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Summary
Data-driven applications are essential to handle the ever-increasing volume, velocity, and verac-
ity of data generated by sources such as theWeb and Internet of Things devices. Simultaneously,
an event-driven computational paradigm is emerging as the core of modern systems designed
for database queries, data analytics, and on-demand applications. Modern big data processing
runtimes and asynchronous many task (AMT) systems from high performance computing (HPC)
community have adopted dataflow event-driven model. The services are increasingly moving to
an event-driven model in the form of Function as a Service (FaaS) to compose services. An event-
driven runtime designed for data processing consists of well-understood components such as
communication, scheduling, and fault tolerance. Different design choices adopted by these com-
ponents determine the type of applications a system can support efficiently.We find thatmodern
systems are limited to specific sets of applications because they have been designed with fixed
choices that cannot be changed easily. In this paper, we present a loosely coupled component-
based design of a big data toolkit where each component can have different implementations to
support various applications. Such a polymorphic design would allow services and data analytics
to be integrated seamlessly and expand from edge to cloud to HPC environments.
KEYWORDS:
Big data, Event-driven computing, Dataflow, High Performance Computing

1 INTRODUCTION
Big data has been characterized by the ever-increasing velocity, volume, and veracity of the data generated from various sources, ranging fromweb
users to Internet of Things devices to large scientific equipment. The data have to be processed as individual streams and analyzed collectively,
either in streaming or batch settings for knowledge discovery with both database queries and sophisticated machine learning. These applications
need to run as services in cloud environments as well as traditional high performance clusters. With the proliferation of cloud-based systems and
Internet of Things, fog computing (1) is adding another dimension to these applications where part of the processing has to occur near the devices.
Parallel and distributed computing are essential to process big data owing to the data being naturally distributed and processing often requir-

ing high performance in compute, communicate and I/O arenas. Over the years, the High Performance Computing community has developed
frameworks such as message passing interface to execute computationally intensive parallel applications efficiently. HPC applications target high
performance hardware, including low latency networks due to the scale of the applications and the required tight synchronous parallel operations.
Big data applications have been developed for commodity hardware with Ethernet connections seen in the cloud. Because of this, they are more
suitable for executing asynchronous parallel applications with high computation to communication ratios. Recently, we have observed that more
capable hardware comparable to HPC clusters is being added to modern clouds due to increasing demand for cloud applications in deep learning
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and machine learning. These trends suggest that HPC and cloud are merging, and we need frameworks that combine the capabilities of both big
data andHPC frameworks.
There aremany properties of data applications that influence the design of those frameworks developed to process them.Numerous application

classes exist, including database queries, management, and data analytics, from complex machine learning to pleasingly parallel event processing.
A common issue is that the data can be too big to fit into the memory of even a large cluster. In another aspect, it is impractical to always expect
a balanced data set from the processing standpoint across the nodes. This follows from the fact that initial data in the raw form is usually not load
balanced and often require too much time and disk space to balance the data. Also, the batch data processing is often insufficient, as much data is
streamed and needs to be processed online with reasonable time constraints before being stored to disk. Finally, the data may be varied and have
processing time that varies between data points and across iterations of algorithms.
Even thoughMPI is designed as a generic messaging framework, a developer has to focus on file access, with disks in case of insufficientmemory

and relying mostly on send/receive operations to develop higher level communication operations in order to express communication in a big data
application. Adding to this mix is the increasing complexity of hardware, with the explosion of many-core and multi-core processors having differ-
ent memory hierarchies. It is becoming burdensome to develop efficient applications on these new architectures using the low-level capabilities
provided byMPI. Meanwhile, the success of Harp (2) has highlighted the importance of theMap-Collective computing paradigm.
The dataflow (3) computation model has been presented as a way to hide some of the system-level details from the user in developing parallel

applications.With dataflow, an application is represented as a graphwith nodes doing computations and edges indicating communications between
the nodes. A computation at a node is activatedwhen it receives events through its inputs. Awell-designed dataflow framework hides the low-level
details such as communications, concurrency, and disk I/O, allowing the developer to focus on the application itself. Everymajor big data processing
systemhas been developed according to the dataflowmodel, and theHPC community has also developed asynchronousmany tasks systems (AMT)
according to the same model. AMT systems mostly focus on computationally intensive applications, and there is ongoing research to make them
more efficient and productive. We find that big data systems developed according to a dataflowmodel are inefficient in computationally intensive
applications with tightly synchronized parallel operations (4), while AMT systems are not optimized for data processing.
At the core of the dataflowmodel is an event-driven architecture where tasks act upon incoming events (messages) and produce output events.

In general, a task can be viewed as a function activated by an event. The cloud-based services architecture ismoving to an increasingly event-driven
model for composing services in the form of Function as a Service (FaaS). FaaS is especially appealing to IoT applications where the data is event-
based in its natural form. Coupled with microservices and server-less computing, FaaS is driving next-generation services in the cloud and can be
extended to the edge.
Because of the underlying event-driven nature of both data analytics and message-driven services architecture, we can find many common

aspects among the frameworks designed to process data and services. Such architectures can be decomposed into components such as resource
provisioning, communication, task scheduling, task execution, data management, fault tolerance mechanisms, and user APIs. High-level design
choices are available at each of these layers that will determine the type of applications a framework composed of these layers can support effi-
ciently. We observe that modern systems are designed with fixed sets of design choices at each layer, rendering them only suitable for a narrow
set of applications. Because of the common underlying model, it is possible to build each component separately with clear abstractions supporting
different design choices. We propose to design and build a polymorphic system by using these components to produce a system according to the
requirements of the applications, which we term the toolkit approach. We believe such an approach will allow the system to be configured to sup-
port different types of applications efficiently. The authors are actively pursuing a project called Twister2, encompassing the concept of the toolkit.
Server-less FaaS is a good approach to building cloud native applications (5, 6) and in this way, Twister2 will be a cloud native framework.
This paper provides the following contributions: 1) A study of different application areas and how a common computation model fits them; 2)

Design of a component-based approach for data analysis with various choices available at each component and how they affect the applications.
The rest of the paper is organized as follows. Section2discusses the relatedwork in the area.Next section3 categorizes data applications into broad
areas and introduces the processing requirements. Section 4 discusses the components of our approach. The next section 5 details implications of
the design and section 6 concludes the paper.

2 RELATEDWORK
Hadoop (7) was the first major open-source platform developed to process large amounts of data in parallel. The map-reduce (8) functional model
introduced by Hadoop is well understood and adapted for writing distributed pleasingly parallel and one-pass applications. Coupled with Java, it
provides a great tool for average programmers to process data in parallel. Soon enough, though, the shortcomings ofHadoopâĂŹs simpleAPI and its
disk-based communications (9) became apparent, and systems such as Apache Spark (10) andApache Flink (11)were developed to overcome them.
These systems are designed according to the dataflow model and their execution models and APIs closely follow dataflow semantics. Some other
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examples of batch processing systems includeMicrosoft Naiad (12), Apache Apex and Google Dataflow (13). It is interesting to note that evenwith
all its well-known inefficiencies, Hadoop is still being used bymany people for data processing. Apart from the batch processing systemsmentioned
above, there are also streaming systems that can process data in real timewhich also adhere to the dataflowmodel. Further open source streaming
system examples include Apache Storm (14), Twitter Heron (15), Google Millwheel (16), Apache Samza (17) and Flink (11). Note that some of the
systems process both streaming and batch data in a unifiedway such as ApacheApex, GoogleDataflow,Naiad, andApache Flink. Apache Beam (13)
is a project developed to provide a unified API for both batch and streaming pipelines. It acts as a compiler and can translate a program written in
its API to a supported batch or streaming runtime. Prior tomodern distributed streaming systems, researchwas done on sharedmemory streaming
systems, including StreamIt (18), Borealis (19), Spade (20) and S4 (21).
There are synergies between HPC and big data systems, and authors (22, 23) among others (24) have expressed the need to enhance these sys-

tems by taking ideas fromeach other. In previouswork (25, 26)we have identified the general implications of threads and processes, cache,memory
management in NUMA (27), as well as multi-core settings for machine learning algorithms with MPI. DataMPI (28) uses MPI to build Hadoop-like
systems while (29) uses MPI communications in Spark for better performance. Our toolkit approach as proposed in Twister2 makes interoperabil-
ity easier at the usage level, as one can change lower level components to fit different environments without changing the programmatic or user
interface.
There is an ongoing effort in the HPC community to develop AMT systems for realizing the full potential of multicore and many-core machines,

as well as handling irregular parallel applications in a more robust fashion. It is widely accepted that writing efficient programs with the existing
capabilities ofMPI is difficult due to thebareminimumcapabilities it provides. AMTsystemsmodel computations as dataflowgraphs anduse shared
memory and threading to achieve the best performance out of many-core machines. Such systems include OCR (30), DADuE (31), Charm++ (32),
COMPS (33) and HPX (34), all of which focus on dynamic scheduling of the computation graph. A portability API is developed in DARMA (35)
to AMT systems to develop applications agnostic to the details of specific systems. They extract the best available performance of multicore and
many-core systems while reducing the burden of the user having to write such programs usingMPI. Prior to this, there was much focus in the HPC
community on developing programs that could bring automatic parallelism to users such as Parallel Fortran (36). Research has been donewithMPI
to understand the effect of computer noise on collective communication operations (37, 38, 39). For large computations, computer noise coming
from an operating system can play a major role in reducing performance. Asynchronous collective operations can be used to reduce the noise in
such situations, but it is not guaranteed to completely eliminate the burden.
In practice, multiple algorithms and data processing applications are combined together in workflows to create complete applications. Systems

such as Apache NiFi (40), Kepler (41), and Pegasus (42) were developed for this purpose. The lambda architecture (43) is a dataflow solution for
designing such applications in amore tightly coupled way. Amazon Step functions (44) are bringing the workflow to the FaaS andmicroservices.
In task execution management and scheduling to acquire a fault tolerant system, Akka framework has provided a pluggable implementation to

manage task execution in other systems. The actor-basedmodel in Akka offers a versatile implementation in obtaining a fault-tolerant and scalable
solution.With the actor model, various topologies can be designed tomeet the requirements in a system.

3 BIGDATAAPPLICATIONS
Here we highlight four types of applications with different processing requirements: 1) Streaming, 2) Data pipelines, 3) Machine learning, and 4)
Services.With the explosion of IoT devices and the cloud as a computation platform, fog computing is adding a newdimension to these applications,
where part of the processing has to be done near the devices.
Streaming applications work on partial data while batch applications process data stored in disks as a complete set. By definition, streaming

data is unlimited in size and hard (to say nothing of unnecessary) to process as a complete set due to time requirements. Only temporal data set
observed in data windows can be processed at a given time. In order to handle a continuous stream of data, it is necessary to create summaries
of the temporal data windows and use them in subsequent processing of the stream. There can be many ways to define data windows, including
time-basedwindows and data count-basedwindows. In themost extreme case, a single data tuple can be considered as the processing granularity.
Data pipelines are primarily used to extract, transform and load (ETL) operations even though they can include steps such as running a complex

algorithm. They mostly deal with unstructured data stored in raw form or semi-structured data stored in NoSQL (45) databases. Data pipelines
work on arguably the largest data sets possible out of the three types of applications. Inmost cases, it is not possible to load complete data sets into
memory at once and we are required to process data partition by partition. Because the data is unstructured or semi-structured, the processing
has to assume unbalanced data for parallel processing. The processing requirements are coarse-grained and pleasingly parallel. Generally, we can
consider a data pipeline as an extreme case of a streaming application,where there is no order of data and the streamingwindows contain partitions
of data.
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FIGURE 1 Load imbalance and velocity of data FIGURE 2 Hierarchical data partitioning of a big data application

Machine learning applications execute complex algebraic operations and can be made to run in parallel using synchronized parallel operations.
In most cases the data can be load balanced across the workers as curated data is being used. The algorithms can be regular or irregular and may
need dynamic load balancing of computations and data.
Services are moving towards an event-driven model for scalability, efficiency, and cost effectiveness in the cloud. The old monolithic services

are being replaced by leaner microservices. These microservices are envisioned to be composed of small functions arranged in a workflow (44) or
dataflow to achieve the required functionality.

3.1 Data Processing Requirements
Data processing requirements are different compared to traditional parallel computing applications due to the characteristics of data. For example,
some data are unstructured and hard to load balance for data processing. Data can be in heterogeneous sources including NoSQL databases and
distributed file systems. Also, it can arrive at varying velocities in streaming use cases. Compared to general data processing, machine learning
applications can expect curated data in amore homogeneous environment.
Data Partitioning:Abig data application requires the data to be partitioned in a hierarchical manner due tomemory limitations. Fig. 2 shows an

example of such partitioning of a large file containing records of data points. The data is first partitioned according to the number of parallel tasks
and then each partition is again split into smaller partitions. At every stage of the execution, such smaller examples are loaded into the memory of
each worker. This hierarchical partitioning is implicit in streaming applications, as only a small portion of the data is available at a given time.
Hiding Latency: It is widely recognized that computer noise can play a huge role in large-scale parallel jobs that require collective operations.

Many researchers have experimented withMPI to reduce performance degradation caused by noise in HPC environments. Such noise is much less
compared towhat typical cloud environments observewithmultiple VMs sharing the same hardware, I/O subsystems, and networks. Added to this
is the Java JVM noise which most notably comes from garbage collection. The computations in the dataflow model are somewhat insulated from
the effects of such noise due to the asynchronous nature of the parallel execution. For streaming settings, the data arrives at the parallel nodes
with different speeds and processing time requirements. Because of these characteristics, asynchronous operations are the most suitable for such
environments. Load balancing (46) is a much harder problem in streaming settings where data skew is more common because of the nature of
applications.
Overlapping I/O and Computations: Because of the large data transfers required by data applications, it is important to overlap I/O time with

computing as much as possible to hide the I/O latencies.

3.2 MPI for Big Data
MPI is the de facto standard in HPC for developing parallel applications. An example HPC application is shown in Fig. 3 where a workflow system
such as Kepler (41) is used to invoke individual MPI applications. A parallel worker of an MPI program does computations and communications
within the same process scope, allowing the program to keep state throughout the execution. AnMPI programmer has to consider low-level details
such as I/O, memory hierarchy and efficient execution of threads to write a parallel application that scales to large numbers of nodes. With the
increasing availability of multi-core and many-core systems, the burden on the programmer to get the best available performance has increased
dramatically (26, 25). Because of the inherent load imbalance and velocity of the data applications, anMPI programmer has to go into great detail to
program efficient data applications in such environments. Another important point is that MPI is a message level protocol with low-level message
abstractions. Data applications such as pipelines, streaming and FaaS require higher level abstractions than low level message abstractions. When
data is in amore curated form as inmachine learning, the authors have shown thatMPI outperforms other technologies by a widemargin (4).
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FIGURE 3 MPI applications arranged in a workflow
FIGURE 4 Microservices using FaaS, Left: Functions using a workflow,
Right: Functions in a dataflow

3.3 Dataflow for Big Data
Data-driven computing is becoming dominant for big data applications. A dataflow program can hide details such as communication, task execution
and datamanagement from the user while giving higher level abstractions including task APIs or data transformation APIs. One canmake different
design choices at these core components to tune a dataflow framework for supporting different types of applications.

FIGURE 5 Dataflow application execution, Left: Streaming execution, Middle: Data pipelines executing in stages, Right: Iterative execution

3.3.1 Streaming Applications
Streaming applications deal with load imbalanced data coming at varying rates to parallel workers at any given moment. Unless very carefully
designedusing asynchronous operations, anMPI application processing this datawill increase the latency of the individual events. Fig. 1 shows this
point with an example where three parallel workers process messages arriving at different speeds, sizes, and processing times. If anMPI collective
operation is invoked, it is clear that the collective has to wait until the slowest task finishes, which can vary widely. Also, to handle streams of data
with higher frequencies, the tasks of the streaming computationmust be executed in different CPUs arranged in pipelines. The dataflowmodel is a
natural fit for such asynchronous processing of chained tasks.

3.3.2 Data Pipelines
Data pipelines can be viewed as a special case of streaming application. They work on hierarchically partitioned data as shown in Fig 2 . This is
similar to streaming where a stream is partitioned among multiple parallel workers and a parallel worker only processes a small portion of the
assigned partition at a given time. Data pipelines deal with the same load imbalance as streaming applications, but the scheduling of tasks is not
equal between them. Usually, every task in a data pipeline is executed in each CPU sequentially, so only a subset of tasks is active at a given time
in contrast to all the tasks being active in streaming applications. Streaming communication operations only need to work on data that can be
stored in memory, while data pipelines do communications that require a disk because of the large size of data. It is necessary to support iterative
computations in data pipelines in case they execute complex data analytics applications.

3.3.3 Machine Learning
Complex machine learning applications work mostly with curated data that are load balanced. This means tight synchronizations required by the
MPI-style parallel operations are possible because the data is available around the time the communication is invoked. It is not practical to run com-
plex machine learning algorithms (> O(n2)) on very large data sets as they have polymorphic time requirements. In those cases, it is required to
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find heuristic approaches with lower time complexities. There are machine learning algorithms which can be run in a pleasingly parallel manner as
well. Because of the expressivity required by the machine learning applications, the dataflow APIs should be close enough to MPI-type program-
ming, but it should hide details such as threads and I/O from users. Task-based APIs as used by AMT systems are suitable for such applications.We
note that large numbers of machine learning algorithms fall into themap-collectivemodel of computation as described in (47, 48).

3.3.4 Services
The services are composed of event-driven functions which can be provisioned and scaled without the user having to know the underlying details
of the infrastructure. The functions can be directly exposed to the user for event-driven applications or by proxy through microservices for
request/response applications. Fig. 4 showsmicroservices using functions arranged in a workflow and in a dataflow.

4 TOOLKIT COMPONENTS
Considering the requirements of different applications, we have designed a layered approach for big data with independent components at each
level to compose an application. The layers include: 1. Resource allocations, 2. Data Access, 3. Communication, 4. Task System, and 5. Distributed
Data. Among these communications, task system and datamanagement are the core components of the systemwith the others providing auxiliary
services. On top of these layers, one can develop higher-level APIs such as SQL interfaces which are not a focus of this paper. Fig. 6 shows the
runtime architecture of Twister2 with various components. Even though Fig. 6 shows all the components in a single diagram, one can mix and
match various components according to their needs. Fault tolerance and security are two aspects that affect all these components. Table. 1 gives a
summary of various components, APIs and implementation choices.

FIGURE 6 Runtime architecture of Twister2

4.1 Architecture Specification
System specification captures the essentials of a parallel application thatwill determine the configuration of the components.We identify execution
semantics and coordination points as the two essential features that define the semantics of a parallel application.
CoordinationPoints:Tounderstandand reasonabout aparallel application,we introducea concept called a coordinationpoint. At a coordination

point, a program knows that a parallel computation has finished.WithMPI, a coordination point is implicitly definedwhen it invokes and completes
a communication primitive. For example, when AllReduce operation finishes a parallel task, it knows that the code before the AllReduce has been
completed. For data driven applications, the coordination happens at the data level. Depending on the abstractions provided, the coordination
can be seen at communication level, task level or the distributed data set level. For example, a task is invoked when its inputs are satisfied. So the
coordination of tasks happens at the beginning of such executions. No coordination between parallel tasks are allowed inside the tasks. At the
data level, the coordination occurs when the data sets are created and its subsequent operations are invoked. HPC also has coordination points
at the end of jobs. These are managed in workflow graphs with systems like Kepler, Taverna, and Pegasus. The data driven coordination points are
finer-grained thanworkflow and similar to those in HPC systemswhere computing phasesmove to communication phases.
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TABLE 1 Components of the Twister2 Toolkit

Component Area Implementation Comments; User API
Architecture
Specification

Coordination Points State and Configuration Management; Pro-
gram, Data andMessage Level

Change execution mode;
save and reset state

Execution Semantics Mapping of Resources to Bolts/Maps in
Containers, Processes, Threads

Different systems make dif-
ferent choices - why?

Job Submission (Dynamic/Static) Resource
Allocation

Plugins for Slurm, Yarn, Mesos, Marathon,
Aurora

Client API (e.g. Python) for
JobManagement

Communication DataflowCommunication MPI Based, TCP, RDMA Define new Dataflow com-
munication API and library

BSP Communication ConventionalMPI, Harp MPI P2P and Collective API

Task System

Taskmigration Monitoring of tasks and migrating tasks for
better resource utilization Task-based programming

with Dynamic or Static
Graph API; FaaS API;
Support accelerators
(CUDA,KNL)

Elasticity OpenWhisk
Streaming and FaaS Events Heron, OpenWhisk, Kafka/RabbitMQ
Task Execution Process, Threads, Queues
Task Scheduling Dynamic Scheduling, Static Scheduling,

Pluggable Scheduling Algorithms
Task Graph Static Graph, Dynamic Graph Generation

Data Access Static (Batch) Data File Systems, NoSQL, SQL Data APIStreaming Data Message Brokers, Spouts
Distributed Data
Management Distributed Data Set Relaxed Distributed Shared Memory

(immutable data),MutableDistributedData
Data Transformation API;
Spark RDD, Heron Streamlet

Fault tolerance Check pointing
Lightweight barriers, Coordination Points,
Upstream backup; Spark/Flink, MPI and
Heronmodels

Streaming and batch cases
distinct; Crosses all compo-
nents

Security Messaging, FaaS, Storage Research Crosses all components

Execution semantics:Execution semantics of an applicationdefinehow the allocated resources aremapped to executionunits. Cluster resources
are allocated in logical containers and these containers can host processes that execute the parallel code of the application. Execution semantics
define themapping of computation tasks into the containers using processes or a hybrid approachwith threads and processes.

4.2 Job Submission & Resource Allocation
Cluster resource allocation is often handled by specialized software that manages a cluster such as Slurm, Mesos or Yarn. Such frameworks have
been part of the HPC community for a long time and the existing systems are capable of allocating a large number of jobs in large clusters. Yarn
andMesos are big data versions of the same functionality provided by Slurm or Torquewith an emphasis on fault tolerance and cloud deployments.
In particular, both are capable of handling node failures and offer applications the opportunity to work even when the nodes fail by dynami-
cally allocating resources. Twister2 will use a pluggable architecture for allocating resources utilizing different schedulers available. An allocated
resource including CPUs, RAM and disks are considered as a container. A container can run a single computation or multiple computations using
processes/threads depending on the system specification. For computationally expensive jobs, it is important to isolate the CPUs to preserve cache
coherence while I/O-bound jobs can benefit from the idle CPUs available. In case of node failures, Twister2 can get a new node and start failed pro-
cesses to achieve fault tolerance. For cloud deploymentswith FaaS, resourcemanagement frameworks such asDocker can be exploited to scale the
applications.
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4.3 Communication
Communication is a fundamental requirement of parallel computing because the performance of the applications largely revolves around efficient
implementations. High-level communication patterns as identified by the parallel computing community are available through frameworks such
as MPI (49). Some of the heavily used primitives are Broadcast, Gather, Reduce, AllGather and AllReduce (50). The naive implementation of these
primitives using point-to-point communication in a straightforward way produces worst-case performance in practical large-scale parallel applica-
tions. These patterns canbe implementedusing data distribution algorithms thatminimize thebandwidth utilization and latency of the operation. In
general, they are termed collective algorithms. Twister2 will support message-level and data-level BSP-style communications as in MPI, and solely
data-level communications as in data flow programs. The dataflow-style communications will be used for data pipeline and streaming applications.
One can choose to use BSP style or dataflow style for machine learning algorithms. Table. 2 summarizes some of the operations available in BSP
and dataflow communications.

TABLE 2 MPI and dataflow communication operations

Collectives
BSP (MPI) Reduce, AllReduce Gather, AllGather Broadcast, Scatter Barrier – – – –
Dataflow Reduce, Keyed Reduce Gather, Keyed Gather Broadcast – Union Join Partition Sort

4.3.1 BSP Communications
In MPI, collective operations and other point-to-point communication operations are driven by computations. This means that the programmer
knows exactly when to execute the communication primitives as well as the parameters. Once the program is ready to communicate, it can initiate
the appropriate operations which will invoke the network functions. The asynchronous communications are slightly different than synchronous
operations in the sense that after their invocation, the program can continue to compute while the operation is pending. It is important to note
that even with asynchronous operations the user needs to employ other operations such as wait/probe to complete the pending operation. The
underlying implementation for MPI collective can use different algorithms based on factors including message size. Significant research has been
done on MPI collectives (50, 51) and the current implementations are optimized to an extremely high extent. A comprehensive summary of MPI
collective operations andpossible algorithms is found in (52). BSP communications canbeused as inMPI, or by the task system.Harp (2) is amachine
learning-focused collective library that supports the standardMPI collectives as well as some other operations like rotate, push and pull.

4.3.2 DataflowCommunications
A dataflow communication pattern defines how the links are arranged in the task graph. For instance, a single task can broadcast a message to
multiple tasks in the graph when they are arranged in a broadcast communication pattern. One of the best examples of a collective operation in
dataflow is Reduce. Reduce is the opposite of broadcast operation andmultiple nodes link to a single node. Themost common dataflow operations
include reduce, gather, join (53), union and broadcast. MPI and big data have adopted the same type of collective communications but sometimes
they have diverged in supported operations.
It is important to note thedifferences betweenMPI anddataflowcommunication primitives. In a dataflowgraph, themessages (communications)

drive the computation rather than computation driving the communication as inMPI. Also, dataflow communicationswork at data level rather than
themessage level as inMPI. For example, a dataflow communication can reduce awhole data set as a single operation that runs inmany steps using
hierarchical partitioning. In case of insufficient memory, the communications can use disks to save intermediate data of the operation. Also, the
semantics of the data flow primitives are different compared to theMPI collectives, with keyed operations, joins, unions, and partitioning.
The system specification dictates that a task can only send and receive data via its input and output ports (coordination points) and they cannot

communicate with each other while performing computations. If they communicate inside the tasks, that will introduce another coordinating point
inside the task and the concept of the task will be broken. The authors of this paper propose collective operations as a graph enrichment, which
introduces sub-tasks to the original dataflow graph. Fig.7 and Fig.8 show the naive implementation and our proposed approach for dataflow col-
lective operations. In this approach, the collective operations computation is moved to a sub-task under which the collective operation depends.
These sub-tasks can be connected to each other according to different data structures like trees and pipes in order to optimize the collective com-
munication. This model preserves the dataflow nature of the application and the collective does not act as a synchronization barrier. The collective
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FIGURE 7 Default implementation of a dataflow reduce
FIGURE 8 Optimized dataflow reduce operation with sub-tasks
arranged in a tree

operation can run even as data becomes available to each individual task, and the effects of unbalanced load and timing issues inMPI are no longer
applicable. For collective operations such as broadcast and scatter, the original tasks will be arranged according to data structures required by such
operations.We identify several requirements for a dataflow collective algorithm.

1. The communication and the underlying algorithm should be driven by data.
2. The algorithm should be able to use disks when the amount of data is larger than the available memory.
3. The collective communication should work at the data level taking into account partitions of the data
The dataflow collectives can be implemented on top of MPI send/receive operations, directly using TCP socket API, and using RDMA (Remote

DirectMemoryAccess). These optionswill give the libary the ability towork in cloud environments aswell asHPCenvironments. Twister2 dataflow
communication library can be used by other big data frameworks to be efficient in HPC environments.

4.3.3 High Performance Interconnects
RDMA (RemoteDirectMemoryAccess) is one of the key areaswhereMPI excels.MPI implementations support a variety of high-performance com-
munication fabrics and perform well compared to Ethernet counterparts. Recently there have been many efforts to bring RDMA communications
to big data systems, including HDFS (24), Hadoop (54) and Spark (55). The big data applications are primarily written in Java and RDMA applica-
tions are written in C/C++, requiring the integration to go through JNI. Even by passing through additional layers such as JNI, the application still
performs reasonably well with RDMA. One of the key forces that drags down the adoption of RDMA fabrics is their low-level APIs. Nowadays with
unified API libraries such as Libfabric (56) and Photon (57), this is no longer the case.

4.4 Task System
In order to develop an application at the communication layer, one needs a deep understanding about threaded execution, efficient use of communi-
cations and datamanagement. The task layer provides a higher-level abstraction on top of the communication layer to hide the details of execution
and communication from the user, while still delegating datamanagement to the user. At this layer, computations aremodeled as task graphswhich
can be created statically as a complete graph or dynamically as the application progresses.

FIGURE 9 Left: User graph, Right: execution graph of a data flow

4.4.1 Task graph
Anode in the task graph represents a taskwhile an edge represents a communication link between nodes. Each node in the graph holds information
about the inputs and its outputs (edges). Also, a node contains an executable user code. The user code in a task is executedwhen events arrive at the
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inputs of the task. The userwill output events to the output edges of the task graph and theywill be sent through the network by the communication
layer. A task can be long-running or short-running depending on the type of application. For example, a stream graph will have long running tasks
while a dataflow graph without loops will have short running tasks. When loops are present, long running tasks can be appropriate to reduce task
creation overheads.

4.4.2 Execution Graph
Execution graph is a transformation of the user-defined task graph, created by the framework for deploying on the cluster. This execution graphwill
be scheduled onto the available resource by the task scheduler. For example, some user functions may run on a larger numbers of nodes depend-
ing on the parallelism specified. Also, when creating the execution graph, the framework can perform optimizations on the user graph to increase
efficiency by reducing datamovement and overlapping I/O and computations. Fig. 9 shows the execution graph and the user graphwhere they run
multipleW operations andS operations in parallel.When creating the execution graph, optimizations can be applied to reduce datamovement and
preserve data locality.

4.5 Task Scheduling
Task scheduling is the process of scheduling multiple task instances into the cluster resources. The task scheduling in Twister2 generates the task
schedule plan based on the per job policies,which places the task instances into the processes spawnedby the resource scheduler. It aims to allocate
a number of dependent and independent tasks in a near optimal manner. The optimal allocation of tasks decreases the overall computation time of
a job and improves the utilization of cluster resources. Moreover, task scheduling requires different scheduling methods for the allocation of tasks
and resources based on the architectural characteristics. The selection of the best method is a major challenge in the big data processing environ-
ment. The task scheduling algorithms are broadly classified into two types, namely static task scheduling algorithms and dynamic task scheduling
algorithms. Twister2 supports both types. It considers both the soft (CPU, disk) and hard (RAM) constraints and serializes the task schedule plan in
the format of Google Protocol Buffers (58). Additionally, the Google Protobuf contains information about the number of containers to be created
and the task instances to be allocated for each one. Additionally, it houses the required resource information such as CPU, disk memory, and RAM
for the containers and the task instances to be allocated in those containers.

4.5.1 Task Scheduling for Batch and Streaming Jobs
The task scheduling for batch jobs can be performed prior to the processing based on the knowledge of input data and the task information for
processing in a distributed environment. Moreover the resources can be statically allocated prior to the execution of jobs. Nevertheless, the task
scheduling for streaming jobs is considerably more difficult than batch jobs due to the continuous and dynamic nature of input data streams that
requires unlimited processing time. The task scheduling should consider the availability of resource and resource demand as important parameters
while scheduling the streaming tasks. Also, it should give more importance to the network parameters such as bandwidth and latency. Streaming
task components (59) that communicate each other should be scheduled in close network proximity to avoid the network delay in the streaming
jobs processing. Dynamic task scheduling is more suitable than static task scheduling for handling the dynamic streams of data or streaming jobs.

4.5.2 Static Task Scheduling Algorithm
In static task scheduling, the jobs are allocated to the nodes before the execution of a job and the processing nodes are known at the compile
time. Once the tasks are assigned to an appropriate resource, the execution continues to run until finishing the execution of the task. The main
objective of the static task scheduling strategy is to reduce the scheduling overhead which occurs during the runtime of the task execution. Some
static task scheduling strategy examples are Capacity Scheduler, Data Locality-Aware Scheduling, RoundRobin Scheduling, Delay Scheduling, FIFO
Scheduling, First Fit Scheduling, Fair Scheduling andMatchmaking Scheduling.
Twister2 is implemented with the following static task scheduling algorithms: (1) Round Robin (RR) Task Scheduling, (2) First Fit (FF) Task

Scheduling, and (3) Data Locality-Aware (DLA) Task Scheduling. The round-robin task scheduling algorithm generates the task scheduling plan in
which the task instances are allocated to the containers in a round robin manner without considering any priority to the task instances. It has the
support to launch homogeneous containers of equal size of disk, memory, CPU and heterogeneous nature of task instances. Round-robin-based
task (heterogeneous) instance allocation in the (homogeneous) containers is represented in Fig. 10 . The FF task scheduling algorithm generates
the task scheduling plan in which the task instances are allocated to a finite number of containers with the objective of minimizing the number of
containers and reducing the waste of underlying resources. In contrast to the round-robin task scheduling, it provides the support for launching
heterogeneous containers and the heterogeneous nature of task instances. Fig. 11 shows the FF-based task (heterogeneous) instances allocation
in the (heterogeneous) containers. The data locality-aware task scheduling algorithm is implemented with an awareness of data locality (i.e. the
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FIGURE10 RRTask Scheduling (HomogeneousContainers andHetero-
geneous Task Instances)

FIGURE 11 FF Task Scheduling (Heterogeneous Containers and Het-
erogeneous Task Instances)

FIGURE 12 DLA Task Scheduling (Execution on the Data Nodes) FIGURE 13 DLA Task Scheduling (Execution Closer to the Data Nodes)

distance between the data node that holds the data and the task execution node). Scheduling of tasks to the execution node which has the input
data or closest to the input datamaximizes the overall response time of a job. However, in some scenarios the execution of a node requires the data
which has been distributed in nature, hence the data locality-aware task scheduling algorithm should consider that casewhile scheduling the tasks.
Fig. 12 and Fig. 13 show the data locality-aware task scheduling scenarios handled in the Twister2 framework.

4.5.3 Dynamic Task Scheduling Algorithm
In dynamic scheduling strategy, jobs are allocated to the nodes during the execution time of tasks. It is assumed that the user has complete knowl-
edge about their application requirements, such as the maximum size of the container (CPU, disk, and RAM) or the required number of containers
while submitting the jobs to the Twister2 framework. Thus the task scheduling algorithm should be able to generate an appropriate task schedul-
ing plan using that information. However, the static task scheduling algorithm does not consider the availability of resources and the resource
demand, which can lead to over-utilization or under-utilization of the resources and thus pave the way for inefficiencies. Contrary to the static
task scheduling, the dynamic task scheduling evaluates the scheduling decisions during the execution of the job. It provides the support or triggers
the task migration based on the status of the cluster resources and the workload of the application. Resource-Aware Scheduling, Deadline-Aware
Scheduling and Energy-Aware Scheduling are examples of dynamic scheduling strategy. As such, Twister2 will be empowered with a dynamic task
scheduling algorithm which considers the deadline of the job, inter-node traffic, inter-process traffic, resource availability and resource demand
with the objective of minimizing themakespan (i.e. total execution time of all the tasks) of a job and effectively utilizing the underlying resources.

4.6 Task Execution
Depending on the system specification, a process model or a hybrid model with threads can be used for execution. It is important to handle both
I/O and task execution within a single execution module so that the framework can achieve the best possible performance by overlapping I/O and
computations. The execution is responsible for managing the scheduled tasks and activating them with data coming from the message layer. To
facilitate dynamic task scheduling, scaling of tasks for FaaS environments and high frequency messaging, it is vital to maintain high-performance
concurrent message queues. Much research has been done on improving single queuemultiple-threaded consumer bottlenecks for task execution,
as shown in (60).
Unlike inMPI applicationswhere threads are created equal to the number ofCPUcores, big data systems typically employmore threads than the

cores available to facilitate I/O operations. With I/O offloading and advanced hardware, the decision to choose the correct model for a particular
environment becomes a research question. When performing large data transfers or heavy computations, the threads will not be able to attend
to computing or I/O depending on the operation being performed. This can lead to unnecessary message buildups in upstream tasks or in the task
itself. The ability to model such behaviors and pick the correct execution model (61) is important for achieving optimum performance. It has been
observed that using a single task executor for both these applications would bring inferior performance (62).
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4.6.1 Multi-coremachines
For an application running on multi-core (multiple CPUs) machines with multiple sockets, the effects of context switching can be significant due
to cache misses and memory access latency, especially when crossing NUMA (non-uniform memory access) domains. The data migration cost is
very important when threads cross the contexts (63). With NUMA, the data locality is considered and the tasks are allocated in a way that shared
memory access can be gained for the task executors by binding them to specific NUMAdomains which contain the expectedmemory blocks (63).
With many core machines now having large numbers of hardware threads, a single process can expect to deal with larger memory and more

parallelism within a process. Having efficient ways to share resources (locks) is important, especially when the number of threads increases sig-
nificantly. Languages such as Java require garbage collection (GC) to reclaim memory, and having processes with very large memory allocated can
cause long pauses in GC. Because of this a balance for number of processes per nodemust bemaintained.

4.7 Data Access
Data access abstracts out various data sources including files and streaming sources to simplify the job of an application developer. In most dis-
tributed frameworks, the data is presented as a higher level abstraction to the user, such as the RDD in Apache Spark andDataSet for Apache Flink.
Since the goal of Twister2 is to provide a toolkit which allows developers to choose the desired components, Twister2 includes a lower level API for
data access in addition to a higher level abstraction. For example, the abstraction of a File Systemallows Twister2 to supportNFS, HDFS, and Luster,
which enables the developer to store and read data from any file by specifying only the URL. In addition to the data sources that are supported by
the framework, the pluggable architecture allows users to add support for any data source by implementing the relevant interfaces.
Another important role of the data access layer is to handle data partitioning and data locality in an efficient manner. An unbalanced set of data

partitions will create stragglers, which will increase the execution time of the application. The data access layer is responsible for providing the
developerwith appropriate information regarding data locality. Data locality directly affects the execution time since unnecessary datamovements
will degrade the efficiency of the application. In addition to the built-in functions of Twister2, the developer is given the option to plug in custom
logic to handle data partitioning and locality.

4.8 Distributed Data
The core of most dataflow frameworks is a well-defined high level data abstraction. RDDs in Apache Spark and DataSets in Apache Flink are well-
known examples for higher level data abstractions. Twister2 provides an abstraction layer so that developers can develop applications using data
transformation APIs that are provided. The distributed data abstraction used in Twister2 is termed a DataSets. DataSets are the main unit of par-
allelismwhen programs are developed using the data flowmodel in the framework. The number of splits or partitions that a DataSet is broken into
determines the number of parallel tasks thatwill be launched to perform a given data flowoperation. Twister2DataSets support two primary types;
immutable and mutable. The immutable version is most suitable for traditional data flow applications. Mutable DataSet’s allow the data sets to be
modified, but a given task may only alter the entries from the partition that is assigned to that task. The DataSet API provides the developer with a
wide variety of transformations and actions that allow the developer to build the required application logic effortlessly.
DataSets are loaded lazily, which means that the actual data is not read until execution of a data flow operation is performed. This allows many

optimizations such as pipelining transformations and performing local data reads to be implemented. Fault tolerance is built into the distributed
data abstraction; if a task or a node fails the required calculationwill be redone automatically by the system and the program can complete without
any problems. Distributed DataSets leverage functionalists provided by the data access APIs, therefore the data partitioning and data locality is
managed by the data access layer, removing the burden from the DataSets implementation. Leveraging the lower level APIs adheres to the toolkit
approach taken by Twister2 and allows each system component to bemodified and updatedwith little effect to the other components.
The framework generates an execution graph based on the transformations and actions that are performed on the distributed

data set. This execution graph takes into account the number of partitions in the data set and the localities of the data parti-
tions. Fig. 14 shows an example of such an execution graph. It demonstrates the execution graph of an application which applies the
logF ile.map(...).filter(...).reduceByKey(...).forEach(...) sequence of transformations to a data set that has 4 partitions.

4.9 Fault Tolerance
A crucial feature in distributed frameworks is fault tolerance since it allows applications to recover from various types of failures that may occur
during the application runtime. Fault tolerance has becomemore andmore important with the usage of larger commodity computer clusters to run
applications. However, the overheads caused by fault tolerance mechanisms may reduce the application’s performance, so it is important to keep
them as lightweight as possible. Most distributed frameworks such as Spark and Flink have inherent support for fault tolerance. There are several
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FIGURE 14 Example execution graph for logF ile.map(...).filter(...).reduceByKey(...).forEach(...)

projects such as (64) and (65) which provide fault tolerance forMPI applications. It is important to allow the application developer to determine the
level of fault tolerance required. This enables applications which run on reliable hardware with very large mean times of failure to run without the
burden of fault tolerance. Checkpointing is a well-known mechanism used to handle failures in distributed frameworks. Dataflow application can
have automatic checkpointingmechanisms at the coordination points to recover from failures. The checkpointingmechanismworks differently for
streaming data and batch data. Opting out of checkpointing does not mean that the application will fail as soon as one failure occurs. Instead the
system can automatically restart the application or recover from the failure using cached intermediate data if available.

4.9.1 Fault Tolerance For Streaming Data
Twister2 provides fault tolerance to streaming applications through lightweight distributed checkpoints. The model used is based on the stream
barrier-based distributed snapshots described in (11). This checkpointing method injects barriers into the data stream and uses them to create
snapshots so that every item in the stream before the barrier is processed completely. This helps guarantee exactly once semantics for stream
processing applications. It also allows developers to choose the checkpointing frequency just by specifying the intervals at which the barriers are
injected into the stream. Developers can completely forgo checkpointing, removing the overhead of fault tolerance if they choose. There are three
main types of message processing guarantees that are required by various stream processing applications: exactly once, at least once and at most
once. The fault tolerance mechanism provides support for all three given that some required conditions are met. For instance, to provide exactly
once guarantee, the streaming source is required to have the capability to replay the source from a certain point. It is also important to note that
stricter guarantees result in higher overheads for the fault tolerancemechanism.

4.9.2 Fault Tolerance For Batch Data
Applications based on batch data can vary from pleasingly parallel applications to complexmachine learning applications. Providing fault tolerance
for pleasingly parallel applications is relatively simple because of the narrow dependencies involved. The system can relaunch a task when it fails
without affecting any other running task. On the other hand, complex algorithms typically consist of wide dependencies, recovering from a failure
is muchmore complex for such scenarios. Twister2 provides fault tolerance for batch data at two levels, namely checkpoint-based and cache-based
mechanism.Checkpoint-based fault tolerance is themainmechanismwhile the cache-basedmodel canbeused to reduceoverheadof checkpointing
based on the application.
Checkpoint-based fault tolerancedevelops snapshots of the runtimeapplication. These snapshots are created at coordination points in the appli-

cations, a natural candidate for a checkpoint since the runtime has the least amount of moving parts, such as messages at this point. This allows the
checkpoints to be lightweight and simple. The developer has the flexibility to specify the checkpoints based on the application requirements. If a
failure occurs, the framework recovers by loading the data and state from the checkpoint and relaunching the necessary tasks. The amount of tasks
that need to be relaunched depends on the task dependencies. If the applications have narrow dependencies it may suffice to relaunch tasks for a
subset of the data partitions.
Cached-based fault tolerance provides a more lightweight mechanism to reduce the need for checkpointing. It is important to note that this is

not a full-fledged alternative to the checkpoint-basedmodel and cannot handle node level failures. Once a task level failure occurs, the system first
checks if the necessary intermediate data partitions are available in the cache. If so, the framework will relaunch the tasks without rolling back all
the way to the most recent checkpoint. Developers are given the ability to specify which intermediate results need to be cached according to the
application requirements.
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4.10 StateManagement
State management is an important aspect in distributed systems as it touches on most of the core components of the system. State of the system
encompasses various parameters and details of the system at runtime. State management needs to be addressed at two levels: job level state and
task level state. Job level state consists of information that is required to run the distributed application as a whole. Job level state is particularly
important for fault tolerance and load distribution. Keeping a job level state allows tasks to be migrated within the cluster since the required state
information is accessible to any worker node in the system. If one worker is overloaded, some of its tasks can be easily migrated to a worker that is
underutilized so that the load can be distributed. The same state information allows the framework to recover from a node failure by relaunching
the tasks on a newworker node. Job level statemanagement is achieved via a distributed sharedmemory. Checkpointingmechanisms needs to take
state into consideration when creating checkpoints of the system. Job level state is managed by a separate processes that makes sure the global
state is consistent and correct . Task level state is runtime information that can be kept local to a task. Task level state is saved when checkpoints
are performed and is used during the recovery process. This is especially important for long-running stateful tasks such as streaming tasks. In most
scenarios the loss of information that falls under task level state does not affect the application as a whole and can be recovered.

4.11 API
Over the years, there have been numerous languages and different types of APIs developed for programming data-driven applications. Twister2
supports three different levels of APIs with the objective of handling different programming and performance requirements for the applications.
These three levels are classified as: 1) Communication API, 2) Task/FaaS API, and 3) Distributed Data API. The user can adopt the communication
API to program parallel applications with auxiliary components such as data access API at the lowest level. It will give the maximum possible per-
formance of the system because the user controls both the task execution and data placement, but at the same time it will be themost difficult way
to program. Next the user can create or generate a task graph to create an application. The task graph can be made either statically or dynamically
depending on the application requirements. By using the Task/FaaS API, the user can control data placement among the tasks while the framework
will handle the communication and execution. At the highest level, the user can adopt the Distributed Data API, which will allow the framework to
control every aspect of the application. At this level, programming will be easier for certain types of applications and the performance will be con-
siderably less compared to the same application written in other layers. Fig. 15 provides a summary of the points discussed above and lists types
of applications that aremost suitable to be implemented at each level.
For efficient message transfers, it is necessary to use low level abstractions to communicate in order to reduce the burden of serialization. Using

complex objects at the communication level adds a serialization overhead which can be significant in some applications. When we go up the API
levels, wemust utilize complex objects to represent data and use these abstractions for communication.

FIGURE 15 Twister2 Big Data Toolkit API levels

5 DISCUSSION
With our previous work (4) we have observed that various decisions made at different components of a big data runtime determine the type of
applications that can be executed efficiently. The layered architecture proposed in this work will eliminate the monolithic designs and empower
components to be developed independently and efficiently. The Twister2 design has the following implications: 1) It will allow developers to choose
only the components that they need in order to develop the application. For example, a user may only wantMPI-style communication with a static
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TABLE 3 Requirements of applications

Type of applications Capabilities
Data Task System Communications

Streaming Distributed Data Set Static Graph DataflowCommunications
Data Pipelines Distributed Data Set Static Graph or Dynamic Graph DataflowCommunications
Machine Learning Distributed SharedMemory Dynamic Graph Dataflow Communications / BSP

Communications
FaaS Stateless Dynamic Graph Dataflow, P2P Communication

scheduling and distributed shared memory for their application; 2) Each component will havemultiple implementations, allowing the user to sup-
port different types of applications, e.g., the toolkit can be used to compose a system that can perform streaming computations as well as data
pipelines.
We identify communications, task system, and distributed shared memory as the three main components required by an application. The user

APIswill be available to these components to program an application. Table 3 shows the different capabilities expected from different types of big
data applications described herein. It is important to note that one can build streaming, data pipeline or machine learning algorithms with only the
communication layer. Later, they can add the task systemon top of communication to further enhance the ease of programming, and finally they can
add the data layer to give the framework the highest possible control while reducing the burden on the programmer.
In general, it is safe to assume that machine learning algorithms require complex communications and executions. It is worth noting that there

are a large group of machine learning algorithms that work withminimal parallel communications, and such algorithms are similar to data pipelines
and can be scaled easily. Machine learning algorithms that work with large data sets also use heuristic methods to lower the parallel computation
complexity in order tomake them run in amore pleasingly parallel manner.
Security and fault tolerance are two areas that crosses all the components of the toolkit. In order to be fault tolerant, each component has to be

able to work under node failures. We recognize security as an important aspect of this approach, but reserve a lengthy discussion to a subsequent
work.

6 CONCLUSIONS& FUTUREWORK
We foresee that the share of large-scale applications driven by data will increase rapidly in the future. The HPC community has tended to focus
mostly on heavy computational-bound applications, and with these new developments, there is an opportunity to explore data-driven applications
with HPC features such as high-speed interconnects andmany-core machines. Data-driven computing frameworks are still in the early stages, and
aswe discussed there are four driving application areas (streaming, data pipelines,machine learning, and service)with different processing require-
ments. In this paper, we discussed the convergence of these application areas with a common event-driven model. We also examined the choices
available in the design of frameworks supporting big data with different components. Every choice made by a component has ramifications for
the performance of the applications the system can support. We believe the toolkit approach gives user the required flexibility to strike a balance
between performance and usability and allows the inclusion of proven existing technologies in a unified environment. This will enable a program-
ming environment that is interoperable across application types and system infrastructure including both HPC and clouds, whereas in the latter
case it supports a cloud-native framework (5). The authors are actively working on the implementation of various components of the toolkit and
APIs in order to deliver the promised flexibility across various applications and systems.
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