Contextually Aware Risk Analysis of Sensors

Contextually Aware Geopositiong Update

- Working on higher-fidelity theft detection.
- Changed monitoring period from 30 minutes to 5-10 minutes
- Issue for HMM,
 - Time-complexity increases significantly.
 - Risk Prediction is real-time
 - Training will need to be done when phone is not in use;
 - Do more general military sensors have such periods.
 - Move to cloud?
 - Lose predictability in data. ROC curves are much worse
 - Trying to impose initial structure in HMM to improve ROC curve.

Contextually Aware Bluetooth Update

- Normalized Risk Metric so that it seemed to give reliable risk.
 - Issue: We don't know if individuals felt at risk or not based on data. We are giving best estimates.

SVM for global risk predictor.

- In implementation on phone, working on first run of data.
- No data yet

- Infection Style: Parallel Vs. Serial
- Exposure Time Viral Spread Speed
- Susceptibility Different phone hardware/software
- Broadcast Radius 802.11g vs. 802.11n

I. Realistic Mobility Model - UdelModels

- High Spatial Fidelity
- High Temporal Fidelity
- Accurate Population Density

Example UdelModels Simulation [UdelModel]

• [Channakeshava09] uses similar approach

2. Target Geographical Area -- CHICAGO

[UdelModel]

Population 9056 [Landscan]

[USGSMap]

3. Epidemiological Model

- S-E-I-R Model
 - Susceptible
 - Exposed
 - Infected
 - Recovered

SERIAL VS. PARALLEL INFECTIONS

Dont Walk

Infected

Dont Walk

EXPOSED POPULATIONS

SUSCEPTIBLE POPULATIONS

BROADCAST RADIUS INCREASE

BROADCAST RADIUS INCREASE

100% Susceptible

25% Susceptible