
Integrating Task Parallelism in Data Parallel Platforms for
NOWs

Binu K J, D Janaki Ram

Distributed and Object Systems Group

Department of Computer Science and Engineering

Indian Institute of Technology Madras, Chennai - 600 036

India

Email: binu@lotus.iitm.ernet.in, djram@lotus.iitm.ernet.in

Abstract

A number of high level parallel programming platforms for Network of Work-

stations (NOWs) have been developed in the recent times. Most of these platforms

target to exploit data parallelism in applications. They do not allow expressibility

of applications as a collection of tasks along with their precedence relationships.

As a result, the control or task parallelism in an application cannot be expressed

or exploited. The current work aims at integrating the notion of task parallelism

and precedence relationships among constituting tasks to such high level data par-

allel platforms for NOWs. Our model of integration provides for arbitrary nesting

of data and task parallel modules. Also, the precedence relationships are clearly

re
ected from the program structure. The model relieves the programmer from

handling non-determinism with respect to the order of completion of tasks. De-

sign of the runtime support is also discussed. The model is general enough to

be integrated to a wide range of data parallel platforms. A speci�c case of in-

tegrating the model into Anonymous Remote Computing(ARC), a data parallel

programming platform for loaded heterogeneous workstations is presented. The

performance analysis shows the signi�cance of exploiting both task and data par-

allelism present in a problem. Also, we show that by exploiting both task and data

parallelism, the optimum number of nodes for parallel execution of a problem can

be increased.

Keywords: Parallel Programming; Data Parallelism; Task Parallelism; Network of

Workstations; Loosely Coupled Distributed Systems; Distributed Problem Solving.

1

1 Introduction and Motivation

Data Parallelism refers to simultaneous execution of same instruction stream on di�er-

ent data elements. Several programming platforms target to exploit data parallelism

[1][2]. Control parallelism refers to the simultaneous execution of di�erent instruction

streams[2]. This is also referred to as task parallelism or functional parallelism[2]. Some

of the tasks that constitute the problem may have to honor precedence relationships

amongst themselves. Task parallelism with precedence constraints can be expressed as a

task graph where nodes represent tasks and directed edges represent their precedences.

It is the parallel execution of distinct computational phases that exploit a problem's

task parallelism[3]. Task parallelism is important for various reasons. Some of these are

discussed below.

� Multidisciplinary applications: There is an increased interest in parallel multi-

disciplinary applications where di�erent modules represent di�erent scienti�c dis-

ciplines. These modules may be implemented for parallel computation[4]. The

airshed model[5] is an example. It is a grand challenge application which charac-

terizes the formation of air pollution as the interaction between wind and reactions

among various chemical species.

� Complex simulations: Most of the complex simulations developed by scientists

and engineers have potential task and data parallelism[6]. A data parallel plat-

form would not be able to exploit the potential task parallelism inherent in such

problems.

� Software engineering: Independent of issues relating to parallel computing, treat-

ing separate programs as independent tasks may achieve bene�ts of modularity[7].

� Real time requirements: Real-time applications are characterized by their strict

latency time and throughput requirements. Task parallelism lets the program-

mer explicitly partition resources among the application modules to meet such

requirements[4].

� Performance: Task parallelism allows the programmer to enhance locality and

hence performance by executing di�erent components of a problem concurrently

on disjoint sets of nodes. Also it allows the programmer to specify computation

schedules that could not be easily discovered by a compiler[7].

2

� Problem characteristics: Many problems can bene�t from a mixed approach. For

instance, a task parallel coordination layer can integrate multiple data parallel

computations. Some problems admit both data and task parallel solutions, with

the better solution depending on machine characteristics[7].

Very often, task and data parallelism are complementary rather than competing

programming models. Many problems exhibit a certain amount of both data parallelism

and task parallelism. It is desirable for a parallel program to exploit both data and task

parallelism inherent in a problem. Hence, a parallel programming environment should

provide adequate support for both data and task parallelism[8]. The current work aims

at integrating task parallelism into data parallel platforms for network of workstations.

2 A model for integrating task parallelism into data

parallel programming platforms

2.1 Expectations from an integrated platform

The expectations from a high level parallel programming platform stem from the nature

of applications which could utilize the platform. The requirements come from the desired

expressibility of the application, possible transparency in programming, exploitation of

parallelism, achievable performance optimizations for the application etc. These are

explained below.

� Expressibility: In order to exploit parallelism in an application, the program must

express potential parallel execution units. The precedence relationships among

them also must be expressed in the program. An elegant expressibility scheme

should re
ect the task parallel units, data parallel units and precedence depen-

dence among the tasks in the program. This would ease programming, improve

readability and enhance maintainability of the code. However, the expressibility

that can be provided is in
uenced by the nature and organization of the underlying

runtime support and the native language to which it is converted.

� Transparency: It is desirable to relieve the programmer from details relating to

underlying network programming. This results in the programmer concentrating

on his application domain itself. With network programming details coded in the

3

application, a major portion of the program will be unrelated to the application.

Consequently, such programs su�er from readability and hence maintainability.

� Performance: System level optimizations by the parallel programming platform

can improve performance of applications. In addition, the system can achieve

load balancing for the application, further enhancing performance. The run time

scheduling decisions by the system, both the time of scheduling and node to be

scheduled are the other factors that can improve performance.

Other desirable properties of the system include fault resilience, fault tolerance, ac-

counting for heterogeneity in machine architecture and operating system and portability

of application.

2.2 Programming model

The model aims at a parallel programming platform that permits expressibility of task

and data parallelism so that both could be exploited. In view of a large number of

existing data parallel programming platforms for NOWs, it would be useful to formulate

the problem as integrating task parallelism into existing data parallel platforms.

Two issues have been considered while integrating task parallelism into data parallel

platforms. The �rst issue relates to expressibility of task parallelism in existing data

parallel platforms. The data parallel model of computation of existing platforms would

be di�erent. Consequently, the program structure favored by these platforms would also

be di�erent. Hence, at the programming level, the model restricts itself to expressing

tasks and their precedence relationships. Our approach ensures a seamless integration

of task parallelism into existing data parallel platforms.

The model permits a block structured speci�cation of the parallel program with

arbitrary nesting of task and data parallel modules. This is one of the most important

quality of an integrated model[8]. A block could be a high level characterization of a

data parallel module in accordance with the principles of the underlying data parallel

platform. This expressibility re
ects the task parallel blocks and precedence relationships

in the task graph.

The second issue pertains to data parallel subdivision of tasks. The underlying

data parallel model may subdivide a data parallel task into subtasks. These subtasks

could be migrated to di�erent nodes over the network. The completion of a task could

4

be a signi�cant event in the proposed integrated model since tasks have precedence

relationships.

In the model, the system takes the responsibility to intimate the user process when an

event of its interest occurs. An events of interest signify completion of one or more tasks

which meet the precedence requirements for another task. Hence, the model takes care

of the probability factor in the order of completion of tasks that constitute a program.

The model provides templates by which a user program can register the events of its

interest with the system.

Blocks of code are demarcated by the constructs viz. Task begin and Task end.

Another construct, viz. OnFinish is provided to specify the precedence requirements of

a task. The syntax and semantics of these constructs are described below.

Task_begin(char *TaskName) OnFinish(char *WaitforTask, {AND,OR} ...)

This marks the beginning of a block. A block signifies a task. The name

of the task it signifies is furnished along with "Task_begin". If the

task has precedence relationships to be met, the "Task_begin" is followed

by the construct "OnFinish" with the names of tasks it has to wait for

as its arguments. If "OnFinish" is not furnished, it will be presumed

that there are no preconditions to the task. "OnFinish" can take a

variable length list of arguments. The individual tasks which are

arguments to OnFinish could have "AND" or "OR" relationship between them.

"AND" and "OR" have the same precedence. Their associativity is defined

as left to right. Notation adopted for "AND" and "OR" are "&" and "|"

respectively.

Task_end(char *TaskName)

This marks the end of a block. The name of the task it signifies is

furnished along with "Task_end".

2.3 Program Structure and Translation of a task graph

Figure 1 presents a sample task graph to illustrate the expressibility provided by the

model. The corresponding block structured code is given in Pseudo Code 1. It illustrates

5

the translation of a given task graph into the program structure favored by the model.

Task1 Task2

Task3 Task4 Task5

Task6

Figure 1: A sample task graph with precedence relationships

The corresponding Pseudo Code is given below.

Pseudo Code 1 : The block structuring corresponding to the task graph in

Figure 1.

Task_begin(Task1)

...

Task_begin(Task3) OnFinish(Task1)

...

Task_end(Task3)

Task_end(Task1)

Task_begin(Task2)

...

Task_begin(Task4) OnFinish(Task1 & Task2)

6

...

Task_end(Task4)

Task_begin(Task5) OnFinish(Task2)

...

Task_begin(Task6) OnFinish(Task3 & Task4 & Task5)

...

Task_end(Task6)

Task_end(Task5)

Task_end(Task2)

The program in Pseudo Code 1 shows the expressibility of a task graph in the model.

The two outer blocks, task1 and task2 signify the tasks which could be executed task

parallely at the beginning of the run itself. They have no precedence relationship to be

met. Hence, their Task begin constructs are not followed by OnFinish directives.

A task which has precedence relationship with another task is written inside its

predecessor task's block. Also, the Task begin construct of such a task would be followed

by the construct OnFinish which speci�es the preconditions. This could be observed

from the speci�cation of task3. task3 is placed inside the block of of its predecessor task

viz. task1. Also, it could be noted that the OnFinish construct corresponding to the

block of task3 declares its precondition.

When the precondition of a task comprise of completion of more than one task, it

can be placed inside one of those blocks which represents a predecessor task. However,

its OnFinish speci�cation should list the names of all its immediate predecessors. This

could be observed from the speci�cation of task4 and task6.

2.4 Separation of System's and Programmer's concern

Our model attempts to make a clear separation between programmer's concern and

system's concern. At the programmer's level, expressibility is the main concern, whereas

at the system's level issues of non-determinism and performance are the major concerns.

Arguments from the expressibility point of view favor a control structure that best

7

re
ects the precedence relationships in the code. This in turn could argue for structuring

of programs such that the pieces of code that are executed at the completion of its

predecessor task appear as a program segment inside the program segment of (one of) its

predecessor task itself. Such a program structure suitably describes the task graph and

contributes to the elegance of the code. However, it does not support non-determinism in

the order of completion of tasks according to the
ow of control permitted by traditional

languages.

A
at control structure like switch-case could be utilized to support non-determinism

in the order of completion of tasks. However, it would lead to a poor program structuring.

Hence, to alley the di�erences between these demands, the program translator allows

a program expressibility scheme which satis�es the expectations from the expressibility

point of view. This in turn is parsed and translated to a control structure of the native

language that well answers the concerns of non determinism at the system's level.

The program translation provided with the current model permits a control structure

similar to the block structured code that programmers are familiar with. At the same

time, it re
ects the task graph and precedence relationships of the application.

3 Integration of the model into ARC

3.1 ARC model of computation

In Anonymous Remote Computing(ARC) Paradigm[9], a parallel program for NOW is

written as a collection of several loosely coupled blocks called Remote Instruction Blocks

(RIB) within a single program entity. An RIB is a code fragment that can be migrated

to a convenient anonymous remote node at run time for execution. RIBs do not involve

any mechanism of process creation or inter-task communication at the programming

language level. The nodes at which RIBs are to be executed remains anonymous to

the program. The ARC runtime system decides the nodes for RIB execution. At a

given time, multiple programs could be generating RIBs and multiple anonymous remote

participants could be joining or leaving the ARC system. ARC addresses heterogeneity

in architecture and operating system, fault tolerance, load balancing with other load

coexisting and resilience to changing availability of nodes. However, ARC targets data

parallel applications. The task parallelism along with their precedence relationships

cannot be expressed in ARC.

8

In order to achieve load balancing, the ARC model provides a system service which

can be availed by the user process to get the current availability and load of machines.

The user process can use this information to migrate the RIBs to least loaded machines.

For data parallel modules, the problem can be divided into appropriate grain sizes

depending on the load of the machines. Subsequently, each grain of computation can be

migrated to corresponding machines. The ARC model provides two function calls, one

to get the status of a submitted task and the other to collect the results. The syntax

and semantics of the calls supported by ARC are given below.

LFmessage get_load_factor(int numberOfMachinesNeeded)

This call is used to obtain information about the machines available for

parallel computation and their loads. The argument to this call is the

number of machines required. The return value is a structure which gives

the number of machines actually available, their load information, and

machine indices which are used by the underlying system to identify the

machine.

ARC_function_call(char *funct_name, int timeout, int retries, char *

arg_data, int arg_size, int result_size, int machine_index, int tag)

This call is used to submit a task. The first argument specifies the

function that specifies the task. The second argument is the timeout

period. The third argument is the number of retries that should be made.

The fourth argument is the raw data that represents the arguments to the

task. The fifth argument is the size of the result. The next argument is

the index of the machine, obtained from "get_load_factor" call. The last

argument is the tag to identify the particular task submitted. The value

of tag is returned by the call.

char *obtain_results(int tag);

This call is to collect results of a task. The only argument is the

unique id of the task. The call blocks till results are available.

int peek_results(int tag);

9

This is a non blocking call for a program to check if the results are

available. The only argument is a tag for the piece of computation of

which result is requested. Returns 1 if the results are available.

Else it returns -1. When the results are available, it can be collected

by obtain_results call.

3.2 Outline of ARC runtime support

The runtime support of ARC[10] consists of a local co-ordinator (lc) daemon running

on each machine participating in parallel computation and a system co-ordinator (sc)

daemon on a designated machine.

The lc co-ordinates the user processes initiated on the machine on which it runs.

A process can get itself registered with the lc by invoking the call viz. initialize ARC.

Complementing the call is close ARC to de-registers a user process from lc. The syntax

and semantics of the calls are given below.

void initialize_ARC(void);

It takes no arguments and returns no values. It registers the user process

with the runtime system. In response to this call, the "lc" allots an

exclusive communication channel between the "lc" and the user process for

subsequent communication.

void close_ARC(void);

It takes no arguments and returns no values. It de-registers the user

process from the runtime system. The system updates its tables accordingly.

The sc co-ordinates the lcs in the pool and hence the machines participating in the

pool. sc keeps track of individual lcs and facilitates communication between them. Also,

the sc provides information regarding availability and load on machines.

The lcs and sc communicate by prede�ned messages (through a dedicated channel).

Similarly, communication between a user process and lc is also by prede�ned messages.

Typically, a message sequence is initiated by a user process by sending a message to its

10

lc. The lc either replies to the message or generates a message to the sc. The sc gathers

the relevant data and returns to the lc. Subsequently, the lc replies to the user process

which initiated the message sequence.

3.3 The Integrated Platform

The integration of task parallelism into the ARC framework includes providing for addi-

tional function calls and modi�cations to the existing runtime support. These additional

calls include calls to initialize and close the system, a call to register a task as a collection

of subtasks and a call to register events of interest with the system,

A user process registers with the system by invoking the call viz. TaskInit(). Com-

plementing the call is TaskClose() which de-registers a user process from the system.

The ARC model permits division of a task at run-time depending on the availability

and load on the machines. This permits the decision of number of subtasks for a task

to be deferred till run-time. The function call viz. task() facilitates registering a task as

a collection of subtasks. The function can be invoked at run-time after the division of

task. The call permits a variable length argument list to accommodate varying number

of subtasks.

The user process registers the events of interest with the system using the call viz.

RegisterEvent(). The call is inserted by the translator during program translation.

The syntax and semantics of the calls are given below.

int task(char *TaskName, int SubTaskId, ...)

The call registers a task as a collection of its subtasks. The first

argument is the name of the task. The second argument is a subtask id.

If the task is not subdivided, the task_no itself is furnished here.

If the task is subdivided, there would be more arguments each of which

representing a subtask. The number of arguments depends on the the

number of subtasks that constitute the task. The return value is either

SUCCESS or ERRNO corresponding to the error.

int RegisterEvent(int EventId, char* TaskNames, ...)

11

The call registers an event of interest with the system. The first argument

is the event id. Following it is a variable length argument list of task

names constituting the event. The return value is either SUCCESS or ERRNO

corresponding to the error.

In addition to the functionalities related to data parallelism, the run-time system

handles mapping tasks to their subtasks, storing the events of interest for a user process

and keeping track of the execution status of tasks. Message protocols are de�ned to

access and modify these tables. The integrated platform uses these information to

intimate a user process, when an event of it's interest occurs. The intimation to the user

process is by a prede�ned message.

3.4 A sample block in the integrated platform

The program structure of the integrated platform was shown in Pseudo Code 1. This

section presents a block in the program. As mentioned earlier, the code inside a block

would be written using ARC calls given in section 3.1. A typical block in a program is

given below (Pseudo Code 2).

Pseudo Code 2: A typical block in the integrated platform.

Task_begin(TaskN) OnFinish(TaskM)

// Collect the results of an earlier task for subsequent processing.

// The earlier task was data parallelized into two parts with

// TaskMTag1 and TaskMTag2 representing subtasks.

ObtainResults(TaskMTag1);

ObtainResults(TaskMTag2);

// GetLoadFactor returns a structure which gives details of the

// available machines, their loads, processing powers etc.

// The only argument specifies the maximum number of machines

// sought for.

12

MachineAvailability = GetLoadFactor(3);

if (MachineAvailability.Count == 3)

{

// Data parallelize into 3 with the division based on the

// load and processing power of three machines returned.

ARC_function_call(TaskN, ..., TaskNTag1);

ARC_function_call(TaskN, ..., TaskNTag2);

ARC_function_call(TaskN, ..., TaskNTag3);

task(TaskN, TaskNTag1, TaskNTag2, TaskNTag3);

}

if (MachineAvailability.Count == 2)

{

// Data parallelize into 2 with the division based on the

// load and processing power of three machines returned

ARC_function_call(TaskN, ..., TaskNTag1);

ARC_function_call(TaskN, ..., TaskNTag2);

task(TaskN, TaskNTag1, TaskNTag2);

}

if (MachineAvailability.Count == 1)

{

// Cannot be data parallelized due to non availability

// of nodes. Hence run as a sequential program.

ARC_function_call(TaskN, ..., TaskNTag1);

task(TaskN, TaskNTag1);

}

Task_end(TaskN)

The block is demarcated by Task begin and Task end. The OnFinish directive speci-

�es the completion of TaskM as the precondition of TaskN. ObtainResults() call is used

to obtain results of an earlier task.

13

It could be seen from the code that the number of data parallel subdivision of TaskN

is decided at the runtime. Hence, the task() call to register the task as a collection

of subtasks has to be invoked accordingly. The code also shows how the task() call is

utilized to register a task as a collection of subtasks at the runtime.

4 Design and Implementation

4.1 Program Translator

The program translator translates the proposed task parallel model into the appropriate

execution model. This involves detection of tasks having precedence constraints and

generation of appropriate code to handle their execution at run-time. The translator

also generates the network related code.

In the �rst pass, the translator identi�es tasks and their precedence constraints.

Tasks without any precedence constraints are placed at the beginning of the code. For

the tasks having precedence constraints, calls to register their constraints as events of

interest are generated. When such an event occurs, it triggers the execution of the task

waiting for the pre-condition. Tasks having the same set of pre-conditions are grouped

under the same event of interest.

The translator constructs code for detecting and handling events of interest in the

second pass. The translator constructs an in�nite loop to read event interrupts on

a socket. When an event occurs, the task waiting for the event will be noti�ed and

appropriately scheduled by the run-time system.

A sample translated code is given below (Pseudo Code 3). The code is obtained by

translation of Pseudo Code 1. The transformations by the translator could be seen by

mapping the following code with Pseudo Code 1.

Pseudo Code 3: A translated code for Pseudo Code 1

/* Sample Defines file */

#define EVENT_Task1 1

#define EVENT_Task2 2

#define EVENT_Task1_Task2 3

14

#define EVENT_Task3_Task4_Task5 4

/* Register Events */

RegisterEvent(EVENT_Task1, "Task1")

RegisterEvent(EVENT_Task2, "Task2");

RegisterEvent(EVENT_Task1_Task2, "Task1", "Task2");

RegisterEvent(EVENT_Task3_Task4_Task5, "Task3", "Task4", "Task5");

/* Contents of the Block for Task1 */

...

/* Contents of the Block for Task2 */

...

while(1)

{

Event = WaitForEvent();

switch (Event)

{

case EVENT_Task1 :

/* Contents of the Block for Task3 */

...

break;

case EVENT_Task2 :

/* Contents of the Block for Task5 */

...

break;

case EVENT_Task1_Task2 :

/* Contents of the Block for Task4 */

...

break;

15

case EVENT_Task3_Task4_Task5 :

/* Contents of the Block for Task6 */

...

exit();

break;

}

}

4.2 Local Co-ordinator

The lc runs on each node that participates in parallel computation. lc services requests

generated by user processes on its node. Also, it maintains relevant information to

coordinate the user processes.

In ARC, lc maintains three tables, viz.Program and Task Table (PTT), Recovery

Information Table (RIT), and Results List Table (RLT). PTT maps the process ids

of each process to the socket descriptor that connect it to lc. Also, it distinguishes

processes as user processes initiated on the node and tasks migrated from other nodes.

RIT maintains information relevant for recovery in the event of a failure. RLT stores

the results of an earlier submitted tasks when it is available. The results are retained

till it is claimed by the corresponding user processes.

The integrated platform maintains two additional tables viz. Task Table (TT) and

Event Table (ET). These tables are maintained on a per process basis.

TT maps tasks to its subtasks. The table enables the system to keep track of the

status of tasks. An entry is created in the table when a task subdivides. The information

furnished by the task() call is used for the same. Further, the entry is updated when any

of its subtasks completes. ET stores the pre-declared events of interest to a process. An

entry is created in the table when an event of interest is registered using a RegisterEvent()

call. Further, it is updated when a task is completed. The structure of ET and TT are

given below.

Structure of Event Table (ET) and Task Table(TT) :

struct EventTable

16

{

int EventIdentifier; // Event Name

char ** WaitForTaskNames; // Task Names for this Event

BOOLEAN* TasksOver; // Task Completed Array

int NumberofWaitForTask; // Number of Task for the Event

}

struct TaskTable

{

char TaskName[TASKNAME_LENGTH]; // Name of the Task

int * SubTaskIdentifier; // Sub task identifiers

BOOLEAN * SubTaskOver; // Sub task completion status

int NumberofSubTask; // Number of subtasks

}

When a migrated subtask �nishes its execution, the lc is intimated by the sc. The lc

updates the TT and checks if it triggers the completion of a task. If a task is completed,

it updates the ET and checks if it satis�es the conditions for any event of interest to

the user process. lc initiates a message to the user process if any event of its interest

occurs. If the completion of a subtask results in more than one event of interest, the

user process is intimated by separate messages for each event.

INIT Initialized

SC Msg

Processed Processed

User Process
 Msg

Error Error

RECVD

SC Msg

ERROR

LISTEN

UP Msg

RECVD

Figure 2: FSM of LC

17

The FSM of lc is given in Fig. 2. In the INIT state, lc initializes its data structures

and cleans the auxiliary system �les. The lc, establishes a TCP connection with sc and

gets itself registered with sc. In LISTEN state, the lc waits for messages from the sc or

any user process. On a message from sc, it transits to SC Msg RECVD and service

the message. On a message from a user process, it transits to UP Msg RECVD and

service the request.

The initial communication between a process and the lc is through a known common

channel. This is for a user process to get itself registered with the local coordinator. User

processes which are registered with the lc are given exclusive communication channels

for subsequent communication.

4.3 System Co-ordinator

It has been mentioned that sc co-ordinates the lcs in the pool. Also, the sc keeps track

of individual lcs and facilitates communication between them. The sc is additionally

responsible for supplying information regarding availability and load of machines.

The sc is connected to lcs through TCP sockets. sc maintains TCP socket descriptors

which connect it to individual lcs. For small sessions, the sc routes the messages between

lcs so that the overhead for frequent connection establishment and closing is minimized.

The message structure includes a �eld to indicate the destination address in order to

facilitate the routing.

The design of ARC has consciously kept the sc as thin as possible. Consequently,

the sc scales up well with respect to the number of lcs that participate in the pool.

The FSM of sc is given in �g. 3. In the INIT state, sc initializes its data structures

and cleans the auxiliary system �les. In LISTEN state, the sc polls for connection

requests from lcs. On a connection request from a lc, it registers the lc with the system

and establishes a TCP socket connection between them. Further, it listens for messages

from the lcs on exclusive channels as well as new connection requests. On a message

from an lc, it transits to LC Msg RECVD state and processes the message. Once the

message is processed, it returns to LISTEN state.

18

INIT
Initialized

Processed
LC Msg

ERRORError

RECVD

LC Msg

LISTEN

Figure 3: FSM of SC

5 Applications

A number of applications have both task and data parallelism in them. Examples of such

application domains are speech signal processing, image processing, matrix computations

and scheduling algorithms.

A number of signal processing applications consist of signal transformation steps fol-

lowed by �lter steps. The transformation steps could often be done in a data parallel

fashion, whereas the �lter steps can be executed only after the transformation steps.

If there are multiple signal sources, each of them follows the above steps. Such prob-

lems can be elegantly expressed in our model. Image processing also displays similar

characteristics. Stereo image processing typically involves similar processing of signal

from more than one source. The processing steps, in turn, could consist of a sequence of

transformations and �ltering. Matrix computations performed in many engineering com-

putations such as Finite Element Analysis typically involve processing of huge matrices.

Such applications can also utilize the capabilities of our model.

A speci�c application in the domain of signal processing viz. Speaker veri�cation

problem, is discussed below. The task graph for the problem is given in Fig. 4. A

sample of the time domain signal is the input to the system. Linear predictive analy-

sis[11] of the signal gives linear predictive (LP) co-e�cients. LP Cepstrums, which are

features of the input signal are derived from these LP co-e�cients. These LP Cepstrums

are used for speaker veri�cation. Di�erent methods could be used to obtain evidences

for veri�cation. Gaussian Mixture Model(GMM) method[12], Neural Network Method

19

GMM

 Model
Constrained Satisfaction

Compute LP Cepstrum

Linear Predictive
Analysis

Neural Net
Method.

Figure 4: Task graph of the application

etc. are some examples. Some methods prove better than the rest according to the

nature of input set. Di�erent methods could be applied parallely on the same set of LP

Cepstrums. Constraint Satisfaction Model[13] combines evidences obtained from each

of these models. The data parallelism in each of these methods can also be exploited.

The pseudo-code of the application for the integrated platform is given below (Pseudo

Code 4).

Pseudo Code 4 : Pseudo Code of the application in fig. 4.

LPAnalyse();

ComputeLPCepstrums();

// GMM and NeuralNet blocks are Task parallelized

Task_begin(GMM) // Start of GMM ARC block

20

// migrate to 4 lightly loaded nodes

GetLoadFactor(4);

// Data parallelized

ARC_function_call(GMM,...,GMMTag1);

ARC_function_call(GMM,...,GMMTag2);

ARC_function_call(GMM,...,GMMTag3);

ARC_function_call(GMM,...,GMMTag4);

Task_end(GMM)

Task_begin(NeuralNet) // Start of NeuralNet ARC block

// migrate to 3 lightly loaded nodes

GetLoadFactor(3);

// Data parallelized

ARC_function_call(NeuralNet,...,NeuralNetTag1);

ARC_function_call(NeuralNet,...,NeuralNetTag2);

ARC_function_call(NeuralNet,...,NeuralNetTag3);

// Wait for GMM and NeuralNet to complete

Task_begin(ConstriantStatisfactionModel) OnFinish(GMM & NeuralNet)

ObtainResult(GMMTag1);

ObtainResult(GMMTag2);

ObtainResult(GMMTag3);

ObtainResult(GMMTag4);

ObtainResult(NeuralTag1);

ObtainResult(NeuralTag2);

ObtainResult(NeuralTag3);

CalculateConstriantStatisfactionModel();

21

Task_end(ConstriantStatisfactionModel)

Task_end(NeuralNet)

6 Performance Analysis

The performance analysis presented intends to show the advantage of exploiting both

task and data parallelism, ine�ciency in presupposing the order of completion of tasks

and performance advantage in supporting non-determinism in the order of completion

of tasks.

The problem considered for performance analysis has two task parallel arms. Each

arm consists of two tasks which are amenable to data parallel subdivision. The tasks in

each arm have precedence constraints. A problem with more than one task in each arm

is chosen to bring out the compensating and cumulating e�ect in the time of completion

of an arm. The task graph of the problem is given in Figure 5. The �gure shows the

task parallel arms and precedence relationships.

In the problem, Tasks T1 and T2 can be executed as the program starts its execution.

T1 and T2 are matrix multiplications on two independent sets of huge matrixes. Task

T3 is a user de�ned function on the resultant matrix of T1. Hence, T3 can be executed

only after T1 completes its execution. Similarly, T4 is a user de�ned function on the

resultant matrix of T2. Hence, T4 can be executed only after T2 completes its execution.

TaskT5 collects the results of T3 and T4.

The arms of the task graph could be represented as:

(U(A �B)) and (1)

(U(C �D)) (2)

where A,B,C and D are four square matrices

U is the user de�ned function

T1 is A*B

T2 is C*D

T3 is U(A*B)

T4 is U(C*D)

22

T1 T2

T3 T4

T5

Figure 5: Task graph of the application

The two task parallel arms could be a part of any computation. For instance (U(A �

B)) � (U(C �D)) or (U(A �B)+ (U(C �D)). A number of other problems also could be

represented by the same task graph. Any matrix computation of the form

((A bop B) bop C) bop ((D bop E) bop F) or (3)

((A bop B) bop C) bop (uop (C bop D)) or (4)

(uop (A bop B)) bop (uop (C bop D)) or (5)

(uop (uop (A))) bop (uop (B bop C)) or (6)

(uop (uop (A))) bop (uop (uop (B))) (7)

where A,B,C,D,E, and F 2 Set of matrices

bop 2 Set of binary matrix operators

uop 2 Set of unary matrix operators

would have the same task graph. In addition to this, a number of applications translates

to the above task graph by the nature of application itself.

The experiments are conducted on a heterogeneous collection of unevenly loaded

workstations. Hence, the time of completion of tasks are probabilistic. The average

completion time registered by T1 and T2 on a representative single machine is between

23

20 and 25 mnts. The computational requirement of T3 and T4 are dependent upon the

values of the input itself. This introduces one more probabilistic factor in the completion

time of tasks. Consequently, T3 and T4 registers an average completion time in the range

of 8 to 20 mnts under similar conditions. T5 is executed when T3 and T4 completes its

execution.

The task parallelism in the problem is by independent execution of two task parallel

arms in the task graph. The data parallelism in the problem is by data parallel execution

of each of the tasks T1, T2, T3 and T4.

The �rst experiment is intended to show the e�ect of load
uctuations on the time

of completion of tasks. Tasks T1 to T4 are executed data parallely on three nodes. The

grain size assigned to a node is in accordinance with the load snapshot. The run is

repeated 5 times. The summary of results is given in Table 1.

Table 1: Some sample scenarios(time in mnts)

No T1 T2 T3 T4 CritPath Di� Crit Path

1 7.9 9.1 5.3 4.7 13.8 -0.6

2 8.1 10.8 4.8 4.7 15.5 -2.6

3 11 8 7 5 18 +5.0

4 8 10.5 7.2 4.9 15.4 -0.2

5 11.2 8 4.8 7.1 16 +0.9

The time of completion of T1 to T4 is shown in Columns 2 to 5 of table 1. A task

�nishes its execution when all its subtasks �nishes. Hence, the time of completion of a

task is the time taken by its subtask which �nishes last. The time of completion of an

arm is the time taken to complete all the tasks in the arm. CritPath records the time

taken by the arm which �nishes last. Di� Crit Path records di�erence in the time of

completion of two arms in the task graph.

The observations of interest from the experiments could be summarized as

� In spite of a task sub-division based on runtime load conditions, a considerable

variation is registered in the time of completion of tasks. For instance, T1 registers

a high of 11.2 mnts in the 5th observation against a low of 7.9 mnts in the �rst

observation. The
uctuation amounts to 41% of the lower value.

24

� The values presented are without inducing any arti�cial loads. Under heavy load

uctuations, the values would
uctuate even more.

� The order of completion of task parallel arms is probabilistic. Also, the di�erence

in their time of completion could be substantial. In the table, a negative value of

Di� Crit Path signi�es �rst arm �nishing before second arm and vice versa.

Diff Crit Path = Tarm1 � Tarm2 (8)

where Tarm1 and Tarm2 are the times of completion of arm 1 and arm 2 respectively.

� The time of completion of individual tasks could have a cumulating or compen-

sating e�ect on the di�erence in critical paths of the arms. Observation 3 shows

the cumulating e�ect whereas observations 4 and 5 shows the compensating e�ect.

The following discussion formalizes the observation.

Consider N task parallel arms each consisting of M tasks. Let ti;n;j and ti;l;j be

the times of completion of task j in arm i under no load and loaded conditions

respectively. Under no load conditions, time of completion of a task is assumed to

be constant (ie. ti;n;j = constant). Let Ti;n and Ti;l be the times of completion of

task parallel arm i under no load and loaded conditions respectively.

Ti;n = �M
j=0ti;n;j = c (9)

where c is a constant.

Ti;l = �M
j=0ti;l;j (10)

Consider two arms a and b. The
uctuation in time of completion of tasks in an

arm is said to compensate the
uctuation in the other if:

�M
i=0Mod(ta;l;i � tb;l;i) > Mod(Ta;l � Tb;l) (11)

The net compensation in time (tc) is given by

tc = �M
i=0Mod(ta;l;i � tb;l;i)�Mod(Ta;l � Tb;l) (12)

If there is no compensating factor, the following relations will hold

�M
i=0Mod(ta;l;i � tb;l;i) =Mod(Ta;l � Tb;l) (13)

25

The e�ect of presupposing the order of completion of tasks to schedule subsequent

tasks is shown in Table 2. Each row in the table is derived from the corresponding row

in Table 1. The �rst column shows the time of completion of both arms if T1 is waited

for before T2. The second column shows the time of completion of both arms if T2 is

waited for before T1. The last column shows the time of completion with event driven

scheduling.

Table 2: E�ect of various scheduling

No T3 T4 T4 T3 Event driven

1 13.8 14.4 13.8

2 15.5 15.6 15.5

3 18 18 18

4 15.4 17.7 15.4

5 18.3 16 16

The observations of interest from the experiments could be summarized as

� When the di�erence in critical path compensates in an arm, presupposing the

order of completion of tasks may a�ect the performance. In observation 5, the

�rst presupposed order of completion fails. Similarly, in observation 4, the second

presupposed order of completion fails.

� When the di�erence in critical path cumulates in an arm, presupposing the order

of completion of tasks may not a�ect the performance. Observation 3 presents a

case for the same.

� The event driven scheme always matches the best result among the results with

presupposed orders of completion.

In the next experiment, the problem is executed by exploiting its data parallelism,

task parallelism and both task and data parallelism. The data parallelism in the problem

saturates when the granularity falls below a designated value. The task parallelism in

the problem is limited by the number of task parallel arms.

The results are summarized in Table 3. The sequential time of execution is presented

for comparison. The second column states the nature of parallelism exploited. NOP

26

stands for No Parallelism Exploited, DP for Data Parallelism Exploited, TP for Task

Parallelism Exploited and TDP for Task and Data Parallelism Exploited. Third column

shows the number of machines utilized for parallel computation. Fourth column gives the

time of completion of the problem. The last column gives the split up of the execution

time.

Table 3: E�ect of Exploiting task and data parallelism

No Parallelism #OfMachines TimeOfCompletion SplitUp

(in mnts)

1 NOP 1 74.2 23 + 24 + 12 + 15.2

2 DP 2 41.7 14 + 14.2 + 6.5 + 7

3 DP 3 26.3 8 + 9 + 4.5 + 4.7

4 TP 2 36 24 + 12

5 TD 4 19.8 (13.3,12.7) + (6.5,5.2)

6 TD 6 13.2 (8.4,8.2,8.0) + (4.3,4.1,4.8)

The �rst row corresponds to the sequential execution of the problem. The split up

shows the time taken for T1 to T4. The second and third row presents the results with

data parallel execution on two and three nodes respectively. The split up shows the time

taken for data parallel execution of T1 to T4. The fourth row shows the task parallel

execution on two machines. The split up shows the time of tasks in the critical path

(the arm which �nishes last). The �fth and sixth rows show the results of exploiting

both task and data parallelism. In the �fth row, each task is data parallelized into two

nodes. In the sixth row, each task is data parallelized into three nodes. The split ups

shows the time taken by data parallel subtasks of the tasks in the arm which proves to

be the critical path.

The observations of interest from the experiments could be summarized as

� The problem is a case where task and data parallelism are complementary.

� The task parallelism in the problem saturates with the utilization of two nodes.

This is because there are only two task parallel arms in the application.

� The data parallelism in the problem starts saturating with the utilization of three

nodes. It could be seen from the third row that the granule size has reached around

27

four minutes of execution time. Further subdivisions does not improve performance

because of the �xed time overheads in splitting the problem, migrating the code

and arguments, compiling the code and collecting the results.

� It could be seen that by exploiting both task and data parallelism, six nodes

are utilized for parallel execution before the same granule size of four minutes is

reached. Hence, the optimum number of nodes utilized for parallel computation is

increased.

7 Guidelines for composing user programs

The task graph of the application would be a directed graph with nodes representing

tasks and edges representing precedence relationships. In the task graph, a task could be

a Starting task, an Intermediate task or the �nal task. Starting tasks are those which do

not have to meet any preconditions. Intermediate tasks and Final task have precedence

constraints. The Final task takes care of program termination. Writing a program for

the platform involves translation of the task graph to the �nal block structured code.

The Final task should take care of the termination of the program. Otherwise, the

program would wait in an in�nite loop for further events to come. If the application has

more than one Final task, the methodology insists on introducing a pseudo �nal task

after all the tasks. The pseudo �nal task should take care of termination.

Some tasks wait for the completion of more than one task. Such tasks can be placed

inside the block of any of its predecessor task. In such cases, the choice is left to the

programmer. However, it will not have any e�ect on the translated code. Readability of

the code can be enhanced by placing appropriate comments whenever such discretions

are made.

While composing programs with existing modules, each task could be available as

separate program �les. Flexibility in program structuring is permitted under such con-

ditions. The only modi�cation that is to be done in such cases is to wrap the code for

each tasks with task demarcating constructs, Task begin and Task end along with their

OnFinish directives.

The Register event calls are inserted by the translator itself. The call has at least

once semantics. A redundant insertion of the call by the programmer would be ignored.

While programming for anonymous execution, no assumption should be made about

28

the underlying system. Though the portability of the system is provided, the portability

of the migratable user program has to be ensured by the programmer himself.

When more than one parallel arm could be started on the occurance of an event, it

would bring performance bene�ts to migrate the more time consuming arm to the least

loaded node. Typically, in the integrated platform, each task is migrated to the then

least loaded machine. However, the translator inserts the ARC function calls for the

tasks in the order speci�ed by the programmer. Hence the programmer should take care

in placing the more time consuming task in front of others.

8 Future work

Further challenge in transparent platforms for NOWs is to support communicating par-

allel tasks. The key issue in such an attempt is to permit intertask communication in

the premises of distribution transparency. Such an attempt can address problems with

patterns in their process interaction. Optimizations possible with di�erent interaction

schemes could be explored.

9 Acknowledgements

We thank Dr. Hema A. Murthy, Asst. Prof., Dept. of CSE, IIT Madras and Shajit

Iqbal, Research Scholar, Dept. of CSE, IIT Madras for their inputs related to speech

signal processing.

29

References

[1] P.J.Hatcher and M.J.Quinn, Data-Parallel Programming on MIMD Computers,

The MIT Press, Cambridge, MA, 1991.

[2] Vipin Kumar, Ananth Grama, Anshul Gupta, George Karypis, Introduction to

Parallel Computing, The Benjamin/Cummings Publishing Company Inc., 1994.

[3] Bradley K. Seevers, Micheal J. Quinn, Philip J. Hatcher, "A Parallel Programming

Environment Supporting Multiple Data Parallel Modules", SIGPLAN, pp 44-47,

Jan 1993.

[4] Thomas Gross, David R. O'Hallaron, and Jaspal Subhlok, "Task Parallelism in a

High Performance Fortran Framework", IEEE Parallel and Distributed Technology,

Vol.2, No.3, pp 16-26, Fall 1994.

[5] G.McRae, A.Russell, and R.Harley, "CIT Photochemical Airshed Model: Systems

Manual", 1992.

[6] Barbara Chapman, Hans Zima, Piyush Mehrotra, "Extending HPF for Advanced

Data Parallel Applications", IEEE Parallel and Distributed Technology, Vol.2, No.3,

pp 59-70, Fall 1994.

[7] Ian Foster, "Task Parallelism and High-Performance Languages", IEEE Parallel

and Distributed Technology, Vol.2, No.3, pp 27-36, Fall 1994.

[8] Henri E. Bal, Mathew Haines, "Approaches for Integrating Task and Data Paral-

lelism", IEEE Concurrency, pp. 74-84, Jul-Sep 1998.

[9] Rushikesh K. Joshi, D. Janaki Ram, "Anonymous Remote Computing: A Paradigm

for Parallel Programming on Interconnected Workstations", To appear in IEEE

Trans. on Software Engineering, Vol.25, No.1, Jan/Feb 1999.

[10] R. Parthasarathy, "Designing a Robust Runtime System for ARC", Project report,

Acc.No.97-BT-04, Dept. of Computer Science and Engineering, IIT Madras, 1997.

[11] R.P. Ramachandran, M.S. Zilovic, R.J. Mammone, "A comparitive study of Robust

LP Analysis Methods with Applications to Speaker Identi�cation", IEEE Trans.

Speech, Audio Processing, Vol.3, pp. 117-125, Mar 1995.

30

[12] D.A.Reynolds, R.C.Rose, "Robust Text-Independent Speaker Identi�cation using

Gaussian Mixture Speaker Models", IEEE Trans. Speech, Audio Processing, Vol.3,

pp.72-83, Jan 1995.

[13] C.Chandrasekhar, B.Yegnanarayana and R.Sundar, "A constraint satisfaction

model for recognition of Stop Consonant-Vowel(SCV) utterances in Indian lan-

guages, Proc. Int. Conf. on Communication Technologies(CT-96), Indian Institute

of Science, Bangalore, pp 134-139, Dec 1996.

31

