown in the figure, we call the leaf nodes of 
the bootstrap hierarchy as being active 
bootstrap nodes.  This means that these 
nodes are responsible for maintaining a 
working management framework for the 
specified set of machines (henceforth, 
domain). Such hierarchical arrangement is 
used to achieve scalability in many systems 
such as Domain Name Service (DNS) [18], 
Astrolable [15] and MonaLISA [14]. 
The non-leaf nodes are passive bootstrap 
nodes and their only function is to ensure 
that all registered bootstrap nodes which are 
their immediate children are always up and 
running. This is done through periodic 
heartbeat messages. Since the number of 
child nodes per parent node is relatively 
small, the system may maintain a reliable 
connection (TCP) between the child and 
parent nodes. The child nodes may send 
periodic heartbeats to the parent node. 
Failure is quickly detected when there is a 

connection loss OR a heartbeat is not 
received within a specified timeframe. 

2.7. User 
The user component of the system is the 
service requestor. A user (system 
administrator for the resources being 
managed) specifies the system configuration 
per Resource which is then appropriately set 
by a Manager. In some cases there would be 
a group of Resources which require 
collective management. An example of this 
is the broker network where the overall 
configuration of the broker network is 
dependent on the configuration of individual 
nodes. Dependencies in the system in such 
cases are set by the user while the execution 
of dependencies is performed by the 
management architecture in a fault-tolerant 
manner. 

3. Performance Evaluation 
In this section we present analysis of the 
system and present benchmark results. Our 
system adds a few components apart from 
the actual resources being managed, in order 
to achieve scalable, fault-tolerant 
management. The main purpose of 
benchmarking analysis is to show the 
feasibility of the system. We describe our 
benchmarking approach and include 
observed measurements. All our 
experiments were conducted on the 
Community Grids Lab’s GridFarm cluster 
(GF1 – GF8). The Gridfarm machines 
consist of Dual Intel Xeon hyper-threaded 
CPUs (2.4 GHz), 2 GB RAM running on 
Linux (Linux 2.4.22-1.2199.nptlsmp). They 
are interconnected using a 1 Gbps network. 
The Java version used was Java Hotspot™ 
Client VM (build 1.4.2_03-b02, mixed 
mode). 

3.1. Maximum message rates 
The measurements presented in this paper 
use a single NaradaBrokering messaging 
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node as a transport substrate. Our first 
experiment is to establish a base level for the 
maximum publish rates supported by a 
NaradaBrokering Broker. To measure this, 
we setup a measuring subscriber that sums 
up the total messages received in a 5 second 
interval. Our observations indicate that the 
broker can support in excess of 5000 
messages / sec when the message size is 
about 512 bytes and 4500 messages / sec 
when the message size is about 1024 bytes.  

Since most of the message interactions 
comprise of messages which can be encoded 
using 512 bytes or less, we assume “5000 
messages/sec” as the maximum publish 
rate that can be supported by the broker. We 
use this as the basis for all the analysis 
presented henceforth. 

3.2. Runtime State 
Our architecture uses asynchronous 
communication between components. 
Typically a domain would have one registry 
endpoint but the registry itself would be 
replicated for fault-tolerance and 
performance purposes. This introduces a 
bottleneck when performing registry 
read/write operations. Thus the goal is to 
minimize registry accesses, which in turn 
implies that the runtime state maintained per 
resource must be sufficiently small so that it 
can be read/written using as few a number of 
calls as possible. 

3.3. Runtime Response Cost 
The most important factor in implementing a 
multi-threaded manager process is the 
maximum number of resources a single 
manager process can manage. This in turn is 
dependent on the response time required to 
handle an event from the resource. Typically 
the response time is resource dependent and 
is also affected by the actual work required 
in handling an event from the resource. If 
the handling entails one or more registry 

access, additional time is spent in handling 
the event. This would also enable us to 
formulate the number of Manager processes 
required and the number of resources that 
can be managed by a single instance of the 
management architecture. We define a 
single instance as comprising of one or more 
messaging nodes, 1 registry (possibly 
backed by a stable storage via WS Context 
service) and one or more Manager 
processes. Finally this number also 
determines how the system scales. 

Messaging 
Node
(GF5)

GF1

GF3

GF4

GF2

Registry
(GF5)

NB

Manager Process
(GF6)

NBUDP

UDP

Benchmark 
Accumulator

(GF7)

NB WS-Eventing 
Subscription Manager

(GF7)

NB

 
Figure 4 Test Setup 

The test setup is shown in Figure 4. We ran 
multiple Resources from the Grid cluster 
machines GF1 – GF4. The Messaging node 
and registry were run on GF5 while the 
Manager process was run on GF6. A 
benchmark accumulator process and the 
subscription manager process for storing 
WS-Eventing subscriptions were run on 
GF7. As shown in the figure, only Manager 
– Registry interactions go over UDP. All 
other interactions are made by publishing / 
subscribing to the appropriate topic. 

The testing methodology was as follows. 
The Benchmark Accumulator process sends 
a message to all the Resources and starts a 
timer. These Resources then generate an 
event and send it to their associated 
Manager process. The Manager process 
processes the event (i.e. it simply responds 
back to the Resource with a message which 
corresponds to the handling of the message). 
Once a response is received, the Resource 
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responds back to the benchmark 
accumulator process. When all resources 
have reported, the time is noted and the 
difference corresponds to the overall 
response time. Note that this time includes 
an additional latency for sending the 
message to all resources and for all 
resources to respond back which is ignored 
considering the fact that processing time is 
typically much higher than latency of a 
message in a closed cluster of machines. 
Thus all the timings are higher than the 
actual timings by a few milliseconds atmost. 

 
Figure 5 Response time of a single Manager 

process 

As expected, with an increase in the number 
of managed resources, the number of threads 
per manager process grows. Thus the 
average response time increases. In our case, 
there was no registry access during 
processing of the event, however this 
behavior is resource specific and may 
require one or more registry accesses in 
certain cases.  

The average response time is shown in 
Figure 5. The figure shows the metrics 
when there is only 1 manager process. If the 
number of manager processes is increased, 
we see a huge performance benefit by 
increasing the processes from 1 to 2 as 
shown in Figure 6. However, if 4 manager 
processes are used, instead of 2, we see that 

the average response time slightly increases. 
The reason is primarily due to the fact that 
our test machines had only 2 physical 
processors and the system takes time to 
context switch between various processes. 

 
Figure 6 Increasing Manager processes on the 

same machine 

 
Figure 7 Average response time improvement 

using 2 and 4 Manager processes 

Figure 7 shows the performance (close-up 
of Figure 6) when there are 2 and 4 
manager processes respectively. We 
conclude that adding more manager 
processes than the number of available 
processors on a particular node, does not 
necessarily improve system performance.  
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Figure 8 Effect of increasing number of 

machines 

Finally, we distribute the manager processes 
on different machines. Thus for instance, 
running manager processes on 2 or 4 
machines instead of just 1, improves 
performance (comparing Figure 8 and 
Figure 5). As seen from Figure 8, the 
expected gain (increasing machines from 2 
to 4) is not very high because of the use of a 
single messaging node through which all 
messages must pass, possibly leading to a 
bottleneck. 

We note that as the number of managed 
resources increases beyond 200, the 
response time increases rapidly. Thus we 
conclude that a single manager can manage 
up to 200 resources with an acceptable 
delay. 

3.4. Amount of Management 
Infrastructure Required 
We now try to answer the research question, 
“How much Management Infrastructure is 
required to handle N Resources?” 

We define the term “Management 
Infrastructure” as the additional resources 
(processes and not physical hardware) 
required for providing fault-tolerant 
management.  

Let N be the number of resources requiring 
management. If D is the maximum number 

of resources that can be managed by a single 
manager process, then we require at-least 
N/D manager processes. Each manager 
process requires 1 connection to the 
messaging node. Also, the registry may 
maintain a connection to the messaging 
node. Thus the total number of connections 
is N + N/D + 1. If Z is the maximum 
number of connections a single messaging 
node can handle, then we have  
N + N/D + 1 <= Z,  
or N <= (Z-1)*D/(1+D). 

In our measurements a single broker could 
reliably support about 800 simultaneous 
TCP connections. So assuming that a single 
manager process can manage up to 200 
resources, the total number of resources that 
can be managed are approximately 795. To 
scale to a larger number of resources, either 
a different protocol such as UDP may be 
used or a hierarchical arrangement of 
brokers may be employed. The second 
approach however requires additional 
management in setting up links between the 
various messaging nodes and maintaining 
them in a fault-tolerant fashion. A third way 
is to redistribute resources such that they are 
in different management domains.  

Note that the main node that limits the 
number of connections is the messaging 
node (broker). However a broker is not 
absolutely required unless a subset of 
resources are behind firewalls / NAT 
devices. Further using a broker also implies 
that a manager need not maintain a separate 
connection for each resource it manages, 
which is required when using a direct 
connection to the resource (e.g. via 
HTTP/TCP). This provides the basis for 
leveraging a “publish-subscribe” based 
messaging substrate such as 
NaradaBrokering. 

Let Z be the maximum number of resources 
that a single messaging node can support. 
Thus to manage N resources we require 
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CEILING (N/Z) messaging nodes. The 
value of Z depends on the type of transport 
used. Thus if TCP is used, a single 
messaging node can support up to 800 
resource connections. Using UDP however 
this value jumps up to 1500 or more. 

Thus we require N/Z leaf domains (Refer 
Section 2.6). Again, if D is the maximum 
number of resources that can be managed by 
a single manager process, then we need at 
least Z/D manager processes per leaf 
domain. Further a single leaf domain would 
also have its own boot strap node and 
possibly one registry (or registry endpoint). 

Thus total number of management 
infrastructure processes in a single lowest 
leaf level is  
(1 registry + 1 bootstrap node + 
Z/D managers) * (N/Z such leaf 
domains) 
= (2 + Z/D)*N/Z 

To manage the N/Z leaf domains, an 
additional number of passive bootstrap 
nodes are required. Typically the number of 
passive nodes would be << N/Z and we 
ignore it for the purpose of this analysis. 

Thus for managing N resources we require 
an additional (2 + Z/D)*N/Z processes. 
Hence total processes  
= N Resource + Management 
Infrastucture 
= N + (2 + Z/D)*N/Z 

Thus, the percentage of management 
infrastructure required is 
MGMT  INFRASTRUCTURE

= [(2+Z/D)*N/Z] / [N + (2+Z/D)*N/Z]  
= [1 – 1/(1 + 2/Z + 1/D)] * 100 % 

As an illustration, if D = 200 and Z = 800, 
then MGMTInfrastructure 
= [1–1/(1 + 2/800 + 1/200)] * 100 % 
= [1 – (400/403)] * 100 % 
= (3/403) * 100 %  
≈ 0.75 % 

Thus we can conclude that as the number of 
resources to manage increases, fault-tolerant 

management of the system can be achieved 
by adding 0.75% more resources. This 
makes the approach feasible. 

4. Application to a Grid 
Messaging Middleware 
The system feasibility as determined in the 
previous section is mainly dependent on the 
run-time state maintained per resource-
specific manager thread and the number of 
registry accesses required to retrieve / store 
state. We believe that the analysis presented 
is applicable to a wide variety of resources 
where management can be done by 
maintaining a small amount of run-time state 
and a very small number of in-frequent 
registry accesses. One such application is 
management of a Grid Messaging 
Middleware: NaradaBrokering. 

A previous version of this paper [19] 
focused on the motivation for management 
and proposed a general service-oriented 
management framework based on WS-
Management. This paper primarily focusses 
on fault-tolerant aspects of management. 
NaradaBrokering [20] is a messaging 
infrastructure, based on the 
publish/subscribe paradigm, that enables 
distributed entities to communicate with 
each other through the exchange of 
messages. NaradaBrokering has been 
successfully deployed in the context of 
collaborative applications, audio/video 
conferencing applications and GIS systems. 
One crucial application is in the context of 
audio-video collaboration system where 
there could be thousands of participants.  

As an illustration, consider the problem of 
deploying a brokering network for 
supporting 10000 clients in a collaborative 
[21] fashion. Ref. [22] shows that a single 
broker can support up to 1500 simultaneous 
participants with audio streams with very 
good quality audio while about 400 
participants can simultaneously receive 

- 10 - 



video with acceptable quality. The problem 
lies in deploying the brokering topology 
suitable for supporting multiple clients. With 
a growing number of clients, one may wish 
to deploy a network of multiple brokers (For 
e.g., 10000 / 400 = 25 brokers in the above 
scenario) so that all clients may receive 
acceptable audio / video transmission. 
Further, for fault-tolerance purposes, one 
may also want to have multiple links 
between brokers such that the failure of a 
subset of links may not crash the entire 
system. Finally, setting up of links becomes 
complicated if one or more brokers are 
behind restricted networks or in different 
administrative domains.  

4.1. State managed per Broker 
Resource 
Each broker stores one instance of a 
NodeInfo object that contains information 
regarding the broker node’s configuration 
and is usually between 1 to 2 KBytes. One 
LinkInfo object is maintained per outgoing 
link and this contributes up to 512 Bytes. 
Typically the maximum number of links is 
dependent on the topology. For instance, in 
a ring topology there is only 1 outgoing link 
from each node while for a 3 level tree 
topology, the number of outgoing links 
range from 0 to 3. This assumes that at each 
level, a chain of nodes is maintained. 
Finally, for each NodeInfo and LinkInfo 
object, a ResourceLog is maintained that 
corresponds to the system state that needs to 
be written to the registry at regular intervals. 
Typically the size is maintained around 2 
Kbytes. Thus assuming 3 links, the total 
state size maintained per broker resource is 
(2048 + 3 * 512 + 4 * 2048 = 12 
Kbytes). This state is small enough so that 
it can be read / written to registry in 
typically 1 call. 

4.2. Deployment Costs 
We timed the initialization cost per broker 
node. There are 2 distinct costs associated 
with the broker as shown in Table 1. In the 
cold-start mode, the JVM needs to read 
classes from associated class files and so all 
operations take much higher time. In the 
hot-start phase (when a broker network is 
torn down and brought back up with 
possibly different configuration / topology), 
the JVM is already in an initialized phase 
and so these modifications take significantly 
less time. 

Operation 
Cold-start 

Time 
(msec) 

Time when 
initialized 

(msec) 
Set Config 1110 46.75 

Create 
Broker 

734 132.75 

Create Link 94 43.00 

Delete Link 109 35.25 

Delete 
Broker 

110 187.50 

Table 1 Time per operation 

Number of 
Nodes 

Total Links in 
the network 

Overall 
Time 

(msec) 
Ring: 

8 8 12515 
4 4 8906 
1 (NO LINKS) 1156 

Cluster: 
8 7 15968 

Table 2 Topology deployment times 

The time required to deploy a topology is 
primarily dependent on the time required to 
establish links. This is because, links 
introduce a dependency and this is an 
artifact of NaradaBrokering. The 
dependency arises when a broker A tries to 
establish a link to broker B when broker B is 
not initialized (not ready to accept incoming 
connections). Broker A then waits for some 
time and retries the connection. We measure 
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the time it requires to establish a ring 
topology with 1, 4 and 8 nodes and a cluster 
topology with 8 nodes. The results are 
summarized in Table 2. We have 7 links for 
cluster topology since the setup had 3 nodes 
per cluster connected in a chain (3 clusters, 
5 links), 2 clusters per super cluster (2 
super-clusters, 1 link) and 2 super-clusters 
per super-super cluster (1 link). 

Note that these values are typical and would 
differ in a different setup and time of 
experiment.  

5. Fault Tolerance in 
Distributed Systems 
Faults in distributed systems are normal and 
it is desired that the system continues 
operation in presence of failures. Fault-
tolerance is defined [23] as the characteristic 
by which “A Distributed System can mask 
the failure occurrence and recover from 
failure”. Distributed systems have addressed 
fault-tolerance of application components 
via strategies such as replication and check-
pointing. In this section we present an 
overview of these schemes. 

5.1. Replication 
Replication schemes provide seamless 
transfer of control to a new or exiting 
duplicate service instance when failure is 
detected. Replication can be Passive 
(primary / backup) where only the primary 
replica processes requests and then state is 
transferred to other replicas. This helps 
provide availability in a simple manner. 
Passive replication does not offer any 
performance improvement since on failure a 
backup is promoted to primary which 
requires extra time to restore state from logs.  

When performance is an issue and cost of 
computation is less, Active replication is 
used. In active replication, every replica 
invokes the operation independently and 
hence all replicas have the most current 

state. Thus on failure, recovery is almost 
instantaneous. Active replication however 
requires all operations to be carried out at all 
replicas in the same order. Although 
techniques such as Lamport’s Timestamps 
[24] or using a central coordinator that 
functions as a Sequencer can be used, they 
suffer from scalability problems. Ref. [25] 
presents a hybrid approach for achieving 
Totally Ordered Multicast in large scale 
systems. 

5.2. Check-pointing 
Check-pointing schemes allow a 
computation to continue from where it failed 
rather than re-running the computation. 
Check-pointing is mainly used in computing 
systems to store the current state of 
operation. By switching to an earlier 
checkpoint, a system can reload the previous 
state and resume computation from the point 
of failure. Check-pointing is used in many 
systems such as Condor [26], XCAT [27] 
and MPI based message passing system such 
as LAM-MPI [28] to store system state and 
recover from a previous state after failure 
has occurred. Besides recovery, check-
pointing also enables other features such as 
process migration [29] which allows a failed 
process to continue on another machine 
from the point where it failed. 

The main challenge in check-pointing is 
achieving a globally consistent [30] 
snapshot of the system’s state. A survey of 
various roll-back and recovery protocols can 
be found in [31]. We summarize the main 
techniques below: 

Independent Check-pointing occurs when all 
processes maintain local check-points. The 
main advantage is simplicity and 
performance. However such checkpoints 
may not necessarily be globally consistent. 
Thus when processes roll back to the latest 
checkpoint and if it is not globally 
consistent, another roll back is necessary. 
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Further rolling back is necessary if the last 
roll back is again inconsistent. This 
cascaded rollback may lead to what is called 
the domino effect.  

Coordinated check-pointing ensures that all 
processes synchronize to jointly write their 
state. Although achieving global 
synchronization is costly in terms of the 
complexity and time required, the snapshots 
are automatically globally consistent. 
Coordinated check-pointing comes in two 
flavors, blocking and non-blocking. 
Blocking algorithms block all check-
pointing processes which commit to 
automatically achieve a globally consistent 
snapshot. Ref. [32] and [33] provide details 
on implementation of blocking coordinated 
check-pointing. A non-blocking coordinated 
check-pointing algorithm that uses 
application level check-pointing is 
presented in [34]. 

5.3. Fault-tolerance in Object-based 
Distributed Systems 
Object based Distributed systems are an 
extension of the object-oriented 
programming systems. As the name suggests 
a Distributed Object Computing allows 
objects distributed on different computers 
across a heterogeneous network to 
interoperate as a unified whole and appear 
as being local to the application. 
Communication with remote objects is 
transparently handled via system specific 
protocols. Notable efforts are Distributed 
Component Object Model (DCOM) [35] 
from Microsoft, Common Object Request 
Broker Architecture (CORBA) [36] from 
OMG (Object Management Group) and Java 
/ Remote Method Invocation (Java/RMI) 
[37] from Javasoft. 

DCOM addresses fault tolerance via 
Automatic Transactions which allow a 
developer to specify a series of method 
invocations (possibly on different objects) 

that can be grouped into a transaction. A 
separate transactions manager module called 
the Distributed Transactions Coordinator 
(DTC) handles the actual implementation of 
the transactions using standard transaction 
semantics based on a two-phase commit 
protocol. 

CORBA replicates objects into object 
groups consisting of one or more identical 
copies of same object. Such a group can be 
referenced as if it were a single object and 
offers the same interface as the replica it 
contains. This provides replication 
transparency from the user point of view. A 
Replication Manager is responsible for 
creating and managing a group of replicated 
objects using a variety of different 
replication strategies. This manager in turn 
can be replicated for fault-tolerance. 

The object oriented nature of Java facilitates 
code reuse and significantly reduces 
development time. JVM however does not 
support fault-tolerance. Fault-tolerance is 
enabled by using systems such as Nomads 
[38] which modify the JVM to capture the 
execution state of the application. This is 
however inappropriate for heterogeneous 
systems where different machines may have 
different JVMs. Ref. [39] describes an 
approach to make check-pointing JVM 
independent by modifying the program’s 
bytecode rather than modifying the JVM. 

6. Conclusion and Future 
Work 
In this paper we have presented a scalable, 
fault tolerant management framework. To 
make the management framework 
interoperable we employed a service-
oriented architecture based on WS-
Management. Our experimental evaluation 
shows that as the number of resources 
increases beyond 200, fault-tolerant 
management can be achieved using only 
0.75% more processes. This feasibility is a 
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result of using NaradaBrokering itself as a 
“publish-subscribe” based scalable 
messaging substrate for communication. 
Further by using NaradaBrokering, 
resources behind firewalls can be managed 
by having them simply connect to the 
domain specific messaging node using 
tunneling protocols supported in 
NaradaBrokering. 

Our current implementation and feasibility 
is based on the requirement of a small 
runtime state which can be read / written to 
a persistent registry in as few calls as 
possible. In the future we would like to 
apply the framework to areas where this 
assumption need not necessarily hold true 
(such as large scientific application). We 
believe that application of management 
framework to such systems can bring up 
many interesting research issues, 
specifically challenging scalability of the 
system.  
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