Contextually Aware Risk Analysis of Sensors

Contextually Aware Geopositiong Update

- Working on higher-fidelity theft detection.
- Changed monitoring period from 30 minutes to 5-10 minutes
- Issue for HMM,
- Time-complexity increases significantly.
- Risk Prediction is real-time
- Training will need to be done when phone is not in use;
- Do more general military sensors have such periods.
- Move to cloud?
- Lose predictability in data. ROC curves are much worse
- Trying to impose initial structure in HMM to improve ROC curve.

Contextually Aware Bluetooth Update

- Normalized Risk Metric so that it seemed to give reliable risk.
- Issue:We don't know if individuals felt at risk or not based on data. We are giving best estimates.

SVM for global risk predictor.

- In implementation on phone, working on first run of data.
- No data yet

LOOKING AT MALWARE SPREAD

- Infection Style: Parallel Vs. Serial
- Exposure Time - Viral Spread Speed
- Susceptibility - Different phone hardware/software
- Broadcast Radius - 802.1 I g vs. 802.I In

LOOKING AT MALWARE SPREAD

I. Realistic Mobility Model - UdelModels

- High Spatial Fidelity
- High Temporal Fidelity
- Accurate Population Density

- [Channakeshava09] uses similar approach

LOOKING AT MALWARE SPREAD

2. Target Geographical Area -- CHICAGO

[UdelModel]

LOOKING AT MALWARE SPREAD

3. Epidemiological Model
-S-E-I-R Model

- Susceptible
- Exposed

- Infected
- Recovered

SERIALVS. PARALLEL

 INFECTIONSNot-Infected
Infected

EXPOSED POPULATIONS

Population Infections from 7:00AM - 11:00AM in Chicago

SUSCEPTIBLE POPULATIONS

Population Infections at 7:00AM - 11:00AM in Chicago

BROADCAST RADIUS INCREASE

Not-Infected
Infected

BROADCAST RADIUS INCREASE

I 00\% Susceptible

Population Infections from 7:00AM - 11:00AM in Chicago

25\% Susceptible

