
Scalable, Fault-tolerant Management in a Service Oriented
Architecture

Harshawardhan Gadgil, Geoffrey Fox, Shrideep Pallickara, Marlon Pierce

Community Grids Lab, Indiana University, Bloomington IN 47404
(hgadgil, gcf, spallick, marpierc)@indiana.edu

Abstract
 With the emergence of Service-based
architectures, management of an application
which comprises of a large number of distributed
services becomes difficult as resources appear,
move and disappear across the network. As
service components span different network
boundaries, constraints such as network policies,
firewalls and NAT devices further complicate
management by limiting direct access to the
resource. Services and resources may exist on
different platforms and may be written in
different languages, which promotes use of
proprietary solutions thus affecting
interoperability.

 In this paper we present a novel
architecture that leverages “publish-subscribe”
principles for enabling scalable and fault-
tolerant management of a set of distributed
entities. We make management interoperable by
leveraging service-oriented principles. Our
empirical evaluation shows that fault-tolerance
overhead is about 1% in terms of additional
resources required thus making the approach
feasible.

Keywords: Scalable, Fault-tolerance,
Service Oriented Management, Architecture

1. Introduction
With the explosion of the internet, a new
class of Web-based applications has
emerged. These applications have connected
end users to existing, traditional, centralized
services. Distributed applications today are
composed of multiple distributed
components and are increasing in
complexity. As the individual components
get widely dispersed, they tend to span
different administrative domains. Differing
network and security policies restrict access

to application components while resource
management access is further limited due to
presence of network firewalls and Network
Address Translation (NAT) devices. Further,
different services may be running on
different platforms and could have been
written in different languages. As
application complexity grows, the need for
an efficient management system emerges.

Various system specific management
architectures have been developed and have
been quite successful in their areas.
Examples include SNMP (Simple Network
Management Protocol) [1] CMIP [2] and
CIM [3]. The Java community has
introduced JMX [4] (Java Management
eXtensions) which enables any Java-based
resource to be automatically manageable.
WMI [5] (Windows Management
Instrumentation) from Microsoft enables
local and remote monitoring and
management of Microsoft Windows based
machines. A main lacking feature among
these management systems is
interoperability.

In this paper we propose a simple, universal
mechanism for managing a set of distributed
entities. Every entity implicitly has or can be
explicitly augmented with a Web service
interface. The only assumption in providing
fault-tolerance is the existence of a scalable
and reliable database for storing system
state. Our current implementation leverages
the WS-Management [6] specification, but
could very well use WS – Distributed
Management (WSDM) [7]. WS

- 1 -

Management was primarily chosen for its
simplicity and also to leverage an existing
implementation of WS-Eventing [8] in the
NaradaBrokering [9] project.

1.1. Service-oriented Management
To address interoperability, the distributed
systems community has been orienting
towards the Web Services architecture
which is based on a suite of specifications
that defines rich functions while allowing
services to be composed to meet varied QoS
(Quality of Service) requirements. Proposals
[10] that leverage the Web Services
management principles in context of
existing management frameworks already
exist. The service-oriented architecture
provides a simple and flexible framework
for building sophisticated applications. The
use of XML in implementing Web Services
facilitates interactions between services
implemented in different languages, running
on different platforms and communicating
over multiple transports.

WS Management and WSDM are two
competing specifications in the area of
management using Web Services
architecture.

Both specifications focus on providing a
Web service model for building system and
application management solutions,
specifically focusing on resource
management. This includes basic
capabilities such as creating and deleting
resource instances and setting and querying
service specific properties and providing an
event driven model to connect services
based on the publish / subscribe paradigm.

WSDM breaks management in two parts,
Management using Web Services (MUWS
[11]) and Management of Web Services
(MOWS [12]). MUWS focuses on providing
a unifying layer on top of existing
management specifications such as CIM,
SNMP and OMI (Open Management

Interface) models. MOWS presents a model
where a Web Service is itself treated as a
manageable resource. Thus, MOWS will
serve to provide support for the management
framework and support varied activities
such as service metering, auditing, SLA
(Service Level Agreement) management,
problem detection and root cause failure
analysis, service deployment, performance
profiling and life cycle management.

WS Management on the other hand attempts
to identify a core set of Web Service
specifications and usage requirements to
expose a common set of operations central
to all management systems. This minimum
functionality includes ability to discover
management resources, CREATE, DELETE,
RENAME resources, GET and PUT individual
settings and dynamic values, ENUMERATE
contents of containers and collections,
SUBSCRIBE to events emitted by managed
resources and EXECUTE resource specific
management actions. Thus the majority of
overlapping areas with the WSDM
specification are in the MUWS
specification. Ref. [13] presents a proposal
for evolution of a common management
specification.

1.2. Generic Management
Application components require specific
configuration to provide optimum Quality of
Service (QoS). The “Component-Specific
Configuration” is usually dependent on
user-defined criteria and may require
components to be individually configured.
As again components present behind
firewalls are usually unreachable via
standard means.

Figure 1 shows the basic components of a
generic management framework. We
assume that the resource to manage and the
resource manager are Web Services.

- 2 -

large number of distributed resources.
Further, as systems span wide networks they
become difficult to maintain and failure is
norm. Systems must have the capability to
detect failure and restart the failed service
(resource) or re-instantiate a copy of the
failed component that takes over the
functionality of the failed resource.

Figure 1 Generic Management Framework

The Resource that requires management is
any application specific component. We
term such a resource as a manageable
resource. Usually, with the right
configuration, a Resource-specific manager
can directly interact with the resource and
manage it, however when the resource being
managed is not intrinsically a Web Service,
a wrapper service that provides a Web-
service front-end is required. The
Management Interface is an entity specific
proxy that has a Web-service interface on
one end and an entity-specific interface on
the other end. This proxy acts as translator
of Web-service based messages to entity-
specific commands.

The rest of the paper is organized as follows.
We present our architecture in Section 2 and
present evaluation results in Section 3.
Section 4 describes the application of our
architecture towards managing a grid
messaging middleware. We present a
summary of existing fault-tolerance
strategies in section 5. In section 6 we
present our conclusion and future work.

2. Architecture
Our architecture is based on existing fault-
tolerance schemes. The approach uses
intrinsically robust and scalable
management services and relies only on the
existence of a reliable, scalable database to
store system state.

Management of resources includes1 resource
configuration and performing life-cycle
operations such as CREATE and DELETE
resource instances whenever applicable.
Management also includes processing
runtime events, monitoring status and
performance of the resources and
maintaining system state as defined by some
user-defined criteria. Management
operations change system state which raises
a number of consistency considerations not
present in monitoring systems such as
MonaLISA [14] and Astrolabe [15].

The overall management framework consists
of units arranged hierarchically. Each unit is
controlled via a bootstrap node. The
hierarchical organization of units makes the
system scalable in a wide-area deployment.
We now describe the main components of
each unit of the framework. A unit of
management framework consists of one or
more manageable resources, their associated
resource managers, one or more messaging
nodes (NaradaBrokering brokers, for
scalability) and a scalable, fault-tolerant
database which serves as a registry. The
arrangement of components is shown in
Figure 2. The function of various
components is discussed below:

In our architecture, we assume there could
be multiple such services that require
management. Examples of systems with
large number of manageable resources are
cell phones, large clusters of machines or
even brokers in distributed brokering
systems. The scheme should thus be
scalable, incorporating management of a

1 From WS – Distributed Management,

http://devresource.hp.com/drc/slide_presentations/wsdm/index.jsp

- 3 -

Figure 2 Overview showing components of the Management Architecture

2.1. Resource
We refer to Resource as the component that
requires management. We employ a service-
oriented management architecture and hence
we assume that these Resources have a Web
Service port that accepts management
related messages. In the case where the
Resource is not a Web Service we augment
the Resource with a service adapter that
serves as a management service proxy. The
service adapter is then responsible for
exposing the managed resources of the
Resource.

2.2. Service Adapter
Service adapter serves as a mediator
between the manager and the Resource. We
assume that there is one Service adapter per
Resource. Service adapter is responsible for

1. Sending periodic heartbeats to the
associated Manager.

2. Providing a transport neutral connection
to the manager (possibly via a messaging
node). The Service Adapter may try
different Messaging nodes to connect to,
should the default messaging node be

unreachable after several tries. An
alternate way of connecting to the best
available messaging node is to use the
Broker Discovery Protocol [16].

3. Hosting a service oriented messaging
based management processor protocol
such as WS Management (our
implementation). The WS –
Management processor provides basic
management framework and a resource
wrapper is expected to provide the
correct functionality (mapping WS
Management messages to resource-
specific actions).

Additionally the Service Adapter may
provide an interface to a persistent storage to
periodically store the state to recover from
failures. Alternatively, recovery may be
done by resource-specific manager
processes as has been implemented in our
prototype.

2.3. Manager
A manager is a multi threaded process and
can manage multiple resources at once.
Typically, one resource-specific manager
module thread is responsible for managing

- 4 -

exactly one resource and is also responsible
for maintaining the resource configuration.
This resource specific manager
independently commits runtime state of the
resource to the registry. Thus, the manager
process implements the Independent Check-
pointing scheme. The Manager process also
runs a heartbeat thread that periodically
renews the Manager in the Registry. This
allows other Manager processes to check the
state of the currently managed resources and
if a Manager process has not renewed its
existence within a specified time, all
resources assigned to the failed Manager are
then distributed among other Manager
processes.

On failure, a finite amount of time is spent
in detecting failure and re-assigning
management to new manager processes.
Thus the architecture implements a Passive
Replication scheme. The primary purpose of
independent check-pointing and passive
replication is simplicity of implementation.

2.4. Registry
The Registry stores system state. System
state comprises of runtime information such
as availability of managers, list of resources
and their health status (via periodic heartbeat
events) and system policies, if any. General
purpose information such as default system
configuration may also be maintained in the
registry.

The registry may be backed by a Persistent
Store Service which allows the data written
in registry to be written to some form of
persistent store. Persistent stores could be as
simple as a local file system or a database or
an external service such as a WS – Context
[17] service. Usually read operations can be
directly served from an in-memory cache
but writes are always written directly to the
persistent store. The presence of a persistent
store provides fault-tolerance to the registry
service. We assume the persistent store to be

distributed and replicated for performance
and fault-tolerance purposes.

A Request Processor provides logic for
manipulating the data stored in the registry.
This mainly includes checking for manager
processes that have not renewed within the
system defined time frame, serving as a
matching engine to match new resources to
managers and updating appropriate fields in
the metadata maintained by the Registry.

2.5. Messaging Node
Messaging nodes consist of statically
configured NaradaBrokering broker nodes.
The messaging nodes form a scalable
message routing substrate to route messages
between the Managers and Service
Adapters. These nodes provide multiple
transport features such as TCP, UDP, HTTP
and SSL. This allows a Resource, present
behind a firewall or a NAT router, to be
managed (for e.g. connecting to the
messaging node and utilizing tunneling over
HTTP/SSL through a firewall).

One may employ multiple messaging nodes
to achieve fault-tolerance as the failure of
the default node automatically causes the
system to try and use the next messaging
node. We assume that these nodes rarely
require a change of configuration. Thus on
failure, these nodes can be restarted
automatically using the default static
configuration for that node.

2.6. Bootstrap Service
The bootstrap service mainly exists to serve
as a starting point for all components of the
system. The bootstrap service also functions
as a key fault-prevention component that
ensures the management architecture is
always up and running. The service
periodically starts, checks the overall system
health and if some component has failed,
reinstates that component. The system health
check specifically checks for presence of a

- 5 -

working messaging node, an available
registry endpoint and enough number of
managers to manage all registered resources.

Figure 3 Achieving scalability through

hierarchical management

The bootstrap services are arranged
hierarchically as shown in Figure 3. As
shown in the figure, we call the leaf nodes of
the bootstrap hierarchy as being active
bootstrap nodes. This means that these
nodes are responsible for maintaining a
working management framework for the
specified set of machines (henceforth,
domain). Such hierarchical arrangement is
used to achieve scalability in many systems
such as Domain Name Service (DNS) [18],
Astrolable [15] and MonaLISA [14].
The non-leaf nodes are passive bootstrap
nodes and their only function is to ensure
that all registered bootstrap nodes which are
their immediate children are always up and
running. This is done through periodic
heartbeat messages. Since the number of
child nodes per parent node is relatively
small, the system may maintain a reliable
connection (TCP) between the child and
parent nodes. The child nodes may send
periodic heartbeats to the parent node.
Failure is quickly detected when there is a

connection loss OR a heartbeat is not
received within a specified timeframe.

2.7. User
The user component of the system is the
service requestor. A user (system
administrator for the resources being
managed) specifies the system configuration
per Resource which is then appropriately set
by a Manager. In some cases there would be
a group of Resources which require
collective management. An example of this
is the broker network where the overall
configuration of the broker network is
dependent on the configuration of individual
nodes. Dependencies in the system in such
cases are set by the user while the execution
of dependencies is performed by the
management architecture in a fault-tolerant
manner.

3. Performance Evaluation
In this section we present analysis of the
system and present benchmark results. Our
system adds a few components apart from
the actual resources being managed, in order
to achieve scalable, fault-tolerant
management. The main purpose of
benchmarking analysis is to show the
feasibility of the system. We describe our
benchmarking approach and include
observed measurements. All our
experiments were conducted on the
Community Grids Lab’s GridFarm cluster
(GF1 – GF8). The Gridfarm machines
consist of Dual Intel Xeon hyper-threaded
CPUs (2.4 GHz), 2 GB RAM running on
Linux (Linux 2.4.22-1.2199.nptlsmp). They
are interconnected using a 1 Gbps network.
The Java version used was Java Hotspot™
Client VM (build 1.4.2_03-b02, mixed
mode).

3.1. Maximum message rates
The measurements presented in this paper
use a single NaradaBrokering messaging

- 6 -

node as a transport substrate. Our first
experiment is to establish a base level for the
maximum publish rates supported by a
NaradaBrokering Broker. To measure this,
we setup a measuring subscriber that sums
up the total messages received in a 5 second
interval. Our observations indicate that the
broker can support in excess of 5000
messages / sec when the message size is
about 512 bytes and 4500 messages / sec
when the message size is about 1024 bytes.

Since most of the message interactions
comprise of messages which can be encoded
using 512 bytes or less, we assume “5000
messages/sec” as the maximum publish
rate that can be supported by the broker. We
use this as the basis for all the analysis
presented henceforth.

3.2. Runtime State
Our architecture uses asynchronous
communication between components.
Typically a domain would have one registry
endpoint but the registry itself would be
replicated for fault-tolerance and
performance purposes. This introduces a
bottleneck when performing registry
read/write operations. Thus the goal is to
minimize registry accesses, which in turn
implies that the runtime state maintained per
resource must be sufficiently small so that it
can be read/written using as few a number of
calls as possible.

3.3. Runtime Response Cost
The most important factor in implementing a
multi-threaded manager process is the
maximum number of resources a single
manager process can manage. This in turn is
dependent on the response time required to
handle an event from the resource. Typically
the response time is resource dependent and
is also affected by the actual work required
in handling an event from the resource. If
the handling entails one or more registry

access, additional time is spent in handling
the event. This would also enable us to
formulate the number of Manager processes
required and the number of resources that
can be managed by a single instance of the
management architecture. We define a
single instance as comprising of one or more
messaging nodes, 1 registry (possibly
backed by a stable storage via WS Context
service) and one or more Manager
processes. Finally this number also
determines how the system scales.

Messaging
Node
(GF5)

GF1

GF3

GF4

GF2

Registry
(GF5)

NB

Manager Process
(GF6)

NBUDP

UDP

Benchmark
Accumulator

(GF7)

NB WS-Eventing
Subscription Manager

(GF7)

NB

Figure 4 Test Setup

The test setup is shown in Figure 4. We ran
multiple Resources from the Grid cluster
machines GF1 – GF4. The Messaging node
and registry were run on GF5 while the
Manager process was run on GF6. A
benchmark accumulator process and the
subscription manager process for storing
WS-Eventing subscriptions were run on
GF7. As shown in the figure, only Manager
– Registry interactions go over UDP. All
other interactions are made by publishing /
subscribing to the appropriate topic.

The testing methodology was as follows.
The Benchmark Accumulator process sends
a message to all the Resources and starts a
timer. These Resources then generate an
event and send it to their associated
Manager process. The Manager process
processes the event (i.e. it simply responds
back to the Resource with a message which
corresponds to the handling of the message).
Once a response is received, the Resource

- 7 -

responds back to the benchmark
accumulator process. When all resources
have reported, the time is noted and the
difference corresponds to the overall
response time. Note that this time includes
an additional latency for sending the
message to all resources and for all
resources to respond back which is ignored
considering the fact that processing time is
typically much higher than latency of a
message in a closed cluster of machines.
Thus all the timings are higher than the
actual timings by a few milliseconds atmost.

Figure 5 Response time of a single Manager

process

As expected, with an increase in the number
of managed resources, the number of threads
per manager process grows. Thus the
average response time increases. In our case,
there was no registry access during
processing of the event, however this
behavior is resource specific and may
require one or more registry accesses in
certain cases.

The average response time is shown in
Figure 5. The figure shows the metrics
when there is only 1 manager process. If the
number of manager processes is increased,
we see a huge performance benefit by
increasing the processes from 1 to 2 as
shown in Figure 6. However, if 4 manager
processes are used, instead of 2, we see that

the average response time slightly increases.
The reason is primarily due to the fact that
our test machines had only 2 physical
processors and the system takes time to
context switch between various processes.

Figure 6 Increasing Manager processes on the

same machine

Figure 7 Average response time improvement

using 2 and 4 Manager processes

Figure 7 shows the performance (close-up
of Figure 6) when there are 2 and 4
manager processes respectively. We
conclude that adding more manager
processes than the number of available
processors on a particular node, does not
necessarily improve system performance.

- 8 -

Figure 8 Effect of increasing number of

machines

Finally, we distribute the manager processes
on different machines. Thus for instance,
running manager processes on 2 or 4
machines instead of just 1, improves
performance (comparing Figure 8 and
Figure 5). As seen from Figure 8, the
expected gain (increasing machines from 2
to 4) is not very high because of the use of a
single messaging node through which all
messages must pass, possibly leading to a
bottleneck.

We note that as the number of managed
resources increases beyond 200, the
response time increases rapidly. Thus we
conclude that a single manager can manage
up to 200 resources with an acceptable
delay.

3.4. Amount of Management
Infrastructure Required
We now try to answer the research question,
“How much Management Infrastructure is
required to handle N Resources?”

We define the term “Management
Infrastructure” as the additional resources
(processes and not physical hardware)
required for providing fault-tolerant
management.

Let N be the number of resources requiring
management. If D is the maximum number

of resources that can be managed by a single
manager process, then we require at-least
N/D manager processes. Each manager
process requires 1 connection to the
messaging node. Also, the registry may
maintain a connection to the messaging
node. Thus the total number of connections
is N + N/D + 1. If Z is the maximum
number of connections a single messaging
node can handle, then we have
N + N/D + 1 <= Z,
or N <= (Z-1)*D/(1+D).

In our measurements a single broker could
reliably support about 800 simultaneous
TCP connections. So assuming that a single
manager process can manage up to 200
resources, the total number of resources that
can be managed are approximately 795. To
scale to a larger number of resources, either
a different protocol such as UDP may be
used or a hierarchical arrangement of
brokers may be employed. The second
approach however requires additional
management in setting up links between the
various messaging nodes and maintaining
them in a fault-tolerant fashion. A third way
is to redistribute resources such that they are
in different management domains.

Note that the main node that limits the
number of connections is the messaging
node (broker). However a broker is not
absolutely required unless a subset of
resources are behind firewalls / NAT
devices. Further using a broker also implies
that a manager need not maintain a separate
connection for each resource it manages,
which is required when using a direct
connection to the resource (e.g. via
HTTP/TCP). This provides the basis for
leveraging a “publish-subscribe” based
messaging substrate such as
NaradaBrokering.

Let Z be the maximum number of resources
that a single messaging node can support.
Thus to manage N resources we require

- 9 -

CEILING (N/Z) messaging nodes. The
value of Z depends on the type of transport
used. Thus if TCP is used, a single
messaging node can support up to 800
resource connections. Using UDP however
this value jumps up to 1500 or more.

Thus we require N/Z leaf domains (Refer
Section 2.6). Again, if D is the maximum
number of resources that can be managed by
a single manager process, then we need at
least Z/D manager processes per leaf
domain. Further a single leaf domain would
also have its own boot strap node and
possibly one registry (or registry endpoint).

Thus total number of management
infrastructure processes in a single lowest
leaf level is
(1 registry + 1 bootstrap node +
Z/D managers) * (N/Z such leaf
domains)
= (2 + Z/D)*N/Z

To manage the N/Z leaf domains, an
additional number of passive bootstrap
nodes are required. Typically the number of
passive nodes would be << N/Z and we
ignore it for the purpose of this analysis.

Thus for managing N resources we require
an additional (2 + Z/D)*N/Z processes.
Hence total processes
= N Resource + Management
Infrastucture
= N + (2 + Z/D)*N/Z

Thus, the percentage of management
infrastructure required is
MGMT INFRASTRUCTURE

= [(2+Z/D)*N/Z] / [N + (2+Z/D)*N/Z]
= [1 – 1/(1 + 2/Z + 1/D)] * 100 %

As an illustration, if D = 200 and Z = 800,
then MGMTInfrastructure
= [1–1/(1 + 2/800 + 1/200)] * 100 %
= [1 – (400/403)] * 100 %
= (3/403) * 100 %
≈ 0.75 %

Thus we can conclude that as the number of
resources to manage increases, fault-tolerant

management of the system can be achieved
by adding 0.75% more resources. This
makes the approach feasible.

4. Application to a Grid
Messaging Middleware
The system feasibility as determined in the
previous section is mainly dependent on the
run-time state maintained per resource-
specific manager thread and the number of
registry accesses required to retrieve / store
state. We believe that the analysis presented
is applicable to a wide variety of resources
where management can be done by
maintaining a small amount of run-time state
and a very small number of in-frequent
registry accesses. One such application is
management of a Grid Messaging
Middleware: NaradaBrokering.

A previous version of this paper [19]
focused on the motivation for management
and proposed a general service-oriented
management framework based on WS-
Management. This paper primarily focusses
on fault-tolerant aspects of management.
NaradaBrokering [20] is a messaging
infrastructure, based on the
publish/subscribe paradigm, that enables
distributed entities to communicate with
each other through the exchange of
messages. NaradaBrokering has been
successfully deployed in the context of
collaborative applications, audio/video
conferencing applications and GIS systems.
One crucial application is in the context of
audio-video collaboration system where
there could be thousands of participants.

As an illustration, consider the problem of
deploying a brokering network for
supporting 10000 clients in a collaborative
[21] fashion. Ref. [22] shows that a single
broker can support up to 1500 simultaneous
participants with audio streams with very
good quality audio while about 400
participants can simultaneously receive

- 10 -

video with acceptable quality. The problem
lies in deploying the brokering topology
suitable for supporting multiple clients. With
a growing number of clients, one may wish
to deploy a network of multiple brokers (For
e.g., 10000 / 400 = 25 brokers in the above
scenario) so that all clients may receive
acceptable audio / video transmission.
Further, for fault-tolerance purposes, one
may also want to have multiple links
between brokers such that the failure of a
subset of links may not crash the entire
system. Finally, setting up of links becomes
complicated if one or more brokers are
behind restricted networks or in different
administrative domains.

4.1. State managed per Broker
Resource
Each broker stores one instance of a
NodeInfo object that contains information
regarding the broker node’s configuration
and is usually between 1 to 2 KBytes. One
LinkInfo object is maintained per outgoing
link and this contributes up to 512 Bytes.
Typically the maximum number of links is
dependent on the topology. For instance, in
a ring topology there is only 1 outgoing link
from each node while for a 3 level tree
topology, the number of outgoing links
range from 0 to 3. This assumes that at each
level, a chain of nodes is maintained.
Finally, for each NodeInfo and LinkInfo
object, a ResourceLog is maintained that
corresponds to the system state that needs to
be written to the registry at regular intervals.
Typically the size is maintained around 2
Kbytes. Thus assuming 3 links, the total
state size maintained per broker resource is
(2048 + 3 * 512 + 4 * 2048 = 12
Kbytes). This state is small enough so that
it can be read / written to registry in
typically 1 call.

4.2. Deployment Costs
We timed the initialization cost per broker
node. There are 2 distinct costs associated
with the broker as shown in Table 1. In the
cold-start mode, the JVM needs to read
classes from associated class files and so all
operations take much higher time. In the
hot-start phase (when a broker network is
torn down and brought back up with
possibly different configuration / topology),
the JVM is already in an initialized phase
and so these modifications take significantly
less time.

Operation
Cold-start

Time
(msec)

Time when
initialized

(msec)
Set Config 1110 46.75

Create
Broker

734 132.75

Create Link 94 43.00

Delete Link 109 35.25

Delete
Broker

110 187.50

Table 1 Time per operation

Number of
Nodes

Total Links in
the network

Overall
Time

(msec)
Ring:

8 8 12515
4 4 8906
1 (NO LINKS) 1156

Cluster:
8 7 15968

Table 2 Topology deployment times

The time required to deploy a topology is
primarily dependent on the time required to
establish links. This is because, links
introduce a dependency and this is an
artifact of NaradaBrokering. The
dependency arises when a broker A tries to
establish a link to broker B when broker B is
not initialized (not ready to accept incoming
connections). Broker A then waits for some
time and retries the connection. We measure

- 11 -

the time it requires to establish a ring
topology with 1, 4 and 8 nodes and a cluster
topology with 8 nodes. The results are
summarized in Table 2. We have 7 links for
cluster topology since the setup had 3 nodes
per cluster connected in a chain (3 clusters,
5 links), 2 clusters per super cluster (2
super-clusters, 1 link) and 2 super-clusters
per super-super cluster (1 link).

Note that these values are typical and would
differ in a different setup and time of
experiment.

5. Fault Tolerance in
Distributed Systems
Faults in distributed systems are normal and
it is desired that the system continues
operation in presence of failures. Fault-
tolerance is defined [23] as the characteristic
by which “A Distributed System can mask
the failure occurrence and recover from
failure”. Distributed systems have addressed
fault-tolerance of application components
via strategies such as replication and check-
pointing. In this section we present an
overview of these schemes.

5.1. Replication
Replication schemes provide seamless
transfer of control to a new or exiting
duplicate service instance when failure is
detected. Replication can be Passive
(primary / backup) where only the primary
replica processes requests and then state is
transferred to other replicas. This helps
provide availability in a simple manner.
Passive replication does not offer any
performance improvement since on failure a
backup is promoted to primary which
requires extra time to restore state from logs.

When performance is an issue and cost of
computation is less, Active replication is
used. In active replication, every replica
invokes the operation independently and
hence all replicas have the most current

state. Thus on failure, recovery is almost
instantaneous. Active replication however
requires all operations to be carried out at all
replicas in the same order. Although
techniques such as Lamport’s Timestamps
[24] or using a central coordinator that
functions as a Sequencer can be used, they
suffer from scalability problems. Ref. [25]
presents a hybrid approach for achieving
Totally Ordered Multicast in large scale
systems.

5.2. Check-pointing
Check-pointing schemes allow a
computation to continue from where it failed
rather than re-running the computation.
Check-pointing is mainly used in computing
systems to store the current state of
operation. By switching to an earlier
checkpoint, a system can reload the previous
state and resume computation from the point
of failure. Check-pointing is used in many
systems such as Condor [26], XCAT [27]
and MPI based message passing system such
as LAM-MPI [28] to store system state and
recover from a previous state after failure
has occurred. Besides recovery, check-
pointing also enables other features such as
process migration [29] which allows a failed
process to continue on another machine
from the point where it failed.

The main challenge in check-pointing is
achieving a globally consistent [30]
snapshot of the system’s state. A survey of
various roll-back and recovery protocols can
be found in [31]. We summarize the main
techniques below:

Independent Check-pointing occurs when all
processes maintain local check-points. The
main advantage is simplicity and
performance. However such checkpoints
may not necessarily be globally consistent.
Thus when processes roll back to the latest
checkpoint and if it is not globally
consistent, another roll back is necessary.

- 12 -

Further rolling back is necessary if the last
roll back is again inconsistent. This
cascaded rollback may lead to what is called
the domino effect.

Coordinated check-pointing ensures that all
processes synchronize to jointly write their
state. Although achieving global
synchronization is costly in terms of the
complexity and time required, the snapshots
are automatically globally consistent.
Coordinated check-pointing comes in two
flavors, blocking and non-blocking.
Blocking algorithms block all check-
pointing processes which commit to
automatically achieve a globally consistent
snapshot. Ref. [32] and [33] provide details
on implementation of blocking coordinated
check-pointing. A non-blocking coordinated
check-pointing algorithm that uses
application level check-pointing is
presented in [34].

5.3. Fault-tolerance in Object-based
Distributed Systems
Object based Distributed systems are an
extension of the object-oriented
programming systems. As the name suggests
a Distributed Object Computing allows
objects distributed on different computers
across a heterogeneous network to
interoperate as a unified whole and appear
as being local to the application.
Communication with remote objects is
transparently handled via system specific
protocols. Notable efforts are Distributed
Component Object Model (DCOM) [35]
from Microsoft, Common Object Request
Broker Architecture (CORBA) [36] from
OMG (Object Management Group) and Java
/ Remote Method Invocation (Java/RMI)
[37] from Javasoft.

DCOM addresses fault tolerance via
Automatic Transactions which allow a
developer to specify a series of method
invocations (possibly on different objects)

that can be grouped into a transaction. A
separate transactions manager module called
the Distributed Transactions Coordinator
(DTC) handles the actual implementation of
the transactions using standard transaction
semantics based on a two-phase commit
protocol.

CORBA replicates objects into object
groups consisting of one or more identical
copies of same object. Such a group can be
referenced as if it were a single object and
offers the same interface as the replica it
contains. This provides replication
transparency from the user point of view. A
Replication Manager is responsible for
creating and managing a group of replicated
objects using a variety of different
replication strategies. This manager in turn
can be replicated for fault-tolerance.

The object oriented nature of Java facilitates
code reuse and significantly reduces
development time. JVM however does not
support fault-tolerance. Fault-tolerance is
enabled by using systems such as Nomads
[38] which modify the JVM to capture the
execution state of the application. This is
however inappropriate for heterogeneous
systems where different machines may have
different JVMs. Ref. [39] describes an
approach to make check-pointing JVM
independent by modifying the program’s
bytecode rather than modifying the JVM.

6. Conclusion and Future
Work
In this paper we have presented a scalable,
fault tolerant management framework. To
make the management framework
interoperable we employed a service-
oriented architecture based on WS-
Management. Our experimental evaluation
shows that as the number of resources
increases beyond 200, fault-tolerant
management can be achieved using only
0.75% more processes. This feasibility is a

- 13 -

result of using NaradaBrokering itself as a
“publish-subscribe” based scalable
messaging substrate for communication.
Further by using NaradaBrokering,
resources behind firewalls can be managed
by having them simply connect to the
domain specific messaging node using
tunneling protocols supported in
NaradaBrokering.

Our current implementation and feasibility
is based on the requirement of a small
runtime state which can be read / written to
a persistent registry in as few calls as
possible. In the future we would like to
apply the framework to areas where this
assumption need not necessarily hold true
(such as large scientific application). We
believe that application of management
framework to such systems can bring up
many interesting research issues,
specifically challenging scalability of the
system.

7. References

1. Case, J., M. Fedor, M. Schoffstall, and J. Davin.
A Simple Network Management Protocol
(SNMP). 1990, Available from: RFC: 1157,
http://www.ietf.org/rfc/rfc1157.txt.

2. Warrier, U., L. Besaw, L. LaBarre, and B.
Handspicker. The Common Management
Information Services and Protocols for the
Internet (CMOT and CMIP). 1990, Available
from: http://www.ietf.org/rfc/rfc1189.txt.

3. Distributed Management Task Force, I.
Common Information Model. Available from:
http://www.dmtf.org/standards/cim/.

4. Kreger, H., Java Management Extensions for
application management. IBM Systems Journal,
2001. 40(1).

5. Microsoft. Windows Management
Instrumentation (WMI). Available from:
http://www.microsoft.com/whdc/system/pnppwr
/wmi/default.mspx.

6. Arora, A., J. Cohen, J. Davis, M. Dutch, and
et.al. Web Services for Management. June 2005,
Available from:

https://wiseman.dev.java.net/specs/2005/06/man
agement.pdf.

7. HP. Web Services Distributed Management
(WSDM). March 2005, Available from:
http://devresource.hp.com/drc/specifications/ws
dm/index.jsp.

8. Microsoft, IBM, and BEA. Web Services
Eventing (WS – Eventing). Aug 2004, Available
from:
http://ftpna2.bea.com/pub/downloads/WS-
Eventing.pdf.

9. Pallickara, S., G. Fox, M. Aktas, H. Gadgil, B.
Yildiz, S. Oh, S. Patel, M. Pierce, and D.
Yemme. A Retrospective on the Development of
Web Service Specifications. July 2006.

10. IBM, HP, CA, and Cisco. Proposal for a CIM
mapping to WSDM. 2005, Available from:
ftp://www6.software.ibm.com/software/develop
er/library/ws-wsdm.pdf.

11. OASIS-TC. Web Services Distributed
Management: Management Using Web Service
(MUWS 1.0) Part 1 & 2, OASIS Standard.
Available from: http://www.oasis-
open.org/committees/tc_home.php?wg_abbrev=
wsdm.

12. OASIS-TC. Web Services Distributed
Management: Management of Web Services
(WSDM-MOWS) 1.0 OASIS Standard. Available
from: http://www.oasis-
open.org/committees/tc_home.php?wg_abbrev=
wsdm.

13. HP, IBM, Intel, and Microsoft. Toward
Converging Web Service Standards for
Resources, Events, and Management. Available
from: http://msdn.microsoft.com/library/en-
us/dnwebsrv/html/convergence.asp.

14. Newman, H.B., I.C. Legrand, P. Glavez, P.
Voicu, and C. Cirstoiu. MonALISA: A
Distributed Monitoring Services Architecture. in
CHEP 2003. MArch 2003. La Jola, CA.

15. Renesse, R.V., K.P. Birman, and W. Vogels,
Astrolabe: A robust and scalable technlolgy for
distributed system monitoring, management and
data mining. ACM Transactions on Computer
Systems, 2003. 21(2): p. 164 - 206.

16. Pallickara, S., H. Gadgil, and G. Fox. On the
Discovery of Brokers in Distributed Messaging
Infrastructures. in IEEE Cluster. Sep 27 - 30,
2005. Boston, MA.

- 14 -

http://www.ietf.org/rfc/rfc1157.txt
http://www.ietf.org/rfc/rfc1189.txt
http://www.dmtf.org/standards/cim/
http://www.microsoft.com/whdc/system/pnppwr/wmi/default.mspx
http://www.microsoft.com/whdc/system/pnppwr/wmi/default.mspx
http://devresource.hp.com/drc/specifications/wsdm/index.jsp
http://devresource.hp.com/drc/specifications/wsdm/index.jsp
http://ftpna2.bea.com/pub/downloads/WS-Eventing.pdf
http://ftpna2.bea.com/pub/downloads/WS-Eventing.pdf
ftp://www6.software.ibm.com/software/developer/library/ws-wsdm.pdf
ftp://www6.software.ibm.com/software/developer/library/ws-wsdm.pdf
http://www.oasis-open.org/committees/tc_home.php?wg_abbrev=wsdm
http://www.oasis-open.org/committees/tc_home.php?wg_abbrev=wsdm
http://www.oasis-open.org/committees/tc_home.php?wg_abbrev=wsdm
http://www.oasis-open.org/committees/tc_home.php?wg_abbrev=wsdm
http://www.oasis-open.org/committees/tc_home.php?wg_abbrev=wsdm
http://www.oasis-open.org/committees/tc_home.php?wg_abbrev=wsdm
http://msdn.microsoft.com/library/en-us/dnwebsrv/html/convergence.asp
http://msdn.microsoft.com/library/en-us/dnwebsrv/html/convergence.asp

17. Bunting, B., M. Chapman, O. Hurley, M. Little,
J. Mischinkinky, E. Newcomer, J. Weber, and
K. Swenson. Web Services Context (WS-
Context). Available from:
http://www.arjuna.com/library/specs/ws_caf_1-
0/WS-CTX.pdf.

18. Mockapetris, P. Domain Names -
Implementation and Specification. Nov 1987,
Available from: RFC:
http://tools.ietf.org/html/rfc1035.

19. Gadgil, H., G. Fox, S. Pallickara, and M. Pierce.
Managing Grid Messaging Middleware. in
Challenges of Large Applications in Distributed
Environments (CLADE). 2006. Paris, France.

20. Pallickara, S. and G. Fox. NaradaBrokering: A
Middleware Framework and Architecture for
Enabling Durable Peer-to-Peer Grids. in
ACM/IFIP/USENIX International Middleware
Conference. 2003.

21. Global MultiMedia Conferencing System
(GlobalMMCS). Available from: Project page:
http://www.globalmmcs.org.

22. Uyar, A., Scalable Service Oriented
Architecture for Audio/Video Conferencing.
2005, Syracuse University.

23. Tanenbaum, A.S. and M.v. Steen, Distributed
Systems: Principles and Paradigms. 1st edition
ed: Prentice Hall.

24. Lamport, L., Time, Clocks, and the Ordering of
Events in a Distributed System. ACM
Communications, July 1978. 21(7): p. 558-565.

25. Rodrigues, L., H. Fonseca, and P. Verissimo.
Totally Ordered Multicast in Large-Scale
Systems. in 16th Intl. Conf. on Distributed
Computing Systems. 1996.

26. Condor Project. Available from:
http://www.cs.wisc.edu/condor/.

27. XCAT Project at Indiana University. Available
from: http://www.extreme.indiana.edu/xcat/.

28. LAM-MPI. Available from: Project Page:
http://www.lam-mpi.org.

29. Al-Tawil, K.M., M. Bozyigit, and S.K. Naseer.
A Process Migration Subsystem for a
Workstation-Based Distributed Systems in 5th
IEEE International Symposium on High
Performance Distributed Computing (HPDC-5
'96). 1996. Los Alamitos, CA.

30. Chandy, K.M. and L. Lamport, Distributed
snapshots: Determining global states of

distributed systems. ACM Transactions on
Computer Systems, Feb 1985. 3(1): p. 63-75.

31. Elnozahy, M., L. Alvisi, Y.-M. Wang, and D.B.
Johnson. A Survey of Rollback-Recovery
Protocols in Message-Passing Systems,
Technical Report (CMU-CS-99-148), School of
Computer Science, Carnegie Mellon University.
June 1999.

32. Sankaran, S., J.M. Squyres, B. Barrett, A.
Lumsdaine, J. Duell, P. Hargrove, and E.
Roman, The LAM/MPI Checkpoint/Restart
Framework: System-Initiated Checkpointing.
International Journal of High Performance
Computing Applications, 2005. 19(4): p. 479-
493.

33. Krishnan, S. and D. Gannon. Checkpoint and
Restart for Distributed Components in XCAT3.
in 5th IEEE/ACM International Workshop on
Grid Computing (Grid 2004). Nov 2004.

34. Bronevetsky, G., D. Marques, K. Pingali, and P.
Stodghill, Automated application-level
checkpointing of mpi programs. Principles and
Pratice of Parallel Programming, June 2003.

35. Eddon, G. and H. Eddon. Understanding the
DCOM Wire Protocol by Analyzing Network
Data Packets. March 1998, Available from:
http://www.microsoft.com/msj/0398/dcom.aspx.

36. The Object Management Group (OMG). .
Available from:
http://www.omg.org/technology/documents/.

37. Javasoft. Java Remote Method Invocation -
Distributed Computing for Java (White Paper).
1999, Available from:
http://java.sun.com/marketing/collaterral/javarm
i.html.

38. Suri, N., J.M. Bradshaw, M.R. Breedy, P.T.
Groth, G.A. Hill, R. Jeffers, T.S. Mitrovich,
B.R. Pouliot, and D.S. Smith. NOMADS:
toward a Strong and Safe Mobile Agent System.
in 4th International Conference on Autonomous
Agents. 2000. Barcelona, Spain.

39. Garbacki, P., B. Biskupski, and H. Bal.
Transparent Fault Tolerance for Grid
Applications. in European Grid Conference
(EGC2005). Feb 2005. Amsterdam, The
Netherlands.

- 15 -

http://www.arjuna.com/library/specs/ws_caf_1-0/WS-CTX.pdf
http://www.arjuna.com/library/specs/ws_caf_1-0/WS-CTX.pdf
http://tools.ietf.org/html/rfc1035
http://www.globalmmcs.org/
http://www.cs.wisc.edu/condor/
http://www.extreme.indiana.edu/xcat/
http://www.lam-mpi.org/
http://www.microsoft.com/msj/0398/dcom.aspx
http://www.omg.org/technology/documents/
http://java.sun.com/marketing/collaterral/javarmi.html
http://java.sun.com/marketing/collaterral/javarmi.html

	1. Introduction
	1.1. Service-oriented Management
	1.2. Generic Management

	2. Architecture
	2.1. Resource
	2.2. Service Adapter
	2.3. Manager
	2.4. Registry
	2.5. Messaging Node
	2.6. Bootstrap Service
	2.7. User

	3. Performance Evaluation
	3.1. Maximum message rates
	3.2. Runtime State
	3.3. Runtime Response Cost
	3.4. Amount of Management Infrastructure Required

	4. Application to a Grid Messaging Middleware
	4.1. State managed per Broker Resource
	4.2. Deployment Costs

	5. Fault Tolerance in Distributed Systems
	5.1. Replication
	5.2. Check-pointing
	5.3. Fault-tolerance in Object-based Distributed Systems

	6. Conclusion and Future Work
	References

