
On the Matching of Events in Distributed Brokering Systems

Shrideep Pallickara and Geoffrey Fox
Community Grids Laboratory, Indiana University

{spallick, gcf }@indiana.edu

Abstract

The Internet is currently being used to support
increasingly complex interactions. The entities, with
which applications and services need to interact, span a
wide spectrum that includes desktops, PDAs, appliances,
and other networked resources. Clients – which abstract
users, resources and proxies thereto – within these
systems communicate with each other through the
exchange of events, which are essentially messages with
timestamps. In this paper we explore matching, routing
and network utilization issues in the context of our
research prototype NaradaBrokering, which provides
support for centralized, distributed and P2P interactions.

1. Introduction

The Internet is currently being used to support
increasingly complex interactions. The devices, with
which applications and services need to interact, span a
wide spectrum that includes desktops, PDAs, appliances,
and other networked resources. Clients – which abstract
users, resources and proxies thereto – within these
systems communicate with each other through the
exchange of events, which are essentially messages with
timestamps. These events encapsulate information
pertaining to transactions, data interchange, system
conditions and finally the search, discovery and
subsequent sharing of resources. Scaling, availability and
fault tolerance requirements entail that the messaging
infrastructure hosting these clients, and routing their
interactions, be based on a distributed network of
cooperating nodes.

As the scale of the system increases, effective
interactions between clients and services, in these
settings, is dictated not just by the processing power of
the nodes hosting a specific service but also by the
network cycles expended during these interactions.
Events have internal or external (system computed)
destinations associated with them. In the case of search,
discovery and publish/subscribe interactions, the system
has to efficiently calculate destinations from the

corresponding events. This computing of destinations is
referred to as matching and is, in itself, a distributed
process, which operates on the distributed management of
client interests (advertisements and subscriptions).
Furthermore, the distributed nature of the underlying
messaging infrastructure mandates an efficient routing
engine that can compute and traverse efficient paths to
reach target destinations.

We suggest that inefficient approaches to either the
calculation of, or routing to, destinations can result in
unacceptable network degradations and network flooding.
Poor solutions to network utilizations lead to buffer
overflows, queuing delays, network clogging and other
related problems that add up considerably over a period
of time. Although multicasting and bandwidth reservation
protocols such as RSVP [1] and ST-II [2] can help in
better utilizing the network, they require support at the
router level. There needs to be a conceited effort to ensure
the efficient utilization of networks and networked
communal resources.

More importantly, the underlying solution should
incorporate sophisticated matching engines needed to
provide support for increasingly complex and
sophisticated qualifiers, for specifying constraints, that
events should satisfy prior to being considered for
delivery to applications.

In this paper we explore matching, routing and
network utilization issues in the context of our research
system NaradaBrokering [3-11], which provides support
for centralized, distributed and peer-to-peer (P2P)
interactions [12]. NaradaBrokering has been tested in
synchronous and asynchronous applications, including as
a media server for audio-video conferencing. Depending
on the type of interactions routed and the corresponding
matching engines supported, the underlying messaging
infrastructure could be viewed either as a distributed
light-weight relational or XML database.

This paper is organized as follows. In Section 2 we
discuss related work in the area. In section 3 we identify
the core issues relevant to supporting efficient
interactions within the system; sections 4, 5, 6 and 7
elaborate on these core issues of broker topology,
organization of client interests/constraints (profiles),
routing of events and support for multiple matching

mailto:gcf }@indiana.edu

engines respectively. Finally in Section 8 we outline
conclusions and proposed work.

2. Related Work

Different systems address the problem of event
delivery to relevant clients in different ways. In Elvin
[13] network traffic reduction is accomplished through
the use of quench expressions, which prevent clients from
sending notifications for which there are no consumers.
This, however, entails each producer to be aware of all
the consumers and their subscriptions. Ref [14] outlines a
strategy to convert each subscription in Elvin into a
deterministic finite state automaton. This conversion, and
the matching solutions, nevertheless can lead to an
explosion in the number of states. In Sienna [15]
optimization strategies include assembling patterns of
notifications as close as possible to the publishers, while
multicasting notifications as close as possible to the
subscribers. In Gryphon [16] each broker maintains a list
of all subscriptions within the system in a parallel search
tree (PST). The PST is annotated with a trit vector
encoding link routing information. These annotations are
then used at matching time by a server to determine
which of its neighbors should receive that event.
Approaches for exploiting group based multicast for
event delivery is discussed in Ref [17].

The Event Service [18] approach adopted by the OMG
is one of establishing channels and subsequently
registering suppliers and consumers to the event channels.
The approach could entail clients (consumers) to be aware
of a large number of event channels. The Notification
Service [19] addresses limitations pertaining to the lack
of event filtering capability. However it attempts to
preserve all the semantics specified in Event Service
while allowing for interoperability between clients from
the two services. TAO [20] is a real-time event service
that extends the CORBA event service and provides rate-
based event processing, efficient filtering and correlation.

Unlike Elvin and the OMG Event Service,
NaradaBrokering provides decoupled interactions
between the interacting clients. Furthermore, the
organization of subscriptions and calculation of
destinations do not result in explosive search spaces. As
opposed to the Gryphon approach where all nodes store
the complete set of subscriptions at every broker node, in
NaradaBrokering none of the nodes store all the
subscriptions within the system. Also not every broker in
NaradaBrokering is involved in the calculation of
destinations. This greatly reduces the CPU cycles
expended in NaradaBrokering for computing and routing
interactions within the system.

In some commercial JMS [21] implementations,
events that conform to a certain topic are routed to the
interested clients with refinement in subtopics being made

at the receiving client. This approach could thus expend
network-cycles, routing events to clients, where it would
ultimately be discarded. JMS systems tend to be single
server or limited server solutions. NaradaBrokering is
JMS compliant and in Ref [7] we have demonstrated how
we can transparently replace single server JMS systems
with a distributed solution.

In the case of servers that route static content to clients
such as Web pages, software downloads etc., some of
these servers have their content mirrored on servers at
different geographic locations. Clients then access one of
these mirrored sites and retrieve information. This can
lead to problems pertaining to bandwidth utilization and
servicing of requests, if large concentrations of clients
access the wrong mirrored-site. In an approach sometimes
referred to as active-mirroring, websites powered by
EdgeSuite [22] from Akamai, redirect their users to
specialized Akamized URLs. Based on the IP address
associated with the request the client is then directed to
the server farm that is closest to its network point of
origin. As network and server loads change clients could
be redirected to other servers. In an approach similar to
that of Akamai, we are presently incorporating a scheme
where clients are directed to the nearest available brokers
by broker locators available within the system.

The JXTA [23] project at Sun Microsystems is a
research effort to support large-scale P2P infrastructures.
P2P interactions are propagated by a simple forwarding
by peers and specialized routers known as rendezvous
peers. These interactions are attenuated by having TTL
(time-to-live) indicators. Pastry [24, 25] from Microsoft
incorporates a self-stabilizing infrastructure, which
provides an efficient location and routing substrate for
wide-area P2P applications. Each node in Pastry has a
128-bit ID and Pastry routes messages to nodes whose
Node-Id is numerically closest to destination key
contained in the message.

The JXTA approach results in flooding the peer
network, with the range being controlled by the TTL
indicators contained in the interactions. The
NaradaBrokering scheme selectively deploys links for
disseminating interactions. In Ref [6] we have
demonstrated that we can route JXTA interactions more
efficiently than the JXTA core itself.

Finally, none of the systems that we have described
above manage the range of interactions or deploy the
variety of matching engines that are supported within
NaradaBrokering.

3. Efficient Matching and Routing: Breaking
the problem down

The smallest unit of the underlying messaging
infrastructure should be able to intelligently process and

route events, while working with multiple underlying
communication protocols. We refer to this unit as a
broker, where we avoid the use of the term servers to
distinguish it clearly from the application servers that
would be among the sources/sinks to messages generated
within the system. Efficient matching and routing of
events that builds on solutions to the multiple and
sometimes interrelated issues that comprise it. In this
section we proceed to outline the four core issues that
comprise the problem with subsequent sections
discussing each issue in greater detail.

First, efficient organization of brokers is important as
it forms an important part of the matching and routing
solution discussed below. Another competing
requirement is the ability of the broker network to adapt
to failures that might take place within the system.
Inefficient broker organizations can lead to topologies
that are susceptible to network partitions upon node
failures.

Second, the problem of matching events comprises the
related problems of organizing constraints and efficiently
matching events against these constraints to compute
destinations. This organization scheme should of course
exploit the underlying structure of the broker network.

Third, there is the routing of events to their
destinations. This should be done without the need to
resort to flooding the broker network, while being able to
adapt to the ever changing conditions that exist within a
distributed system. Routing decisions, and the routes that
need to be taken, are based on the perceived state of the
network. A routing solution should be able to factor in
network conditions such as failed/clogged/slow links and
nodes while making decisions on routes to be taken to
reach destinations.

Finally, the specified constraints could be arbitrarily
complex, and depending on the application, content and
type of the events (and the interactions they encapsulate)
that are supported there needs to be multiple matching
engines residing within the system.

4. Topology

To address the issues [10] of scaling, load balancing
and failure resiliency, NaradaBrokering is implemented
on a network of cooperating brokers. In NaradaBrokering
we impose a hierarchical structure on the broker network,
where a broker is part of a cluster that is part of a super-
cluster, which in turn is part of a super-super-cluster and
so on. Figure 1 depicts a sub-system comprising of a
super-super-cluster SSC-A with 3 super-clusters SC-1,
SC-2 and SC-3 each of which have clusters that in turn
are comprised of broker nodes. Clusters comprise
strongly connected brokers with multiple links to brokers
in other clusters, ensuring alternate communication routes
during failures. This organization scheme results in

“small world networks” [26,27] where the average
communication pathlengths between brokers increase
logarithmically with geometric increases in network size,
as opposed to exponential increases in uncontrolled
settings. This distributed cluster architecture allows
NaradaBrokering to support large heterogeneous client
configurations that scale to arbitrary size. Within every
unit (cluster, super-cluster and so on), there is at least one
unit-controller, which provides a gateway to nodes in
other units. For example in Figure 1, cluster controller
node 20 provides a gateway to nodes in cluster m.
Creation of broker network maps (BNMs) and the
detection of network partitions are easily achieved in this
topology.

SSC-A
 SC-1

SC-2

SC-3

l
13 14

15

n
20

21

i4 5

6

j
7 8

9

m16 17

18

k10 11
12

h1 2
3

19

1, 10 Super-super-cluster
controller

5, 9, 10, 16 Super-cluster controller
2,4, 6,8, 12,14,18,20 Cluster controller

Broker Node

Service Provider

End Client

Figure 1. An example of a NaradaBrokering
broker network sub-section

4.1. The Broker Network Map (BNM)

A broker needs to be aware of the broker network
layout to optimize routing to destinations. However,
given the potential size of the broker network, it is
impractical for every broker to be aware of the complete
broker network inter-connection scheme. What is
required is an abstract view of the broker network, while
still being able to ensure the calculation of optimal paths
for communication within the system. This information is
encapsulated within the BNM. The information
encapsulated within the BNM provides information
regarding the inter-connections between the brokers in the
cluster that it is a part of, the interconnections between
the clusters within the super-cluster that it belongs to and
so on. The BNM maintained at each broker node is

different, while still providing a consistent view of the
system interconnections.

SSC-A

SC-1

SC-2

SC-3

e

g

c4 5
6

b

f

d

a

SSC-BSC-4

SC-5

SC-6

l

n

i

j

m

k

h

SSC-D

SSC-C

Figure 2. An example broker network

6

SC-2

SSC-B

ba

54

SSC-CSSC-D

SC-3

6 (2)

4

6

5

4

3

2

1

0 0

2

level-0

level-1

level-2

level-3

SSC-A.SC-1.c.6

Figure 3. The Broker Network Map at node 6

Changes to the broker network fabric are propagated
only to those brokers that have their broker network view
altered. BNMs at each node need to be updated in
response to the receipt of information pertaining to the
creation of connections between brokers/units.

Dissemination constraints are imposed on the
propagation of connection information outside a given
unit. For example information regarding connections
between brokers within a cluster should not be
propagated outside the cluster. Connection information is

also modified as it is being propagated through certain
sections of the broker network. Thus, in Figure 2 the
connection between SC-2 and SC-1 in SSC-A, is
disseminated as one between node 5 and SC-2. When
this information is received at 4, it is sent over as a
connection between the cluster c and SC-2. When the
connection between cluster c and SC-2 is sent over the
cluster gateway to cluster b, the information is not
updated. Conforming to the dissemination constraints, the
super cluster connection (SC-1,SC-2) information is
disseminated only within the super-super-cluster SSC-A
and is not sent over the super-super-cluster gateway
available within the cluster a in SC-1 and cluster g in
SC-3.

Figure 3 depicts the BNM at node 6. We augment the
BNM hosted at individual brokers to reflect the cost
associated with traversal over connections, for example
intra-cluster communications are faster than inter-cluster
communications. This cost can be dynamically updated to
reflect changes in link behavior with the passage of time.
The BNM can now be used not only to compute valid
paths but also for computing shortest paths.

5. Organization and Propagation of Profiles

Profiles signify an interest in events conforming to a
certain template. Profiles also include a constraint that
events need to satisfy, before being considered for routing
to a client. This is generally referred to as a subscription.
Constraint complexity can vary from character-string
based topic matching to a sophisticated SQL or XPath
query. Individual profiles can also include information
pertaining to the device type – CPU capability, and
security related information that would sometimes be
needed for the matching process. Every profile has a
unique ID associated with it which plays an important
role in the management – addition, removal and
organization – of profiles.

Profile organizations and propagations are inter-related
issues, which need to exploit the topology, and the
organization of units and controllers within the system.
The organization of profiles needs to be such that it
reduces the number of matching steps that need to be
performed. Propagations need to be sophisticated enough
to ensure that profiles are propagated only to relevant
nodes within the system.

Every profile has an associated destination, which is
updated depending on its propagation within the system.
A profile is propagated to unit controllers, and the
destination associated with the profile during its storage
at the unit controller is that of the sub-unit controller that
propagated it.

The hierarchical propagation of profiles – resulting in
a broker maintaining profiles of all attached clients,
cluster-controllers maintaining profiles of all brokers

within that cluster and so on – ensures that when an event
is routed to a unit, there is at least one final destination
within that unit. The scheme also ensures that a matching
event is routed to every valid destination without
exception. Thus, in Figure 1, super-super-cluster
controller nodes 1 and 10 keep track of all profiles
propagated by all the nodes (1 through 21) in super-
super-cluster SSC-A, while cluster controller node 19 of
cluster n would keep track of profiles propagated by
nodes 19,20, 21 in cluster n. Since a unit controller
operates and communicates only with sub-unit
destinations, all profiles are stored at the controllers as if
they originated at specific sub-units. Thus, for a profile
propagated by a service connected to node 21, the
advertisement is stored at the cluster controller node 20 to
reflect that it came from node 21, while the super-cluster
controller node 16 registers it as having coming from
cluster n, with the super-super-cluster controller nodes 1,
10 registering it as having originated in SC-3.

Another factor that is equally important is the removal
of profiles from propagation trees. This is done
sometimes based on a explicit removal propagation
initiated by a client and also depending on the loss of
connection to a certain client. In either case the issue is an
important one to ensure that network and CPU cycles are
not expended while trying to reach destinations that are
not truly interested in the event in the first place.

Finally, in this scheme, for system wide dissemination
every event needs to arrive at, at least one super-super-
cluster controller, within every super-super-cluster. The
advantage of this scheme is that no node maintains the
complete list of client profiles in the system. This could
result in a super-super-cluster being overloaded during
high volume interactions. This problem can be alleviated
considerably by having multiple super-super-cluster
controllers within any given super-super-cluster.

6. Routing Events to Destinations

Event routing is the process of disseminating events to
relevant clients. This includes matching the content,
computing the destinations and routing the content along
to its relevant destinations by determining the next broker
node that the event must be relayed to. As an event flows
through the system, via unit controllers, the associated
event distribution trace is modified to snapshot the
event’s dissemination within the broker network. These
routing traces indicate – and can be used to verify – an
event’s dissemination within various parts of the broker
network. Routing decisions are made on the basis of this
trace information and the computed destinations.

The matching process at a unit-controller computes
sub-unit destinations, which are valid only within that
unit. Figure 4 shows the destinations associated with an
event in a system comprising of super-super-clusters.

From the stored BNMs at each node, individual unit-
controllers compute the best routes to reach units
contained in the destinations. When an event arrives at a
unit-controller, prior to being sent over the link to another
unit, the sub-unit destinations associated with the event is
invalidated. Thus, broker destinations computed by a
cluster controller are valid only within that cluster and are
cleared prior to routing the event to another cluster.

Computed Destinations

Event Headers and Payload Computed
Destinations

Distribution
Traces

Super
Cluster Clusters Brokers

Figure 4. Event destinations and traces

Before an event is sent over a link to another unit,
unit-controllers analyze the trace information to ensure
that the event is not routed to a unit, where the event has
already been routed. At every node the best hops to reach
the destinations are computed. Nodes and links that have
not been failure suspected are the only entities that can be
part of the shortest path. Thus, at every node the best
decision is taken based on the current state of the network
fabric.

7. The Matching Engine

In this section we discuss the matching process and the
assortment of matching engines residing in
NaradaBrokering. The matching engine is responsible for
computing destinations associated with an event based on
the profiles available at a node. Depending on the type of
applications, standards, events and subscriptions that need
to be supported there would be multiple matching engines
residing within every processing broker node.

For several reasons we limit the number of sub-units
within a unit to 32. By assigning each sub-unit a unique
position in a 32-bit vector, in a system comprising of
super-super-clusters, any node (out of a possible
32x32x32x32=1,048,576 nodes) can be uniquely
represented by 128-bits (4 integers). For example, in
Figure 1, node 19 may be associated with the integer
00…001..00 while node 20 might be associated with
00…010..00. If both nodes should receive an event,
then the destination list is the sum (bitwise OR) of these
two nodes 00…011…00. This provides a rather compact
representation for distribution traces and computed
destinations associated with various interactions.

The implications of the representation, and the upper-
bound on sub-units, are even more powerful in the
context of computing destinations efficiently. Individual
profiles have destinations associated with them. A unit-
controller maintains profiles with sub-unit destinations.
The number of profiles that are maintained at a controller
progressively increases depending on whether the
controller in question is a broker, cluster-controller,
super-cluster controller and so on. A unit-controller
computes sub-unit destinations, and the destinations that
are associated with the stored profiles are also sub-unit
destinations.

Once a profile is successfully matched to an event, the
destination associated with the profile is added to the
computed destination. When other profiles are being
matched against the event, a check is made to see if the
destination associated with the profile is already in the list
of computed destinations (a bit-wise AND operation
yields a non-zero value if it is). If it is, the matching
process is suspended for this profile, since it would yield
a destination that already exists in the computed
destinations. If the destination contained in the profile is a
different one, the profile is matched with the event. If
there is a match the associated destination is added (a
bitwise OR operation) to the computed destination list.
This scheme substantially reduces the number of
matching operations that need to be performed.

A similar strategy is employed by brokers matching
events to attached clients. Of course in this case there is
no limit on the number of clients that can be attached to a
broker and the number of matching operations that need
to be performed is not reduced as substantially as in the
controller cases.

7.1 The Assortment of matching engines

7.1.1. String based matching. This matching is based
upon the generalized String topic-based publish/subscribe
paradigm. Events issued provide information regarding
the topic that they were issued to. Client profiles include a
subscription to a topic. If the topic contained in the event
is the same as the topic contained in the profile, the event
is said to match the profile. This is a powerful model and
several sophisticated applications can be built using this
generalized publish/subscribe model.

Some systems incorporate an approach to topic
matching where a subscription to a topic, say Sports,
translates into subscriptions to all sub-topics, say
Sports/NBA, Sports/Soccer/UEFA. This approach
is not supported in NaradaBrokering due to constraints
imposed by the message-based security scheme [28].

7.1.2. String based matched coupled with SQL-like
queries on properties. Events (or messages) may also
include properties, which are used to further describe the

content contained in the event’s payload. Clients can thus
also incorporate a second level of refinement for the
events they are interested in. This two layer refinement
scheme has the advantage that the first constraint, which
is identical to the string-based topic matching scenario
that we outlined earlier, substantially reduces the number
of events on which the second refinement needs to be
applied. This is important since the second level of
refinement is far more complex and CPU-intensive than
the first one.

The JMS specification incorporates this strategy, with
the refinement syntax being based on a subset of the
SQL92 conditional expression syntax. If the value of a
refinement is an empty string, it indicates that there no
refinement is specified and the case reduces to the topic
based publish/subscribe outlined above.

7.1.3. Topics that are based on tag=value pairs. This
matching engine incorporated into NaradaBrokering, is
based on the equality-based generalized matching
algorithm presented in [29]. Topics in this case comprise
of equality constraints imposed on a set of successive
attributes as a sequence of “,” separated <tag, value>
pairs. The constraint in this case is the specification of a
value that a particular attribute (tag) can take. Also
allowed is the weakest constraint, denoted *, which
encompasses all values. In this case subscribing to a topic
Make=Ford,Model=*,Color=Red matches events with
topic Make=Ford,Model=Taurus,Color=Red and
Make=Ford,Model=Mustang,Color=Red. Based on
the number of <tag,values> specified and the tags with
specified * constraints, the complexity of the matching
process increases.

7.1.4. Integer based matching. The Integer based topic
matching is used in NaradaBrokering primarily by the
audio/video conferencing framework to enable real time
communications [9].

7.1.5. XML based matching with XPath queries.
NaradaBrokering also incorporates support for XPath
based specification of constraints on XML events. XPath
[30] is a query language that searches for, locates, and
identifies parts of an XML document. In this case there is
no hint such as “topic” contained in the XML event and
the query needs to be matched with the entire XML event.

7.2 Profiling the Matching Engines

We now provide some results pertaining to the
matching engines that were outlined in the earlier section.
These results (Figures 5 through 9) are for stand-alone
processes, where we computed the matching times as a
function of the number of subscriptions maintained. In
each case, an event is matched to retrieve every matching

subscription. For every matching engine, the number of
subscriptions is varied from 10,000 to 100,000. The
results were measured on a machine (1GHz,256MB
RAM) running the process in a Java-1.4 Sun VM with a
high-resolution timer for computing delays.

Figure 5. Plots for Integer Matching

Figure 6. Plots for String based matching

Figure 7. Plots for <tag,value> based matching

& XPath based matching

Figure 9. Matching XPath profiles

Figure 8. Plots for SQL

<?xml version="1.0" encoding="ISO-8859-1"?>
<menu>
 <softdrinks>
 <brand>Minute Maid</brand>
 <fruit>Apple</fruit>
 <source>Brazil</source>
 <company>Coca Cola</company>
 <price>2.90</price>
 <year>2003</year>
 </softdrinks>
</menu>

XPath Query type: /menu/softdrinks[price>1.80]

Figure 10. The XML event and XPath query type

The r U-cost
ssociated with the matching process. As can be seen the

average delays for matching increases progressively
(Integer to String to Tag-Value to SQL to XPath in that

icher the constraints, the greater the CP
a

100

1000

10000

1 2 3 4 5 6 7 8 9 10

D
el

ay
 (

M
ill

is
ec

on
ds

)

Timing results for matching an XML-event to
 stored Profiles with & without optimizations

 Without Optimizations
 With Optimizations

0

10

20

30

40

50

60

70

Number of stored profiles (in thousands) being matche

20 30 40 50 60 70 80 90 100

D
el

ay
 (

S
ec

on
ds

)

Number of subscriptions (in thousands) being matched

Average delay to match event to
 Xpath and SQL-based subscriptions

 SQL Delay
 XPath Delay

0

5

10

15

20

25

20 30 40 50 60 70 80 90 100

D
el

ay
 (

M
ic

ro
se

co
nd

s)

Number of subscriptions (in thousands) being matched

Average delay to match event with <tag,value> Matching
 for subscriptions with multiple <tag,value> pairs

 Pairs=5
 Pairs=10
 Pairs=25

0

2

4

6

8

10

20 30 40 50 60 70 80 90 100

D
el

ay
 (

M
ic

ro
se

co
nd

s)

Number of subscriptions (in thousands) being matched

 Average delay to match event to subscriptions with
 Integer-based Matching

 Delay

0

2

4

6

8

10

20 30 40 50 60 70 80 90 100

D
el

ay
 (

M
ic

ro
se

co
nd

s)

Number of subscriptions (in thousands) being matched

Average delay to match event with String-based Matching
for subscriptions with different sizes

String size=16
String size=24
String size=32

order) as the complexity of the matching increases. For
String based matching, as depicted in Figure 6, the
average delay for matching subscriptions generally
increases as the size of the topic String increases. The
increase in delays for matching as the topic String size
doubled from 16 to 32 was in the range of 1 microsecond.
Figure 7 depicts the costs associated with <tag,value>
based matching. As can be seen the costs associated with
this style of matching is higher than the String based
style. We also noted that the costs did not vary as the
number of <tag,value> pairs associated with individual
subscriptions increased from 5 to 25. The results in
Figures x-y demonstrate that it is feasible to h e real
t
constraints.

ould essentially be
ither XPath or SQL-like queries. These events would

e matching ones being routed back to the initiating
cli

av
ime interactions that are based on the corresponding

Figure 8 contrasts the costs involved in matching JMS
events to stored SQL-92 based selectors on the properties
contained within the JMS message and XML events to
stored XPath conforming constraints. Of course these
costs can vary significantly depending on the type of the
query. For our experiments we used XPath and SQL
queries, which we felt were comparable. The cost of a
single matching operation involving an XML event and
an accompanying XPath query is around 3 milliseconds.

Next, we proceeded to study the effects of the
destination optimization strategies, which we discussed in
section 7,in the context of XPath profiles. We first
perform the matching (un-optimized) on a set of XPath
profiles. The XPath profiles in this case are then evenly
distributed over 32 different destinations. Figure 9
contrasts the matching times in the profile matching
with/without optimizations for varying number of
profiles. With optimizations the matching times varied
between 120-170 milliseconds. The results demonstrate
that in the scenario outlined earlier, the optimizations
improve the performance of matching profiles
substantially. In general, in most practical situations it is
our conjecture that the performance would be similarly
enhanced. Figure 10 outlines the XML type for the stored
events, and the type of XPath query used in our
experiments. Though the results depicted here are for
XPath profiles we expect optimizations to have a similar
effect on SQL based profiles too.

7.3 Implications of query based matching engines

The Query-based engines are suitable for discovery
based services. While providing support for profiles with
SQL-like query based refinements and XPath query based
profiles, the system can be viewed as a lightweight,
distributed relational and XML database respectively.
This is the case, since as far as the end-user is concerned,
the matched event might as well have been stored in a
database (relational or XML, as the case might be) and

the results returned (matching events) would not have
been different.

Clients in the system can advertise their services in an
XML schema or a schema that can be queried by an SQL
query. These advertisements would be stored in the same
way that the profiles are stored within the system. Events
propagated by interested clients w
e
then be matched against the stored advertisements with
th

ent. The query events can specify the realms within
which the query’s propagation might take place, thus
allowing individual entities to control how localized their
services can be.

0

2000

4000

6000

8000

10000

12000

1 2 3 4 5 6 7 8 9 10

D
el

ay
 (

M
illi

se
co

nd
s)

Number of stored XML-events (in thousands)
being matched

Timing results for matching an XPath query
 to stored XML events

Matching Time

Figure 11. Matching an XPath query to stored

XML events
 Figure 11 depicts the matching times for a query
against a set of stored XML events/advertisements. For
matching XML advertisements, the performance would
vary if it is constrained by the number of matched
advertisements or stored XML events that need to be
included in the query response. The stored XML events
and the issued XPath query are of the type depicted in
Figure 10. For most discovery related operations, similar
to those initiated in P2P systems, these numbers indicate
adequate performance.

8. Conclusions and Future work

The matching problem is a sufficiently difficult and
important problem, which needs to be addressed within
th e
ap
entities. The problem evolve as entities

e messaging infrastructure that supports th
plications, and accompanying interactions, between

 will continue to
continue to interact in increasingly complex ways. In
this paper we discussed issues, and strategies, to support
efficient matching of events. Based on the kind of
applications that the system is trying to support,
optimized engines that employ optimistic delivery

techniques (based on routing behavior of past events)
could also be deployed.

P2P search mechanisms employ strategies different
from those discussed above. Combining P2P search
mechanisms initiated by peers on the edge of the network

ith the schemes outlined in earlier sections, provides
nagement that

ould be of considerable interest. Managing interactions

w
interesting approaches to resource ma
w
between Web/Grid services generated dynamically when
complex tasks are initiated is another area of research.
Finally, incorporating some of the security related
information into the profiles themselves would allow us
to be even more selective of the events being routed to
entities.

9. References

[1] Zhang, L. et al. “ReSource ReserVation Protocol (RSVP) –

Functional Specification”, Internet Draft, March 1994.
[2] Topolcic, C., “Experimental Internet Stream Protocol:

Version 2 (ST-II)”, Internet RFC 1190, October 1990.
[3] The NaradaBrokering System

http://www.naradabrokering.org
[4] Geoffrey Fox and Shrideep Pallickara. NaradaBrokering:

An Event Based Infrastructure for Building Scaleable
Durable Peer-to-Peer Grids. Chapter 22 of "Grid
Computing: Making the Global Infrastructure a Reality".
Published by John Wiley, West Sussex, England. ISBN 0-
470-85319-0. 2003.

[5] Shrideep Pallickara and Geoffrey Fox. NaradaBrokering: A
Middleware Framework and Architecture for Enabling
Durable Peer-to-Peer Grids. Proceedings of
ACM/IFIP/USENIX International Middleware Conference
Middleware-2003.

ara and Xi Rao. A Scaleable
cture for Peer to Peer Grids. Proceedings of

ACM Java Grande ISCOPE Conference 2002. Seattle,

[7]

[9]

[11]

[13] . Elvin has left the building: A

ptember 1997.

[15] , David S. Rosenblum, and Alexander L.

m on Principles of Distributed

[16]

erence on Distributed

[17]
-Subscribe Systems. Middleware 2000: 185-

[18]

[6] Geoffrey Fox, Shrideep Pallick
Event Infrastru

Washington. November 2002.
 Geoffrey Fox and Shrideep Pallickara. JMS Compliance in

the NaradaBrokering System. Proceedings of the
International Conference on Internet Computing (IC-
02). June 2002. pp 391-402.

[8] Grid Services for Earthquake Science. Fox et al.
Concurrency & Computation: Practice & Experience.14(6-
7):371-393.
 Bulut et al. Integration of NaradaBrokering and
Audio/Video Conferencing as a Web Service. Proceedings
of the IASTED International Conference on
Communications, Internet, and Information Technology,
November, 2002.

[10] Geoffrey Fox and Shrideep Pallickara. An Approach to
High Performance Distributed Web Brokering. ACM
Ubiquity 2:38. Nov 2001.

 Geoffrey Fox and Shrideep Pallickara. An Event Service
to Support Grid Computational Environments. Journal of
Concurrency and Computation: Practice & Experience.
Volume 14(13-15) pp 1097-1129.

[12] Peer-to-Peer: Harnessing the Benefits of a Disruptive
Technology. Edited by Andy Oram. O’Rielly Press, CA.
March 2001.

 Bill Segall and David Arnold
publish/subscribe noti.cation service with quenching. In
Proceedings AUUG97, pages 243–255, Canberra,
Australia, Se

[14] Bill Segall, David Arnold, Julian Boot, Michael
Henderson, and Ted Phelps. Content based routing with
elvin4. In Proceedings AUUG2K, Canberra, Australia,
June 2000.

 Antonio Carzaniga
Wolf. Achieving scalability and expressiveness in an
internet-scale event notification service. In Proceedings of
the 19th ACM Symposiu
Computing, pages 219–227, Portland OR, USA, 2000.

 G. Banavar et al. An Efficient Multicast Protocol for
Content-Based Publish-Subscribe Systems. In Proceedings
of the IEEE International Conf
Computing Systems, Austin, Texas, May 1999.

 Lukasz Opyrchal et. al. Exploiting IP Multicast in Content-
Based Publish
207

 The Object Management Group (OMG). OMG’s CORBA
Event Service. Available from http://www.omg.org/

 The Object Management Gr[19] oup (OMG). OMG’s CORBA
Notification Service. Available from http://www.omg.org/

 T.H. Harrison, D.L. Levine and D.C. Schmidt. The design
and performance of a real-time CORBA object event
service. Proc

[20]

eedings of the OOPSLA'97. Atlanta, GA.
[21] Mark Happner, Rich Burridge and Rahul Sharma. Java

Message Service Specification. Sun Microsystems. 2000.
http://java.sun.com/products/jms.

 Akamai Corporation. EdgeSuite: Content Delivery
Services . Technical report, U

[22]
RL:

[23]
http://www.akamai.com/.

 Sun Microsystems. The JXTA Project and Peer-to-Peer
Technology http://www.jxta.org

 Antony Rowstron and Peter Druschel. Pastry[24] : Scalable,

[25] rel: A decentralized peer-to-peer web cache. ACM

 of

[27]

[28]

ributed Computing, May

[30]
Available from

decentralized object location and routing for large-scale
peer-to-peer systems. Proceedings of Middleware 2001.

 Squir
PODC 2002.
D.J. Watts and S.H. Strogatz. Collective Dynamics[26]
Small-World Networks. Nature. 393:440. 1998.

 R. Albert, H. Jeong and A. Barabasi. Nature 401:130.
Diameter of the World Wide Web. 1999.

 Pallickara et al. A Security Framework for Distributed
Brokering Systems. (Under Review).

[29] Marcos Aguilera et al. Matching events in a content-based
subscription system. In Proceedings of the 18th ACM
Symposium on Principles of Dist
1999.

 XML Path Language (XPath). Version 1.0. W3C
Recommendation.
http://www.w3.org/TR/xpath .

http://www.jxta.org/

	Abstract
	1. Introduction
	2. Related Work
	3. Efficient Matching and Routing: Breaking the problem down
	4. Topology
	4.1. The Broker Network Map (BNM)

	5. Organization and Propagation of Profiles
	6. Routing Events to Destinations
	7. The Matching Engine
	7.1 The Assortment of matching engines
	7.2 Profiling the Matching Engines
	7.3 Implications of query based matching engines

	8. Conclusions and Future work
	9. References

