
> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

1

Building Grid Portal Applications from a Web-
Service Component Architecture

D. Gannon, J. Alameda, O. Chipara, M. Christie, V. Dukle, L. Fang, M. Farrellee, G. Fox, S.
Hampton, G. Kandaswamy, D. Kodeboyina, S. Krishnan, C. Moad, M. Pierce, B. Plale, A. Rossi, Y.

Simmhan, A. Sarangi, A. Slominski, S. Shirasuna, T. Thomas

Abstract—This paper describes an approach to building Grid

applications based on the premise that users who wish to access
and run these applications prefer to do so without becoming
experts on Grid technology. We describe an application
architecture based on wrapping user applications and
application workflows as web services and web service resources.
These services are visible to the users and to resource providers
through a family of Grid portal components that can be used to
configure, launch and monitor complex applications in the
scientific language of the end user. The applications in this
model are instantiated by an application factory service. The
layered design of the architecture makes it possible for an expert
to configure an application factory service with a custom user
interface client that may be dynamical loaded into the portal.

Index Terms—Grid Application, Grid Services, Portals, Web
Services.

I. INTRODUCTION
RID technology is designed to allow users “seamless”
access to applications and services running on remote

resources. An example of such an application may be a tool,
accessed through a web portal, which allows a user to run
weather prediction simulations initialized with current
conditions derived from streams of remote instrument data. In
this case the data may have been initially filtered and mined
by a set of service running on some remote host. The data
mining services search the instrument stream for patterns that
indicate bad weather. The occurrence of these patterns creates
events that trigger a set of simulations running on a collection
of large supercomputers which analyze various storm
scenarios (This example is based upon a scenario from the
LEAD project led by Kelvin Droegemeier [9]). Another
example is a tool to generate computer animated movie from
3-D models of a complex molecule undergoing a folding or
reaction. In this case a large scale simulation is generating
periodic snapshots of the state of the molecule. These
snapshots are farmed out to rendering engines to compute
frames for the animation. A third example might include

doing data analysis on large text or image databases that
reside in remote locations. In this case the user may be
looking for features cataloged in existing databases that match
the features in a sample object. For example, consider the
problem of understanding the spread of disease in crops by
monitoring global crop production data and relating that to
satellite images and climate models. The users of such a
system do not want to think about how to program Grid
protocols to ftp data sets and launch large supercomputer
simulations. Rather, they would like to be able to pose
hypothetical questions about global warming and its impact
rice production in Asia.

Manuscript received April 1, 2004. This work was supported in part by the

U.S. Department of Energy and the NSF.
Corresponding Author: D. Gannon is with the Department of Computer
Science, Indiana University, Bloomington, IN 47401 (e-mail:
gannon@cs.indiana.edu).

The Grid is not yet in a state where such application scenarios
are easily realized, but we are beginning to see exciting
examples emerge [19,9,13,23]. In each of the scenarios
described above, there are several properties that distinguish
these applications as Grid applications.

1. It is very common for Grid applications to consist of
a heterogeneous composition of several (and
sometimes many) remote services, each of which is
responsible for one part of the overall computation.
Sometimes this service composition can be seen as
sequences of operations that are scheduled over time
as a “workflow” and other times they involve
applications running at difference locations that
directly interact with each other in a message-based
dialog.

2. These applications often involve a complex web of
collaborations (Figure 1). The end-users are
scientists and engineers that only want solutions to
problems and they want to do this in language of
their scientific domain. They interact with the
application through a web portal systems which
record their choices for the application parameters.
These application parameters are entered into Grid
execution workflow scripts that are authored by a
second group of scientists who understand how to
compose Grid services into distributed applications.
Domain experts are the authors and maintainers of
the basic service and tool components such as the
simulation codes and data filters that comprise the
basic elements of the computation.

G

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

2

3. The end user, who initiates or interacts with the
application, sits at a remote location and will expect
to authenticate his or her identity only once. From
this initial authentication many resources from many
different administrative domains may be accessed.
The Grid security services pass the users identity to
the local security mechanisms for individual services.
Authorization to use the remote resources and
services is provided through authorization
capabilities granted by the remote resource providers
and managed by an authorization service.

In section II of this paper we describe the grid portal
architecture with an emphasis on the way the portal server
interacts with remote grid services. We address the question
of generating interfaces to remote services by looking at two
possible solutions. In section III of this paper we turn to the
architecture of Grid Application factories and workflows.
We describe in detail how an application or workflow may be
encapsulated by an application factory service and combined
and reused with another service.

Fig. 1. Three levels of experts are involved in the design of many Grid
applications. Domain experts write the individual computational components.
Application integrators compose these services into distributed application.
End users interact with the application through a web portal that does not
expose the details of Grid management.

This paper explores the progress of an effort to construct a
Grid application architecture that is based on web-services and
Grid portals. This architecture is designed to build upon the
still-evolving Open Grid Services Architecture (OGSA) [10],
the Open Grid Computing Environment (OGCE) Portal
framework [11] and service composition tools such as the
Business Process Execution Language for Web Services
(BPEL4WS) [4] workflow system, the Condor Dagman
service [8] and distributed software component frameworks
like the Common Component Architecture [2]. Very closely
related ideas are found in many other projects [1,3,5,16]. This
architecture does not (yet) describe a single software system
that the reader can download and use (though most of the
major components listed above are available). Rather it is an
attempt to characterize a family of application design patterns
that can be implemented with a number of existing software
technologies. We will provide pointers to many of these
existing technology alternatives at the appropriate point in the
text.

The principle goal of this architecture is to liberate the end-
user from the details of Grid middleware programming, yet
still providing a means for the ambitious scientist to create
new Grid applications. This is accomplished by providing a
layered approach to tools that reflect the three levels of
programming depicted in Figure 1. This approach also

exploits the progress the commercial sector is making in
transforming the success of the world-wide-web to a platform
of web services designed for business-to-business transactions
and intra-enterprise resource management.

The focus of this paper is on the design of a framework that
allows applications to be installed and used as web services
accessed through a Grid portal. We focus on two specific
problems.

1. How can a Grid application be captured as a web
service? In particular, how can we wrap legacy
applications in simple workflow scripts that can be
configured and launched by the user?

2. Once we have a way to encapsulate and execute Grid
applications as Grid services, how does one provide
a way for an application developer to generate an
application specific interface that can be provided to
the end user through the portal? In particular, how
can this be accomplished without reconfiguring, or
even restarting the portal server each time a new
application is added?

II. GRID PORTAL ARCHITECTURE
Figure 2 illustrated a three-layer architecture for the basic
system.

Fig. 2. The end user interacts through a web browser with a portal server
based on the OGCE portal system. Specific application instances are created
by an application factory which registers their existence and basic properties
with a searchable Grid Application Registry. The portal server, registry and
application factory interact with OGSA core services.
The top layer is the end-user who interacts with the system
through a web browser. At the second layer, we have the
application-level web services which include the portal server,
searchable, user-level application and metadata registries, and

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

3

application factories. The third layer is the OGSA-like
services that provide the means to authenticate the user,
manage application event notification and mange and schedule
resources. Our focus in this paper the top two layers. In the
remainder of this section we will focus on the architecture of
the portal server and the way in which it interacts with remote
services.

The portal server used here is the Open Grid Computing
Environment (OGCE) [11] portal, which is based on the Java
Portlet model as implemented in Chef [6]. OGCE is being
deployed in a number of Grid portal projects including LEAD
[9], the NCSA alliance [18], the NSF Teragrid [25], and
several other NSF, DOE and NASA projects are evaluating it.
Chef is being used in the NeesGrid portal [19]. The portlet
concept, which is now a Java standard (JSR-168) [14], is
simple. This is the same model used by the GridSphere portal
framework [12,17] and the portals available from IBM, Sun,
Oracle and BEA. A portlet is a component of the web server
that owns a part of the portal display window. The portlet has
access to the user’s session state and different portlets can
communicate with each other through this mechanism. A
central concept in the architecture being presented here is that
the portal server provides two things:

1. A context to hold the user’s session and the objects
associated with that session. Some of these session
objects come from the user’s persistent state, which
is also managed by the portal server, and some
objects are created and used by portlets

2. A container for portlets which are clients to remote
Grid and web services. Portlet instances within this
container share the user’s context. Hence a portlet
which is a client to one service has access to objects
created in another service.

For example, one of the OGCE standard portlets is used to
fetch the user’s Grid proxy certificate from the MyProxy
service and store it in the user’s session. Any other portlet
which requires the user’s proxy certificate in order to interact
with a remote service on behalf of the user can fetch the proxy
from the session state.

To illustrate this point in greater depth, we describe three
Grid/Web service client portlets that follow this pattern.

A. The Condor Portlet
A good example of a portlet that interacts with a remote web
service is the Condor Dagman portlet developed in
collaboration with the University of Wisconsin Condor team.
Condor [8] is an environment for scheduling and executing
applications on distributed networks desktop computers.
Dagman is a language for describing complex application
workflows to be executed on Condor in terms of directed
acyclic graphs. In this case, the portlet allows the user to
upload descriptions of Condor jobs or workflow scripts
described with the Dagman language. The user can return later
and monitor the progress of the jobs. (We will return to the
topic of workflow later in this paper.)

The portlet interface is shown in Figure 3 also illustrate the
OGCE Chef graphical layout. The user’s browsers shows a
row of tabs across the top and a column of buttons on the left
and a panel to the right. In this case, there is only one tab at
the top and it is called “My Workspace”. These tabs
correspond to collaboration groups that the user has joined.
Selecting a tab selects the set of portlets shared by that
particular group. For example, if a user belongs to a group
that is managing the data analysis tools on a Grid testbed,
there may be a “data-analysis” group. If the user selects that
tab for that group, he or she would see the set of portlets used
by that group listed in the column on the left. These may be
specialized portlets for interacting with remote data analysis
grid services.

In Figure 3, the user is in his or her private “My Workspace”
group and the portlets available are listed on the left. In this
case the button for “Condor Portlet” has been pressed and the
pane on the right displace the user interface to portlet.

Figure 3. The Condor Dagman job submission portlet. This portlet interacts
with a web service that handles the actual submission into the Codor pool.

B. The XDirectory Grid Context

One service we use frequently is called the XDirectory Grid
Context (see Figure 4). This is a secure web service that
provides a simple searchable directory of a user’s metadata
about useful services or other data. Each entry is similar to a
“resource” in the WSRF [28] sense. Security is provided by
XML-signatures that are embedded in the SOAP request from
the portal server to the directory service using the user’s proxy
credential. This is part of the WS-Security [29] model.

The client portlet is organized as two panes. In the left pane is
the current “directory”. If a user selects a node, the right pane
displays any XHTML metadata associated with that node. Or,
if the node refers to a remote Grid service of a type described

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

4

later, the user interface associated with that service is
displayed. We will return to these points later.

Figure 4. Secure Grid Context portlet interface to the XDirectory Web
Service. The XDirectory is a secure web service that stores a tree of nodes
managed by the user. Each node is either a subdirectory or a leaf. Leaf nodes
contain XML metadata about that node including XHTML that is displayed
for the currently selected to the right of the current directory listing. Nodes
can be purely informational (such as this example which describes the portal
architecture) or they can be references to other services.

C. The OGSA-DAI Service.

As a final example of this design paradigm, the OGSA-DAI
portlet is a client to the Data Access and Integration Grid
service developed in the U.K. e-Science project [20]. Portal
interaction with the database through OGSA-DAI is illustrated
in Figure 5. The portlet is provided with the Grid Service
Handle (GSH) of the Grid Service Registry (GSR). This is
done out of band. The portlet queries the registry to obtain the
grid service handle to the factory, and the accompanying
service document that describes the grid data service instance
that has already been created. From a prior screen, not shown,
the user has browsed the local files system to obtain a perform
document that describes the query the user wishes to execute.
That perform document is shown at the top of the portlet.

Figure 5. The OGSA Data Access and Integration Portal.

The user issues a query by selecting 'Query/Update Database'
at the bottom of the page. Shown in the portlet are the results
of having executed a query. Shown to the left is the response
document in its XML form. On the right is the status of the
execution. Partially shown to the bottom right are the results
in table format. The response document has been converted to
a table format using XSLT before being displayed to the user.

D. Generic Portal Interfaces to Remote Services

In each of the examples described above we have illustrated a
portlet that provides a specialized client interface to a specific
remote Grid service type. While this works, it poses a
serious scalability problem. Every time a new application
Grid service is created, a new portlet client must be written
and configured into the portal deployment. In a more “web-
like” Grid, one should be able to discover a new service and
automatically load its interface into the portal server directly.

There are three approaches to solving this problem. The first,
and most natural is to remember that every web service is
described by a Web Service Description Language document
that provides information about each port type that the service
supports. This is an abstract description of the service
interface. If this service is one that a human could possibly
operate it should be possible to generate automatically the
interface for the service. We have done this with the Xydra-
OntoBrew service. As shown in Figure 6, OntoBrew is able
to automatically generate a usable interface.

Figure 6. The Xydra-Ontobrew service. The directory service contains a link
to the Xydra. Xydra then requests a URL for the WSDL for a service. The
supplied url, http://www.xmethods.net/sd/2001/CATrafficService.wsdl, is the
location of the WSDL for web service for the California Highway Traffic
Condition reporter web service. Ontobrew dynamically generated the

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

5

interface shown in the top half of the figure from the WSDL. In the bottom
half, we see the result of the request.

In its current form the reply from the web service is an echo of
the request and the reply in raw XML form. However, it
possible to do more than this. The WSDL also contains
information about message replies, hence it is possible to
generate a basic XHTML format for the returned values.
Xydra-Ontobrew provides an automatic solution to the portlet
client generation problem for simple services. However, for
Grid applications that are to be presented to the scientific
users, it is often desirable to build a custom interface that is
richer in its interactive features. The natural solution is to
build a custom client for the service that can be loaded
dynamically from the service. There are a few small
problems to solve. How does the portal know if a service has
a special, dynamically loadable interface? And, if it has one,
where is it located?

To solve this problem we can use a property of OGSI. Each
Grid service has a set of attributes called Service Data
Elements (SDEs) that can be interrogated by interested clients.
These SDEs are similar to resources in the WSRF
specification. For our Grid services that have dynamically
loadable interfaces, there is an SDE for that service called,
“interfaceclient”. If you query for this SDE by name, you are
handed the URL for the client. Theoretically, this interface
client can be a Java applet, a link to an HTML document with
embedded scripts that call the web service, a Java Web Start
application, or any other type of interface that the Grid
Service Provider wants to provide. Currently, as shown in
Figure 7, we are building applications with the Applet
interface in mind. As shown in Figure 7, the clients may be a
Java applet.

Figure 7. Dynamiclly loading an applet client from the grid service
“interfaceclient” SDE. In this case the web service is an English language
dictionary.

A new standard has been proposed called Web Services for
Remote Portlets (WSRP) [15] which provides a very similar
though, in our opinion, less flexible solution.

It should be noted that the Gridspeed project [24] provides an
alternative approach to this problem. GridSpeed has an
application wizard that is capable of generating interfaces to
remote workflows as a single step. Though GridSpeed is not
a web-service based architecture, it does show that it is
possible to generate very good interfaces to complex
applications with little or no programming required.

III. WORKFLOW AND THE FACTORY SERVICE

In a service-based model of the Grid everything is rendered as
a service or a client to a service. In the general web-services
world, services are stateless entities that respond to incoming
messages. However, there are very few things in computing
that are truly stateless. A good example of this is a workflow,
which is a process that represents the automation of a
sequence of interactions with a set of external services or
agents. Another example is the execution of a large, long-
running scientific application that consumes files and
produces new ones before it terminates. While it is running, it
certainly has state.

In what sense are these examples considered to be services?
The answer lies in how we interact with them. For example, if
we wish to be able to send messages to a running application
process like “Are you almost finished?” or “please save your
state and stop running” or “please start running and put you
output in this file …”, then it is reasonable to consider these
entities to be services.

However, a more natural model is to consider the ability to
run an application or workflow as the service and associate the
actual instance of a particular execution of the
application/workflow with a “resource” in a manner similar to
the concept of resource as defined by the proposed WSRF
specification. In this case, the resource represents the
evolving state of the execution of the application as an object
associated with the service that started it.

In order to turn “the ability” to run an application into a
service we follow the Factory pattern and we adopt a very
specific way of associating resource objects with the things
created by those factories.

We begin with the assumption that each “application” is
defined by a high level workflow or an execution script that
invokes the underlying file management and application
executables. As illustrated in figure 8, each execution of the
application workflow or script is launched by a specific
application service, which, itself, was generated by a Primary
Application Factory. This Primary Factory is a persistent
service that is used to generate the application specific
services from a formal specification we will describe later. For
now, we focus on the specific application instance factory.

In the model presented here each newly created service or
process is associated with a new resource object that is stored
in the XDirectory. These resource objects appear as
subdirectories of the user context. They can be thought of as
the permanent record of that service or process instance. The
resource documents for the specific application instance
factory contain a copy of all the application metadata used to
create it as well as a reference to the service interface to
access it. This is enough information to restart the service if
needed.

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

6

The specific application service is specialized to launch
instances of the pre-defined workflow or application script.
By interacting with the supplied user interface client for the
service, the user provides the missing parameter values that
needed for that execution. Each executing application
instance is associated with a resource document that is stored
as a sub-directory of the resource object for the service that
created it. This running instance resource document contains
the workflow files, the parameter settings, links to outputs and
a log of message events generated by the execution.

Figure 8. The application factory architecture. The generic application
factory is used to generate specific factory services for specific applications.
The specific application instance factories launch the specific workflow or job
scripts.

To illustrate these ideas, we will consider a real workflow
example. NCSA has developed a system called OGRE that
extends the build tool ANT [26] to manage simple Grid
workflows. An OGRE workflow is represented by an XML
document that consists of a set of properties and a sequence of
actions. Among the action tags are

• <rtexec> - run a program.
• <publish> - publish a message into the Grid event

stream.
• <filecopy> - move a file from one location to

another.
In the example illustrated in Figures 9, the workflow runs a
parallel rendering program to transform output from the WRF
weather simulation program into a small animation that can be
viewed from a portal. The steps involved are to first boot the
LAM MPI system, then execute mpirun with the “waterPipe”
parallel renderer , then run an image converter to turn the
frames into a “GIF movie”, and finally copy the movie to a
location visible to a web server.

Figure 9. OGRE script for the parallel rendering of WRF output.

In order to monitor the progress of the rendering the script is
punctuated with frequent messages published to the event
stream.

The Specific Application Service is a service that contains the
OGRE script in Figure 9 and is ready to create running
instances when the user provides any additional needed
parameters. In this case, that is the name of the WRF output
file we wish to render and the storage location for the final
movie. When so invoked the application services responds by
doing two things. First it creates a “resource sub-directory” in
the XDirectory that will contain properties of the execution.
Second, it instantiates a new, transient process that is
executing the OGRE script. In the XDirectory this resource
node looks like a subdirectory that represents that this
transient process. This is called the “Run” subdirectory for
that execution. Each time we invoke this application service a
new “Run” resource is added as a child to resource node for
the application service (see Figure 10). This “Run” resource
contains the original OGRE script and any parameters
supplied to the execution, the log of all events generated by
the execution and a link to the final output animation.

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

7

Figure 10. In the top display the user has selected the “Status” element of the
Run resource for that execution. What is shown on the right is log of
published messages from the execution. In the bottom display, the user has
selected the “Result” element which is a link to the execution.

A. Generating a Factory Service

A Factory Service is a persistent, stateless service that allows
authorized users to create instances of other services. In OGSI
terms, a Factory implements the document-centric Factory
PortType which is an extension of the GridService PortType.
The GridService PortType provides mechanisms for
discovery, life time management and notification. The Factory
PortType provides the CreateService method for creating
service instances on the Grid. It accepts as input, an XML
document called the CreateServiceExtensibilityType which
conforms to the OGSI specification. Clients use this document
to specify the service creation parameters including the initial
termination time and the set of PortTypes that are
implemented by the service instance.

The CreateServiceExtensibilityType document provides all
the information that the Factory needs to create a new instance
of the service. But to instantiate a service, an implementation
of the service must be available to the Factory. In addition,
any needed implementation resource files must be made
available to the factory. For example, in the case that the
service being generated is the Specific Application Service
which launches an OGRE execution engine, we need to
supply the OGRE script, and the client used to invoke the
service from the portal.

In the case where the service implementation and the client
already exist and are deployed, such as with the Dictionary
Service example illustrated in Figure 7, there is very little for

the Factory to do. It only needs launch the service running on
a specified host using a protocol like Gram or SSH.

However, in the case where the service is specific to a
particular workflow or OGRE script, the Factory must
dynamically generate parts of the implementation. To tell the
factory what it must generate, we provide it with a
ServiceMap document which is of a type that extends the
OGSI’s CreateServiceExtensibilityType.

The ServiceMap document has three elements; service,
portType and creationParameters. The service element
specifies the name of the service instance and a description of
the service that is to be created. This can also be used to
provide XHTML text for the portal user interface for the
service. The portType specifies the WSDL portType that
should be implemented by the service instance. A portType
can contain several methods. Each method is mapped to an
executable which is invoked when the method is invoked. The
input parameters of the method are mapped to the command
line arguments of the executable. The creationParameters
specifies the host and port on which the service must be
started and additional command line arguments.

Figure 11 illustrates the ServiceMap to create an instance of
the Specific Application Service for the OGRE animation
script described previously.

Figure 11. The ServiceMap for a dynamically generated Grid service to
launch the OGRE script for the animiation example.

In this case, the generated service has a single porttype with
one method “animiate”. The argument to this message is an
array of two strings, one of which is the URL of the WRF file
to animate and the other is the URL for the output animation.
The executable line provides the binding from the parameters
to the command line string needed to actually launch the
application. The string associated with the inputParams are
the names that can be used to label the parameters in the
interface client However, the creation parameters, such as the
host and port and OGRE script URL are the exact values that
are mapped to the execution.

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

8

IV. CONCLUSION
This paper has presented a web-service based architecture

for building specialized web services and portal clients for
Grid applications. The key idea is to wrap Grid application
scripts and workflows behind a Grid web service that provides
the ability to run instances of the workflow or script. In many
cases these specialized application service have
implementations that are dynamically generated from a simple
XML specification by a persistent Factory service.

Each dynamically generated object (application service or
executing application instance) is associated with a resource
which is stored for the user. For application execution
instances the resource stores everything needed to recreate the
execution including records of execution events and links to
the output files.

This paper also describes a portal architecture based on the
idea that communities of scientific application users would
rather access the applications via web interfaces integrated
into a portal. We address the problem of designing user
interfaces for Grid applications that can be use in the portal
and we discuss ways in which these interfaces may be
included in the portal framework at runtime.

There are two topics that have not been addressed here that
are very important to the architecture. One is the pub/sub
notification system and the other is the Grid service
authorization systems. The notification system is based on
Narada [22] and WS-Notification and the authorization
system is based on a Peer-to-Peer capability management
framework. Both of these topics will soon be described in
more detail in another paper.

ACKNOWLEDGMENT
The authors would like to thanks the Open Grid Computing

Environment Collaboration members whose work was critical
for the effort described in this paper. In particular, Gregor
von Laszewski provided us with COG, and Charles Severance
gave us Chef, the portal container used here. We would also
like to thank Kelvin Droegemeier and Bob Wilhelmson for
letting us work on the LEAD application.

REFERENCES
[1] Agarwal, M., and Parashar, M. . Enabling Autonomic Compositions in

Grid Environments.Proceedings of the 4th International Workshop on
Grid Computing (Grid 2003), Phoenix, AZ, USA, IEEE Computer
Society Press, pp 34 - 41, November 2003

[2] Armstrong, R., Gannon, D., Geist, A., Keahey, K., Kohn, S. McInnes,
L., Parker, S., and Smolinski, B.. Towards a common component
architecture for high performance scientific computing. In Proceedings
of the The Eighth IEEE International Symposium on High Performance
Distributed Computing, 1998.

[3] Bhat, V. and Parashar, M.. Discover Middleware Substrate for
Integrating Services on the Grid. Proceedings of the 10th International
Conference on High Performance Computing (HiPC 2003), Lecture
Notes in Computer Science, Editors: T.M. Pinkston, V.K. Prasanna,
Springer-Verlag, Hyderabad, India, Vol. 2913, pp 373 – 382,
December 2003

[4] Business Process Execution Language for Web Services Version 1.1.
http://www-106.ibm.com/developerworks/library/ws-bpel/

[5] Casanova, H. and Dongarra, J, NetSolve: a network server for solving
computational science problems. Proceedings SC 96.

[6] The Chef Project. http://chefproject.org/chef/portal
[7] Chipara, O., Slominski, A., Xydra – An automatic form generator for

Web Services, see: http://www.extreme.indiana.edu/xgws/xydra/
[8] Condor Dagman, http://www.cs.wisc.edu/condor/dagman/
[9] Droegemeier, K.K., V. Chandrasekar, R. Clark, D. Gannon, S. Graves,

E. Joseph, M. Ramamurthy, R. Wilhelmson, K. Brewster, B.
Domenico, T. Leyton, V. Morris, D. Murray, P. Plale, R.
Ramachandran, D. Reed, J. Rushing, D. Weber, A. Wilson, M. Xue,
and S. Yalda, 2004: Linked environments for atmospheric discovery
(LEAD): A cyberinfrastructure for mesoscale meteorology research
and education. Preprints, 20th. Conf. on Interactive Info. Processing
Systems for Meteor, Oceanography, and Hydrology, Seattle, WA,
Amer. Meteor. Soc.

[10] Foster, I., Kesselman, C., Nick, J., Tuecke, S., The Physiology of the
Grid An Open Grid Services Architecture for Distributed Systems
Integration, www.globus.org/research/papers/ogsa.pdf

[11] Open Grid Computing Environment (OGCE), http://www.ogce.org.
[12] GridLab, The GridSphere Portal http://www.gridsphere.org
[13] The Grid Physics Network, http://www.griphyn.org/
[14] JSR-168 Portlet Specification.

http://www.jcp.org/aboutJava/communityprocess/final/jsr168/
[15] Kropp, A., Leue, C., Thompson, R., Web Services for Remote Portlets

(WSRP), OASIS http://www.oasis-open.org
[16] Matsuoka, et. al., Ninf: A Global Computing Infrastructure,

http://ninf.apgrid.org/welcome.shtml
[17] Navotny, J. Developing grid portlets using the GridSphere portal

framework, http://www-106.ibm.com/developerworks/grid/library/gr-
portlets/

[18] NCSA Alliance Portal. http://www.extreme.indiana.edu/alliance/
[19] Network for Earthquake Engineering Simulation Grid (NEESgrid),

http://www.neesgrid.org
[20] Open Grid Service Architecture Data Access and Integration,

http://www.ogsa-dai.org.uk
[21] The Open Grid Services Infrastructure Working Group.

http://www.gridforum.org/ogsi-wg, 2003.
[22] Pallickara, S. and Fox, G., NaradaBrokering: A Middleware

Framework and Architecture for Enabling Durable Peer-to-Peer Grids.
Proceedings of ACM/IFIP/USENIX International Middleware
Conference Middleware-2003. pp 41-61.

[23] The Particle Physics Data Grid, http://www.ppdg.net/
[24] Suzumura, T., Nakada, H., Matsuoka, S., Casanova, H. , “GridSpeed:

A Web-based Portal Generator,” to appear, Proceedings HPCAsia,
2004.

[25] Teragrid, http://www.teragrid.org/
[26] Tilly, J. and Burke, E. Ant, The Definitive Guide, O’Reilly, 2002.
[27] Tuecke, S., Czaijkowski, K., Foster, I., Frey, J. and Graham, S.

Kesselman, C., Snelling, D., and Vanderbilt, P. Open Grid Services
Infrastructure, Version 1.0, Global Grid Forum GWD-R,
http://www.gridforum.org/ogsi-wg, March 2003.

[28] WS-Resource Framework. http://www.globus.org/wsrf.
[29] WS-Security. Web Services Security Version 1.0. http://www-

106.ibm.com/developerworks/webservices/library/ws-secure/

http://www.extreme.indiana.edu/xgws/xydra/

	INTRODUCTION
	Grid Portal Architecture
	The Condor Portlet
	The XDirectory Grid Context
	The OGSA-DAI Service.
	Generic Portal Interfaces to Remote Services

	Workflow and The Factory Service
	Generating a Factory Service

	Conclusion

