
FutureGrid Software
Acknowledgement:This presentation has been collaboratively

developed with all of the members of the Software team

We asked the team members to put their names here,
the order is random:

Gregor von Laszewski, Fugang Wang, Archit Kulshrestha, Andrew
Younge, Gregory Pike, Javier Diaz, Warren Smith, Shava Smallen,

Ewa Deelman, Jens Voeckler, Andrew Grimshaw, Terry
Moore, Piotr Luszczek, Kate Keahey, David LaBissoniere,

Renato Figueiredo, Mauricio Tsugawa, José
Fortes, Robert Henschel, Geoffrey Fox

Overview of the
FutureGrid Software

Presented by
Gregor von Laszewski

8 minutes

FutureGrid Software Architect
Community Grids Laboratory

Pervasive Technology Institute

Outline
1. Overview

2. Access Services

3. Management Services

4. Operations Services

5. We will not much go into:
Base Software and Services
Fabric
Software for Development & Support
Resources

2

3 4

5

Outline
1. Overview
2. Access Services

3. Management Services

4. Operations Services

5. We will not much go into:
Base Software and Services
Fabric
Software for Development & Support
Resources

2

3 4

5

Software Engineering Approach

Approach
Spiral Process
Requires tight integration
of software and systems
management teams
Task Management
Integrated with WBS
QA and QC
Weekly calls

Team
All partners participate
Tasks assigned by expertise
Collaborative development

Risks
Collaboration is large
Technology is new
Systems are diverse
Software/System best practices
do not exist for FG
Tradeoff between Services and
Software

Goals of the Software
Support Diverse User Community

Application developers, Middleware developers,
System administrators, Educators, Application users

Support for Shifting Technology Base
Infrastructure as a Service (IaaS), and Platform as
a Service (PaaS) paradigms
In IaaS we see less important role of Eucalyptus

Nimbus: Our main IaaS framework. Rapidly evolving
Several releases a year, our funded partner!

OpenNebula: Important project in Europe
OpenStack: Expected to take large share of user base
from Eucalyptus due to strong partners and open
source philosophy

PaaS are rapidly evolving

http://futuregrid.org

Goals of the Software
Support of Diverse Access Models

Persistent Endpoints: Unicore, gLite, Genesis II, Nimbus,
Eucalyptus, OpenStack, OpenNebula, HPC

User just wants to use a preinstalled framework
User wants to compare HPC with framework x

Dynamically Provisioned Frameworks: install cloned versions
with modifications of the above + my own framework

Middleware developer provides next generation software
Community: I want to showcase my service

Enable viral contribution model to services offerend in
FutureGrid

http://futuregrid.org

Differentiation
FG vs. Amazon

Multiple alternative IaaS
frameworks
Control of resource mapping
Development of middleware,
not just using it
OS level work possible not just
virtualized environment
Windows and Linux
Performance comparison

FG vs.TeraGrid » XD
Environment is customizable

Dynamically provisioning software
as needed onto “bare-metal”
exploit both the innovative
technologies available and the
interactive usage mode of
FutureGrid

Richer environment, not just traditional
HPC

TG software + IaaS, PaaS & HPC
Different spectrum of use

computer science systems,
interoperability, clouds, education
and bioinformatics

Goals of Software
Provide Management Capabilities for
Reproducible Experiments

Conveniently define, execute, and repeat application or grid
and cloud middleware experiments within interacting
software “stacks” that are under the control of the
experimenter.
Leverage from previous experiments.
Terminology: Experiment Session & Apparatus

http://futuregrid.org

http://futuregrid.org

Software Roadmap
PY1:

Enable general services: HPC, Nimbus, Eucalyptus
Explore dynamic provisioning via queuing system
Explore raining an environment (Hadoop)

PY2:
Provide dynamic provisioning via queuing system
Deploy initial version of fg-rain, fg-hadoop, ...
Explore replication of experiments
Allow users to contribute images
Deploy OpenNebula, OpenStack

PY3:
Deploy replication of experiments
Deploy replication of comparative studies

PY4:
Harden software for distribution

Outline
1. Overview
2. Access Services

3. Management Services

4. Operations Services

5. We will not much go into:
Base Software and Services
Fabric
Software for Development & Support
Resources

2

3 4

5

Grid Standards & Interoperability

Andrew Grimshaw
University of Virginia

Presenter:
Andrew Grimshaw
University of Virginia
4 minutes

Key Points
Interoperability
Unicore 6
gLite
Genesis II

Requirements Usecases
Provide a persistent set of standards-
compliant implementations of grid services
that clients can test against
Provide a place where grid application
developers can experiment with different
standard grid middleware stacks without
needing to become experts in installation and
configuration
Job management (OGSA-BES/JSDL, HPC-
Basic Profile, HPC File Staging Extensions,
JSDL Parameter Sweep, JSDL SPMD, PSDL
Posix)
Resource Name-space Service (RNS), Byte-
IO
Provide a place where Grid middleware
developers can stress-test their systems
without impacting production systems.

Interoperability tests/demonstrations
between different middleware stacks
Development of client application tools
(e.g., SAGA) that require configured,
operational backends
Develop new grid applications and test
the suitability of different
implementations in terms of both
functional and non-functional
characteristics
Many faults only occur under heavy load.
Need a place to stress test, and fail
without impacting production users

http://futuregrid.org

Implementation Deployment
UNICORE 6

OGSA-BES, JSDL (Posix, SPMD)
HPC Basic Profile, HPC File Staging

Genesis II
OGSA-BES, JSDL (Posix, SPMD,
parameter sweep)
HPC Basic Profile, HPC File Staging
RNS, ByteIO

EGEE/g-Lite (in progress)
SMOA (in progress)

OGSA-BES, JSDL (Posix, SPMD)
HPC Basic Profile

UNICORE 6
Xray
Sierra
India

Genesis II
Xray
Sierra
India
Eucalyptus (India, Sierra)

http://futuregrid.org

Nimbus
Kate Keahey
University of Chicago
12 minutes

Key Points
IaaS
We can directly impact
development of Nimbus

Enable developers to extend, experiment and customize

Nimbus Overview

1/16/2011

Enable providers to build IaaS clouds

Enable users to use IaaS clouds

Infrastructure-as-a-Service Tools

Higher-level IaaS Tools

Workspace Service Cumulus

Context
Broker

Nimbus
Clients

High-quality, extensible,
customizable,

open source implementation

Gateway
Elastic Scaling

Tools

Nimbus Key Features

http://futuregrid.org

Active open
source community

Virtual clusters across
multiple clouds

EC2 & S3
interfaces

Support for spot
instances

Fast image distribution
with LANTorrent Extensible and easy to

maintain

Support for science

Nimbus in FutureGrid
Requirements

IaaS Infrastructure:
IaaS infrastructure to
experiment on top of:
feature-rich and easy to
use
IaaS infrastructure to
experiment with: modular
and extensible

Higher-level services:
Virtual ensembles
Multi-cloud support

Integration, user and
exploration support

Use Cases
Can a user:

Deploy a (group of) VMs or
create a storage objects?
Modify or instrument IaaS
to experiment with new
capabilities?
Create a virtual cluster?
Create a multi-cloud
experiment?

Are those things easy to
do and cost-effective?

http://futuregrid.org

Nimbus Deployment

http://futuregrid.org

Resources:
Hotel (UC) 328 cores
Foxtrot (UFL) 208 cores
Sierra (SDSC) 144 cores
Alamo (TACC), in
preparation

Usage types so far:
Projects using IaaS
Projects modifying IaaS
Using higher-level tools
Educational (using IaaS)

Nimbus PY1 Milestones
Nimbus deployed on FutureGrid sites
Collected Nimbus requirements for improvements,
integration and analysis, and to support new projects
Nimbus releases containing FG-driven features:

Nimbus installer (Nimbus 2.4 in 05/10)
Zero -> cloud installation process and user management
tools (Nimbus 2.5 in 07/10)
Partial: dynamic node management (Nimbus 2.6 in 11/10)

Other major features:
Tools and scripts to integrate Nimbus credential distribution
process into the FutureGrid credential distribution process

Prepared documentation and tutorials for FG users
Supported demonstrations, exploration, and early
users

Nimbus PY2 Milestones
Ongoing requirements gathering process
Continue to respond to requirements

Current requirements: integration of Nimbus credential
distribution into FG (completed), RM enhancements (fine-
grained instances + dynamic provisioning), additional VM
monitoring, FG image format integration, debugging
features (get-console-output), multi-cloud support, make
Nimbus a better experimental tool (specific extensibility
enhancements), maintainability enhancements (admin
“sanity check” scripts)

Exploration and integration support
Continue documentation and educational outreach work
User and Project support

Risks
Many changing requirements
Dependencies

Eucalyptus
Archit Kulshrestha
Indiana University
5 minutes
Key Points

Elastic Utility
Computing Architecture
Linking Your Programs
To Useful Systems
EC2 interface for
deploying user images
on virtualized hardware.
Deployment on Sierra
and India
Atomic allocation for
VMs, storage and
networking

Eucalyptus is available
to FutureGrid Users on
the India and Sierra
clusters.

Xen Based
Virtualization
Users can make use
of a maximum of 50
nodes on India and 21
on Sierra. Each node
supports up to 8 VMs.
Different Availability
zones provide VMs
with different compute
and memory
capacities.

AVAILABILITYZONE india 149.165.146.135
AVAILABILITYZONE |- vm types free / max cpu ram disk
AVAILABILITYZONE |- m1.small 0400 / 0400 1 512 5
AVAILABILITYZONE |- c1.medium 0400 / 0400 1 1024 7
AVAILABILITYZONE |- m1.large 0200 / 0200 2 6000 10
AVAILABILITYZONE |- m1.xlarge 0100 /
0100 2 12000 10
AVAILABILITYZONE |- c1.xlarge 0050 / 0050 8 20000 10

AVAILABILITYZONE sierra 198.202.120.90
AVAILABILITYZONE |- vm types free / max cpu ram disk
AVAILABILITYZONE |- m1.small 0160 / 0160 1 512 5
AVAILABILITYZONE |- c1.medium 0160 /
0160 1 1024 7
AVAILABILITYZONE |- m1.large 0080 / 0080 2 6000 10
AVAILABILITYZONE |- m1.xlarge 0040 /
0040 2 12000 10
AVAILABILITYZONE |- c1.xlarge 0020 /
0020 8 30000 10

FG Eucalyptus Testbed

FG provides Euca2ools to interact with Eucalyptus.
Available on India and Sierra via modules

Account creation and credential management interfaces for
requesting accounts and obtaining credentials.

https://eucalyptus.india.futuregrid.org:8443/
https://eucalyptus.sierra.futuregrid.org:8443/

The Eucalyptus installations on India and sierra will be
integrated into one umbrella with different availability
zones.

Management Interfaces and Clients

https://eucalyptus.india.futuregrid.org:8443/
https://eucalyptus.sierra.futuregrid.org:8443/

PY1:
Eucalyptus on India and Sierra; Basic Image Library;
Classroom use Grid Computing Class

 PY2:
Unified Install across India and Sierra; evaluation of iPlant
Atmosphere (major NSF project ~$50 Mil.); integration with
image and experiment management

PY3:
Rich Web Interface for EC2 APIs using iPlant Atmosphere

Risks
Limited Public IP Address Pool

Potentially very large number of VMs possible
Transient Errors

Image transfer errors, network disruption, etc.

Eucalyptus - Milestones and Risks

OpenStack
Archit Kulshrestha
Indiana University

Key Points
EC2 interface for VM
management
Alternative to
Eucalyptus et al.
Growing open source
community - NSF +
Rackspace
Tutorial at CloudCom
helped increase interest
and understanding.

OpenStack evaluated for
deployment on FutureGrid.

Test installation on the FG mini
cluster for evaluation - PY2 Q1
Scaling tests - PY2 Q2

A plan will be developed on how to
provide both OpenStack and
Eucalyptus as production services
on FG in PY2 Q4

Dynamically add and remove
nodes.

Milestones Risks
Limited Public IP
Address Pool
No Web/GUI
Management
interface for users

Will not be
needed with
FG SSO -
needs dev
work

OpenNebula
Javier Diaz
Indiana University
Presenter: Archit Kulshrestha
Key Points

Dominant European Effort
Important for collaboration with
European Initiatives like Reservoir
or EGI
Adaptability: Private, Public
and Hybrid cloud
Different authentication methods
(password, ssh, LDAP)
Performance and Scalability
Customizable drivers for different
components like Scheduling,
Authentication, Storage or
Hypervisor

Milestones Risks
Q1 2011

Deploy OpenNebula (Authenticate
Users through ssh-keys)
Create User Manuals

Q2 2011
Study how to integrate OpenNebula
authentication with FutureGrid LDAP
authentication server

Q3 2011
Study how to integrate the
OpenNebula Image Repository with
the FutureGrid Image Repository

Q4 2011
Provide users with a web portal
Study how to create Federated Clouds
in OpenNebula

http://futuregrid.org

Clear text passwords to access
OpenNebula and the
database

Appropriate file and
system level permissions
to avoid exposure to these
passwords

ScaleMP

Andrew J. Younge,
Robert Henschel

Indiana University

Presenter:
Andrew J. Younge
2 minutes

Key Points
vSMP Foundation
Usability of vSMP in FG

ScaleMP
vSMP Foundation is a virtualization software that creates a
single virtual machine over multiple x86-based systems.
Provides large memory and compute SMP virtually to users
by using commodity MPP hardware.
Allows for the use of MPI, OpenMP, Pthreads, Java threads,
and serial jobs on a single unified OS.
Available today on the India IBM IDataPlex.

Currently used for Genome Assembly.
vSMP is also deployed on SDSC's Gordon.

Vine

University of Florida

7 minutes

ViNe
University of Florida
Presenter: José Fortes

ViNe (Cont.)
Requirements

Connectivity among FG
and external machines
Mutually exclusive
overlay networks
Easy management
Configurable network
parameters (e.g., delay,
loss rate, bandwidth)

Usecases
Deployment of virtual clusters
spanning multiple sites
Isolated networks minimize
negative effects of
misconfigured VMs
Virtual clusters with
appropriate connectivity
should be easily started
Deployment of experimental
networks

http://futuregrid.org

ViNe (Cont.)

Design
User-level network
routing software (no
hardware or kernel
dependency), which
creates overlay networks
using the Internet
infrastructure

http://futuregrid.org

ViNe (Cont.)

Implementation
Routing logic implemented in
Java (version 1.6+)
Low-level network access
implemented in C
Built-in firewall/NAT traversal
Routing capacity of 900 Mbps
measured on foxtrot

Deployment
On each site, a machine
running ViNe software
becomes a ViNe router (VR),
working as a gateway to
overlay networks for other
nodes connected to the same
LAN segment
Deployed on sierra, foxtrot,
hotel and 3 Grid’5000 sites,
to offer full connectivity
among VMs on all 6 sites

http://futuregrid.org

ViNe (Cont.)

Milestones
Year 1 (completed)

Collect requirements to ViNe-enable
FG sites
Run experiments to assess FG inter-
and intra-site communication
performance
Deploy ViNe on FG sites
Deploy Virtual Clusters across
multiple FG sites, connect via ViNe,
and run experiments/jobs

Year 2
Q1/Q2 Design ViNe management
APIs
Q2/Q3 Implement and Test ViNe
management features
Q3/Q4 Deploy improved version of
ViNe

Risks
Not all FG sites have a
physical machine running
ViNe software. Deploying
ViNe router in a VM has a
negative impact on
performance.

http://futuregrid.org

User Portal
Fugang Wang
Gregor von Laszewski
Indiana University
5 minutes

Key Points
Entry point for obtaining
help, support, training
materials, etc.
Enable FG community
Web client for set of
important services, like
image management,
project/experiment
management, etc.

FutureGrid Web Portal: Requirements
Present information from diverse sources

Status of the Resources, Software, and offered services: Inca, PBS, XCAT,
...
Information on how to use FG: Manual, FAQ/IU Knoweledge Base, General
information about the project
Unified search: All relevant material integrated in a single search function
Role based access: user, sysadmin, approval committee, editor

Support FG specific processes
Project Management: List/create/join/approve projects, provide personal
view, list/report results
Experiment Management: List/create/monitor experiments; image
Management: manage images used in experiments,; share/clone/verify
images
Account Management: Integrate with the FG account management
processes, allow interface with SSO services (manage SSH key, OpenID,
certificates,)
Information Dissemination Management: through manual, FAQ/IU
Knowledgebase, project & experiment information, editorial workflows,
mailinglists/forum, RSS feeds, News, References

FutureGrid Web Portal: Status
Implementation

Based on Drupal: proven open CMS with access control
Use of proven Drupal community extensions: no development needed for
them, but configuration
New deployment: re-deployment, with FG processes in mind, not just web
site

Available Features (PY1, PY2 ...)
Drupal: forum, news, polls, information tables, page management, user
management, theme, book layout (for manual), FAQ, references, OpenID
FG specific: supporting FG processes: account management; project
management including FG experts, project approval committee; information
dissemination to support FG these processes; SSH key management

Future Features (FG specific, PY...) :
Eucalyptus: Support SSO management features for Eucalyptus (PY2
Q4); Integration of iPlant Atmosphere (PY2 Q2-3)
Experiment Management: List/create/monitor experiments (v0 PY3 Q1);
image Management: manage images used in experiments (v0 PY2 Q3);
share/clone/verify images (v0 PY2 Q4)
Account Management: Verify account data in the LDAP server (PY2 Q2)
Information Dissemination Management: improve editorial workflows (v1
PY2 Q3), extend RSS feeds (v1 PY2 Q4); unified KB search (PY3)
Integration with TG user portal: identify path once XD plan is available to us

FG Web Portal - Risks

Modules used from the community may no longer be
supported

use modules that are hugely popular
be aware of the Drupal roadmap

FutureGrid Web Portal

Outline
1. Overview
2. Access Services

3. Management Services

4. Operations Services

5. We will not much go into:
Base Software and Services
Fabric
Software for Development & Support
Resources

2

3 4

5

Dynamic Provisioning
Gregor von Laszewski
Greg Pike
Fugang Wang
Archit Kulshrestha
Warren Smith
Indiana University
TACC
5 minutes

Key Points
Customizable environment
Not just images on IaaS
Operating system level

Dynamic Provisioning
Choose

Load

Run

FG RAIN Command
fg-rain –h hostfile –iaas nimbus –image img
fg-rain –h hostfile –paas dryad …
fg-rain –h hostfile –image img

the default way if I do not care about IaaS
fg-rain –h hostfile –paas hadoop …

 |
 fg-hadoop

Image Management
Fugang Wang
Andrew Younge
Gregor von Laszewski
Indiana University
5 minutes

Key Points
Abstraction layer that
deals with all FG images.
Service oriented
architecture so interaction
with other modules could
be easily achieved.
Layered design so the
choose of concrete
implementation is flexible.
E.g., provide alternative
data storage mechanism.

Image Management
Requirements

Generate Images
Needed as part of security
architecture
Consistency
Provide assistance to users
Provide integration with
LDAP

Store Images
Integrate with different
image repository systems
Integrate with image creation
module, and dynamic
provisioning

Access Interfaces
Commandline, portal, and
REST interfaces

Use Cases
Upload, search, clone, ...
 standard format
Security review
Access images with the same
functionality but run on different
IaaS frameworks
Share Images with colleagues
Create an image for me with
features x,y,z, allow my FG project
team members to login

Image Creation
Process

Creating deployable image
User chooses one base mages
User decides who can access
the image; what additional
software is on the image
Image gets generated;
updated; and verified

Image gets deployed
Deployed image gets continuously

Updated; and verified
Note: Due to security requirement an
image must be customized with
authorization mechanism

We are not creating NxN
images as many users will only
need the base image
Administrators will use the
same process to create the
images that are vetted by them
An image gets customized
through integration via a CMS
process

Image Management

Deployment

Implementation

First deploy a centralized repository store based solution; then expand to
provide distributed/replicated based one.
First deploy a number of base images and test mechanism
Integrate community contributed images

Layered architecture; Web Services; Data access abstraction; Command line
interface; Python; Integration with FG security framework

Review
Continue to work with security experts (Von Welch formerly NCSA security
expert was just hired by IU, ...).

Image Management

http://futuregrid.org

Milestones
PY1

Designed and prototyped an Image
Repository & Generation services
Prototyped configuration management
system for use with bare metal and virtual
machines

PY2
Q1 Deliver and test an alpha release of the
image generation tools
Q2 Deliver repository on each resource
Q2 Integrate LDAP authentication into
image management services
Q3 Distributed repository database
Q3 Provide an updated image generation
service in beta release

PY3
 REST interfaces & Portal interface

PY4
Dynamic user pattern governs image
creation

Risks
There will never be a secure
image regardless which
technology we use
High level of integration with the
various IaaS technologies
Standards are under development
Some users may want to bypass
the mechanism

I have my code developed 30
years ago, please run it
but ... what about all the
exploits

Experiment Management
Warren Smith1

Luke Wilson1

Ewa Delman2

Jens Voeckler2

Gregor von Laszewski3
Fugang Wang3

Greg Pike3

Archit Kulshrestha3

7 minutes

1TACC
2USC ISI
3IU

Key Points
enable reproducible
experiments

Experiment Management
Requirements

Assemble and release
resources
Execute actions on
assembled resources
Monitor actions and
results
Record and archive
information about an
experiment
Allow experiments to be
repeated as run or with
modifications

Use Cases
Workflow-based
experiment management
Interactive experiment
management
A mix of the two

http://futuregrid.org

Experiment Management

Design
Provide tools to coordinate experiment execution

Interact with a number of FutureGrid services
Support several usage models

Workflow
Interactive
Hybrid

Store experiment information for later use
Service

http://futuregrid.org

Experiment Management
Components

Implementation
Pegasus

Workflow-based experiment management
Enhance existing tool

TakTuk
Basic interactive experiment management
Reuse tool deployed on Grid 5000

Messaging-based Execution and Monitoring System (MEMS)
More sophisticated interactive experiment management

Experiment Repository
Store and retrieve information about experiments

Integration with the Portal

http://futuregrid.org

Experiment Management
Pegasus Deployment
Existing standard
workflow management,
deployed on FG
Enhancing to meet
FutureGrid needs:

Adding timing support
Developing interfaces to FG
provisioning and de-provisioning
capabilities
Implementing interfaces to the
image repositories
Defining reproducibility—same
logical experiment vs same exact
experiment http://futuregrid.org

Experiment Management
TakTuk Deployment

Cluster-fork/parallel shell type tool
Deployed on Grid 5000
Minimal requirements

Written in Perl
Only other dependency is ssh
Self deploys any necessary
components to provisioned systems

Optimized execution
Arranges provisioned systems into a
tree

Partially deployed on FutureGrid

http://futuregrid.org

Experiment Management

http://futuregrid.org

MEMS Deployment
Minimal requirements

Programs and agent in Python
Python messaging client

Additional features over TakTuk
Automatic logging
of commands, results,
other information
Provide information about
provisioned systems and
FutureGrid
Execute distributed commands
simultaneously
Built in support

Under development

Experiment Management

http://futuregrid.org

Experiment Archive Deployment
Gathering requirements

Interfaces
Command line and web. Messaging to support MEMS.
APIs?

Functionality
Insertion, querying, searching
Provenance & metadata
Grouping? Annotation?

Exploring design options
Information format/organization
One archive or many?

A number of existing archives are relevant: Image
repository, Inca, Netlogger

Experiment Management
Milestones

Develop provisioning
workflows
Develop initial timed
workflow solution
Complete TakTuk
deployment
Finish MEMS
development
Deploy MEMS

Risks
Multiple tools could be
confusing to users

Document differences well
Many dependencies may
cause deployment delays

Provide partial (but useful)
functionality

http://futuregrid.org

Pegasus as an application
management capability

Presented by
Jens Vöckler

http://futuregrid.org

Pegasus
Ewa Deelman
Jens Vöckler
USC Information Sciences
Institute

Presenter:
Jens Vöckler
7 minutes

Pegasus managing workflow
applications on FutureGrid

Requirements
Provide Pegasus VM as submit
host to users familiar with
Pegasus
Complementary to Experiment
Management
Develop new capabilities to
address FG environment
[optional] Pre-installed
Pegasus run-time tools.

Use-cases
User familiar with Pegasus
wants to run existing workflows
on FG resources.
Provide and environment for
tutorials.

http://futuregrid.org

Pegasus

Design
1. Provide VM with

Pegasus WMS to
interested users.

Runs the planner.
Manages workflow(s).
Aggregates resource VM
(s).

2. Provide Pegasus run-
time tools (optional).

http://futuregrid.org

2

1

Implementation

http://futuregrid.org

Pegasus

Pegasus
Example Deployment

http://futuregrid.org

Pegasus

Milestones
Provide “Planner VM”

Includes Condor tunings.
Manages prov. resources.

Improve “2nd-level staging”
Permit multiple protocols to
stage large data files.
Make transfers in head-
less execution 1st class
citizens.

Include “bare-metal” execution
using Moab.

Risks
Requiring a too specialized
infrastructure.

Dependencies on too
many 3rd-party software
pieces.

Too many auxiliary nodes in
the generated workflow
possibly negatively impact
execution turn-around.

http://futuregrid.org

Monitoring and Information Services

http://futuregrid.org

Presenters:

Shava Smallen (SDSC)
Piotr Luszczek (UTK)

9 minutes

http://futuregrid.org

Requirements
Detect functional and
performance problems on
FutureGrid
Collect basic information and
usage about components
Compare the performance of FG
to other systems
Re-use existing components
Measurement results are stored
historically
Minimal system impact
Flexible query interface

Use cases
Can a user submit a job to each
HPC resource?
How much time does it take for a
user to create an experiment?
What is the number of VM
instances deployed in Nimbus
and Eucalyptus?
How many users are utilizing the
system?
What is the machine performance
(HPCC, SPEC, etc.)
What is the utilization of
machines?
What is the network
performance?

http://futuregrid.org

Monitoring and Information

Actively test and measure the
infrastructure as a user (Inca,
GBC - Grid Benchmark Challenge)
Passively collect usage and
performance information from
infrastructure (Netlogger)
Leverage system monitoring tools
(Nagios, Ganglia, PerfSONAR,
GlobalNOC tools, …)
Repository to host user
performance studies
Interface to other FG components
(experiment harness, portal)

http://futuregrid.org

Design

Monitoring and Information

Monitoring and Information

http://futuregrid.org

DeploymentImplementation

Monitoring servers
(IU)

foxtrot

UF

sierra hotel

india

xray

IU
UCUCSD

alamo

TACC

User
Performance

StudiesActive
Monitorin

g
Instrumentation

HW
Monitor

s

Inca
Server – Three Java server
processes with Postgres
backend and reporter
repository (Perl, Python)
Client – Perl daemon

Netlogger
Server – Two processes with
either TCP or AMQP
interfaces and
MongoDB backend
Client – AMQP or TCP APIs
(C, Perl, Python, Java) and
parse script

...

http://futuregrid.org

Monitoring and Information
Milestones
Year 1 (completed)

Q1-Q2: Initial architecture document completed
Q2: deployed Inca server and Inca clients to Xray,
India, and Sierra -- provides basic monitoring of
available software and services
Q3: automated benchmarking with HPCC deployed to
India and Xray, Inca deployed to Foxtrot
Q4: Inca deployed to Hotel, Netlogger server installed,
collect and display machine partitioning information

Year 2
Q1: completed

Inca deployed to Alamo
enhanced Inca Web status overview page
Inca tests added for Nimbus and Eucalyptus
Inca and Netlogger documentation written
Usage data collected from Nimbus and
Eucalyptus

Q2-Q4:
Testing of image packages and monitoring of
image generator and image repository
Add additional tests
Deploy Nagios
Begin development of GBC

Risks
Dependent on other software
components being ready (image
generation, dynamic partitioning, image
repository, experiment harness, …)

History of running VM counts in Nimbus
deployments collected by Netlogger

History of HPCC performanceInformation on machine partitioning

Inca
http//inca.futuregrid.org

Status of basic cloud tests Statistics displayed from HPCC
performance measurement

http://futuregrid.org

Grid Benchmark Challenge: Feature Space
HPL
Mat-Mat-Mul

Parallel-Transpose
STREAM

FFTRandomAccessLatency-bound

Bandwidth-bound

Compute-bound

AORSA2D

PCIe

HPC Performance Tools

Presenters:

Shava Smallen (SDSC)
Piotr Luszczek (UTK)

9 minutes

Performance Tools Summary
Requirements

Help users analyze the
behavior of their application
Re-use existing tools

Use cases
What is the performance of my
application on different
machines?
What is the performance of my
application using different
compiler optimizations?
What is the I/O performance of
my application using different
file systems?
What is the performance of my
application on a physical
machine and in a cloud?
What is the performance of my
application on different clouds?

http://futuregrid.org

Provide best effort
support of external tools

Performance Tools Summary

http://futuregrid.org

Design
Provide full support of
partner tools

Performance Tools Summary
Deployment

Deploy to bare-metal and
virtual machine thru image
generation process

http://futuregrid.org

Implementation

Performace
Tools Repository

Vampir, PAPI, …

Image generator

.rpm.deb

Bare
metal/virtual

images

alamo sierra

india

xray

hotel

IU

UCTACC UCSD

VampirServer,
VampirTrace

VampirTrace,
PAPI

VampirTrace,
PAPI

VampirTrace,
PAPI

VampirTrace,
PAPI

Key:

Currently Deployed
Planned Deployment

Performance Tools Summary
Milestones

Year 1 (completed)
Q1: PAPI installed as part of default Cray environment on Xray
Q1/Q2: Architecture document completed (performance architecture)
Q2: Vampir workshop at IU
Q3: Script written to automate installation of Vampir, Marmot, and Scalasca
Q4: Vampir deployed to India and Xray; Vampir documentation written

Year 2
Q1: VampirTrace deployed to Hotel; PAPI documentation written, Vampir and
PAPI tests deployed to Inca (complete)
Q2-Q4: Integrate performance tools into image generation, add step-by-step
user tutorials for PAPI and Vampir

Risks
Deployment dependent on image generator and Redhat 6 deployment

http://futuregrid.org

http://futuregrid.org
Vampir architecture

Vampir GUI
screenshots

Vampir
(TU-D)

PAPI in Virtualized Environment

No PAPI support in any VMM ()

http://futuregrid.org

PAPI FRAMEWORK

Low Level
User API

High Level
User API

PAPI COMPONENT
(CPU)

Operating System

Counter Hardware

Component PAPI

Developer APIDeveloper API

PAPI COMPONENT
(NETWORK)

Operating System

Counter Hardware

PAPI COMPONENT
(THERMAL)

Operating System

Counter Hardware

Developer API

Lustre
(FS)

CUDA
(GPU)

Outline
1. Overview
2. Access Services

3. Management Services

4. Operations Services

5. We will not much go into:
Base Software and Services
Fabric
Software for Development & Support
Resources

2

3 4

5

Security and Account Management
Gregor von Laszewski, Gregory
Pike, Archit Kulshrestha,
Fugang Wang, David
LaBissoniere
Indiana University
University of Chicago
Presenter:

Gregor von Laszewski
6 minutes

Key Points
Use LDAP to achieve a
centralized account
management framework,
though the deployment could
be based on replica.
Account management through
command line and portal.
Configuration management
system like BCFG2 is used to
set access control on
images/provisioned systems.

Use Cases
Immediate acces to HPC, Nimbus, Eucalyptus

upon membership of an approved project
Audit trail in case of security incident
Introduction of a FG "credit card", e.g. accounting mechanism
Key Management and Revocation

Requirements
Single Sign On

Except for isolated experimental systems
OpenID integration
Accounting (XD, ...)
Auditing (XD TAS, ...)
Integration with various Services: HPC, Nimbus, Eucalyptus, Unicore,
gLite, Genesis II, ...
Consider the security issues involved with Image Management
Integration with XD (work with XD)
Explore InCommon

Security & Account Management

Security Architecture

Identity Management
 Service

LDAP + Portal

Portal

Implementation
Unified account strategy

Initiated from Portal
Leverage Drupal security solutions
Leverage Web 2.0 security solutions, OpenID,
OAuth, CILogon

Use LDAP replication
SSL, PAM, SSH-LPK

XD Integration
X.509 Auth, GSISSH

Security will be integral part of
FG Project & Experiment Management

Investigate other solutions
CROWD, Kerberos realm

POINT OUT DIFFERECE BETWEEN PLAN AND ACTION
DIFFERENTIATE PORTAL FROM OTHER MECHANISMS
WHEN XD DIRECTIONS ARE CLEAR INTERACT WITH THEM

Mitigation Strategy

Consult with former NCSA security expert Von Welch (now
at IU) to mitigate architecture level risks
Interact with XD, once direction is clear
Sandbox Testing of experimental services and software

Friendly user mode to identify issues
Develop best practices based on experience

User input is crucial
Educate users on security to prevent issues like password
less keys
Team includes systems manager and developers familiar
with TeraGrid security

Milestones & Risks
PY1

Distributed LDAP replicas with SSH key
PAM integration
Nimbus integration

PY2
CROWD
OpenNebula LDAP integration
Eucalyptus: we hope for OpenID by Eucalyptus team
SSO onto other services

PY3
SSO for development services

Risks
Software and services deployed on FG have different authentication and
authorization mechanisms that complicates our solution.
Distributed resources and authentication end points
Hosting experimental services may be a risk
We are a new environment, best practices are not available for FG like
systems
XD has not yet started, integration may be delayed

Software Roadmap
PY1:

Enable general services: HPC, Nimbus, Eucalyptus
Explore dynamic provisioning via queuing system
Explore raining an environment (Hadoop)

PY2:
Provide dynamic provisioning via queuing system
Deploy initial version of fg-rain, fg-hadoop, ...
Explore replication of experiments
Allow users to contribute images for "raining"
Deploy OpenNebula, OpenStack

PY3:
Deploy reproducibility of experiments
Deploy reproducibility of comparative studies

PY4:
Harden software for distribution

